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The present study aims at developing an acoustic formulation for the sound generated by the interaction of solid

surfaces (such as blades) with an unsteady flow in an annular duct with swirl. Indeed, the mean flow in between the

rotor and the stator of the fan or of a compressor stage is highly swirling. As a result, in order to properly predict

the rotor self-noise radiated downstream of the rotor or the rotor-stator interaction noise radiated upstream of the

stator, the swirling mean flow effect must be accounted for, either in the source terms or in the differential operator

in an acoustic analogy. The proposed approach here, is to develop an acoustic analogy with an operator accounting

for the swirl. It can be seen as an extension of Goldstein formulation in uniform mean flow (Aeroacoustics, 1976).

The Navier-Stokes equations are first recast to obtain the differential operator and the associated equivalent noise

sources in space and time. Then, the Green’s function tailored to the rigid annular duct with swirl is derived in the

frequency domain. Finally, the formulation to be used in the fan noise context is outlined.

1 Introduction

The mean flow in between the rotor and the stator of the

fan or of a compressor stage is highly swirling. Several stud-

ies [1, 2, 3] have shown that the swirl modifies the number of

acoustic modes in the duct, their radial profile and alters the

incident disturbance in rotor-stator interaction. The present

study is a part of an ongoing work dedicated to account for

the swirling mean flow effect on rotor-stator fan noise predic-

tion. In particular, it aims at developing an acoustic analogy

in an annular duct which can be written in a very similar form

as was previously done with uniform mean flow (e.g. [4]),

namely, exhibiting the product of the pressure distribution

on the blades (or pressure jump) with an operator acting on a

tailored Green’s function.

2 Navier-Stokes equations: linearised

inhomogeneous Euler equations

Let us consider an infinite cylindrical annulus, h � r � 1,

in cylindrical polar coordinates (r,θ, xd), with hard imperme-

able walls at r = h and r = 1. Throughout, lengths are made

non-dimensional by the outer radius of the duct, densities by

the mean flow density at r = 1 and velocities by the mean

sound speed at r = 1. Let uto = (uto, vto,wto), ρto, and pto be

the total variables (velocity vector, density and pressure); the

mean flow be subsonic inviscid, of velocity components:

U = (Ur,Uθ,Uxd) = (0,Uθ(r),Uxd(r)) , (1)

density ρ0(r) and pressure P0(r); and u = (u, v,w), ρ and

p be the associated fluctuating variables of the perturbation.

That is to say, uto = U + u, ρto = ρ0 + ρ and pto = P0 + p.

The Navier-Stokes equations in cylindrical coordinates can

be exactly written as a linear operator acting on the perturba-

tions subject to an inhomogeneous right hand side including

all non-linear effects:

1

c2
0

D0 p

Dt
+ u

dρ0

dr
+ ρ0 div u = −div (ρu) +

D0Z

Dt
= S ρ , (2)

ρ0

[
D0v

Dt
+

u

r

d(r Uθ)

dr

]
+

1

r

∂p

∂θ
= S θ , (3)

ρ0

[
D0u

Dt
− 2

Uθ

r
v

]
+
∂p

∂r
−

U2
θ

r c2
0

p = S r , (4)

ρ0

[
D0w

Dt
+ u

dUxd

dr

]
+
∂p

∂xd

= S x , (5)

with the energy equation (not detailed), where

D0

Dt
=
∂

∂t
+ Uxd

∂

∂xd

+
Uθ

r

∂

∂θ
(6)

is the linear convective derivative operator with t the time,

S ρ = −div (ρu) +
D0Z

Dt
, (7)

with

Z = (p − c2
0ρ)/c

2
0 , (8)

and the vector S = (S r, S θ, S x) is defined by:

S =∇ · τ − ρto (u ·∇) u − ρ
D0u

Dt0
− ρH −

U2
θ

r0

Zer , (9)

where τ is the viscous stress tensor and

H = −2
Uθ

r0

v er +
u

r0

d (r0Uθ)

dr0

eθ +
dUxd

dr0

u exd . (10)

This system of equations will be referred later as:

L (u, ρ, p) =

(
S ρ
S

)
. (11)

3 Acoustic analogy in an annular duct

with swirling mean flow

These developments can be seen as a generalisation of

Ffowcs Williams & Hawkings’ acoustic analogy [5] to swirling

mean flow medium with duct walls, or as a generalisation of

Goldstein formulation with uniform mean flow in a circular

duct [4] to an annular duct with swirling mean flow.

3.1 Sources terms

Let Σ be the set of the B blade surfaces ΣB =
⋃

j=0:B−1 ΣB, j

and of the duct surfaces ΣD = ΣHub

⋃
ΣTip: Σ = ΣB

⋃
ΣD,

and vΣ be the surface speed. The surface Σ can be defined

by: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (xd, t) = 0 on Σ(t)

f (xd, t) > 0 in the fluid, volumeV(t)

f (xd, t) < 0 within Σ(t) ,

(12)

with ∇ f = n. A sketch of the problem with the notations is

plotted in Figure 1. For any variable ϕ defined in the fluid, it

is possible to define the generalised function ϕ̃ defined in the

whole space V and equal to ϕ inside the fluid (V), and zero

outside. It can be obtained by multiplying ϕ by H( f ). By

definition of f the following relations apply (see for instance

Jones [6] or Farassat [7]):

∂ f (xd, t)

∂t
+ vΣ · n = 0 , ∇H( f (xd, t)) = δ( f )n , (13)
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Figure 1: Sketch of the problem and the notations

where H is the Heaviside function. Then, multiplying Eqs. (2),

(3), (4) and (5) by H( f ) and using the above relations allows

us to write the problem in the following generalised form:

L
(̃
u, ρ̃, p̃

)
=

(
S̃ ρ

S̃

)
+

(
S FWH,ρ

SFWH

)
δ( f ) , (14)

where the operator L is applied to the generalised variables,

S̃ ρ and S̃ stand for the generalised source terms given by re-

placing the physical variables in Eq. (7) and Eq. (9) by the

generalised ones and where S FWH,ρδ( f ) and SFWHδ( f ) are

additional surface source terms caused by the use of gener-

alised function and the presence of the surface Σ. They are

defined by:

SFWH = (S FWH,r, S FWH,θ, S FWH,x) = L · n

= ρtou
(
u + U − VΣ

)
· n + pn − τ · n ,

(15)

and

S FWH,ρ = ρto

(
u + U − VΣ

)
·n−ρ0

(
U − VΣ

)
·n = Q ·n . (16)

These source terms can be seen as the generalisation of what

is obtained in a medium at rest by Ffowcs Williams & Hawk-

ings [5], or in uniformly moving medium, e.g. by Najafy-

Yazdi et al. [8], to a more general medium, possibly sheared

or swirling.

3.2 Equation for the pressure fluctuation p

First, the tangential v and axial w fluctuating velocity

components are eliminated from the system by applying the

convective derivative operator D0/Dt to Eq. (2) and Eq. (4)

and removing v and w by using the tangential derivative ∂/(r∂θ)

of Eq. (3) and the axial derivative ∂/∂xd of Eq. (5). Eq. (2)

then reads:

D0

Dt

[
∂u

∂r
+

(
1

ρ0

dρ0

dr
+

1

r

)
u

]
−

d(rUθ)

rdr

∂u

r∂θ
−

dUxd

dr

∂u

∂xd

=

1

ρ0

⎡⎢⎢⎢⎢⎣
∂2 p

r2∂θ2
+
∂2 p

∂x2
d

−
1

c2
0

D2
0
p

Dt2

⎤⎥⎥⎥⎥⎦ ,

(17)

and Eq. (4):

M (p) = ρ0D (u) , (18)

with

M(p) =
D0

Dt

(
∂p

∂r

)
+ 2

Uθ

r2

∂p

∂θ
−

U2
θ

r c2
0

D0 p

Dt
,

andD(p) = −
D2

0
p

Dt2
− 2

Uθ

r2

d (r Uθ)

dr
p .

(19)

Applying the operatorD to Eq. (18), and using the relation

∂

∂r

(
D0

Dt

)
=

D0

Dt

(
∂

∂r

)
+

dUxd

dr

∂

∂xd

+
d

dr

(
Uθ

r

)
∂

∂θ
, (20)

on the one hand, taking the derivation of Eq. (19) with respect

to r, then applying the convective derivative operator to the

result, and finally the operator D, on the other hand, it is

possible to show that the pressure fluctuation p satisfies:

F ( p̃) = S̃ + SFWH , (21)

where F is the sixth order operator in space and time:

F ( p̃) = D

[
D0

Dt

(
∂
[
M (p̃)

]

∂r

)]

−

⎡⎢⎢⎢⎢⎣
∂2

r2∂θ2
+
∂2

∂x2
d

−
1

c2
0

D2
0

Dt2

⎤⎥⎥⎥⎥⎦D2 ( p̃)

+

⎧⎪⎪⎨⎪⎪⎩2
D2

0

Dt2

[
dUxd

dr

∂

∂xd

+
d

dr

(
Uθ

r

)
∂

∂θ

]

+
d

dr

[
2 Uθ

r2

d(r Uθ)

dr

]
D0

Dt

+

[
1

r

D0

Dt
−

d(rUθ)

rdr

∂

r ∂θ
−

dUxd

dr

∂

∂xd

]
D

}
M( p̃) ,

(22)

S̃ + SFWH = A
(̃
S1 + SFWH,1

)
+D2 (̃S2 + SFWH,2) , (23)

with the operator:

A = D

[
D0

Dt

(
1

r
+
∂

∂r

)
−

d(rUθ)

rdr

∂

r ∂θ
−

dUxd

dr

∂

∂xd

]

+2
D2

0

Dt2

[
dUxd

dr

∂

∂xd

+
d

dr

(
Uθ

r

)
∂

∂θ

]

+
d

dr

[
2 Uθ

r2

d(r Uθ)

dr

]
D0

Dt
,

(24)

and

S̃1 =
D0S̃ r

Dt
+ 2

Uθ

r
S̃ θ , S̃2 =

D0S̃ ρ

Dt
−

1

r

∂S̃ θ

∂θ
−
∂S̃ x

∂xd

,

(25)

SFWH,1 =
D0

[
S FWH,rδ( f )

]

Dt
+ 2

Uθ

r
S FWH,θδ( f ) ,

SFWH,2 =
D0

[
S FWH,ρδ( f )

]

Dt
−
∂
[
S FWH,θδ( f )

]

r ∂θ

−
∂
[
S FWH,xδ( f )

]

∂xd

.

(26)

3.3 Green’s function

Let G be the Green’s function tailored to an annular duct

of axis xd with swirling mean flow, namely, solution of:

F (G) = −δ (xd − xd0)
δ (r − r0)

r0

∑

n∈Z

δ (θ − θ0 − 2π n) δ (t − t0) ,

(27)

with the boundary condition that the normal velocity associ-

ated with G is zero on the duct walls. It can be shown that G

is equivalently defined by:

G (xd, t| xd0, t0) =

∫∑

m∈Z

∫
Ĝm ( r| k, ω, xd0, t0) eikxd+imθ−iωt dkdω

(28)

with

Ĝm ( r| k, ω, xd0, t0) = −
p̂G,m ( r| k, ω, xd0, t0)

Dm,k(r0)Λm,k(r0)2
, (29)
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and p̂G,m the solution of:

Dm,k L
(
p̂G,m

)
= −
δ (r − r0)

(2π)3 r0

e−ikx0+iωt0−imθ0 , (30)

Bm p̂G,m +
∂ p̂G,m

∂r
= 0 at r = h and r = 1 , (31)

where the operator L is:

L
(
p̂
)
=

1

r

d

dr

(
r

Dm,k

(
Bm p̂ +

dp̂

dr

))

−
2 m Uθ

Λm,k r2 Dm,k

(
Bm p̂ +

dp̂

dr

)
+

1

Λ2
m,k

⎛⎜⎜⎜⎜⎜⎝
Λ2

m,k

c2
0

−
m2

r2
− k2

⎞⎟⎟⎟⎟⎟⎠ p̂ ,

(32)

and

Bm(r) =
2 m Uθ

Λm,k r2
−

U2
θ

r c2
0

. (33)

When there is no swirl (Uθ = 0), Bm = 0 and the zero normal

velocity condition on the duct walls ur = 0 reduces to the

well known condition: ∂p/∂r = 0. Using the general theory

of differential equations (e.g. see Bender & Orszag [9]) to

solve the Green’s function, it is possible to show that:

p̂G,m (k, r, ω| xd0, r0, θ0, t0) =

−
e−ikx0+iωt0−imθ0

(2π)3 r0 K(k, r0)

{
p̂G,m,2 (k, r0) p̂G,m,1 (k, r) , r � r0 ,

p̂G,m,1 (k, r0) p̂G,m,2 (k, r) , r > r0 ,

(34)

where p̂G,m,1 and p̂G,m,2 are two solutions of the homoge-

neous equation L
(
p̂
)
= 0 satisfying respectively the bound-

ary conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bm (h) p̂G,m,1 (h) +

∂ p̂G,m,1

∂r
(h) = 0 ,

hp̂G,m,1 (h) = 1 ,
(35)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩

p̂G,m,2 (1) = 1 ,

Bm (1) p̂G,m,2 (1) +
∂ p̂G,m,2

∂r
(1) = 0 ,

(36)

and where

K (k, r0) =
(ρ0D) (r0)

r0 (ρ0D) (h)

[
∂ p̂G,m,2

∂r
(k, h) + Bm(k, h) p̂G,m,2(k, h)

]
.

(37)

For each studied frequency ω and each azimuthal mode or-

der m, the eigenvalue problem is first solved using a pseudo-

spectral method using both the Chebyshev collocation grid

and the Chebyshev staggered grid as proposed and detailed

by Khorrami [10] to yield the axial wave-numbers k±m,n of the

sonic and nearly-convected modes. The critical layer is also

investigated. An example of eigenvalues and critical-layer

is plotted in Figure 2. The integration over the wavenumber

k to yield the pressure field in the space domain is split in

two parts. The contribution of each sonic mode is computed

using the residue theorem, whereas the contribution of the

nearly-convected modes and of the critical layer is obtained

from a numerical contour in the C − k−plane surrounding

them as in Figure 2. In both cases, the functions p̂G,m,i are

found as solutions of an initial value problem for a system

of two first order differential equations using for instance the

fortran routine DVODE_F90.f.

−20 −10 0 10 20
−60

−40

−20

0

20

40

60
Cut−on downstream modes

Cut−on upstream modes

Cut−off upstream modes

Cut−off downstream modes

Nearly−convected modes
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ℑ
(k

)

ℜ(k)

Figure 2: Sonic and nearly-convected modes, critical layer

and numerical integration contour in the C − k−plane in the

case of §3.1 of Heaton [3].

3.4 Pressure field given by the acoustic anal-

ogy

Let us define a generalised Green’s function G̃ equal to G

in the region defined by f � 0, and zero in region defined by

f < 0. Then, p is given by:

p(xd, r, θ, t) =

∫�
V

G̃ (xd, t| xd0, t0) S̃ (xd0, t0) dV0dt0

+

∫�
V

G̃ (xd, t| xd0, t0)
(
A0(SFWH,1) +D

2
0 (SFWH,2)

)
dV0dt0

(38)

where the sources terms S̃, SFWH,1 and SFWH,2 are evaluated

at the source time t0 and space coordinates xd0, and the sub-

script 0 on the operators A and D stand for derivatives with

respect to the source time t0 and space coordinates xd0. This

relation is true even if the Green’s function is zero out of

the duct because the volume sources are zero in this region

too. The sources FWH can be isolated from any derivative

by successive integrations by parts. Given that the integra-

tion is performed over the whole space V and not the fluid

domain V, the integration by parts does not lead to surface

terms contributions. Once the S FWH,xδ( f ),... terms have been

isolated it is possible to reduce the integration to the surface

Σ to give after rearrangement:

p(xd, r, θ, t) =

∫ �
V

G̃ (xd, t| xd0, t0) S̃ (xd0, t0) dV0dt0

+

∫ ∫∫

Σ(t0)

SFWH ·∇
(
D2

0 (G)
)
− S FWH,ρ

D0

(
D2

0
(G)

)

Dt0
dΣ0(t0)dt0

+

∫ ∫∫

Σ(t0)

2
Uθ

r0

R0,1 (G) × S FWH,θdΣ0(t0)dt0

+

∫ ∫∫

Σ(t0)

S FWH,r × R0,2 (G) dΣ0(t0)dt0 ,

(39)

with

R0,1

(
G̃
)
=
∂

∂r0

(
D0

Dt0

[
D0

(
G̃
)])
−

d

dr0

⎡⎢⎢⎢⎢⎣
2 Uθ

r2
0

d(r0 Uθ)

dr0

⎤⎥⎥⎥⎥⎦
D0G̃

Dt0

+

[
d(r0Uθ)

r0dr0

∂

r0 ∂θ0
+

dUxd

dr0

∂

∂xd0

]
D0

(
G̃
)

−2

[
dUxd

dr0

∂

∂xd0

+
d

dr0

(
Uθ

r0

)
∂

∂θ0

]
D2

0
G̃

Dt2
0

,

(40)

and

R0,2 (G) = UθR0,3 (G)+
dUθ

dr0

R0,4 (G)+
dUxd

dr0

R0,5 (G) , (41)
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with

R0,3 (G) = −
8

r2
0

d (r0Uθ)

dr0

d

dr0

⎡⎢⎢⎢⎢⎣
Uθ

r2
0

d (r0Uθ)

dr0

⎤⎥⎥⎥⎥⎦G

−
2

r2
0

d (r0Uθ)

dr0

∂

∂r0

⎡⎢⎢⎢⎢⎣
D2

0
G

Dt2
0

⎤⎥⎥⎥⎥⎦ − 4Uθ

⎡⎢⎢⎢⎢⎣
1

r2
0

d (r0Uθ)

dr0

⎤⎥⎥⎥⎥⎦
2
∂G

∂r0

+4
Uθ

r4
0

d (r0Uθ)

dr0

∂

∂θ0

[
D0G

Dt0

]
,

(42)

R0,4 (G) =
2

r0

∂

∂θ0

⎛⎜⎜⎜⎜⎝
D3

0
G

Dt3
0

⎞⎟⎟⎟⎟⎠ , (43)

and

R0,5 (G) = 2
∂

∂xd0

⎛⎜⎜⎜⎜⎝
D3

0
G

Dt3
0

⎞⎟⎟⎟⎟⎠ . (44)

The volume term can also be reduced to an integration over

the fluid domainV. This is not detailed here for conciseness.

The result will only be discussed in particular cases. The first

two surface integrals in Eq. (39) are the analog to what is

obtained in uniform mean flow but with D2
0
(G) instead of a

Green’s function in uniform mean flow Guni f . The third term

is only non-zero because of the swirl. The fourth terms is

the sum of three terms and is non-zero if at least one of the

three following flow parameters dUθ/dr0, dUxd/dr0 or Uθ is

non-zero.

The surface terms over the duct surface ΣD is first consid-

ered. The duct walls are stationnary, and are supposed to be

impermeable which imposes: Q·n = 0 and L·n = pn−τ·n. If

in addition the stress tensor effects are neglected L · n = pn

and SFWH = pn on ΣD. Finally, if the duct is supposed to

be straight: (nr, nθ, nx) = (1, 0, 0), and the duct surface term

reduces to:
∫ ∫∫

ΣD

p

[
∂

∂r0

[
D2

0 (G)
]
+ R0,2 (G)

]
dΣ0(t0)dt0 . (45)

It is possible to show that the time and axial coordinate Fourier

transform and the Fourier series in θ of the integrand is ex-

actly zero on the duct surface if G is the tailored Green’s

function to the annular duct. Be careful however, that this

result is not obvious since G is defined with boundary condi-

tions at r = h and r = 1 involving ∂G/∂r whereas the bound-

ary condition to ensure the cancellation of the integrand of

the duct surface terms (Eq. (45)) requires boundary condi-

tions at r0 = h and r0 = 1 involving ∂G/∂r0. Finally, the

use of the tailored Green’s function indeed allows to remove

any surface contribution of the duct walls, Σ in Eq. (39) then

reduces to the blades surfaces ΣB.

4 Particular configurations

4.1 Sheared flow with no surfaces: Lilley’s for-

mulation

If there is no swirl (Uθ = 0), the operator F reduces to:

F (p) =
D3

0

Dt3
0

⎡⎢⎢⎢⎢⎣
D0

Dt0

⎛⎜⎜⎜⎜⎝
1

c2
0

D2
0
p

Dt2
0

− ∇2 p

⎞⎟⎟⎟⎟⎠ + 2
dUxd

dr0

∂2 p

∂xd0 ∂r0

⎤⎥⎥⎥⎥⎦ .

(46)

The volume source terms S become:

S =
D3

0

Dt3
0

{
D0

Dt0

(
D0S ρ

Dt
−∇ · S

)
+ 2

dUxd

dr0

∂S r

∂xd0

}
. (47)

Let’s define the Lighthill like tensor

Ti j = ρto ui u j+(p−c2
0ρ)δi j−τi j = ρto ui u j−τi j+c2

0Zδi j . (48)

Then, if the heat conduction and viscous dissipation effects

are neglected: τ = 0, Z = (p − c2
0
ρ)/c2

0
= 0, and the pressure

field is solution of:

D3
0

Dt3
0

⎧⎪⎪⎨⎪⎪⎩
D0

Dt0

⎛⎜⎜⎜⎜⎝
1

c2
0

D2
0
p

Dt2
0

− ∇2 p

⎞⎟⎟⎟⎟⎠ + 2
dU1

dy2

∂2 p

∂y1 ∂y2

⎫⎪⎪⎬⎪⎪⎭ =

D3
0

Dt3
0

{
D0

Dt0

[
∂2Ti j

∂yi ∂y j

]
− 2

dU1

dy2

∂2(ρtou2ui)

∂y1 ∂yi

}
,

(49)

in Cartesian coordinates (1: streamwise, 2: normal to the

shear layer). This is exactly the third order convective deriva-

tive D3
0
/Dt3

0
of Lilley’s equation assuming that the viscous

and heat conductions effects are negligible and the fluctuat-

ing pressure is sufficiently small so that the operator Π =

log(p/p0) of Lilley can be approximate by Π ≈ (p/p0) (e.g.

section 6 of [4], [11]).

4.2 Uniform mean flow in an annular duct: Gold-

stein’s formulation

With uniform mean flow, Eq. (39) reduces to

p(xd, r, θ, t) =

∫�
V(t0)

Z

⎧⎪⎪⎨⎪⎪⎩
D2

0

Dt2
0

− c2
0∇

2

⎫⎪⎪⎬⎪⎪⎭

⎡⎢⎢⎢⎢⎣
D4

0

Dt4
0

(G)

⎤⎥⎥⎥⎥⎦ dV0dt0

+

∫�
V(t0)

Ti j

∂2

∂yi ∂y j

⎡⎢⎢⎢⎢⎣
D4

0

Dt4
0

(G)

⎤⎥⎥⎥⎥⎦ dV0dt0

+

∫ ∫∫

ΣB(t0)

L · n ·∇

⎛⎜⎜⎜⎜⎝
D4

0
G

Dt4
0

⎞⎟⎟⎟⎟⎠ −Q · n
D0

Dt0

⎛⎜⎜⎜⎜⎝
D4

0
G

Dt4
0

⎞⎟⎟⎟⎟⎠ dΣ0(t0)dt0 .

(50)

The first term is caused by the fact that the pressure is eval-

uated instead of the density as is usually done (e.g. [4, 5]).

Besides, in this uniform mean flow case the operatorF corre-

sponds to apply the fourth order particular derivative−D4
0
/Dt4

0

to the wave operator in uniform mean flow. Then G is solu-

tion of:

−
D4

0

Dt4

⎡⎢⎢⎢⎢⎣∇2 −
1

c2
0

D2
0

Dt2

⎤⎥⎥⎥⎥⎦G (xd, t|xd0, t0) = −δ (xd − xd0) δ (t − t0) ,

(51)

with ∂G/∂r = 0 in r = h and r = 1. Given that in this partic-

ular case, the convective derivative and the radial derivative

commutes, Y = −D4
0
G/Dt4

0
is solution of:

⎡⎢⎢⎢⎢⎣∇2 −
1

c2
0

D2
0

Dt2

⎤⎥⎥⎥⎥⎦ Y (xd, t|xd0, t0) = −δ (xd − xd0) δ (t − t0) ,

(52)

with ∂Y/∂r = 0 in r = h and r = 1, namely Y is exactly the

Green’s function used in uniform mean flow, and the pres-

sure field expression Eq. (50) is the analog in an annular duct

(used for instance by [12, 13]) to that given by Goldstein in

the circular duct case for the density field.

5 Application to ducted fan noise

The acoustic analogy detailed in section 3 can be used

to deal with several noise-generation mechanisms and the

associated propagation in a rotor/stator fan stage. For in-

stance, it allows us to account for the downstream swirling
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mean-flow effect on the rotor trailing-edge noise or for the

upstream swirling mean-flow effect on the rotor-stator inter-

action noise. If the volume sources are neglected as is usually

done in these contexts in subsonic regimes, and if the blades

are supposed to be radial (no lean angle, nr = 0), then p

(Eq. (39)) is:

p(xd, r, θ, t) =

∫ ∫∫
⋃

j ΣB, j(t0)

p(xd0, t0)T0(G(xd, t|xd0, t0))dΣ0(t0)dt0 ,

(53)

with

T0(G) =

⎡⎢⎢⎢⎢⎣nx, jD
2
0

∂G

∂xd0

+ nθ, j

⎛⎜⎜⎜⎜⎝
D2

0

r0

∂G

∂θ0
+ 2

Uθ

r0

R0,1(G)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ .
(54)

It is then possible to use the same strategy as was done up

to now (e.g. [4, 12, 13]) to compute the noise generated, by

simply providing the pressure jump (assuming flat plate) or

the blade pressure distribution by an analytical model or a

CFD simulation to compute the radiated noise.

6 Conclusion

An acoustic analogy in a swirling medium has been de-

rived, extending Ffowcs Williams & Hawkings and Gold-

stein’s acoustic analogies. It has been shown to reduce to Lil-

ley’s equation in the particular case of a sheared flow without

surface, and to Goldstein’s acoustic analogy in the particular

case of a uniform mean flow in a duct. The Green’s function

tailored to the annular duct with swirling mean flow has been

derived. In the particular context of fan noise, the pressure

field has been written as the sum over the surfaces of all the

blades of the pressure distribution multiplied by an operator

acting on the Green’s function.
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