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The acid sphingomyelinase/ceramide system in COVID-19
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Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms
in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or
ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral
ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many
clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase).
The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label
real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine,
and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better
understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional
inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of “old” drugs against COVID-19.
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SARS-COV-2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is
closely related to the deadly coronaviruses SARS-CoV-1 and
Middle East respiratory syndrome coronavirus (MERS-CoV). The
2019 outbreak of coronavirus disease (COVID-19), caused by SARS-
CoV-2, has become a public health emergency of international
concern [1]. Infection with SARS-CoV-2 often results in mild
respiratory tract disease, but a substantial number of patients also
experience severe symptoms and pneumonia. A high proportion
of critically ill patients require intensive care and ventilator
treatment, with a high mortality rate [2]. The total infection death
rate is approximately 0.66%, rising sharply to 7.8% in people aged
over 80 [3]. This has led to excess mortality in many countries [4].
Risk factors for severe/fatal COVID-19 are advanced age, obesity,
chronic respiratory disease, hypertension, cardiovascular disease,
kidney disease, cerebrovascular disease, malignancy, and diabetes
[5]. Severe COVID-19 courses are characterized by hyperinflamma-
tion and cytokine storms, with significantly higher serum levels of
interleukin (IL)-6, IL-8, IL-10, IL-2R and tumor necrosis factor (TNF)-
alpha [6–8].
The SARS-CoV-2-positive strand RNA genome is packaged

within the coated capsid [9]. Cellular infection with SARS-CoV-2
is initiated by the binding of the surface unit S1 of the viral spike
glycoprotein to its cellular receptor angiotensin-converting
enzyme 2 (ACE2), resulting in the cleavage of the viral spike-
protein by the activity of transmembrane serine protease
2 (TMPRSS2) and cathepsin B and L and in viral entry [10–13].
Although the binding of the virus to its receptor has been
elucidated in detail [10–12], the changes that occur in the host cell
membrane during viral processing and entry are largely unknown.

However, membrane changes that mediate viral entry may be a
very promising target for preventing infection.

THE ACID SPHINGOMYELINASE/CERAMIDE SYSTEM
Surface ceramide is generated by the acid sphingomyelinase
(ASM), which is a lysosomal protein that catalyzes the conversion
of sphingomyelin into ceramide. Since lysosomes are constantly
recycling to the plasma membrane, the ASM can be also found
on the cell surface and binds to the outer leaflet of the plasma
membrane [14–16]. Surface ASM acts as a signaling molecule and
generates ceramide in the outer leaflet of the cell membrane
[14–17]. Ceramide molecules are very hydrophobic and sponta-
neously associate with each other to form small ceramide-
enriched membrane domains that fuse and form large highly
hydrophobic, tightly packed, and gel-like ceramide-enriched
membrane domains termed “platforms” [14, 18, 19]. Thus, the
generation of ceramide by the ASM dramatically alters
the biophysical properties of the plasma membrane. These
large, distinct, ceramide-enriched membrane domains serve
to cluster, aggregate and reorganize activated receptor mole-
cules such as CD95, CD40, DR5 or β1-integrin, to name a few
[14, 20–24]. Ceramide-rich platforms were also shown to mediate
a variety of stress stimuli such as γ-irradiation [17, 25], ultraviolet
light [26], or Cu2+ intoxication [27], as well as infection of cells
with at least some pathogenic bacteria and viruses [15, 28]. The
high density of activated receptors upon trapping and clustering
in ceramide-enriched membrane domains and the proximity to
signaling molecules facilitates and amplifies signaling via the
specific receptor, as shown for CD95 [29].
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FUNCTIONAL INHIBITORS OF ASM (FIASMAS)
Since the 1970s, it has been shown that weak organic bases such
as desipramine have the potential to inhibit the activity of ASM
[30–34]. It has been suggested that ASM is bound to intralyso-
somal membranes and thus protected from proteolytic inactiva-
tion. Weak bases diffuse into lysosomes and are trapped after
protonation. This leads to an up to 1000-fold intralysosomal
accumulation of weakly basic substances [35]. Weak bases also
localize in other acidic subcompartments of the cell membrane
and thereby inhibit ASM not only in lysosomes but also in certain
domains of the cell membrane. Functional inhibition of ASM
requires only a few structural conditions; the molecules need to
contain a lipophilic organic ring that integrates into the inner
lysosomal membrane, a short spacer and a charged tertiary amine
group that displaces ASM from the inner lysosomal membrane,
which results in the proteolysis of the enzyme in the lysosomal
lumen [36, 37]. Therefore, weak bases do not directly inhibit
ASM but lead to functional inhibition of ASM. We have proposed
the acronym FIASMA (functional inhibitor of acid sphingomye-
linase) for a compound from this large group of drugs [38].
FIASMAs include mono-, bi-, tri- and tetracyclic compounds.
All FIASMAs identified so far have at least one basic nitrogen
atom, have a medium to high logP value, and most of them
have a molecular weight below 500. FIASMAs more frequently
violate Lipinski’s Rule-of-Five than compounds that do not have
effect on ASM, and FIASMAs appear to have good permeability
across the blood−brain barrier. Conversely, not all lipophilic
weak bases are FIASMAs. This is explained below using the
example of chloroquine. We have identified several novel
FIASMAs (e.g., fluoxetine, fluvoxamine, maprotiline, nortriptyline,
orphenadrine, sertraline, dextromethorphan, emetine and
triflupromazine) [33, 34], most of which are U.S. Food and Drug
Administration (FDA)-approved known bioactive compounds,
most likely minimally toxic and potentially readily available for
new clinical applications.
By inhibiting ASM, FIASMAs cause a lower cellular concentration

of ceramides. Human studies have shown reduced ceramide
concentrations in lung endothelial and nasal epithelial cells with
treatment with 25–75mg/day amitriptyline for 2–4 weeks [39, 40].
The accumulation in lipophilic membranes and acidic intracel-

lular compartments explains the high volume of FIASMA
distribution, especially in the lung, the entry organ of SARS-CoV-
2. The FIASMA amitriptyline will be described in more detail here
as an example. With its high lipophilicity and weak basicity (logP
= 4.92, pKa= 9.4, www.drugbank.ca), amitriptyline strongly accu-
mulates in tissue compartments, e.g., lysosomes [35], resulting in a
high volume of distribution (Vd= 16 L/kg, www.drugbank.ca).
High tissue concentrations can be detected in all organs. In fact,
the highest uptake of amitriptyline among all tissues with a lung/
blood concentration gradient of approximately 50 is found in the
lungs of mice and rats [41, 42]. In humans, even higher
concentration gradients between the lung and blood were found
[43, 44]. Due to the particularly high accumulation in the lung,
effective antiviral concentrations are likely to be achieved with
conventional oral therapy with amitriptyline. Compared with
blood, we expect a considerably longer elimination half-life of
amitriptyline in lung tissue as a result of the high drug
concentration in deep compartments such as lysosomes. We
have found this for drugs with comparable physicochemical
properties in brain tissue [45].

THE ROLE OF THE ASM/CERAMIDE SYSTEM IN PATHOGEN
INFECTION
The ASM/ceramide system is also significant for pathogen infection.
Rhinovirus activates ASM and induces ceramide and the formation
of ceramide-enriched membrane domains, which serve as entrances
for the virus. FIASMAs block infection by viruses: Both amitriptyline

and imipramine block the infection of cells with rhinovirus [28].
A similar mechanism was reproduced for Ebola virus (imipramine,
desipramine) [46], measles (amitriptyline) [47] and Japanese
encephalitis virus (amitriptyline, imipramine) [48]. Other viruses
require the ASM/ceramide system for endosomal escape [49]. The
ASM/ceramide mechanism also applies to nonviral infections such as
Pseudomonas aeruginosa [15], Staphylococcus aureus [50] and
Neisseria gonorrhoeae [51, 52].

THE ASM/CERAMIDE SYSTEM AND SARS-COV-2
Because some antidepressants are widely used in clinical practice
and have a very favorable safety profile, we investigated whether
these drugs could be repurposed to treat or prevent infections
with SARS-CoV-2. Repurposing is a strategy to develop “old”
approved drugs for new clinical indications. The advantages are
low development costs, shorter development time and usually
higher patient safety [53, 54].

Preclinical evidence
Infection of epithelial cells with SARS-CoV-2 is initiated by binding of
the S protein of the virus to ACE2. Binding is followed by fusion of
the viral and cellular membrane, which requires priming of spike by
cellular proteases that cleave spike into the S1 and S2 subunits [55].
Spike-protein cleavage is mediated by TMPRSS2, but also by
cathepsin B and L [13]. Ceramide may have several functions in
the infection with SARS-CoV-2: We have shown that these ceramide-
enriched membrane domains trap and cluster ACE2 upon cellular
infection with SARS-CoV-2, which is very likely a pre-requisite for
signaling via this receptor and therefore a pre-requisite for the
infection [56]. It is possible that ceramide-mediated clustering of
ACE2 in large membrane domains amplifies signaling via ACE2 and
is thereby required for internalization of ACE2 and SARS-CoV-2 into
endosomes. However, it might be also possible that ceramide
generated within endosomes or on the outer leaflet of the cell
membrane upon infection with SARS-CoV-2 binds to cathepsins in
endosomes and thereby triggers spike-protein priming and
membrane fusion. Previous studies using TNF already demonstrated
an activation of cathepsins by ceramide [57]. In line with a direct
ceramide−protein interaction, it might be also possible that
ceramide binds to and directly activates TMPRSS2 and thereby
facilitates membrane fusion. Alternatively, ceramide-enriched mem-
brane domains might trap ACE2 and TMPRSS2 within a small,
distinct area of the plasma membrane resulting in a high
concentration of TMPRSS2 and thereby S-protein priming, mem-
brane fusion and infection. It is important to note that all of these
events are inhibited by amitriptyline or other FIASMAs, since the
drugs induce a long-lasting degradation of the protein in lysosomes.
Work from our group [58] finds that SARS-CoV-2 activates the

ASM/ceramide system, resulting in the formation of ceramide-
enriched membrane domains that serve viral entry and infection
by clustering ACE2, the cellular receptor of SARS-CoV-2. Amitripty-
line and other FIASMAs inhibit ASM and the formation of
ceramide-enriched membrane domains, thereby preventing
infection with SARS-CoV-2. The destruction of ceramide-enriched
membrane domains by means of anti-ceramide antibodies or
neutral ceramidase treatment also prevents infection with SARS-
CoV-2. Likewise, genetic downregulation of ASM abrogates
infection with SARS-CoV-2. The reconstitution of ceramide in cells
treated with a FIASMA, anti-ceramide or ceramidase by the
addition of exogenous ceramide restores infection with SARS-CoV-
2. In humans, oral application of amitriptyline very efficiently
blocks the infection of freshly isolated nasal epithelial cells with
SARS-CoV-2 [58]. We obtained comparable results with ambroxol
[56]. In summary, our data suggest the use of FIASMA medications
such as fluoxetine, amitriptyline, ambroxol, anti-ceramide anti-
bodies and neutral ceramidase for the prevention and treatment
of coronavirus disease.
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These data were confirmed by an independent study also
following the ASM/ceramide approach that demonstrated an
inhibition of the infection of cultured epithelial cells with SARS-
CoV-2 by the FIASMAs fluoxetine, amiodarone and imipramine in
Calu-3 and Vero E6 cells [59]. As mechanisms, the authors describe a
lack of acidification in acidic organelles and a change in cholesterol
abundance. The observation of the antiviral activity of fluoxetine
was also confirmed in other preclinical studies [60, 61]. Taken
together, these results show the potentially crucial importance of
the ASM/ceramide system as a treatment target in COVID-19, a
mechanism likely to be shared by all virus variants [62].
In accordance with these results, activity against SARS-CoV-2

and other coronaviruses was found in a number of cell culture
screening studies for different substances that can be assigned to
FIASMAs. These studies were either hypothesis-free or pursued
hypotheses beyond the ASM/ceramide approach.
In a screening of FDA-approved compounds for anti-SARS-CoV-

2 activity, the FIASMAs clemastine and cloperastine were
identified [63]. The FIASMAs benztropine, chlorpromazine, clomi-
pramine, emetine, fluphenazine, promethazine and tamoxifen had
antiviral effects against SARS-CoV-2 in Vero E6 cells [64]. In a
screening of FDA-approved substances against SARS-CoV-2,
24 substances showed antiviral activity in Vero cells, including
the FIASMAs cepharanthine and loperamide [65]. In a multistep
in vitro screen, the FIASMA promazine was identified as a high-
confidence inhibitor of SARS-CoV-2 replication [66]. In addition,
recent studies show that fluoxetine inhibited SARS-CoV-2 infec-
tions in Vero cells [61] and amiodarone and clofazimine inhibited
SARS-CoV-2 infections in iAEC2 cells [67, 68].
A similar antiviral activity of FIASMAs was found against other

coronaviruses. An in vitro study on Vero E6 cells showed anti-MERS-
CoV and anti-SARS-CoV activity in 27 licensed small-drug molecules,
including antipsychotics and estrogen receptor antagonists. Many of
these are FIASMAs (astemizole, benztropine, chlorpromazine,
clomipramine, emetine, fluphenazine, promethazine, tamoxifen,
triflupromazine) [69]. A screening of FDA-approved drugs on Vero
cells revealed that the FIASMAs chlorpromazine and loperamide had
anti-MERS-CoV activity [70]. In a screen against MERS-CoV replication
in Huh-7 cells, the FIASMAs chlorpromazine, promethazine, fluphe-
nazine, astemizole, triflupromazine, clomipramine and tamoxifen
demonstrated antiviral activity [71]. The FIASMA emetine exerted
in vitro antiviral activity against coronaviruses [72–74]. Clofazimine
was active against feline coronavirus in Fcwf-4 cells [75].

Clinical evidence of the potential usefulness of the FIASMAs
fluoxetine, fluvoxamine and hydroxyzine in COVID-19
The notion that FIASMA antidepressants and hydroxyzine inhibit
infections with SARS-CoV-2 is also strongly supported by clinical
studies.
The first study was a retrospective observational study, indicating

a marked beneficial effect of antidepressants on the clinical course
of COVID-19. That study was conducted at Greater Paris University
Hospitals, France, with 7230 adults hospitalized for laboratory-
confirmed COVID-19 between January 24 and April 1, 2020,
including 345 patients (4.8%) who received an antidepressant
within 48 h of hospital admission at a mean fluoxetine-equivalent
dose of 21.6mg (SD= 14.1) per day [76]. The primary endpoint was
a composite of intubation or death and was compared between
patients who received antidepressants and those who did not in
time-to-event analyses adjusted for patient characteristics (such as
age, sex, obesity, and medical comorbidities), clinical and biological
markers of disease severity, and other psychotropic medications.
The primary analysis was a multivariable Cox model with inverse
probability weighting. The results indicated a significant association
between antidepressant use and reduced risk of intubation or death
(AHR, 0.56; 95% CI, 0.43−0.73, p < 0.001). This association was similar
in multiple sensitivity analyses. Exploratory analyses also suggested
that this association was also significant for selective serotonin

reuptake inhibitors (SSRIs) and non-SSRI antidepressants, and for
fluoxetine, paroxetine, escitalopram, venlafaxine, and mirtazapine
(all p < 0.05).
The second study was a prospective randomized placebo-

controlled study in which Lenze et al. [77] showed favorable
effects of the SSRI and FIASMA fluvoxamine on COVID-19 disease
progression in outpatients. Participants randomly received
100–300mg fluvoxamine (n= 80) or placebo (n= 72) daily for
15 days. The primary outcome was clinical worsening within
15 days of randomization, defined by meeting the two criteria of
(1) a shortness of breath or hospitalization for shortness of breath
or pneumonia and (2) oxygen saturation of <92% of room air or a
need for supplemental oxygen to achieve an oxygen saturation of
92% or greater. Clinical worsening occurred in 0 of 80 patients in
the fluvoxamine group and 6 of 72 patients in the placebo group
(absolute difference, 8.7% from the survival analysis; log rank P=
0.009). In the fluvoxamine group, there was 1 serious adverse
event and 11 other adverse events, while in the placebo group,
there were 6 serious adverse events and 12 other adverse events.
In summary, in this preliminary study, adult ambulatory patients
with symptomatic COVID-19 treated with fluvoxamine had a lower
probability of clinical worsening over 15 days compared to those
who received placebo.
This observation was confirmed in a third, prospective real-

world evidence study, in which the incidence of hospitalization
was 0% among 65 persons with COVID-19 who opted to receive
fluvoxamine (50 mg twice daily), whereas it was 12.5% among the
48 persons with COVID-19 who declined. At 14 days, residual
symptoms persisted in 0% (0 of 65) with fluvoxamine and 60% (29
of 48) with observation [78].
In a fourth study, we investigated the association between the

use of the FIASMA hydroxyzine and mortality in patients
hospitalized for laboratory-confirmed COVID-19 in a multicenter
observational retrospective cohort study involving Greater Paris
University Hospitals, France [79]. More than 7000 adults hospita-
lized for laboratory-confirmed COVID-19 between January 24 and
April 1, 2020 were included. Of them, 138 patients (1.9%) had
received hydroxyzine during the visit at a mean dose of 49.8 mg
(SD= 51.5). The study endpoint was death and was compared
between patients who received hydroxyzine and those who did
not in time-to-event analyses adjusting for patient characteristics
(such as age, sex, and comorbidities), clinical and biological
markers of disease severity, and the use of other medications. The
results indicated that over a mean follow-up of 20.3 days (SD=
27.5), 994 patients (13.5%) had a primary endpoint event. The
primary multivariable analysis with inverse probability weighting
showed a significant association between hydroxyzine use and
reduced mortality (HR, 0.42; 95% CI, 0.25−0.71; p= 0.001), with a
significant dose−effect relationship (HR, 0.10; 95% CI, 0.02−0.45;
p= 0.003). This association was similar in multiple sensitivity
analyses. In secondary analyses conducted among subsamples of
patients, there was a significant association between hydroxyzine
use and a faster decrease in biological inflammatory markers
associated with COVID-19-related mortality, including the
neutrophil-to-lymphocyte ratio (NLR), the lymphocyte-to-C-
reactive protein ratio (LCRP), and circulating IL-6 levels (all p <
0.016), with a significant dose−effect relationship for the NLR and
LCRP (both p < 0.037).

Clinical evidence of the importance of the ASM/ceramide
system as a treatment target in COVID-19
The potential benefit of FIASMA treatments among patients
hospitalized for severe laboratory-confirmed COVID-19 was
recently explored in an observational multicenter retrospective
study [80]. Therein, taking a FIASMA medication upon hospital
admission was associated with substantially reduced likelihood of
intubation or death. This association was not specific to one
FIASMA class (e.g., FIASMA antidepressants) or medication (e.g.,
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fluoxetine). A similar significant association was found in another
observational multicenter retrospective study conducted in
patients with psychiatric disorders and hospitalized for severe
COVID-19 [81]. A retrospective observational study also estab-
lished a positive association between chronic administration of
FIASMA and reduced mortality in COVID-19 hospitalized patients
that was significant for the FIASMA amlodipine [82]. Finally,
plasma markers of ceramide metabolism were found to be
associated with respiratory severity and to correlate with
inflammation in 49 patients hospitalized for COVID-19 [83]. The
observation of an association between ceramide levels and
COVID-19 respiratory distress was also reported in a preprint
study involving 52 patients with COVID-19 [84].
Taken together, this clinical evidence suggests that the

beneficial effects of certain antidepressants, such as fluoxetine
or fluvoxamine, and the H1 antihistamine hydroxyzine, which are
FIASMAs [34], in patients with COVID-19 may be mediated by the
inhibition of ASM. These findings also support the continuation of
FIASMA medications during SARS-CoV-2 infection [80, 81]. While
we recognize that retrospective observational studies are subject
to bias, they are nevertheless examples of how molecular insights
can quickly generate testable clinical hypotheses and help
prioritize candidates for prospective clinical trials or future drug
development.
The potential negative effects of chloroquine and hydroxy-

chloroquine in COVID-19 are also compatible with the significance
of the ASM/ceramide system described above. Earlier approval
for chloroquine and hydroxychloroquine for the treatment of
COVID-19 has been revoked by the FDA [85] because of a
potential increased mortality under hydroxychloroquine and no
benefit of chloroquine in inpatients [86]. Chloroquine and
hydroxychloroquine are cationic amphiphilic substances with
strong accumulation in acidic intracellular compartments. The
antimalarial effect of chloroquine is apparently at least partially
based on its alkalinizing effect on acidic intracellular compart-
ments [87]. However, chloroquine does not result in functional
inhibition of ASM [32, 34, 88]. Instead, chloroquine results in
increased ceramide content in lung cells of mice [89], possibly by
the inhibition of acid ceramidase [90], which is also located in
acidic intracellular compartments. The increased ceramide abun-
dance in lung cells could explain its potentially negative effect in
the treatment of COVID-19.

THE ASM/CERAMIDE MODEL OF SARS-COV-2 INFECTION AND
COVID-19
Considering SARS-CoV-2 infection and COVID-19 from the
perspective of the ASM/ceramide system provides a framework
for a deeper understanding and for the development of testable
hypotheses. Here are a few examples:

(1) Substances that increase cellular ceramide abundance
should have an unfavorable effect on the course of the
disease. This was explained above using the example of
hydroxychloroquine, but these findings should be examined
in more detail.

(2) Conversely, interventions that lower ceramide levels
should have a beneficial effect on COVID-19 disease
progression. In a randomized controlled trial, rosuvastatin
dose-dependently lowered plasma ceramide levels, inde-
pendent of cholesterol levels [91]. This may explain the
favorable disease outcome of COVID-19 patients taking
rosuvastatin [92].

(3) In cell culture, subthreshold concentrations of FIASMAs
have an additive inhibitory effect on ASM [34]. Therefore, if
a low dose of a single FIASMA does not affect the course of
COVID-19, the combination of two or more FIASMAs, each
at a low dose, may be effective.

(4) Clinical data can now be analyzed for the effects of
FIASMAs vs. non-FIASMAs on the course of COVID-19. The
course of patients under antidepressant therapy should be
more favorable with FIASMA antidepressants than with
non-FIASMA antidepressants. The patients in both groups
would be comparable because they all received antide-
pressants. Similarly, the clinical course of COVID-19 in
patients treated with antipsychotics or cardiotropic
medications could be investigated by comparing FIASMA
and non-FIASMA-antipsychotics or cardiotropic medica-
tions [80, 81].

(5) Agonistic modulation of the sigma1 receptor pathway has
a beneficial effect in preclinical inflammation and sepsis
models [93] and has attracted attention in analyses of
SARS-CoV-2−host interactions [63, 94]. Fluvoxamine is a
sigma1 receptor agonist [95, 96]. Although it is possible
that the favorable effects of fluvoxamine in the prospec-
tive study in outpatient COVID-19 patients [77] are due to
this effect, fluvoxamine also acts as a FIASMA [34]; this
mechanism may also explain its beneficial effect on the
course of COVID-19 disease. Based on preclinical evidence
for an effect of sigma1 receptor agonists on inflammation
and cytokine secretion, compounds with an intrinsically
dual mechanism of action, i.e., acting both as a sigma1
agonist and a FIASMA (e.g., fluvoxamine or fluoxetine)
should act better on COVID-19 than FIASMAs with no or
antagonistic effect on the sigma1 receptor (e.g., sertraline)
[97]. Conversely, it should also be investigated whether
sigma1 agonists without simultaneous effects on the
ASM/ceramide system can also be successfully used in
COVID-19.

(6) Remdesivir alone shows limited efficacy on COVID-19 and
is no longer recommended for therapeutic use according
to the WHO [98]. However, according to in vitro data, it is
quite conceivable that the combination of remdesivir with
a FIASMA will provide additional benefits. This has been
shown for the combinations remdesivir−emetine [72] and
remdesivir−fluoxetine [99].

(7) Plasma ceramides are elevated in sepsis patients and
predict sepsis-associated mortality [100]. Acute systemic
inflammation highly upregulates secretory sphingomyeli-
nase [101–103]. Preclinical studies show favorable effects
of genetic downregulation or the application of the
FIASMAs amitriptyline or desipramine in sepsis models
[104, 105]. Therefore, the role of ceramide in the initial
development and further progression of COVID-19-
associated sepsis should be investigated. Plasma markers
of ceramide metabolism were found to be associated with
respiratory severity and to correlate with inflammation in
49 patients hospitalized for COVID-19 [83, 84]. It is
tempting to speculate that FIASMAs also have a beneficial
effect on the course of sepsis in COVID-19.

(8) Currently, hyperinflammation in COVID-19 is treated with
broad-spectrum corticosteroids or specific monoclonal
antibodies. While corticosteroids have a substantial effect
among critically ill patients with COVID-19 [106, 107], the
effect of specific therapies, for example, tocilizumab as a
monoclonal humanized antibody against IL-6, appears to
be significantly smaller [108]. ASM is a critical regulator of
IL-6 production [109] and plays an important role in TNF-
alpha signaling [110]. Interestingly, antidepressants reduce
peripheral cytokine levels of IL-6, TNF-alpha, IL-10 and
CCL-2 in the usual treatment of patients with major
depression [111]. Future clinical studies must show
whether this cytokine-reducing effect is due to FIASMAs
among the antidepressants. Furthermore, future studies
must show whether FIASMAs also have a beneficial effect
on cytokine release in patients with COVID-19. At least in a
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retrospective evaluation, the FIASMA hydroxyzine was
associated with a faster decrease in biological inflamma-
tory markers associated with COVID-19-related mortality,
including the neutrophil-to-lymphocyte ratio, the
lymphocyte-to-C-reactive protein ratio, and circulating IL-
6 [79]. FIASMAs could thus not only inhibit the entry of
SARS-CoV-2 but also alleviate the cytokine storm in severe
COVID-19 courses. Thus, not only prophylactic and early
antiviral use of FIASMAs is possible but also a therapeutic
approach for later severe courses of COVID-19.

(9) Risk factors for an unfavorable course of COVID-19 can be
explained in part by the ASM/ceramide system. Elevated
ceramide levels have been associated with higher age
[112–116], hypertension [117] and obesity [118], three of
the major risk factors for the development of severe
infections with SARS-CoV-2 [5]. It is therefore tempting to
speculate that the elevated ceramide levels associated
with these risk factors sensitize cells to infection with
SARS-CoV-2, thereby contributing to the development of
severe infections.

(10) Complications in the course of COVID-19 may also be
partially explained by activation of the ASM/ceramide
system. COVID-19 infection with SARS-CoV-2 infection is
associated with a hypercoagulable state. Activation of
ASM induces blood coagulation via decrypting of tissue
factor TF [119–121]. FIASMAs may therefore prevent the
thromboembolic complications of SARS-CoV-2 infection.

CONCLUSION
We have described the role of the ASM/ceramide system in the
infection of cells with SARS-CoV-2. Pharmacological or genetic
downregulation of ASM protects against infection. The neutralization
or degradation of ceramides on the cell surface also protects against
infection. The addition of exogenous ceramide after the down-
regulation of ASM by pharmacological inhibition restores infection
with SARS-CoV-2. Thus, ceramide on the cell surface is necessary for
infection with SARS-CoV-2. The ASM/ceramide system may be
important not only for virus entry into the cell but also for the
release of cytokines such as IL-6. Antidepressants reduce the level of
proinflammatory cytokines in preclinical studies and patients with
major depressive disorder. Importantly, reduced IL-6 levels were also
found in COVID-19 patients treated with the FIASMA hydroxyzine.
The ASM/ceramide system can help to explain the typical risk factors
for a lethal COVID-19 course since ceramide abundance is increased
in advanced age, hypertension or obesity, and the increased rate of
thromboembolic complications in the setting of COVID-19 can also
be explained by the ASM/ceramide system. The ASM/ceramide
system may also help to explain the negative effect of chloroquine
in the therapy of patients with COVID-19.
The ASM/ceramide system can be downregulated with FIAS-

MAs. Many FIASMAs have been approved by the FDA for use in
humans, and many have been used for decades as well-tolerated
and safe drugs. Our preclinical data on the beneficial effects of
FIASMAs are supported by a prospective clinical study with
fluvoxamine and retrospective observational studies of patients
receiving or not receiving antidepressants or hydroxyzine. The
data from Lenze et al. [77] show favorable effects during the early
stages of COVID-19, and the data from Hoertel et al. [79, 80] show
favorable effects during the later stages of COVID-19. FIASMAs
may thus be effective over the entire course of the disease, from
infection of the cells through hyperinflammation to sepsis. This is
probably due to different mechanisms, such as virus entry into the
cell, cytokine secretion and sepsis, which are, however, jointly
regulated by the ASM/ceramide system.
In this review, we have also highlighted how the ASM/ceramide

approach allows the formulation of testable hypotheses for

the development, repurposing and application of anti-COVID-
19 drugs.
In summary, the COVID-19-ASM/ceramide system helps us to

understand (1) the entry of SARS-CoV-2 into cells; (2) hyperin-
flammation and increased levels of proinflammatory cytokines,
such as IL-6; (3) mortality in severe sepsis; (4) risk factors for severe
disease progression, such as age, hypertension and obesity; (5)
thromboembolic complications; and (6) the beneficial effects of
FIASMAs during both early and later stages of COVID-19. The
COVID-19-ASM/ceramide system also supports the development
of drugs against COVID-19, for example, by repurposing the FDA-
approved FIASMAs fluoxetine or fluvoxamine, which display high
in vitro inhibition effect on ASM, showed potential positive effects
at usual antidepressant doses, and are easy to use, including high
safety margins, good tolerability, widespread availability and low
cost [80, 122].

DISCLAIMER
The information contained in this review is provided for reference
only and should not be used as a substitute or replacement
for diagnosis or treatment recommendations or other clinical
decisions or judgment
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