
Atmos. Meas. Tech., 5, 99–121, 2012

www.atmos-meas-tech.net/5/99/2012/

doi:10.5194/amt-5-99-2012

© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric
Measurement

Techniques

The ACOS CO2 retrieval algorithm – Part 1: Description and

validation against synthetic observations
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Abstract. This work describes the NASA Atmospheric CO2

Observations from Space (ACOS) XCO2
retrieval algorithm,

and its performance on highly realistic, simulated observa-

tions. These tests, restricted to observations over land, are

used to evaluate retrieval errors in the face of realistic clouds

and aerosols, polarized non-Lambertian surfaces, imperfect

meteorology, and uncorrelated instrument noise. We find

that post-retrieval filters are essential to eliminate the poor-

est retrievals, which arise primarily due to imperfect cloud

screening. The remaining retrievals have RMS errors of ap-

proximately 1 ppm. Modeled instrument noise, based on the

Greenhouse Gases Observing SATellite (GOSAT) in-flight

performance, accounts for less than half the total error in

these retrievals. A small fraction of unfiltered clouds, partic-

ularly thin cirrus, lead to a small positive bias of ∼0.3 ppm.

Overall, systematic errors due to imperfect characterization

of clouds and aerosols dominate the error budget, while er-

rors due to other simplifying assumptions, in particular those

related to the prior meteorological fields, appear small.

1 Introduction

Despite decades of research, there remain significant uncer-

tainties in many elements of the global carbon cycle and its

response to anthropogenic perturbations. It is well-known

that, on average, slightly more than half of annual anthro-

pogenic CO2 emissions are taken up by the lands and oceans

(Le Quéré et al., 2009). However, details of this uptake,

such as its regional-scale distribution, the dominant pro-

cesses governing its interannual variability, and how it may

evolve into the future are not well understood. Determin-

ing the physical mechanisms that govern carbon sources and

sinks will enable significant uncertainty reduction in the pro-

jections of global climate change (e.g., Friedlingstein et al.,

2006).

Ground-based and aircraft observations give an excellent

picture of the global atmospheric CO2 growth rate and even

some reasonable information for hemispheric gradients, but

there is an insufficient number and too sparse a spatial distri-

bution of these observations to accurately infer carbon fluxes

on regional scales. Accurate, global measurements of col-

umn CO2 concentration, coupled with atmospheric trans-

port models, should complement ground-based and aircraft

measurements and allow for the “top-down” monitoring of

regional-scale carbon sources and sinks on timescales of

weeks to months (e.g., Rayner and O’Brien, 2001; Miller

et al., 2007; Chevallier et al., 2007; Baker et al., 2010).

Space-based measurements of CO2 already exist in the

mid-troposphere from several thermal infrared instruments

(e.g., Chédin et al., 2003; Chahine et al., 2008; Crevoisier

et al., 2009; Kulawik et al., 2010), though none of these were

designed with the explicit goal of monitoring CO2. Inver-

sions that ingest these data have found that they provide lim-

ited information on surface-atmosphere fluxes, and only on

broad spatial scales (Chevallier et al., 2009; Breon and Ciais,

2010). The SCanning Imaging Absorption SpectroMeter for

Atmospheric CartograpHY (SCIAMACHY) instrument has
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made near-infrared (NIR) based measurements of CO2 since

2003 (Schneising et al., 2011; Buchwitz et al., 2007). Un-

fortunately, these measurements have rather high scatter and

potential large-scale artifacts that hinder their use in source-

sink estimation (Breon and Ciais, 2010). However, recent re-

sults using an improved algorithm (Reuter et al., 2010, 2011)

show promise and compare well to ground truth, and render

the outlook for SCIAMACHY CO2 data more optimistic.

A new era of space-based CO2 monitoring is at hand

with the appearance of dedicated CO2 instruments such

as the Greenhouse gases Observing SATellite (GOSAT)

(Kuze et al., 2009; Yokota et al., 2009), which successfully

launched in 2009, and the second Orbiting Carbon Observa-

tory (OCO-2) with a launch anticipated in late 2014. OCO-

2 is a follow-on to the original OCO mission (Crisp et al.,

2004) which failed to achieve orbit upon launch in 2009.

Both OCO-2 and the Thermal And Near infrared Sensor

for carbon Observations – Fourier Transform Spectrometer

(TANSO-FTS) instrument aboard GOSAT infer carbon diox-

ide concentration via high-resolution measurements of re-

flected sunlight. These instruments monitor radiation in three

NIR bands: one at 0.76 µm containing significant O2 ab-

sorption (the so-called O2 A band), one at 1.6 µm containing

weak CO2 absorption, and one near 2.1 µm containing strong

CO2 absorption. In contrast to the thermal infrared observa-

tions, these NIR measurements have a nearly uniform sensi-

tivity to CO2 from the surface up through the middle tropo-

sphere. The goal is to characterize the column-averaged dry-

air mole fraction of CO2, called XCO2
, for each sounding:

XCO2
=

∫ ∞
0 u(z) Nd(z) dz
∫ ∞

0 Nd(z) dz
(1)

where u(z) is the CO2 mole fraction with respect to dry air

at altitude z, and Nd(z) is the total molecular number density

of dry air at altitude z. Note that definitions of XCO2
vary

slightly in the literature concerning how the vertical weight-

ing is done, which can lead to differences in XCO2
of tenths of

a part-per-million (ppm). For instance, Connor et al. (2008)

weights CO2 concentration by pressure, and Reuter et al.

(2010) weights by the total number of air molecules, rather

than by the dry air component. Our definition is consistent

with that of the Total Carbon Column Observing Network

(TCCON) (Wunch et al., 2010).

After the launch failure of the first OCO mission, the

OCO team was invited to join the GOSAT team in analyz-

ing GOSAT observations, under the auspices of the NASA

Atmospheric CO2 Observations from Space (ACOS) task.

Since 2009, the XCO2
retrieval algorithm originally devel-

oped for OCO has been modified to allow GOSAT retrievals.

An early version of the OCO XCO2
retrieval algorithm first

motivated the simultaneous use of the three NIR spectral

bands identified above (Kuang et al., 2002). The algorithm

development continued, and was later described in Bösch

et al. (2006, hereafter B06) and Connor et al. (2008, hereafter

C08). B06 described the forward model as well as results of

the algorithm as applied to SCIAMACHY data over the TC-

CON site in Park Falls, Wisconsin, USA. C08 described the

inverse model and results of a linear error analysis. More

recently, Bösch et al. (2011) examined the theoretical perfor-

mance of the algorithm, but this study was limited in that no

systematic errors were included.

Since these studies, the retrieval algorithm has been re-

fined in several notable ways. Advances in the forward

model have greatly enhanced the ability to fit GOSAT spec-

tra. A novel cloud screening algorithm has ensured that

scenes with thick clouds and aerosols are mostly removed.

Finally, a series of post-processing filters now remove re-

trievals of poor or questionable quality.

In the absence of atmospheric scattering, absorption-only

techniques such as Differential Optical Absorption Spec-

troscopy (DOAS) (e.g., Buchwitz et al., 2000, and references

therein) can retrieve sufficiently accurate values of XCO2
.

However, it has been shown that with optically thin clouds

or aerosols present, neglecting scattering can lead to unac-

ceptably large retrieval errors (O’Brien and Rayner, 2002;

Houweling et al., 2005; Aben et al., 2007; Butz et al., 2009).

Many approaches have been devised to account for scattering

affects in the retrieval of carbon dioxide (e.g., Kuang et al.,

2002; Bösch et al., 2006; Connor et al., 2008; Oshchepkov

et al., 2008, 2009; Yoshida et al., 2011; Reuter et al., 2010).

However, tests to prove their efficacy in accounting for these

scattering effects are sometimes incomplete; for instance,

most studies use only Lambertian surfaces, test one or two

solar zenith angles, include limited types or vertical distribu-

tions of clouds or aerosols, and/or assume perfect cloud and

aerosol screening below a relatively low maximum optical

depth (such as 0.3). That said, several of these algorithms

have recently shown relatively good agreement XCO2
agree-

ment as compared with simultaneous, colocated TCCON ob-

servations (Morino et al., 2011; Butz et al., 2011; Wunch

et al., 2011b) or models (Oshchepkov et al., 2011).

While GOSAT contains the Cloud and Aerosol Imager

(CAI) for detecting cloudy scenes, OCO-2 will not. The

ACOS algorithm, while being tested on GOSAT data, will

also work for OCO-2 data when available; therefore, it

only uses information from the narrower OCO-2 windows

within the GOSAT spectra, and does not use CAI data ex-

cept for validation. The primary purpose of this article is

thus twofold: first, to give a summary of the current XCO2

retrieval algorithm used in the ACOS processing of GOSAT

data; and second, to evaluate algorithm performance with a

series of highly realistic, simulation-based tests that go be-

yond what has typically been reported in the literature.

The current operational ACOS retrieval algorithm,

Build 2.8 (B2.8), has processed all GOSAT NIR sound-

ings from 4 April 2009 to 20 April 2011, for both land

and ocean targets. These data are freely available through

the NASA Goddard Earth Sciences Data and Information

Atmos. Meas. Tech., 5, 99–121, 2012 www.atmos-meas-tech.net/5/99/2012/
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Table 1. NIR spectral bands used in the ACOS retrieval.

Band Name Spectral Range Number of

Number (cm−1) GOSAT channels

1 O2 A 12 950–13 190 1203

2 Weak CO2 6166–6286 601

3 Strong CO2 4810–4897 436

Services Center1. However, the over-ocean “glint” retrievals

are very preliminary, and will not be discussed further here.

Results of this algorithm as applied to GOSAT data are de-

scribed in a companion paper (Crisp et al., 2012), and an ex-

tensive validation of those retrievals is described in Wunch

et al. (2011b).

The rest of this article is organized as follows. Section 2

summarizes the retrieval algorithm and pre-screening filter.

Section 3 describes synthetic retrieval tests, including the

generation of the realistic, synthetic GOSAT spectra upon

which to test the algorithm, the tests themselves, and the per-

formance of the pre- and post-processing filters used. Con-

clusions are presented in Sect. 4.

2 Retrieval algorithm

The ACOS retrieval algorithm was originally developed for

the first OCO instrument. Full details of the algorithm and its

implementation are given in the ACOS retrieval Algorithm

Theoretical Basis Document (Crisp et al., 2010). We sum-

marize the salient elements below.

The algorithm employs an optimal estimation approach, in

which input parameters of a forward model are optimized to

yield simulated spectra that best match the observed spectra,

whilst simultaneously being constrained by prior information

(see e.g., Rodgers, 2000). The spectra to match are each of

the three OCO NIR bands: band 1 near 0.76 µm, band 2 near

1.6 µm, and band 3 near 2.1 µm. The bands and their spec-

tral ranges are summarized in Table 1. The forward model

parameters to be optimized constitute the state vector x. All

channels from the three bands are aggregated into observa-

tions vector y. Mathematically, the simulation of observa-

tions y from a state vector x takes the form

y = F(x, b) + ǫ, (2)

where F is called the forward model of the retrieval, b is a set

of fixed input parameters (such as gas absorption coefficients,

view angles, etc.), and ǫ contains both instrument noise and

estimates of forward model errors. Because GOSAT mea-

sures each channel with two orthogonal polarizations, de-

noted P and S, there is a choice to make regarding the com-

position of the y vector. The ACOS retrievals use the quantity

1http://disc.sci.gsfc.nasa.gov
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Fig. 1. Flowchart showing the basic steps for the end-to-end ACOS

Level-2 algorithm.

(P + S)/2, rather than P and S independently or some other

combination. This quantity is nearly the same as the total un-

polarized intensity (O’Brien et al., 2011). This approach sac-

rifices potential polarization information, but has the advan-

tage that it requires less accuracy of the polarization-sensitive

components of the forward model. This will not be the case

for OCO-2, which will measure light in a single polarization

state.

The basic flow of the retrieval algorithm is given in Fig. 1.

External data products are shown as ovals, while processing

steps are shown as rectangles. The input “Level-1B Prod-

uct” contains the calibrated, spectrally-resolved radiances for

each of the three spectral bands, as well as pointing and geo-

metrical information. The “Met Data” contains meteorolog-

ical fields that are used to inform the prior. A pre-screening

step (Sect. 2.4) first removes data of bad quality (low sig-

nal, instrument problems, etc.) and scenes flagged as cloudy.

Next, the filtered data are passed to the core of the algorithm,

the XCO2
retrieval. In this step, an a priori state xa is con-

structed based upon meteorological inputs and the observed

spectra (Sect. 2.1). The first-guess state vector is taken to be

the prior for simplicity. An inverse model, coupled with the

forward model F(x), solves for the state vector x̂ that mini-

mizes the χ2 cost function:

χ2 = (F(x) − y)T S−1
ǫ (F(x) − y) + (x − xa)

T S−1
a (x − xa) (3)

where Sǫ is the observation error covariance matrix, Sa is

the a priori covariance matrix, and T represents the matrix

transpose. XCO2
is calculated directly from x̂ via Eq. (1).

The rest of this section summarizes the state vector com-

position and priors, the forward model, inverse model, and

XCO2
calculation, with particular emphasis placed on those

elements that have changed since the original algorithm de-

scriptions given in B06 and C08.

www.atmos-meas-tech.net/5/99/2012/ Atmos. Meas. Tech., 5, 99–121, 2012
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Table 2. State Vector Composition.

Name Quantities A priori value A priori 1 σ error Notes

CO2 201 Model Climatology Fixed matrix2 Mole Fraction wrt. dry air

Surface Pressure 1 ECMWF 4 hPa

Temperature Offset 1 0 K 5 K Offset to prior

temperature profile

Water Vapor Scale Factor 1 1.0 0.5 Multiplier to prior

specific humidity profile

Aerosol Profiles: 4 × 201 Fixed Profile per type ln(10) ln (Optical Depth3

Two aerosol types, (diagonal) per unit pressure)

cloud water, & cloud ice

Albedo 3 from spectra4 1.0 Albedo at band center

Albedo Slope 3 0.0 0.0005 per cm−1

Wind Speed 1 7.0 m s−1 3.3 m s−1 Over-water only

Dispersion Offset per band 3 from spectra4 0.5 cm−1

1 Profile quantities contain 20 or fewer elements, depending on the surface pressure. 2 See Fig. 2 and text for details. 3 Optical Depth at 0.755 µm. 4 Estimated directly from

observed spectrum; see text for details.

2.1 State vector composition and priors

The state vector contains parameters that are formally op-

timized during the inversion process, and as such represent

physical quantities to which the spectra are sensitive. The

ACOS retrieval state vector is described in Table 2, includ-

ing both a priori values and errors.

Carbon dioxide is retrieved as a vertical profile of dry-air

mole fraction defined on a prescribed set of twenty atmo-

spheric pressure levels. These fixed levels are spaced nearly

equally in pressure, with the highest pressure at 1050 hPa to

ensure all real surface pressures fall within this prescribed set

(Fig. A1). The prior CO2 profiles are derived from a forward

run of the Laboratoire de Meteorologie Dynamique (LMDz)

model, with fluxes optimized to match surface observations

(Pickett-Heaps et al., 2011). The monthly zonal mean is cal-

culated from the model in 10◦ latitude bands, separately for

land and ocean surfaces. An offset is added to the model val-

ues to force the global average surface concentration to equal

the measured value from GLOBALVIEW-CO22; this offset

is updated monthly to include the secular trend in CO2.

We impose smoothness contraints on the retrieved CO2

profile via nonzero off-diagonal elements in the a priori co-

variance matrix to prevent unphysical wiggles in the poste-

rior profile. A visual representation of this matrix is given

in Fig. 2, which shows the correlation coefficient between

various elements of the matrix, as well as the square root

2Cooperative Atmospheric Data Integration Project – Carbon

Dioxide, CDROM, NOAA ESRL, Boulder, Colorado, also avail-

able on Internet via anonymous FTP: ftp://ftp.cmdl.noaa.gov/ccg/

co2/GLOBALVIEW/, 2011.
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Fig. 2. A priori CO2 correlation matrix. The colors represent the

error correlation between CO2 concentrations at different pressures,

arranged TOA to surface from top to bottom and right to left. The

left-hand column gives square root of the diagonal elements of the

covariance matrix.

of its diagonal elements. The diagonal values start large at

the surface and decrease with altitude; they were scaled such

that the total a priori uncertainty in XCO2
is approximately

12 ppm. This structure reflects natural variability, which is

largest near the surface (30–50 ppm), and decreases with

elevation. Variability is smaller in the boundary layer (2–

20 ppm), and smaller still (1–5 ppm) in the free troposphere

Atmos. Meas. Tech., 5, 99–121, 2012 www.atmos-meas-tech.net/5/99/2012/
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Table 3. Optical properties of cloud & aerosol types in retrieval state vector.

Aerosol Type Extinction Efficiency Single Scattering Albedo

0.76 µm 1.61 µm 2.06 µm 0.76 µm 1.61 µm 2.06 µm

Kahn Type 2b1 0.934 0.842 0.580 0.933 0.980 0.972

Kahn Type 3b1 0.773 0.318 0.213 0.881 0.876 0.856

Water Cloud, Re = 8 µm2 2.131 2.224 2.268 1.000 0.991 0.950

Ice Cloud, Re = 70 µm3 1.537 1.610 1.678 1.000 0.882 0.794

1 Kahn et al. (2001); 2 Gamma distribution (Hansen and Travis, 1974); 3 Non-spherical particles according to Baum et al. (2005a,b)

where CO2 is well-measured but still shows some variabil-

ity due to vertical mixing. The variability is very small in

the stratosphere (<1 ppm) where age of air models (e.g., An-

drews et al., 2001) give accurate estimates of CO2 concen-

tration. The overall XCO2
variability of 12 ppm, while prob-

ably larger than natural variability, was chosen to give extra

weight to observations relative to the prior.

The state vector contains several meteorological quanti-

ties: surface pressure, an additive offset to the prior tempera-

ture profile, and a multiplicative scale factor to the prior wa-

ter vapor profile. The surface pressure is included in the state

vector to partially correct for path-length modification effects

and other systematic errors common to both the O2 A-band

and the CO2 bands, similar to what is done in the TCCON

retrieval (Wunch et al., 2011a). The prior surface pressure

and profiles of temperature and water vapor are taken from

3-hourly European Centre for Medium-Range Weather Fore-

casting (ECMWF) model forecast fields, interpolated lin-

early in space and time to the GOSAT field-of-view (FOV).

These are further interpolated to the same fixed pressure lev-

els as for CO2. The surface pressure is adjusted to the eleva-

tion of the GOSAT FOV, where the elevation is taken from

a 3 arc-second resolution digital elevation map (Zong, 2008).

The a priori errors for temperature and water vapor are set

high enough that these parameters are almost entirely deter-

mined by the measurements. For surface pressure, the typ-

ical ECMWF accuracy is 2–3 hPa, though the error can be

larger in high latitude and high topography regions (Salstein

et al., 2008). Thus, the 1 σ prior error was set at 4 hPa for

all soundings to give the retrieval sufficient freedom to find

surface pressure values that may deviate more strongly from

the prior meteorology.

In the ACOS retrieval, land surfaces are assumed to be

purely Lambertian. A mean albedo and slope are retrieved

for each of the three GOSAT bands. These parameters are

given sufficiently large prior variances such that they are es-

sentially unconstrained. Prior values of the mean albedo

are estimated directly from the level of the continuum in

the observed spectrum of each band, assuming a clear-sky,

absorption-free atmosphere. The prior slopes are set to zero.

To account for the altering of optical paths by atmospheric

scattering, the retrieval solves for a mixture of profiles of

four fixed-type atmospheric scatterers. These four types are

chosen to cover a wide range of optical properties, such that

by combining them appropriately, the retrieval can reproduce

virtually any profile of scattering in all three spectral bands.

The four scatterers chosen are water cloud, ice cloud, and two

different types of aerosol. The aerosols are actually aerosol

mixture types “2b” and “3b” from the aerosol climatology

of Kahn et al. (2001). Type “2b” is a mixture of course and

fine-mode dust, while type “3b” is a carbonaceous mixture;

both mixture types contain some sulfate and sea salt. The wa-

ter cloud is a Gamma distribution (Hansen and Travis, 1974)

of spherical drops with an effective radius of 8 µm, while

the ice cloud optical properties are taken from the model of

Baum et al. (2005a,b), assuming an effective particle radius

of 70 µm. The frequency variation of scattering properties

is fixed for each of the scatterers. The extinction efficiency

and single scattering albedo of each type in the three spectral

bands are shown in Table 3.

To avoid problems of negative optical depths, which are

unphysical, we fit for profiles of logarithmic extinction for

each of the four scattering types, on the same predefined

pressure levels as for carbon dioxide itself. The a priori pro-

files of cloud and aerosol optical depth are shown in Fig. 3.

The two aerosol types have the same prior profile, shown as

“Aerosol”. All four types have equal a priori optical depths,

such that the optical depth at 0.755 µm is 0.15 for all types

combined. The a priori covariance matrices are diagonal,

with diagonal elements assigned such that each aerosol con-

centration has a 1 σ uncertainty of a factor of 10. This has

the implication that values that start at zero will stay at zero3.

Thus, the retrieval is incapable of putting aerosols at pres-

sures lower than about 300 hPa, and cannot put scatterers of

any type at pressures lower than 100 hPa, both of which are

physically sensible restrictions.

Three final parameters are included in the state vector

that can correct errors in the instrument’s spectral grid.

For GOSAT, the spectral samples are equally spaced every

3Technically, there is no zero possible due to the logarithmic

retrieval. In practice, this is achieved by setting the prior to a large

negative value, such as −20, which is 10−20 in linear space. For all

practice purposes, this is equal to zero.

www.atmos-meas-tech.net/5/99/2012/ Atmos. Meas. Tech., 5, 99–121, 2012
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Fig. 3. A priori extinction profiles of cloud and aerosol at 0.755 µm

wavelength. The two formal aerosol types each have the same a pri-

ori profile and are shown here as “Aerosol”. The algorithm formally

retrieves the logarithm of this quantity.

0.2 cm−1 across each spectral band, yielding a near-linear

dispersion. However, the wavenumber scale varies from

sounding to sounding due to the Doppler shift between the in-

strument and the FOV on the rotating earth, and also because

of varying instrumental and environmental effects. There-

fore, we retrieve a spectral dispersion offset for each of the

three GOSAT bands. We estimate the a priori value di-

rectly from the observed O2 A-band spectrum, using a simple

method based on solar line positions as described in Taylor

et al. (2012).

2.2 Forward model

The forward model takes as input the state vector described

above, as well as other parameters that describe the viewing

geometry and instrument details, and simulates spectra in the

three NIR bands as would be produced by GOSAT or OCO-

2. It also produces radiance Jacobians, which are derivatives

of the radiances with respect to all the state vector parame-

ters. These derivatives are necessary for the inverse model

(Sect. 2.3). The forward model was originally described in

B06 and consists of a solar model, atmospheric model, sur-

face model, radiative transfer model, and instrument model.

We now describe each of these, primarily focusing on the

differences from B06.

2.2.1 Solar model

The solar model closely follows that described by B06 and

Bösch et al. (2011). It consists of a high-resolution, empir-

ical line list for the full solar disk of over 20 000 lines that

includes line frequency, line strength, and Doppler and 1/e-

folding width. The line list is based on a series of balloon

and telescope observations, and the disk-centered version

has been used extensively in the analysis of ground-based

FTS spectra (Wunch et al., 2011a, and references therein).

The solar continuum model is a ninth-order polynomial fit

to the near-infrared part of the solar spectrum measured by

the SOLSPEC instrument (Thuillier et al., 2003). Other than

the variation in the sun-earth distance that modulates the

overall intensity, the solar continuum is assumed to be time-

invariant; sunspots and other solar activity are currently ig-

nored. The solar continuum is multiplied by the solar absorp-

tion spectrum to obtain the solar spectrum at high resolution;

a doppler shift is also applied to transform the spectrum to a

frame of reference located at a given sounding FOV.

2.2.2 Atmospheric model

The atmospheric model takes physical quantities such as pro-

files of gas concentration, clouds and aerosols, and produces

profiles of optical properties to be fed into a radiative trans-

fer module. These optical properties are computed on a high-

resolution spectral grid with a uniform spacing of 0.01 cm−1.

Profiles of CO2, H2O, and O2 volume mixing ratio, spec-

ified on the twenty prescribed pressure levels of the state

vector, are converted to absorption optical depth using a

three-dimensional lookup table in pressure, temperature, and

wavelength.

The table of gas absorption coefficients represents current

state-of-the-art spectroscopic reference data for CO2 and O2,

including non-Voigt line shapes, speed dependence, line mix-

ing, and collision-induced absorption (see Crisp et al., 2010,

and references therein). HITRAN-2008 (Rothman et al.,

2009) is used for all other absorbers in the ACOS spectral

ranges. Because the absorption cross-sections are nonlinear

in both temperature and pressure, each atmospheric layer is

subdivided into ten sublayers; cross-sections for each are cal-

culated for the interpolated pressure and temperature at the

center of each sublayer, converted to optical depth and then

summed to obtain the optical depth for each (thick) atmo-

spheric layer. This approach avoids biases due to using a

coarse vertical grid. For simplicity, absorbing gas concen-

trations at the sublayer centers, such as for CO2 and O2, are

assumed to vary linearly with pressure.

The atmospheric model also includes scattering processes.

Rayleigh scattering is parameterized according to the model

of Bodhaine et al. (1999), in which the Rayleigh optical

depth is a simple function of wavelength and atmospheric

number density. Profiles of cloud and aerosol extinction

per unit pressure are converted to optical depth at each
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high-resolution frequency of interest. The optical proper-

ties of each species are combined, and further combined with

those from Rayleigh scattering and gas absorption to obtain

composite profiles of optical depth, single scattering albedo,

and fully-polarized scattering phase matrix. The phase ma-

trices follow the notation of de Rooij and van der Stap (1984)

and include six independent components, appropriate for

spherically symmetric particles or randomly-oriented asym-

metric particles (Hovenier and van der Mee, 1983). Other

absorption, emission and scattering processes such as ther-

mal emission, air glow, Raman scattering, and absorption by

ozone in the Chappuis bands are generally negligible in the

microwindows of interest and are currently omitted from the

forward model. Fluorescence from chlorophyll in plants is

ignored in ACOS B2.8, although there is evidence that this

process can contribute significantly to the top-of-atmosphere

(TOA) band 1 radiance (Frankenberg et al., 2011; Joiner

et al., 2011), and will be incorporated in future versions of

the algorithm.

2.2.3 Surface model

In the absence of significant atmospheric scattering, the ma-

jority of the TOA radiance comes from solar photons that ei-

ther have been reflected directly by the surface or have been

scattered exactly once in the atmosphere. When such single

scattering prevails, the surface can be perfectly represented

as a simple Lambertian albedo because only a single incom-

ing and outgoing angle at the surface need be accounted for.

However, if multiple scattering contributes significantly to

the TOA radiance, there can be a nontrivial angular distribu-

tion of surface-scattered photons contributing to the TOA ra-

diance. Because we reject soundings with significant scatter-

ing, our retrieval assumes a purely Lambertian surface, with

an albedo that varies linearly with wavelength across each of

the three near-infrared bands. The effect of surface polariza-

tion is ignored as we only retrieve on (P + S)/2 for GOSAT,

which, as stated previously, is nearly identical to the total un-

polarized intensity. In the retrieval tests described in Sect. 3,

we will test this assumption by using simulations that feature

much more general representations of the surface reflectance.

2.2.4 Radiative transfer model

Once the atmospheric optical properties and surface re-

flectance properties have been determined, they are used to

calculate the top-of-atmosphere Stokes parameters I , Q, and

U on the high resolution 0.01 cm−1 wavelength grid. The

Stokes parameter V , representing circularly polarized radi-

ation, is ignored as it is generally negligible and most in-

struments, including GOSAT and OCO-2, are insensitive to

it. The solar spectrum multiplies the high-resolution Stokes

vectors calculated by the radiative transfer model, which are

initially dimensionless reflectances, to give them the proper

radiance units.

Because most soundings include some atmospheric scat-

tering, a fully-polarimetric vector calculation of radiative

transfer would be desirable to calculate the Stokes vector

at each monochromatic wavelength. However, at 0.01 cm−1

resolution, this would lead to tens of thousands of computa-

tionally expensive radiative transfer calculations per forward

model run. We therefore adopt an approximate approach

called “Low Streams Interpolation” (LSI), which is described

fully in O’Dell (2010) and references therein. Rather than

performing full-accuracy calculations with a large number of

angular streams at all monochromatic wavelengths, such cal-

culations are only performed at a few tens of wavelengths.

Very fast, low accuracy calculations are performed at all the

monochromatic wavelengths; these are combined with the

small number of high accuracy calculations to provide an es-

timate of the Stokes vector at each monochromatic point.

Monochromatic radiative transfer calculations are made

using a combination of a fast single-scattering model (Naka-

jima and Tanaka, 1988), the LIDORT scalar multiple-

scattering model (Spurr et al., 2001), and a second-order-of-

scattering polarization model called 2OS (Natraj and Spurr,

2007). Neglecting higher orders of scattering for Q and U

is shown to lead to radiance errors on the order of 20 % or

less of the expected OCO instrument noise, and XCO2
errors

typically on the order of a few tenths of a ppm or less (Natraj

et al., 2008). The LSI method has radiance errors typically

less than a tenth of a percent (O’Dell, 2010); errors of a sim-

ilar type and magnitude were shown by Hasekamp and Butz

(2008) to be somewhat less than OCO instrument noise.

2.2.5 Instrument model

The instrument model consists of two components: a model

that computes the measured radiance for each instrument

channel, and a noise model. The instrument radiance model

operates on the high spectral-resolution Stokes vectors as fol-

lows:

Ii =
∫ ∞

0

(

mI I (λ′) + mQ Q(λ′) + mU U(λ′)
)

SRFi(λ
′) dλ′, (4)

where Ii is the measured radiance in the i-th channel, SRFi

represents the spectral response function of the i-th channel,

and λ′ represents wavelength in the frame of reference of the

spacecraft. This is computed via a simple, non-relativistic

Doppler shift, taking into account the rotation of the earth

at the location of the target FOV as well as the spacecraft

velocity itself. The mS coefficients are elements of the in-

strument Mueller matrix, and represent the polarization sen-

sitivity of a given channel to a given Stokes component S.

For GOSAT, these coefficients have been calculated explic-

itly, but because retrievals are done on (P + S)/2, we have

mI ∼ 1 and all other components essentially zero (O’Brien

et al., 2011). For OCO-2, which measures incoming light

in a single polarization, this will not be true. The SRF of

the TANSO-FTS bands have been provided by the Japan
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Aerospace Exploration Agency (JAXA); the integration over

radiance is performed over a 100 cm−1 range centered on

each channel.

In the retrieval tests presented in the next section, an in-

strument noise model is required for two different purposes.

First, for those simulations where artificial noise was added,

the noise model is used to generate the properties of that ar-

tificial noise. Second, the noise model is used in all tests to

construct the observation error covariance matrix Sǫ , which

in principle should contain contributions from both instru-

ment noise and forward model error. In the ACOS retrieval,

Sǫ is taken to be diagonal and contains only instrument

noise contributions for simplicity. In order to have highly

representative GOSAT retrieval tests, we characterized the

actual noise from the TANSO-FTS instrument by analyz-

ing over a year’s worth of high-gain spectra, separated by

band and polarization. It was found that the TANSO-FTS

instrument noise is broadly consistent with the following

parameterization:

Nb,p =
√

Ab,p + Bb,p Ib,p (5)

where Ib,p is the continuum signal level in band b and polar-

ization p ∈ {P, S}, and Ab,p and Bb,p are parameters. Nb,p is

the corresponding noise level and is roughly constant across

each band. Because we retrieve on the average of the P and S

polarization channels, which as stated above is almost iden-

tical to the total intensity, it is straightforward to calculate

the noise Nb on the total intensity Ib for each channel. This

reduces to

Nb =
√

Ab + Bb Ib

(

1 + Cb
Ib,P − Ib,S

Ib,P + Ib,S

)

(6)

where the values of the A, B, and C coefficients are given in

Table 4 for each GOSAT NIR band. These values are used

to populate Sǫ in the simulation-based tests described below.

However, note that for retrievals on real GOSAT soundings,

the observation error in Sǫ for the ACOS retrieval is empiri-

cally determined such that the reduced χ2 of the residuals is

approximately unity in each band. This “empirical noise”

approach is unique to the ACOS retrieval of real GOSAT

data and is described fully in Crisp et al. (2012). Because

the spectroscopy and solar models are consistent between

the simulation and retrieval forward models for the idealized

tests described herein, the full empirical noise approach is

not required.

2.3 Inverse model & XCO2
calculation

The inverse model used in the ACOS retrieval was previ-

ously described in C08. In brief, the modified Levenberg-

Marquardt method of Fletcher (1971) is used to minimize

the cost function given in Eq. (3). The updated state vector is

calculated for each iteration as

Table 4. Coefficients of the simple GOSAT noise model, assuming

standard GOSAT intensity units (W cm−2 cm1 sr−1).

A B C

Band 1 2.18 × 10−18 3.73 × 10−12 −0.20

Band 2 5.77 × 10−19 1.95 × 10−12 −0.21

Band 3 2.30 × 10−19 4.43 × 10−13 −0.26

xi+1 = xi +
(

KT
i S−1

ǫ Ki + (1 + γ ) S−1
a

)−1

[

KT
i S−1

ǫ (y − F(xi)) + S−1
a (xa − xi)

]

(7)

where F(xi) is the forward model at xi , Ki = ∂F(xi )
∂xi

is the

corresponding Jacobian matrix, and γ is the Levenberg-

Marquardt parameter. This equation is iterated until a conver-

gence criterion has been satisfied. Details on the setting of γ

and the convergence criterion are given in Crisp et al. (2010).

For those retrievals that converge, several additional quanti-

ties are calculated, including XCO2
, its a posteriori error, and

its vertical averaging kernel. Because we retrieve CO2 con-

centrations on discrete levels, the calculation of XCO2
given

in Eq. (1) is recast as

XCO2
= hT û (8)

where û is the retrieved profile of CO2 concentration on fixed

pressure levels and h is the pressure weighting function. The

construction of h, which differs slightly from that presented

in C08, is given in Appendix A, while the XCO2
a posteri-

ori error is derived in Appendix B. The construction of the

column averaging kernel of XCO2
is straightforward and was

given in C08.

2.4 Pre-screening

Because the ACOS retrieval algorithm is computationally in-

tensive, it is important to remove soundings that are unlikely

to yield useful XCO2
retrievals from the processing stream.

Therefore, we employ a pre-screening step that consists of

several filters. First, data with a solar zenith angle greater

than 85◦ are not processed, due to both low signal and known

forward model deficiencies in these cases. For actual GOSAT

observations, soundings with bad radiances as flagged in the

JAXA Level 1 data are also filtered out.

Most importantly, we filter out cases with thick clouds and

aerosols for which our retrieval is unlikely to yield reliable

XCO2
retrievals. This is done with the ACOS cloud screening

algorithm, which uses a fast, O2 A-band only retrieval. This

simple retrieval assumes no clouds or aerosols are present;

only Rayleigh scattering is included. Using a fast forward

model, we fit the band 1 spectrum to the clear-sky model

with five free parameters: surface pressure, an offset to the
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meteorological temperature profile, a spectral dispersion off-

set, and the surface albedo at the two band endpoints. We

then define two quantities upon which to filter: 1Ps,cld is the

retrieved minus a priori surface pressure4, and χ2
R is the ratio

of the fit chi-squared, relative to the minimum χ2 value pos-

sible at that same signal-to-noise ratio (SNR). Scenes with

|1Ps,cld| > 40 hPa or χ2
R >2.3 are flagged as cloudy. The

surface pressure test is two-sided as scatterers in the atmo-

sphere occasionally lengthen (rather than shorten) the opti-

cal path. These empirically-determined thresholds are set to

be relatively loose, so as to allow most clear scenes to pass

while at the same time catching obviously cloudy cases.

A more complete description and validation of the cloud

screening algorithm have been given in Taylor et al. (2012),

which compared its performance on real GOSAT data against

the standard Moderate Resolution Imaging Spectroradiome-

ter (MODIS) cloud mask. For the over-land validation data

set employed, which contained approximately 3000 sound-

ings, the GOSAT cloud-screening algorithm was found to

agree with MODIS about 78 % of the time. Due to the

loose thresholds given above, it was found to be “cloudy-

conservative”; it falsely identified only 5 % of scenes as

cloudy that MODIS identified as clear. Conversely, it passed

as clear 31 % of actually cloudy scenes. Some disagree-

ment could have been caused by pointing errors and other

instrument-related problems, and hence such a comparison

may give an overly pessimistic view of the algorithm. Sec-

tion 3.2 examines the fidelity of the cloud screening algo-

rithm on synthetic data, for which the true cloud and aerosol

conditions are known.

3 ACOS CO2 retrieval algorithm test & validation

We now describe tests of the ACOS retrieval algorithm with

realistic simulations of GOSAT spectra. These tests will

determine the algorithm’s performance in the presence of

clouds, aerosols, imperfect meteorological data, partially

polarized, non-Lambertian surfaces, and known instrument

noise. Given that we have exact knowledge of the true at-

mosphere and surface in the simulations, we are testing the

impact of the general assumptions made in the retrieval con-

cerning the above variables. While these simulations repre-

sent our best attempt at “real-world” conditions, the results

will nonetheless be optimistic; real retrievals can be expected

to be less accurate and precise due to physical effects not in-

cluded in these tests, such as uncertainties in instrument cal-

ibration and gas absorption properties.

4The subscript “cld” in 1Ps,cld is to differentiate this retrieved

surface pressure from that retrieved by the full Level 2 retrieval

algorithm.
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Fig. 4. Distribution of soundings used in the simulation-based tests;

the plotted variable is the band 2 signal level. There are ten or-

bits containing a total of 6522 soundings, spanning 14–16 Septem-

ber 2006.

3.1 Generation of synthetic GOSAT data

Several thousand over-land soundings were simulated for an

instrument with the characteristics of TANSO-FTS aboard

GOSAT, but in purely nadir viewing geometry and in a sun-

synchronous orbit matching that of CloudSat. Ten orbits

were simulated for 14–16 September 2006. Figure 4 shows

a map of the band 2 signal level for the simulated orbits. To

avoid circular results, the simulator forward model is more

general and accurate than that used in the retrieval. It has

higher vertical resolution, includes more types of clouds and

aerosols, more complicated surface optical properties, and

has more accurate radiative transfer. However, the simula-

tions assume the same spectroscopy and instrument proper-

ties as in the ACOS retrieval, including the Mueller matrices

and the instrument line shape functions of the TANSO-FTS.

A comprehensive description of the methods used to gen-

erate the synthetic spectra by the “OCO Simulator” is given

in O’Brien et al. (2009), and is only summarized here. The

simulated atmospheres use meteorological information (tem-

perature, humidity, and surface pressure) from an ECMWF

model forecast at high vertical resolution, interpolated spa-

tially and temporally to each specific sounding. Profiles of

CO2 are taken from the Parameterized Chemical Transport

Model (PCTM) (Kawa et al., 2004). The surfaces in the sim-

ulator are not assumed to be Lambertian; non-Lambertian

surfaces are synthesized based on the 1-km resolution MOD-

erate Resolution Imaging Spectroradiometer (MODIS) Bidi-

rectional Reflectance Distribution Function (BRDF) product

MCD43B1 (Schaaf et al., 2002). The simulated distributions

of surface reflectance of Stokes I at the primary scattering

angle at the center of each of the three spectral bands is

shown in Fig. 5a. Polarization is also included in the surface

representation; surface polarization properties are taken from

a simple model derived from POLarization and Directional-

ity of the Earth’s Reflectances (POLDER) data and based on

International Geosphere/Biosphere Programme (IGBP) sur-

face type (F. M. Breon, personal communication, 2008). The
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Fig. 5. (a) Distributions of simulated reflectance at the center of

each spectral band, calculated for the primary scattering angle (so-

lar angle to observation angle). The spectral bands are defined in

Table 1. (b) Distributions of simulated aerosol, cloud water, and

cloud ice optical depth at 0.76 µm.

simulated surface polarization fraction ranged from negligi-

ble to tens of percent, with a median polarization of about

two percent.

Profiles of cloud and aerosol come from the Cloud-

Aerosol Lidar with Orthogonal Polarisation (CALIOP) Level

2 cloud and aerosol layer products, version 3 (Vaughan et al.,

2004; Kim et al., 2008). For each sounding, one actual

CALIOP profile is pulled at random from within the 2 × 2◦

grid-box in which the sounding lies. These profiles are kept

on the original, high-resolution (∼2 km) vertical grid pro-

vided in the CALIOP product; the meteorological and CO2

profiles are interpolated to this same grid. For cloud water

and aerosol, the CALIPSO particles are taken to be spher-

ical, with log-normal size distributions and optical proper-

ties calculated using Mie theory. CALIPSO ice particles are

matched to ice particle distributions with accompanying op-

tical properties as described in Baum et al. (2005a,b). For

each layer with aerosol identified, the CALIPSO product

identifies as essentially one of six types (clean marine, dust,

polluted continental, clean continental, polluted marine, or

smoke). Though each model layer contains at most one cloud

or aerosol type, several types of cloud and aerosol often co-

exist in the same profile. The distributions of optical depth at

0.76 µm for aerosols, water clouds, and ice clouds are shown

in Fig. 5b. Note that the distribution of total optical depth

(not shown) cuts off at an optical depth of about ten because

the CALIOP lidar cannot penetrate further than this.

Simulations were performed in two ways: first, by artifi-

cially removing the clouds and aerosols in order to simulate

cloud-free soundings (“clear-sky”), and then by using the de-

fault atmospheric profiles (“all-sky”). Retrievals on the clear-

sky simulations should be nearly perfect, and are used to test

the existence of low-level systematic errors. Retrievals on

the all-sky simulations illustrate how the existence of thin

clouds and aerosols affect the retrieval accuracy. Finally,

for some tests, instrument noise consistent with the simple

GOSAT noise model given in Sect. 2.2.5 was added to the

synthetic spectra.

In the retrieval tests described below, errors in the re-

trievals of XCO2
will be partially caused by differences be-

tween the forward models of the retrieval and simulation.

The most important differences are in the surface treatment

(unpolarized Lambertian vs. partially polarized full BRDF),

and cloud plus aerosol treatment (4 fixed types vs. dozens of

cloud types and 6 aerosol types). There are additional minor

differences as well, in terms of the number of atmospheric

levels (20 vs. 100+), radiative transfer (in which the simu-

lations are more accurate), and in the treatment of Rayleigh

scattering. For some specific tests, there was also the pres-

ence of instrument noise in the simulations, and differences

in the prior meteorological fields.

3.2 Cloud-screening performance

In most previous studies of XCO2
retrieval accuracy, only at-

mospheres with less than a certain optical depth (typically

around 0.3) were tested. This assumes perfect cloud and

aerosol optical depth information, which is not generally

available. Therefore, in this study we process the synthetic

soundings through the operational ACOS cloud screening

algorithm, to eliminate soundings with obvious cloud and

aerosol contamination in the same way as is done in the oper-

ational retrievals. As will be shown below, the cloud screen-

ing is imperfect and leads to significant errors in XCO2
.

The performance of the cloud screening algorithm for the

all-sky synthetic data with instrument noise added is summa-

rized in Fig. 6. Panel a shows the distribution of cloud plus

aerosol optical depth (AOD) at 0.76 µm in the synthetic data

set, as well as the fraction of scenes identified as clear. Previ-

ous studies have identified 0.3 as a reasonable AOD threshold

below which to attempt XCO2
retrievals (Crisp et al., 2004).

Therefore, we define “clear” as AOD ≤ 0.3, and “cloudy” as

AOD > 0.3. With this definition, 26 % of all scenes are clear,

and about 87 % of all scenes are classified correctly. How-

ever, about one third of scenes that pass the cloud filter are
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Fig. 6. (a) Distribution of cloud plus aerosol optical depth (AOD)

for the synthetic orbits (solid line) and fraction of scenes identified

as clear by the cloud screening algorithm (dashed and dotted lines).

The dashed line shows the result for the operational thresholds,

while the dotted line shows the result when the |1Ps,cld| thresh-

old is tightened to 10 hPa. (b) Same as panel (a), but only shows

those cases where 95 % of the AOD resides in the upper 40 % of the

atmosphere (high clouds). (c) Same as panel (a), but only shows

those cases where 95 % of the AOD resides in the lowest 30 % of

the atmosphere (low clouds).

“false positives”; they are classified as clear but have true

AOD > 0.3.

The cloud screening performance is dramatically different

for low cloud versus high cloud cases. Figure 6b (c) shows

the histograms of AOD for high (low) cloud or aerosol cases,

in which 95 % of the AOD resides in the top 40 % (bottom

30 %) of the atmosphere. The high cloud cases have been

considered by many authors to be the most problematic (e.g.,

Table 5. Simulations and retrieval configurations used in this work.

Test Simulation Type Retrieval Prior Meteorology

1 clear-sky, noiseless Clear Truth (ECMWF)

2 clear-sky, noiseless Standard Truth (ECMWF)

3 clear-sky, with noise Standard Truth (ECMWF)

4 all-sky, with noise Clear Truth (ECMWF)

5 all-sky, with noise Standard Truth (ECMWF)

6 all-sky, with noise Standard NCEP

O’Brien and Rayner, 2002; Aben et al., 2007), however it

is seen that the cloud screening performance here is reason-

ably good. Virtually all high cloud cases with AOD > 0.3 are

classified as cloudy, and virtually all cases with AOD < 0.1

are classified as clear. By contrast, almost all low cloud

cases with AOD < 1 are classified as clear, as are more

than half of cases with AOD > 1. Most of these are water

cloud cases, and they occur disproportionately at higher so-

lar zenith angles.

It will be shown below that both thin high clouds and

thicker low clouds cause problems for the XCO2
retrieval.

This problem can be partially mitigated by simply tighten-

ing the surface pressure threshold to |1Ps,cld| < 10 hPa, as

shown in the dashed lines in Fig. 6. This reduces the rate of

false positives from one in three to about one in five. This

tighter threshold will be imposed as a posterior requirement

in Sect. 3.3.3.

3.3 Synthetic retrieval tests

We now test the ACOS algorithm performance using

6522 land-only, synthetic GOSAT soundings. To evaluate

the retrieval error, one must use the averaging kernel to con-

struct the ideal CO2 profile uak that can be retrieved (Rodgers

and Connor, 2003):

uak = A utrue + (I − A) ua, (9)

where A is the full averaging kernel matrix, utrue is the true

CO2 profile, ua is the a priori CO2 profile, and I is the identity

matrix. Then the error in XCO2
is given by

XCO2
Error = hT

(

û − uak

)

, (10)

where û is the retrieved CO2 profile. In all discussions that

follow, the XCO2
retrieval error has been evaluated in this

manner.

Six types of retrieval experiments were performed, which

utilized three different types of simulations as well as three

different retrieval configurations. These are outlined in Ta-

ble 5. Some tests used clear-sky simulations without (tests 1

and 2) or with (test 3) instrument noise added to the radi-

ances, while others used all-sky simulations with instrument

noise (tests 4–6). Some tests used a clear-sky retrieval (tests 1
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and 4), while others used the standard retrieval with aerosols

and clouds retrieved (tests 2, 3, 5, 6). Note that Rayleigh scat-

tering is included in all clear-sky simulations and retrievals,

and the Sǫ matrix as described in Sect. 2.2.5 is the same in all

tests. Finally, tests 1–5 set the a priori meteorology equal to

the true ECMWF meteorology, but test 6 used an alternative

source of meteorological information in order to include real-

istic errors in the surface pressure and profiles of temperature

and water vapor.

3.3.1 Retrievals of clear-sky simulations

We begin by analyzing the ACOS retrieval algorithm per-

formance on simulated soundings that purposely omit cloud

and aerosol. This enables us to see biases that appear when

we attempt to retrieve clouds and aerosols in scenes where

there are none. In retrieval test 1, these clear-sky simulations

were processed by the ACOS algorithm, but with clouds and

aerosols completely removed from the state vector, consis-

tent with the clear-sky simulations. This test yields extremely

good results as expected; the mean error in XCO2
is 0.18 ppm

and the standard deviation is 0.25 ppm. More detail can be

seen in the black points of Fig. 7, which shows the XCO2
er-

ror plotted versus several variables. As seen in panel b, much

of this error is driven by the strong anti-correlation between

XCO2
error and surface pressure error. The slope between

these two variables is −0.4 ppm hPa−1, which is to be ex-

pected on simple theoretical grounds: all other factors being

equal, errors in XCO2
are related to surface pressure errors as

follows:

δXCO2
= − XCO2

Psurf
δPsurf. (11)

Performing a post-hoc correction to remove this correlation

reduces the XCO2
bias to nearly zero, and the root-mean-

squared (RMS) error to 0.11 ppm. The source of the surface

pressure errors must be related to differences in the forward

models of the simulation and retrieval, possibly associated

with the different surface treatments and coupled through

Rayleigh scattering, though minor differences in the radiative

transfer or Rayleigh scattering parameterization itself may

also be responsible. The surface-pressure corrected results

can be interpreted as the theoretical accuracy limit for per-

fectly clear soundings that have known surface pressure and

high SNR.

The blue and red points in Fig. 7 denote tests 2 and 3,

respectively, which both use the operational retrieval that

includes clouds and aerosol parameters in the state vector.

Test 2 is run on noiseless simulations, while test 3 is run on

simulations with GOSAT-like instrument noise first added to

the simulated spectra. Panel a shows that a large positive

bias occurs at very low values of the retrieved band 3 albedo.

The same effect can also be seen versus the band 2 albedo

as well as the band 2 or band 3 SNR, but is strongest with

band 3 albedo. These low band 3 albedos tend to occur in
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Fig. 7. XCO2
error versus different quantities for retrievals per-

formed on clear-sky simulations. Black points use noise-free sim-

ulations and a clear-sky version of the ACOS retrieval, with cloud

and aerosol values fixed at zero (test 1). Blue points are for the

operational retrieval on simulated spectra free of instrument noise

(test 2). Red points are the same but with GOSAT-like noise added

(test 3). 1Ps is the retrieved minus true surface pressure, and R21 is

the ratio of the continuum signal level in band 2 relative to band 1.

For tests 2 and 3 in panels (b) and (c), only soundings with retrieved

band 3 albedo >0.05 are shown.

regions of needleleaf evergreen forests, mixed forests con-

taining some evergreens, and regions of permanent snow and

ice cover. This bias is likely due to the retrieval exchanging

surface albedo for very thin cloud or aerosol, with minimal

adverse effect on the cost function. This hypothesis is sup-

ported by the fact that the mean retrieved AOD is about 0.03

rather than zero, which demonstrates that the retrieval (which
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starts with an a priori AOD of 0.15) cannot fully reach zero in

general. This may be related to the logarithmic implementa-

tion employed for aerosols in the retrieval. We therefore ex-

clude soundings with a retrieved band 3 albedo less than 0.05

in all further tests.

Figure 7b shows that the relationship between XCO2
er-

ror and 1P is present but less well-defined in the standard

retrieval, with a reduced slope of about −0.2 ppm hPa−1 in

both the noiseless (blue) and noisy (red) cases. The main

effect of instrument noise is simply to add random errors of

∼0.3 to 2.5 ppm (1-σ ) depending on the scene, with a me-

dian value of roughly 0.6 ppm. Figure 7c reveals that there is

another fundamental bias in the operational retrieval, related

to the ratio of the signal in the weak CO2 band relative to

the signal in the O2 A band, which we call R21. The distri-

bution of R21 is bimodal; the cluster of points around 0.2 is

due to snow and ice covered surfaces. These surfaces exhibit

high XCO2
biases of ∼3 ppm on average. The general cause

of this bias, like that in panel a, seems to be the trading of

surface albedo for very thin cloud or aerosol, in that the bias

is absent in test 1 which excludes clouds and aerosols from

the state vector. However, the details of the mechanism are

not yet understood and warrant further research.

Note that the overall errors are still quite low; the RMS

of all soundings with a band 3 albedo >0.05 is 0.82 ppm for

the noise-free simulations, and 1.04 ppm for the noisy sim-

ulations. Both are bias-free overall, having mean absolute

errors less than 0.03 ppm. Subtracting a linear fit to both 1P

and logR21 yields RMS XCO2
errors of only 0.28 ppm for

test 2 and 0.65 ppm for test 3. After fitting out correlations

with these two variables, we could find no other variable that

significantly explained any of the remaining variance; the

majority of the error variance was explained by these two

variables and no others.

3.3.2 Retrievals of all-sky simulations

The previous section analyzed the algorithm performance for

perfectly clear scenes. Here, we explore the algorithm’s be-

havior for scenes with realistic types, amounts, and vertical

distributions of cloud and aerosol particles. For these tests,

we will also see how imperfections in the cloud screening

algorithm increase errors in retrieved XCO2
.

We begin by describing results for both the clear-sky re-

trieval (test 4), in which clouds and aerosols are not in-

cluded in the state vectors, as well as the standard ACOS

retrieval (test 5). As before, we ran 10 orbits with a total

of 6522 soundings over land. In the standard retrieval, 97 %

of the 1959 retrievals passing the cloud screen converged,

yielding estimates of XCO2
; conversely, only 11 % of those

flagged as cloudy converged. Thus, convergence in the stan-

dard XCO2
retrieval is also a good indicator of cloudiness,

and hence the (fast) cloud filter can also be seen as an effi-

cient way of screening out soundings that would have failed

to converge due to excessive cloud or aerosol contamination.
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Fig. 8. (a) Retrieved XCO2
error versus true AOD for test 4. Black

circles denote converged retrievals which passed the cloud filter;

red dots denote converged retrievals which failed the cloud filter.

The corresponding mean and RMS XCO2
errors in ppm are given in

the lower left. The green, vertical dashed line denotes the original

0.3 AOD threshold for retrievals identified in Crisp et al. (2004).

Note that a few soundings with AOD > 0.1 have errors larger than

the plotted ordinate range. (b) Same as panel (b), but for test 5.

(c) The retrieved AOD versus true AOD in test 5. The one-to-one

line (dashed) is shown for reference.

Figure 8 shows the error in XCO2
vs. the true AOD at

0.76 µm, for retrievals both passing (black) and failing (red)

the cloud filter. The latter are shown just to illustrate their

worse error statistics, even for soundings with the same

AOD. Based on the results of the clear-sky retrievals, the few

soundings with retrieved band 3 albedo less than 0.05 have

first been removed. For points failing the cloud screen, the

XCO2
errors are large for both the clear-sky retrieval (Fig. 8a)
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and standard retrieval (Fig. 8b). However, for points pass-

ing the cloud screen, especially those with a true AOD less

than 0.3, the results are markedly better in the standard re-

trieval. This is in accord with previous studies, most notably

that of Butz et al. (2009). In fact, for these points, the RMS

error is 1.3 ppm for the standard retrieval versus 3.0 ppm for

the clear-sky retrieval.

These results indicate that the standard retrieval partially

corrects for the presence of clouds and aerosols, though this

ability rapidly degrades with increasing AOD. This is illus-

trated in Fig. 8c, which shows the retrieved vs. true AOD

in test 5. For AOD . 0.5, there is some correlation between

these two variables (r = 0.7), but above this value there is no

correlation. As in tests 2 and 3, the lowest AOD the retrieval

obtains for very clear cases (AOD < 0.02) is about 0.04

rather than zero. Importantly, these very clear cases exhibit

no overall bias, also consistent with the clear-sky tests. This

implies that any overall bias in the retrievals is related to un-

corrected cloud and aerosol effects.

Considering the distinctly poorer results of the clear-sky

retrieval, we now focus purely on the standard retrieval. In-

cluding soundings that fail the cloud filter, Fig. 8b shows that

there are two main clusters of points that have unacceptably

large errors. Soundings with true AOD . 1 have positive and

negative XCO2
errors in roughly equal numbers. Many of

these cases with positive errors are found to be high, thin

cloud scenes. Fortunately, the majority of these are suc-

cessfully screened out by the cloud filter, though some re-

main and may ultimately bias the retrievals high. Conversely,

soundings with a negative bias in retrieved XCO2
tend to in-

clude thicker, low clouds. These are most often water clouds,

many with optical depths significantly above unity. Impor-

tantly, a substantial number of these pass the cloud screening

as discussed in Sect. 2.4.

The dominant atmospheric scattering mechanisms driving

these biases are not yet evident. It is complicated by the

fact that the algorithm simultaneously retrieves CO2 and dry

air column (via the surface pressure), so reasoning involving

path-shortening vs. path lengthening effects must be broken

down in terms of the different NIR bands. Biases can only

occur when path shortening or lengthening effects are differ-

ent between the CO2 bands versus the O2 A band. Future

Monte-Carlo simulations may shed some light on the domi-

nant mechanisms at work.

3.3.3 Post-retrieval filtering

As shown above, the errors in retrieved XCO2
are dominated

by the presence of cloud- and aerosol-laden scenes which

nonetheless pass the cloud-screening algorithm. Indeed, the

RMS error for test 5 retrievals is ∼4 ppm, up from ∼1 ppm

for completely clear soundings (test 3). These retrievals also

have an overall bias of ∼ −1 ppm, driven primarily by un-

screened low clouds. The question thus arises: are there

other metrics, to be used as quality control filters, that can be

used to identify and remove strongly biased retrievals? Com-

mon metrics are χ2 values of the spectral residuals, SNR,

retrieved AOD, and many others. Below we identify a set

of candidate filters. These filters are similar but not identi-

cal to those used for retrievals of real GOSAT observations

as reported in Wunch et al. (2011b) and Crisp et al. (2012).

Screening variables were selected based upon three features

of candidate variables. (1) A known, clear-sky bias associ-

ated with a variable, as deduced from tests 1–3; (2) presence

of an XCO2
bias as a function of that variable; (3) scatter in

XCO2
error that strongly depends on that variable. Scatter,

calculated as the standard deviation of XCO2
error in bins of

the target variable, was evaluated relative to the estimated

a posteriori error so that retrievals with greater instrument

noise were not automatically eliminated.

Figure 9 shows the effect of the candidate filters applied to

the 1898 test 5 soundings that passed the cloud filter and for

which the XCO2
retrieval converged. The first filter (panel a)

eliminates soundings with low band 3 albedo to minimize a

high XCO2
bias that occurs even for perfectly clear scenes

(see Sect. 3.3.1; Fig 7a). This filter effectively removes low

SNR scenes, though it is found that this filter is slightly more

effective at reducing XCO2
errors than SNR itself.

Next, we tighten the cloud-screening filter. It was shown in

Sect. 3.2 that tightening the cloud-screening surface pressure

requirement from |1Ps,cld| < 40 hPa to |1Ps,cld| < 10 hPa

may be beneficial. As show in Fig. 9b, this filter predomi-

nantly removes cloud-affected scenes and reduces the RMS

XCO2
error from 4.2 to 2.5 ppm. It is worth noting that fil-

tering on retrieved surface pressure from the full ACOS al-

gorithm is also effective at removing bad retrievals (Wunch

et al., 2011b), but is actually slightly less sensitive than

using the surface pressure retrieved by the cloud-screening

algorithm.

It was found that filtering on retrieved AOD < 0.15 was

effective in removing many cloud-contaminated soundings

(Fig. 9c). This is sensible, as Fig. 8c demonstrated that

retrieved AOD is somewhat correlated with true AOD for

AOD . 0.5. Implementing this requirement further reduced

the RMS error to ∼1.9 ppm.

Figure 9d shows the XCO2
error vs. the reduced χ2 of

band 2, which measures the spectral goodness of fit relative

to instrument noise. Fit residuals due to instrument noise

alone would display a reduced χ2 with a mean of unity and

a standard deviation of
√

2/Ndof, where Ndof is the number

of degrees of freedom in the fit. For these retrievals, Ndof

is roughly equal to the number of spectral channels in each

band. As this number is relatively high, the reduced χ2 will

be distributed normally. For band 2 with 601 channels, it is

expected to have a 1 σ width of ∼0.06. We use a threshold of

4 σ ; this should retain greater than 99.99 % of the retrievals

that fit the spectra to within instrument noise. Surprisingly,

filtering on χ2 removes only two soundings; the same is true

for the other bands. In other words, applying the first three
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Fig. 9. Results from applying candidate quality-control filters to the XCO2
retrievals from test 5. Panels (a) through (e) show the XCO2

error plotted versus a candidate filtering variable. Dashed vertical lines with arrows show the filter threshold value for each variable, if any.

The values in the bottom-right of each panel give the percentage of soundings passing the filters applied cumulatively through that filter, as

well as the mean and RMS XCO2
error (in ppm) of those soundings. Soundings in blue (red) have a true column AOD of less than (greater

than) 0.3. We stress that this display applies the filters cumulatively, though the final results are independent of order. Panel (f) shows the

XCO2
error vs. true AOD for the filtered retrievals.

filters yields a set of retrievals that have spectral fit residuals

consistent with instrument noise alone.

The XCO2
errors of retrievals passing the first three filters

have an RMS value of 1.9 ppm, much better than the unfil-

tered value of 4.3 ppm but still highly contaminated by unde-

tected low clouds and aerosols as indicated by the significant

number of red points in Fig. 9d. As Fig. 9e shows, many of

these cases occur at high values of the relative air mass5:

air mass = µ−1 + µ−1
0 (12)

where µ is the cosine of the observation zenith angle and

µ0 is the cosine of solar zenith angle (SZA). For these nadir

soundings, µ = 1. The simulations include low clouds at all

5For simplicity, atmospheric refraction effects are ignored in the

air mass calculation.

SZAs, but the cloud filter tends to miss them at high SZAs.

Therefore, one way to mitigate their effect is to screen out all

soundings above a certain air mass. An air mass threshold

of 2.7 (SZA ∼ 54◦) removes most of the worst cases, at the

expense of also removing some good (clear) soundings as

well. This solution is unattractive in that it precludes any

data at latitudes higher than 30◦ in the winter hemisphere

and 77◦ in the summer hemisphere, and is not currently used

on real data by ACOS. For independent data users, this filter

should only be used until a more effective way of removing

these low cloud cases is found.

Including the somewhat undesirable air mass cut, the re-

sults after filtering are extremely promising. The 63 % of

retrievals that pass the filters have an RMS XCO2
error of

∼1.04 ppm, comparable to that for completely clear scenes.

The median absolute error is roughly 0.7 ppm, and 90% of
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Fig. 10. Differences between select NCEP and ECMWF meteorological variables; both have been spatially and temporally interpolated to

the target locations and times with similar interpolation schemes. All differences are NCEP minus ECMWF. (a) Surface pressure difference.

(b) Air temperature difference at the surface (black) and at 700 hPa (blue). (c) Specific humidity difference at the surface (black) and at

700 hPa (blue).

the retrievals have absolute errors less than 2 ppm. Figure 9f

plots the XCO2
error vs. true AOD, similar to Fig. 8b but now

including the filters.

Surprisingly, greater than 10 % of these soundings have

true AOD > 0.3, but have similar error statistics as those with

AOD < 0.3. This is true even for those with larger optical

depths of 2–4. This suggests that the post-retrieval filters let

through some soundings for which we have retrieved a lucky

combination of aerosol and surface parameters that allows

for a good retrieval of XCO2
and fits the spectra to within in-

strument noise. The clear-sky retrieval performs terribly for

these same soundings (RMS = 8.5 ppm), suggesting that it is

not merely a cancellation of path-shortening and lengthening

effects. The physical mechanisms at play here are unclear

and warrant further research.

Finally, these filtered retrievals have an overall bias of

∼0.3 ppm. Analysis shows that this high bias is driven by

thin, high cirrus clouds that pass the cloud filter and all the

post filters, and have optical depths ranging from approxi-

mately 0.02 to 0.2. Indeed all soundings in Fig. 9f with an

XCO2
error greater than +3 ppm are high ice clouds. Fur-

ther development is required to either better retrieve XCO2
in

these cases, or screen them out.

3.3.4 Errors due to imperfect meteorology

All tests thus far have been performed with perfect meteorol-

ogy for the a priori values of surface pressure, temperature

offset, and water vapor scale factor, as well as shapes of the

temperature (T ) and water vapor (q) profiles. The first three

are retrieved by the ACOS algorithm, and of these, only sur-

face pressure is substantially constrained by the prior. How-

ever, the relative shapes of the T and q profiles are assumed

by the retrieval to be correct. If they are not, as will certainly

be the case to some extent for actual retrievals, errors may

result.

To simulate realistic errors in these meteorological quan-

tities, test 6 retrievals used meteorological prior data taken

from the US National Centers for Environmental Prediction

(NCEP) 1 reanalysis (Kalnay et al., 1996), interpolated to the

sounding times and locations. Because the simulations used

short-term forecasts from ECMWF that have both a higher

spatial and temporal resolution than the NCEP reanalysis,

the differences between these two approaches will be higher

than if both operational forecasts or analyses had been used.

However, some degree of correlation between NCEP and

ECMWF is expected, as both assimilate similar data sets and

often make similar model assumptions (Ponte and Dorandeu,

2003). For example, Salstein et al. (2008) found that RMS

surface pressure differences between the NCEP and ECMWF

analyses were about half that of the difference between either

analysis and ground truth.

Figure 10 shows the differences in pressure, temperature at

the surface and 700 hPa, and specific humidity at the surface

and 700 hPa between the two data sets. The surface pres-

sure differences are asymmetric with a tendency for NCEP to

be lower than ECMWF; the median difference is −0.5 hPa,

and the standard deviation is 4.4 hPa. However, these differ-

ences are largely driven by spurious vertical binning effects

in the orbit simulator, and are not representative of the actual

NCEP-ECMWF differences. The ∼4.4 hPa RMS difference

is almost twice as large as the globally-averaged value found

between ECWMF and observations (Salstein et al., 2008),

and therefore represents a relatively difficult test for the re-

trieval. For both temperature and water vapor, the differences

are larger at the surface than in the mid-troposphere, indicat-

ing different profile shapes; this is especially true for temper-

ature. This is useful because it will directly test our implicit

assumption that the a priori profiles of temperature and water

vapor have the correct relative shapes.

Figure 11 shows the differences in retrieved surface pres-

sure (panel a) and XCO2
(panel b) due to using the imper-

fect NCEP meteorology as a prior (test 6) as compared to

the case with perfect meteorology (test 5), for those sound-

ings passing the filters of Fig. 9. Panel a shows that the re-

trieved surface pressure is relatively insensitive to the prior
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Fig. 11. Distribution of retrieved surface pressure differences (a)

and XCO2
differences (b) between tests 6 and 5, which are due to

differences in the a priori meteorology. Only soundings passing the

post-processing filters are included.

surface pressure; the RMS difference between the two is only

1.7 hPa, while for the prior it is almost three times larger.

The mean XCO2
difference is roughly zero and the RMS dif-

ference is 0.38 ppm, which is much smaller than errors due

to the other effects (aerosol, instrument noise, etc.). Fully

70 % of the variance in this difference is due to differences

in the retrieved surface pressure, which are partially driven

by the unphysically large prior surface pressure differences

mentioned earlier. Applying the test 5 post-processing fil-

ters to test 6 shows that the imperfect meteorology adds no

additional bias and increases the random XCO2
error by just

5 %. This modest difference justifies the simplifying assump-

tions made in the ACOS retrieval concerning the a priori

meteorology.

Finally, we recognize that test 6 represents the most strin-

gent test of the ACOS retrieval algorithm given in this work.

The histogram of its XCO2
errors is shown in Fig. 12a, for

all retrievals (black), as well as the subset of retrievals that

also passed the post-processing filters (blue). As for test 5,

these retrievals have promising XCO2
error statistics, with an

overall mean of 0.3 ppm and an RMS error of 1.1 ppm.
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Fig. 12. (a) Histogram of test 6 XCO2
errors, for both unfiltered

retrievals (black, solid) and those passing the post-processing filters

(blue, dashed). (b) Plot of test 6 actual RMS errors in XCO2
vs. a

posteriori error σXCO2
, calculated by binning XCO2

error in bins of

σXCO2
. The one-to-one line (dashed) would be expected if the a

posteriori error fully explained the true errors; the best-fit line for

the filtered retrievals (dotted) has a slope of 2.1.

3.4 Evaluation of the a posteriori error

As detailed in C08, the a posteriori estimate of XCO2
error,

denoted σXCO2
here, is generally a combination of instrument

noise, smoothing error, interference errors with non-CO2

state vector elements, and forward model errors. Both instru-

ment noise and forward model errors should be included in

the retrieval via the measurement error covariance matrix Sǫ .

However, as stated previously Sǫ contains instrument noise

only in the ACOS algorithm. Therefore, does the a posteriori

error estimate σXCO2
bear any relationship to the actual error?

This question is of critical importance to inversion modelers

and other users who require accurate error estimates of the

retrieved XCO2
.

Figure 12b plots the RMS value of XCO2
error vs. σXCO2

,

again for both the unfiltered and filtered retrievals, where the

RMS errors are calculated in bins of σXCO2
. The RMS er-

ror for all retrievals rises quickly as a function of σXCO2
,

to error levels of 5–10 ppm. The retrievals passing the
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post-processing filters, however, have a roughly linear rela-

tionship with σXCO2
, with a best-fit slope of 2.1. This implies

that forward model errors are responsible for about 75 % of

the error variance. On the upside, it also suggests that the

actual retrieval error can be modeled as a linear function of

σXCO2
, but additional study is required to see if this relation-

ship extends to real-world retrievals.

4 Conclusions and future directions

In this study we have described the details of the ACOS

XCO2
retrieval algorithm. We have used realistic simulations

to evaluate systematic and random errors in retrieved XCO2
,

including the impacts of realistic cloud screening and post-

retrieval filters. The main conclusions regarding the ACOS

retrieval algorithm can be summarized as follows.

1. The current ACOS pre-screening filter is useful but im-

perfect, in that some thin high cloud scenes and many

thick low cloud scenes pass the filter, and these cases

can cause large XCO2
retrieval errors.

2. Approximations in the representation of cloud and

aerosol properties lead to biases of 0.0–3.0 ppm in re-

trieved XCO2
even for perfectly clear scenes. These

biases are worst over snow and ice-covered surfaces,

and appear coupled with low albedo effects over these

surfaces.

3. The non-aerosol related assumptions of the retrieval,

such as the use of a small number of vertical layers (20),

the assumption of perfectly Lambertian surfaces, imper-

fect a priori meteorology, and the simplified radiative

transfer lead to minor XCO2
errors of a few tenths of a

ppm.

4. The use of a well-designed set of post-processing fil-

ters removes most of the poor retrievals including those

contaminated by low clouds; the filtered retrievals have

RMS XCO2
errors of ∼1 ppm, relative to more than

4 ppm for the unfiltered retrievals. These retrievals have

an overall bias of +0.3 ppm, largely driven by unfiltered

thin cirrus.

5. The a posteriori XCO2
error estimate in the ACOS al-

gorithm, driven by instrument noise, interference and

smoothing errors, underestimates the true XCO2
error by

more than a factor of two. The true error includes errors

due to forward model assumptions which are not eas-

ily included in Sǫ . We speculate that cloud and aerosol

assumptions may play a dominant role here.

These simulation-based tests, which include many realistic

sources of retrieval error, are nonetheless incomplete. Spec-

troscopy errors, pointing errors, imperfect radiometric and

spectral characterization of the instrument, and other effects

are clearly present in retrievals using actual GOSAT obser-

vations. Additional real-world issues, such as forest canopy

effects, partial cloudiness, cloud shadows, and plant fluo-

rescence will further increase the retrieval errors. The re-

sults presented here therefore represent a lower limit on the

ACOS XCO2
retrieval algorithm errors; further validation ef-

forts such as those of Wunch et al. (2011b) are required to

fully assess the real-world retrieval accuracy.

Improvements in the ACOS XCO2
retrieval algorithm are

possible. It is clear that the pre-screening filter misses some

clouds, including both thin cirrus and thicker, low water

clouds, which lead to biased XCO2
retrievals; the temporary

solution of excluding all soundings above a certain air mass

must be replaced by a method or filter that explicitly targets

these cases irrespective of air mass. Also, the inclusion of

clouds and aerosols in the retrieval state vector is seen to have

a clear benefit in that, for scenes with very thin clouds and

aerosols, the results are significantly better than if they were

omitted from the state vector. However, including clouds and

aerosols in the state vector also has a negative consequence:

in clear or nearly-clearly scenes, they induce a rather strong

(>1 ppm) bias that is primarily a function of the signal level

ratio between bands 1 and 2. Refining the algorithm’s aerosol

treatment may help to minimize this type of bias.

Despite the issues described above, the accuracy of the

current B2.8 ACOS XCO2
retrieval, based on the synthetic

tests described herein, is at or near the 1–2 ppm requirement

suggested for the accurate monitoring of carbon fluxes on re-

gional scales (Miller et al., 2007). Nevertheless, using the

simulator we have identified several remaining biases in the

B2.8 retrieved XCO2
. Similar biases are observed in retrievals

from the actual GOSAT spectra (Wunch et al., 2011b). Thus,

the simulator provides an important vehicle for future algo-

rithm development towards producing XCO2
retrievals with

an accuracy and precision approaching the theoretical limit

as determined solely by the signal-to-noise ratio of the mea-

sured spectra.

Appendix A

Pressure weighting function construction

We now derive h, the pressure weighting function introduced

in Eq. (8). Note that h was originally derived in C08, but this

derivation ignored vertical variations in the gravitational ac-

celeration as well as the presence of water vapor. Both terms

slightly affect the local number density of dry air, and as such

affect the calculation of XCO2
. Let the pre-defined pressure

levels, p = p1..N , be ordered from space to surface, and trun-

cated such that the last level, pN , is physically located below

the surface, where the surface level is defined by the retrieved

surface pressure pS . This is illustrated in Fig. A1.
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p1, u1

p2, u2

p3, u3

pN-1, uN-1

pN, uN

pS, uS
surface level

Fig. A1. The standard, pre-defined pressure levels are given by pi ,

i = 1 ... N . At each level i there is a corresponding value of retrieved

CO2 volume mixing ratio given by ui . The dotted line represents

the surface level.

Let us begin by recasting Eq. (1) as follows:

XCO2
=

N−1
∑

i=1

(c u)i 1pi

N−1
∑

i=1

ci 1pi

(A1)

where u denotes CO2 mole fraction with respect to dry air,

and the subscripts here indicate layers, such that layer i is

bounded by the pressure levels pi and pi+1, except for the

last layer which is bounded by pressure level pN−1 and the

surface level pS . Also, 1pi is the pressure difference of the

two bounding levels, and xi indicates the average of quantity

x over layer i. c is the column density of dry air per unit

pressure and is given by

c ≡ 1 − q

g Mdry
(A2)

where q is specific humidity, g is the local acceleration due

to gravity, and Mdry is the molar mass of dry air. Further

assuming that c varies slowly and linearly over any given

layer, we can rewrite Eq. (A1) as

XCO2
=

N−1
∑

i = 1

h′
i ūi (A3)

where

h′
i ≡ ci 1pi

N−1
∑

i=1

ci 1pi

. (A4)

The pressure weighting function on the level boundaries is

then given as a function of h′ as

hi =















(1 − f1) h′
1 i = 1

fi−1 h′
i−1 + (1 − fi) h′

i i = 2 .. N − 2

fN−2 h′
N−2 + (1 − fs fN−1) h′

N−1 i = N − 1

fS fN−1 h′
N−1 i = N

(A5)

where the quantity fi is an interpolation variable relating

the CO2 concentration at a layer center to that at its two

boundaries

ūi = (1 − fi) ui + fi ui+1. (A6)

Similarly, the quantity fS relates the concentration at the sur-

face to that at levels N − 1 and N

uS = (1 − fS) uN−1 + fS uN . (A7)

In C08, the assumption was made that CO2 concentration

varies linearly in log pressure. However, the ACOS retrieval

algorithm forward model assumes that it varies linearly in

pressure, to simplify the gas absorption optical depth calcu-

lation. It is critical to be consistent here and use the same as-

sumption, otherwise the pressure weighting function and all

quantities derived from it, such as the column averaging ker-

nel, will be wrong. Assuming that CO2 concentration varies

linearly with pressure, fi = 1
2

and

fS = pS − pN−1

pN − pN−1
. (A8)

Note that h must sum to unity, which serves as a useful check

that it has been calculated correctly.

Appendix B

XCO2
revised error analysis

The construction of the a posteriori estimate of XCO2
error

was first given in C08, but assumed that the pressure weight-

ing function h was explicitly independent of the retrieved

state vector x̂. For the ACOS state vector formulation this

assumption is not valid, in particular due to the presence

of surface pressure in the state vector. We now relax this

assumption.

Let us begin by noting that XCO2
is a simple scalar func-

tion of the retrieved state vector x̂

XCO2
= f (x̂) = hT x̂. (B1)

Let the derivative of f (x̂) be denoted by the row vector

kT (x̂), such that

ki ≡ ∂f (x̂)

∂
(

x̂i

) (B2)

where i explicitly runs over all elements of x̂. Note that in

the simple case where the pressure weighting function h does
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not depend on x̂, we have kT = (hT , 0), for the CO2 and non-

CO2 parts of the state vector, respectively, and the XCO2
a

posteriori error estimate simplifies to that given in C08.

Given that the error in x̂ is characterized by the error co-

variance Ŝ, the error variance of XCO2
, σ 2

XCO2
, follows di-

rectly from linear error analysis:

σ 2
XCO2

= kT Ŝ k. (B3)

The only difference from C08 is that h replaces k in this

equation. C08 break down this retrieval error into several

components: measurement error (M), forward model error

(F ), smoothing error (S), and interference error (I ), and as-

signs each component its own full error covariance matrix,

ŜC , where C ∈ {M, F, S, I }. The definitions of each such

matrix can be found in C08. To transform these error compo-

nents from state vector space to XCO2
space, we simply apply

Eq. (B3) for each error component. The component XCO2
er-

ror variances can then be summed to produce the total XCO2

error variance.
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Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W.,

Gillotay, D., Simon, P. C., and Mandel, H.: The Solar Spectral

Irradiance from 200 to 2400 nm as Measured by the SOLSPEC

Spectrometer from the Atlas and Eureca Missions, Solar Phys.,

214, 1–22, 2003.

Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A.,

Omar, A. H., Liu, Z., Hu, Y., and Hostetler, C. A.: Fully au-

tomated analysis of space-based lidar data: an overview of the

CALIPSO retrieval algorithms and data products, in: Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference

Series, edited by Singh, U. N., vol. 5575 of Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series,

16–30, doi:10.1117/12.572024, 2004.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens,

B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Bi-

raud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell,

E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N.

M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D.
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