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Abstract

The acoustic equations are the linearization of the compressible Euler equations
about a spatially homogeneous fluid state. We first derive them directly from the
Boltzmann equation as the formal limit of moment equations for an appropriately
scaled family of Boltzmann solutions.We then establish this limit for the Boltzmann
equation considered over a periodic spatial domain for bounded collision kernels.
Appropriately scaled families of DiPerna-Lions renormalized solutions are shown
to have fluctuations that converge entropically (and hence strongly inL1) to a unique
limit governed by a solution of the acoustic equations for all time, provided that its
initial fluctuations converge entropically to an appropriate limit associated to any
givenL2 initial data of the acoustic equations. The associated local conservation
laws are recovered in the limit.

1. Introduction

The endeavor to understand how fluid dynamical equations arise from kinetic
theory originates in the founding works ofMaxwell [21] andBoltzmann [10].
While there has been considerable success at the formal level, full mathematical
justifications have proved elusive. Here we establish the so-called acoustic fluid
dynamical limit for the classical Boltzmann equation considered over a periodic
spatial domain for bounded collision kernels. We do so in the physical setting of
DiPerna-Lions renormalized solutions.

1.1. The Boltzmann Equation

The state of a fluid composed of identical point particles confined to a spatial
domain� ⊂ RD is described at the kinetic level by a mass densityF over the
single-particle phase space� × RD. At any instant of timet = 0 and point
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(x, v) ∈ � × RD, F(t, x, v) dv dx is understood to give the mass of the particles
that occupy the infinitesimal volumedv dx about the point(x, v). To remove com-
plications due to boundaries, we take� to be the periodic boxTD = RD/ZD. If
the particles interact only through a conservative interparticle force with a finite
range, then at low densities this range will be much smaller than the interparticle
spacing. In that regime all but binary collisions can be neglected and the evolution
of F = F(t, x, v) is governed by the classical Boltzmann equation [13]:

∂tF + v ·∇xF = B(F, F ), F (0, x, v) = F in(x, v) = 0. (1.1)

The Boltzmann collision operatorB(F, F ) acts only on thev argument ofF . It is
formally given by

B(F, F ) =
∫∫

SD−1×RD

(F ′
1F

′ − F1F) b(v1 − v, ω) dω dv1, (1.2)

wherev1 ranges overRD endowed with its Lebesgue measuredv1 while ω ranges
over the unit sphereSD−1 = {ω ∈ RD : |ω| = 1} endowed with its rotationally
invariant unit measuredω. TheF , F1, F ′ andF ′

1 appearing in the integrand are
understood to meanF(t, x, ·) evaluated at the velocitiesv,v1,v′ andv′

1 respectively,
where the primed velocities are defined by

v′ = v + ω ω·(v1 − v), v′
1 = v1 − ω ω·(v1 − v), (1.3)

for any given(ω, v1, v) ∈ SD−1×RD×RD. Quadratic operators likeB are extended
by polarization to be bilinear and symmetric.

The unprimed and primed velocities are possible velocities for a pair of particles
either before and after, or after and before, they interact through an elastic binary
collision. Conservation of momentum and energy for particle pairs during collisions
is expressed as

v + v1 = v′ + v′
1, |v|2 + |v1|2 = |v′|2 + |v′

1|2. (1.4)

Equation (1.3) represents the general solution of theseD + 1 equations for the 4D
unknownsv, v1, v′, andv′

1 in terms of the 3D − 1 parameters(ω, v1, v).
The Boltzmann kernelb is a nonnegative, locally integrable function. The

Galilean invariance of the collisional physics implies thatb has the classical form

b(v1 − v, ω) = |v1 − v| 6(|v1 − v|, |µc|), µc = ω·(v1 − v)

|v1 − v| , (1.5)

where6 is the specific differential cross-section. It will be assumed that there exists
a constantC < ∞ that is independent ofω such thatb satisfies the bounds

0 < b(v1 − v, ω) 5 C
(
1 + |v1 − v|2) almost everywhere. (1.6)

This condition is met by classical Boltzmann kernels with a small deflection cut-off
(see [12, Chapter II.4, 5]). Additional technical requirements onb will be imposed
later.
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1.2. Fluid Dynamical Approximations

Fluid dynamical regimes are those where the mean free path is small compared
to the macroscopic length scales. Formal derivations of the compressible Euler
equations are rather direct. Formal derivations of other fluid dynamical equations,
such as the compressible Navier-Stokes equations, are more subtle. Early deriva-
tions of the Navier-Stokes equations rested on arguments as to how the various
terms in a kinetic equation balance each other. These balance arguments seemed
arbitrary to some, soHilbert [18] proposed that such derivations should be based
on a systematic asymptotic expansion. This expansion takes the form of a power
series in a nondimensional parameterε � 1, now called the Knudsen number, that
is a ratio of the mean free path to the macroscopic length scales. With the Knudsen
number introduced [3], the initial-value problem for the Boltzmann equation (1.1)
takes the nondimensional form

∂tF + v ·∇xF = 1

ε
B(F, F ), F (0, x, v) = F in(x, v) = 0. (1.7)

A bit laterEnskog [16] proposed a somewhat different asymptotic expansion, now
called the Chapman-Enskog expansion, in the same small parameterε. Either the
Hilbert or the Chapman-Enskog expansion yields at successive orders: the com-
pressible Euler equations, the compressible Navier-Stokes equations, the Burnett
equations, and the so-called super-Burnett equations (see [17]).

Justification of these formal approximations has proved difficult in part because
many basic well-posedness and regularity questions remain open for both these fluid
equations and the Boltzmann equation. The problem is exacerbated by the fact that
to bound the error of the asymptotic expansions requires the control of successively
higher order spatial derivatives of the fluid variables, thereby requiring unphysical
restrictions to a meager subset of all physically natural initial data and possibly to
finite periods of time. For example, the compressible Euler equations have been
derived from the Boltzmann equation byCaflisch [11] using a method based on
the Hilbert expansion; this derivation holds for smooth initial data and for as long as
the limiting solution of the compressible Euler system is smooth. Because solutions
of the compressible Euler equations are known to become singular in finite time
for a very general class of initial data (see [22]), Caflisch’s result [11] is about the
best one can hope for by appealing to the Hilbert expansion.

Two approaches to circumventing these difficulties have emerged recently. First,
some authors have studied direct derivations of incompressible Stokes, Navier-
Stokes, and Euler equations [1,2,6–8,14,9,23,24] about which more is known.
Second, some authors have abandoned the traditional expansion-based derivations
in favor of moment-based formal derivations [2,6,7,9], which put fewer demands
on the well-posedness and regularity theory. Here we embrace both of these ap-
proaches.

To begin with, we will also consider a fluid dynamical limit obtained through
a scaling in which the densityF is close to a spatially homogeneous Maxwellian
M = M(v). By an appropriate choice of a Galilean frame and of mass and velocity
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units, it can be assumed that this so-called absolute MaxwellianM has the form

M(v) ≡ 1

(2π)D/2 exp(−1
2|v|2). (1.8)

This corresponds to the spatially homogeneous fluid state with density and temper-
ature equal to 1 and the bulk velocity equal to 0. If the compressible Euler equations
are linearized about this state, then one obtains the acoustic equations

∂tρ + ∇x ·u = 0, ρ(0, x) = ρ in(x),

∂tu + ∇x(ρ + θ) = 0, u(0, x) = uin(x),
D
2 ∂t θ + ∇x ·u = 0, θ(0, x) = θ in(x).

(1.9)

This is about the simplest system of fluid dynamical equations imaginable, being
essentially the wave equation. We will show how it can be formally derived from
the Boltzmann equation. We will also employ a moment-based formal derivation
that will enable us to establish the acoustic limit within the class of DiPerna-Lions
global weak solutions to the classical Boltzmann equation.

The existence of global weak solutions to the classical Boltzmann equation for
all initial data within the entropy class was first established by DiPerna and Lions
[15]. Their theory has the virtue of considering physically natural classes of initial
data. However, it suffers deficiencies in that its solutions are not known either to
be unique, or to satisfy all the local conservation laws one would formally expect.
These solutions were subsequently studied in the incompressible Navier-Stokes
limit [3] and the incompressible Euler limit [9] with partial success, and in the
linearized Boltzmann limit [19] with complete success. In those studies a notion of
entropic convergencewas used as a natural tool for obtaining strong convergence
results for fluctuations about an absolute Maxwellian. This paper establishes the
convergence of such fluctuations of DiPerna-Lions solutions to so-called infinites-
imal Maxwellians that have the form

ρ + u·v + θ(1
2|v|2 − D

2 ), (1.10)

and that are each governed by anL2 solution (ρ, u, θ) of the acoustic equa-
tions (1.9). Here, the notion of entropic convergence again plays a major role.

Loosely stated, our main result (Proposition 4.2, announced in [4]) is the fol-
lowing: for any L2 initial data for the acoustic equations and any sequence of
DiPerna-Lions solutions whose initial fluctuations aboutM converge entropically
to the infinitesimal Maxwellian associated with thatL2 initial data, the fluctu-
ations of the DiPerna-Lions solutions converge entropically to the infinitesimal
Maxwellian associated with theL2 solution of the acoustic initial-value problem
(1.9) for all positive values of time. The key points being made are that the limit of
the DiPerna-Lions Boltzmann dynamics mapsontotheL2 acoustic dynamics, and
that the limit is strong. The main obstacle we overcome is that the DiPerna-Lions
solutions are not known to satisfy local conservation laws of either momentum or
energy.

The next section contains preliminary material regarding the Boltzmann equa-
tion and the formal derivation of the acoustic equations. Section 3 lays the analytical
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groundwork. It includes a statement of the DiPerna-Lions result and of the basic re-
sults on fluctuations from [3]. These propositions are fully stated for completeness.
Their proofs can essentially be found in [15] and [3], and so are not reproduced
here. It also reintroduces the notion of entropic convergence. Section 4 establishes
the acoustic limit. The associated local conservation laws of momentum and en-
ergy are recovered only in the limit. In a companion paper [5] we establish a similar
result for an incompressible Stokes limit, also announced in [4].

2. Formal Preliminaries

In this section are recalled the basic formal properties of the Boltzmann equa-
tion, together with a formal derivation of the acoustic equations by a moment-based
method, in the style of [2]. The notation introduced here is a subset of that in the
first section of [3].

2.1. Formal Structure of the Boltzmann Equation

It is natural to introduce the relative density,G = G(t, x, v), defined byF =
MG. Recasting the initial-value problem (1.7) forG yields

∂tG + v ·∇xG = 1

ε
Q(G, G), (2.1a)

G(0, x, v) = Gin(x, v) = 0, (2.1b)

where the collision operator is now given by

Q(G, G) =
∫∫

SD−1×RD

(G′
1G

′ − G1G) b(v1 − v, ω) dω M1dv1. (2.2)

We take the nondimensionalization with the normalizations
∫

SD−1
dω = 1,

∫
RD

Mdv = 1,

∫
TD

dx = 1, (2.3)

associated with the domainsSD−1, RD, andTD respectively, and

∫∫∫
SD−1×RD×RD

b(v1 − v, ω) dω M1dv1 Mdv = 1, (2.4)

associated with the Boltzmann kernel.
BecauseMdv is a positive unit measure onRD, we denote by〈ξ〉 the average

over this measure of any integrable functionξ = ξ(v),

〈ξ〉 =
∫

RD

ξ(v) Mdv. (2.5)
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Becauseb(v1−v, ω) dω M1dv1 Mdv is a positive unit measure onSD−1×RD×RD,
we denote by

〈〈
4

〉〉
the average over this measure of any integrable function4 =

4(v, v1, ω),

〈〈
4

〉〉 =
∫∫∫

SD−1×RD×RD

4(v, v1, ω) b(v1 − v, ω) dω M1dv1 Mdv. (2.6)

We now present the basic formal structure of the Boltzmann equation in the setting
of this notation for later reference. All of these results are standard and their proofs
can be essentially found in [12, Chapter II.6, 7].

The structure of the Boltzmann equation derives from properties of the Boltz-
mann collision operator (2.2) relating to conservation, dissipation, and Galilean
symmetry. The key to these properties is the following identity discovered by Boltz-
mann:

〈ξ Q(G, G)〉 = 〈〈
ξ (G′

1G
′ − G1G)

〉〉
= 1

4

〈〈
(ξ + ξ1 − ξ ′ − ξ ′

1) (G′
1G

′ − G1G)
〉〉
,

(2.7)

for everyξ = ξ(v) andG = G(v) for which the integrals make sense. Here we
will recall just those properties related to conservation and dissipation.

First, upon successively settingξ = 1, v1, · · · , v
D
, |v|2 into the Boltzmann

identity (2.7), the microscopic conservation laws (1.4) yield the conservation laws

〈Q(G, G)〉 = 0, 〈v Q(G, G)〉 = 0, 〈1
2|v|2Q(G, G)〉 = 0, (2.8)

for everyG = G(v) for which the integrals make sense. It can be shown that
these are essentially all the quantities conserved byQ(G, G). More precisely, the
following statements are equivalent:

(i) 〈ξ Q(G, G)〉 = 0
for everyG = G(v) for which the integral makes sense;

(ii) ξ ∈ span{1, v1, · · · , v
D
, |v|2}.

(2.9)

If G solves the Boltzmann equation (2.1), then (2.8) implies thatG satisfies
local conservation laws of mass, momentum, and energy:

∂t 〈G〉 + ∇x ·〈v G〉 = 0,

∂t 〈v G〉 + ∇x ·〈v ⊗ v G〉 = 0,

∂t 〈1
2|v|2G〉 + ∇x ·〈v 1

2|v|2G〉 = 0.

(2.10)

Integrating these over space and time yields the global conservation laws of mass,
momentum, and energy:∫

TD

〈G(t)〉 dx =
∫

TD

〈Gin〉 dx,

∫
TD

〈v G(t)〉 dx =
∫

TD

〈v Gin〉 dx,

∫
TD

〈1
2|v|2G(t)〉 dx =

∫
TD

〈1
2|v|2Gin〉 dx.

(2.11)



The Acoustic Limit for the Boltzmann Equation 183

Next, upon settingξ = − log(G) into identity (2.7), Boltzmann observed that
the resulting integrand is nonnegative, and hence obtained the dissipation law

−〈log(G) Q(G, G)〉 = 1
4

〈〈
log

(
G′

1G
′

G1G

)
(G′

1G
′ − G1G)

〉〉
= 0 (2.12)

for everyG = G(v) for which the integrals make sense. He then characterized the
equilibria of the collision operator. He found that for anyG = G(v) for which the
integrals make sense, the following statements are equivalent:

(i) 〈log(G) Q(G, G)〉 = 0 ;
(ii) Q(G, G) = 0 ;

(iii) log(G) ∈ span{1, v1, · · · , v
D
, |v|2}.

(2.13)

Equilibria characterized by (iii) that have finite mass, momentum, and energy
density can be written asG = M(ρ,u,θ)/M, whereM(ρ,u,θ) are the classical
Maxwellians defined by

M(ρ,u,θ)(v) ≡ ρ

(2πθ)D/2 exp

(
−|v − u|2

2θ

)
, (2.14)

and where the densityρ = 0, the velocityu ∈ RD, and the temperatureθ > 0 are
determined by the relations

ρ = 〈G〉, ρu = 〈v G〉, 1
2ρ|u|2 + D

2 ρ θ = 〈1
2|v|2G〉. (2.15)

In particular,G = 1 is the unique equilibrium associated with initial dataGin that
satisfies∫

TD

〈Gin〉 dx = 1,

∫
TD

〈v Gin〉 dx = 0,

∫
TD

〈1
2|v|2Gin〉 dx = D

2 .

(2.16)
This is consistent with the choice of absolute MaxwellianM made in (1.8).

Now, if G solves the Boltzmann equation (2.1), then the dissipation law (2.12)
implies thatG satisfies the local entropy dissipation law

∂t 〈(G log(G) − G + 1)〉 + ∇x ·〈v (G log(G) − G + 1)〉
= −1

ε

1

4

〈〈
log

(
G′

1G
′

G1G

)
(G′

1G
′ − G1G)

〉〉
5 0.

Integrating this over space and time gives the global entropy equality

H(G(t)) + 1

ε

∫ t

0
R(G(s)) ds = H(Gin), (2.17)

whereH(G) is the relative entropy functional

H(G) =
∫

TD

〈(G log(G) − G + 1)〉 dx, (2.18)
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andR(G) is the entropy dissipation rate functional

R(G) =
∫

TD

1

4

〈〈
log

(
G′

1G
′

G1G

)
(G′

1G
′ − G1G)

〉〉
dx. (2.19)

This choice ofH as the relative entropy functional (2.18) is based on the fact
that its integrand is a nonnegative strictly convex function ofG with a minimum
value of 0 atG = 1. Thus for anyG,

H(G) = 0, and H(G) = 0 if and only if G = 1. (2.20)

This relative entropy provides a natural measure of the proximity ofG to that
equilibrium.

2.2. Formal Derivation of the Acoustic Equations

Before describing the mathematical apparatus necessary to establish the acous-
tic limit, we give below a formal theorem in the style of [2] whose proof will serve
as a guideline.

We suppose there exists a familyGε of nonnegative weak solutions of the
Boltzmann equation (2.1) whose fluctuations about the equilibrium valueG = 1
are of orderεm asε → 0 for somem > 0. We then introduce the scaled fluctuations
gε by

Gε = 1 + εmgε. (2.21)

By (2.1) the fluctuationsgε will then be weak solutions of

∂tgε + v ·∇xgε + 1

ε
Lgε = εm−1Q(gε, gε), (2.22)

whereL is the linearized collision operator defined by

Lg̃ = −2Q(1, g̃).

This operator has a nonnegative, self-adjoint extension overL2(Mdv). Possible
limits of the fluctuationsgε asε → 0 are then governed by the following theorem.

Proposition 2.1 (Formal Acoustic Limit Theorem). Let m > 0. LetGε be a fam-
ily of nonnegative weak solutions of the Boltzmann equation (2.1) whose fluc-
tuationsgε given by (2.21) converge in the sense of distributions to a function
g ∈ L∞(dt; L2(M dv dx)) asε → 0. Furthermore, assume that the moments

〈gε〉, 〈v gε〉, 〈v ⊗ v gε〉, 〈v|v|2gε〉, (2.23a)

satisfy the local conservation laws and converge in the sense of distributions as
ε → 0 to the corresponding moments

〈g〉, 〈v g〉, 〈v ⊗ v g〉, 〈v|v|2g〉, (2.23b)

and that
Lgε → Lg, εmQ(gε, gε) → 0, (2.24)
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in the sense of distributions asε → 0. Theng has the form of the infinitesimal
Maxwellian

g = ρ + u·v + θ(1
2|v|2 − D

2 ), (2.25)

where(ρ, u, θ) solve the acoustic equations (1.9).

Proof. First, multiply (2.22) byε and letε → 0. By the convergences assumed in
(2.23) and (2.24), we obtain

Lg = 0. (2.26)

It is known (see for example [12, Chapter IV.1]) that theL2 extension of the lin-
earized collision operator has its nullspace given by Null(L) = span{1, v1, · · · ,

v
D
, |v|2}. Because the limiting fluctuationg is assumed to belong toL∞(dt;

L2(M dv dx)), (2.26) implies that it must have the form of an infinitesimal
Maxwellian (2.25).

Second, by the local conservation laws (2.10) the fluctuationsgε will satisfy

∂t 〈gε〉 + ∇x ·〈v gε〉 = 0,

∂t 〈v gε〉 + ∇x ·〈v ⊗ v gε〉 = 0,

∂t 〈1
2|v|2gε〉 + ∇x ·〈v 1

2|v|2gε〉 = 0.

(2.27)

The theorem then follows by lettingε → 0 in these equations using the conver-
gences assumed in (2.23) and then using the limiting form ofg given by (2.25).
ut

3. Analytical Preliminaries

Going beyond the formal derivation of the last section requires clarification of
(1) the notion of a solution for the Boltzmann equation, and (2) the sense in which
the phase-space density is to be close to the background absolute Maxwellian.
The first is provided by the theory of global solutions of DiPerna-Lions, while the
second is provided by the theory of fluctuations developed in [3].

3.1. Global Solutions

DiPerna and Lions [15] proved the existence of a temporally global weak solu-
tion to the Boltzmann equation over the whole spaceRD for any initial data satis-
fying natural physical bounds. As they pointed out, with only slight modifications
their theory can be extended to the periodic boxTD. It gives the existence of a global
weak solution to a class of formally equivalent initial-value problems obtained by
dividing the Boltzmann equation (2.1a) by normalizing functionsN = N(G) > 0:

(
∂t + v ·∇x

)
0(G) = 1

ε

Q(G, G)

N(G)
, (3.1a)

G(0, x, v) = Gin(x, v), (3.1b)

where eachN is continuous over[0, ∞) and satisfies a bound(1+ z)/N(z) 5 CN

overz = 0 for some constantCN < ∞, and where0′(z) = 1/N(z). Their solutions
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lie in C([0, ∞); w-L1(Mdv dx)), where the prefix “w-” on a space indicates that
the space is endowed with its weak topology. They say thatG = 0 is a weak solution
of (3.1) provided that it is initially equal toGin, and that it satisfies the normalized
Boltzmann equation (3.1a) in the sense that for everyχ ∈ L∞(Mdv; C1(TD)) and
every[t1, t2] ⊂ [0, ∞) it satisfies∫

TD

〈0(G(t2)) χ〉 dx −
∫

TD

〈0(G(t1)) χ〉 dx −
∫ t2

t1

∫
TD

〈0(G) v ·∇xχ〉 dx dt

= 1

ε

∫ t2

t1

∫
TD

〈Q(G, G)

N(G)
χ

〉
dx dt. (3.2)

They show that ifG is a weak solution of (3.1) for one suchN and satisfies cer-
tain bounds then it is a weak solution for every suchN . They call such solutions
renormalized solutions of the Boltzmann equation (2.1).

Proposition 3.1 (DiPerna-Lions Renormalized Solutions). Given any initial data
Gin in the entropy class

E(Mdv dx) = {
Gin = 0 : H(Gin) < ∞}

,

there exists at least oneG = 0 in C([0, ∞); w-L1(Mdv dx)) that is a weak solution
of (3.1) such that:

Q−(G,G)
1+N

∈ L∞(dt; L1(Mdv dx)),

Q+(G,G)
1+N

∈ L1
loc(dt; L1(Mdv dx)),

(3.3)

whereQ− and Q+ are the source and sink components of the collision opera-
tor (2.2)

Q+(G, G) =
∫∫

SD−1×RD

G′
1G

′ b(v1 − v, ω) dω M1dv1,

Q−(G, G) =
∫∫

SD−1×RD

G1G b(v1 − v, ω) dω M1dv1.

(3.4)

Moreover,G also satisfies the global entropy inequality

H(G(t)) + 1

ε

∫ t

0
R(G) ds 5 H(Gin), (3.5)

a weak form of the local conservation law of mass

∂t 〈G〉 + ∇x ·〈v G〉 = 0, (3.6)

the global conservation law of momentum∫
TD

〈v G(t)〉 dx =
∫

TD

〈v Gin〉 dx, (3.7)

and finally, the global energy inequality∫
TD

〈1
2|v|2G(t)〉 dx 5

∫
TD

〈1
2|v|2Gin〉 dx. (3.8)
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The finiteness of the entropy is enough to insure the integrability of the con-
served densities. However, the DiPerna-Lions theory does not assert the local con-
servation of momentum, the global conservation of energy, the global entropy
equality (2.17), or a local entropy inequality; nor does it assert the uniqueness
of the solution.

3.2. Controlling Fluctuations

In order to derive fluid dynamical equations from the Boltzmann equation for
regimes near a background absolute Maxwellian, be they the acoustic, Stokes,
or incompressible Navier-Stokes equations, one needs a proper definition of the
sense in which these limits hold. WhileL2 based spaces are natural for these fluid
equations, the natural setting for global solutions of the Boltzmann equation are
rather weightedL1 or L log(L) spaces. These two different types of spaces were
reconciled in the limit of small fluctuations about a background equilibrium in
[3]. Here we do not need the entire theory developed there. We have extracted the
relevant parts below.

Let Gε = 0 be a family of DiPerna-Lions renormalized solutions to the scaled
Boltzmann initial-value problem (2.1) such that the initial dataGin

ε satisfies the
entropy bound

H(Gin
ε ) 5 C inε2m, (3.9)

for some fixedC in > 0. Consider the families of fluctuationsgε andgin
ε defined by

the relations
Gε = 1 + εmgε, Gin

ε = 1 + εmgin
ε . (3.10)

The DiPerna-Lions entropy inequality (3.5) and the entropy bound (3.9) are consis-
tent with this order of fluctuation about the equilibriumG = 1. More specifically,
below it will be shown that these families of fluctuations are of order one.

With this in mind, we choose to work with a DiPerna-Lions normalization in
the form

Nε = N(Gε) = 2
3 + 1

3Gε = 1 + 1
3εmgε, (3.11)

One reason for this choice is that formallyNε → 1 asε tends to zero; thus, the nor-
malizing factor will conveniently disappear from all algebraic expressions consid-
ered in this limit. Another reason lies in simplification of the specifics encountered
during some subsequent estimates. Of course, our main results are independent of
this particular choice of normalization. Given this choice, the normalized Boltz-
mann equation (3.1) becomes

∂tγε + v ·∇xγε = 1

ε

Q(Gε, Gε)

Nε

, (3.12)

where we have introducedγε by

γε = 1

εm
0(Gε) = 3

εm
log

(
1 + 1

3εmgε

)
. (3.13)

Becauseγε formally behaves likegε for small ε, it should be thought of as the
normalized form of the fluctuationsgε.
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The first objective is to characterize properties of the limit of the fluctuations
gε. The a priori estimates needed are found in the combination of the entropy
inequality (3.5) and the entropy bound (3.9) assumed for the initial data:

H(Gε(t)) + 1

ε

∫ t

0
R(Gε) ds 5 H(Gin

ε ) 5 C inε2m. (3.14)

As can be seen from (2.20) and the comment thereafter, the terms involving the
entropyH measure the proximity ofGε andGin

ε to the absolute equilibrium value
of 1.

As in [3], the relative entropy can be recast as

H(Gε) =
∫

TD

〈h(εmgε)〉 dx, (3.15)

where the integrand is written in terms of the convex function

h(z) = (1 + z) log(1 + z) − z. (3.16)

Becauseh(z) ∼ 1
2z2 asz → 0, one easily sees thatH(Gε) asymptotically behaves

almost like anL2 norm ofgε asε tends to zero. This observation lies behind the
following proposition, which follows from Propositions 3.1, 3.4, and 3.8 of [3] and
is set in the notation therein.

Proposition 3.2 (Controlling Fluctuations Lemma). Let Gε = 0 be a family in
C([0, ∞); w-L1(Mdv dx)) that satisfies the entropy inequality and the bound
(3.14) with Gin

ε = Gε(0). Letgε andgin
ε be the corresponding fluctuations(3.10).

Then

(a) The family{(1+|v|2) gε}ε>0 is bounded inL∞(dt; L1(Mdv dx)) and relatively
compact inw-L1

loc(dt; w-L1(Mdv dx)).
(b) For eacht = 0 the family{(1 + |v|2) gε(t)}ε>0 is relatively compact inw-L1

(Mdv dx).
(c) If g is a w-L1

loc(dt; w-L1(Mdv dx)) limit point of the family{gε}ε>0 as
ε → 0 theng ∈ L∞(dt; L2(Mdv dx)) and for almost everyt = 0 satisfies the
inequality∫

TD

1
2〈g2(t)〉 dx 5 lim inf

ε→0

∫ 〈 1

ε2m
h(εmgε(t))

〉
dx

5 lim inf
ε→0

∫ 〈 1

ε2m
h(εmgin

ε )
〉
dx 5 C in.

(3.17)

(d) Moreover,g has the form of an infinitesimal Maxwellian

g = ρ + u·v + θ(1
2|v|2 − D

2 ), (3.18)

where(ρ, u, θ) ∈ L∞(dt; L2(dx; R× RD × R)) and for almost everyt = 0
satisfies∫

TD

〈g2(t)〉 dx =
∫

TD

(
ρ(t)2 + |u(t)|2 + D

2 θ(t)2) dx. (3.19)
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Statement (a) is Proposition 3.1 (1) of [3]. Statement (b) is proved essentially the
same way. Statement (c) follows from Proposition 3.4 (2) of [3] – more specifically,
from the inequality (3.31) there. Finally, statement (d) is Proposition 3.8 of [3],
which makes full use of the bound on the dissipation term in (3.14).

The above proposition does not take into account the fact that thegε will even-
tually represent fluctuations of the number density in the Boltzmann equation;
only the entropy and entropy dissipation bounds (3.14) provide the needed weak
compactness.

Proposition 3.2 shows how theL2 setting for the macroscopic variables arises
from the limiting form of the entropy inequality (3.14) applied to fluctuations of
the number density. The notion of “entropic convergence” introduced in [3] and
recalled below will strengthen this view by using the entropy inequality not only
to produce bounds on, but also to measure the distance from the asymptotic state.

Definition 1. Let Gε = 0 be a family inL1(Mdv dx)) and letgε be the corre-
sponding fluctuations as in (3.10). The familygε is said toconverge entropically at
order εm to g ∈ L2(Mdv dx) if and only if

gε → g in w-L1(Mdv dx), and lim
ε→0

∫
TD

〈 1

ε2m
h(εmgε)

〉
dx =

∫
TD

1
2〈g2〉 dx.

(3.20)

It was shown in Proposition 4.11 of [3] that entropic convergence is stronger
than norm convergence inL1((1+ |v|2)Mdv dx)). This notion immediately leads
to the following sharpening of inequality (3.17) in Proposition 3.2.

Proposition 3.3 (Dissipation Inequality Corollary). Let Gε = 0 be a family in
C([0, ∞); w-L1(Mdv dx)) that satisfies the entropy inequality and bound(3.14),
whereGin

ε = Gε(0) has fluctuationsgin
ε that converge entropically at orderεm as

ε → 0 to somegin ∈ L2(Mdv dx). Letgε be the corresponding fluctuations(3.10)
andg be a weak limit. Then, for almost everyt = 0,

∫
TD

1
2〈g2(t)〉 dx 5 lim inf

ε→0

∫ 〈 1

ε2m
h(εmgin

ε )
〉
dx =

∫
TD

1
2〈gin 2〉 dx. (3.21)

In particular, if gin is an infinitesimal Maxwellian of the form

gin = ρ in + uin ·v + θ in
(

1
2|v|2 − D

2

)
, (3.22)

where(ρ in, uin, θ in) ∈ L2(dx; R× RD× R), then
∫

TD

〈gin 2〉 dx =
∫

TD

(
ρ in 2 + |uin|2 + D

2 θ in 2) dx,

and for almost everyt = 0,
∫

TD

(
ρ(t)2 + |u(t)|2 + D

2 θ(t)2) dx 5
∫

TD

(
ρ in 2 + |uin|2 + D

2 θ in 2) dx. (3.23)
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Remark. It is clear from (3.20) that the assumption that the initial fluctuationsgin
ε

converge entropically at orderεm asε → 0 to somegin that is inL2(Mdv dx)

implies that those fluctuations satisfy the entropy bound (3.9).

The significance of Proposition 3.3 becomes more apparent upon noticing that
for every m > 0 and everygin ∈ L2(Mdv dx) there are familiesGin

ε in the
entropy classE(Mdv dx) with fluctuationsgin

ε that converge entropically at order
εm asε → 0 to gin. For example, it was pointed out in [19] that one can take
gin

ε = max{gin, −ε−m}.
One can say more whengin is an infinitesimal Maxwellian (3.22).

Proposition 3.4 (Realizability of the Initial Data Lemma). Let m > 0 and let
(ρ in, uin, θ in) ∈ L2(dx; R× RD× R) satisfy the normalizations∫

TD

ρ in dx = 0,

∫
TD

uin dx = 0,

∫
TD

θ in dx = 0. (3.24)

Then there exists a family of local MaxwelliansGin
ε that satisfy the normalizations∫

TD

〈Gin
ε 〉 dx = 1,

∫
TD

〈v Gin
ε 〉 dx = 0,

∫
TD

〈1
2|v|2Gin

ε 〉 dx = D
2 , (3.25)

and whose fluctuations,gin
ε = ε−m(Gin

ε − 1), converge entropically at orderεm as
ε → 0 to the infinitesimal Maxwelliangin given by(3.22).

Proof. Let (ρ in, uin, θ in) ∈ L2(dx; R× RD× R) satisfy (3.24). Letj ∈ C∞
c (RD)

be a mollifying function:

j = 0, supp(j) ⊂ B 1
2
(0),

∫
RD

j (x) dx = 1.

For everyε ∈ (0, 1] definejε ∈ C∞(TD) by

jε(x) = 1

εm

∑
z∈ZD

j

(
x + z

εm/D

)
.

The assumption on the support ofj guarantees that the supports of the various
terms in the above sum never overlap for 0< ε 5 1. Thenjε is a mollifying family
overTD. Define

ρ in
ε = jε ∗ ρ in,

where the symbol “∗” designates the convolution overTD. The Cauchy-Schwarz
inequality gives

‖ρ in
ε ‖L∞ 5 ‖jε‖L2‖ρ in‖L2 = 1

εm/2‖j1‖L2‖ρ in‖L2,

whereby it is clear that for allε ∈ (0, 1] sufficiently small one has 1+ εmρ in
ε > 1

2.
For all suchε define

uin
ε = jε ∗ uin

1 + εmρ in
ε

, θ in
ε = jε ∗ θ in

1 + εmρ in
ε

− εm 1
D

|uin
ε |2.
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Several more applications of the Cauchy-Schwarz inequality give

‖uin
ε ‖L∞ 5 2‖jε‖L2‖uin‖L2 = 2

εm/2‖j1‖L2‖uin‖L2,

‖θ in
ε ‖L∞ 5 2‖jε‖L2‖θ in‖L2 + εm 1

D
‖uin

ε ‖2
L∞

5 2

εm/2‖j1‖L2‖θ in‖L2 + 4

D
‖j1‖2

L2‖uin‖2
L20.

It is therefore clear that for allε ∈ (0, 1] sufficiently small one has 1+ εmθ in
ε > 1

2.
Now for all suchε define

Gin
ε = M(1+εmρ in

ε ,εmuin
ε ,1+εmθ in

ε )/M.

Direct calculations show that this satisfies the normalizations (3.25). One can also
easily check that the associated fluctuations converge entropically at orderεm as
ε → 0 to the infinitesimal Maxwellian (3.22).ut

4. Establishing the Acoustic Limit

4.1. Mathematical Statement of the Acoustic Limit

In the previous section we introduced all the notions contained in the mathe-
matical statement of the otherwise formal Proposition 2.1. The proof of Proposi-
tion 2.1 itself suggests that all that remains to be done is to pass to the limit in
the local conservation laws (2.27). Unfortunately, these local conservation laws are
not guaranteed by the DiPerna-Lions theory of renormalized solutions. In order to
circumvent that difficulty, we will rely on the two following technical assumptions:

(A1) m > 1;

(A2) b ∈ L∞(dω M1dv1).

Assumption (A2) is satisfied by the Boltzmann kernels corresponding to either
Maxwell molecules or soft cutoff potentials (see [12], Chapter II.4-5 and II.9 for
a thorough discussion of these matters). While the relations (2.10) may not be
satisfied by the renormalized solutions of the Boltzmann equation (2.1), the defects
are proved to vanish in the limit asε → 0 thanks to the assumptions above.

Thus, consider a family{Gin
ε } of nonnegative measurable functions in the en-

tropy classE(Mdv dx) that satisfies the bounds

Gin
ε = 0, H(Gin

ε ) = O(ε2m), (4.1)

as well as the normalizations∫
TD

〈Gin
ε 〉 dx = 1,

∫
TD

〈v Gin
ε 〉 dx = 0,

∫
TD

〈|v|2Gin
ε 〉 dx = D. (4.2)
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For eachε > 0, letGε be a renormalized solution of the scaled Boltzmann equation
(2.1) with initial dataGin

ε . Consider the fluctuations ofGε around 1 at the scaleεm,
i.e.

gε = 1

εm
(Gε − 1), gin

ε = 1

εm
(Gin

ε − 1). (4.3)

The first main result in this paper shows that the acoustic equations (1.9) describe
all possible limit points of the familyGε asε → 0 under the sole assumption (4.1),
(4.2).

Proposition 4.1 (Weak Acoustic Limit Theorem). Assume(A1) and(A2). LetGin
ε

be any family in the entropy classE(Mdv dx) satisfying the bounds(4.1) as well
as the normalizations(4.2). LetGε be any family of DiPerna-Lions renormalized
solutions of the Boltzmann equation(2.1) that haveGin

ε as initial values. Then the
family of fluctuationsgε is relatively compact inw-L1

loc(dt; L1((1+|v|2)M dv dx))

while the associated family of moments

(〈gε〉, 〈v gε〉, 〈( 1
D

|v|2 − 1) gε〉)
is relatively compact inC([0, ∞); w-L1(dx; R× RD × R)). Any limit pointg of
the familygε asε → 0 is an infinitesimal Maxwellian of the form

g = ρ + u·v + θ(1
2|v|2 − D

2 ), (4.4)

where(ρ, u, θ) is the solution of the acoustic equations(1.9) with initial data

(ρ in, uin, θ in) = lim
εn→0

(〈gin
εn

〉, 〈v gin
εn

〉, 〈( 1
D

|v|2 − 1)gin
εn

〉) (4.5)

for every sequenceεn such thatgεn → g in w-L1
loc(dt; L1((1 + |v|2)Mdvdx))

while εn → 0.

The second main result is an amplification of Proposition 4.1 when the initial
fluctuations are known to converge entropically to some infinitesimal Maxwellian;
it shows that any physically natural solution of the acoustic equations (1.9) is indeed
a strong hydrodynamic limit of renormalized solutions of the Boltzmann equation
(2.1).

Proposition 4.2 (Strong Acoustic Limit Theorem). Assume(A1) and (A2). Let
(ρ in, uin, θ in) ∈ L2(dx; R× RD× R) satisfy the normalizations∫

TD

ρ in dx = 0,

∫
TD

uin dx = 0,

∫
TD

θ in dx = 0. (4.6)

LetGin
ε be any family in the entropy classE(Mdv dx) whose fluctuationsgin

ε satisfy
the normalizations(4.2) and converge entropically at orderεm as ε → 0 to the
infinitesimal Maxwellian

gin = ρ in + uin ·v + θ in(1
2|v|2 − D

2 ). (4.7)

Let Gε be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(2.1) that haveGin

ε as initial values. Then, asε → 0, the family of
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fluctuationsgε converges entropically at orderεm for everyt = 0and inw-L1
loc(dt;

L1((1 + |v|2)Mdvdx)) to an infinitesimal Maxwelliang of the form(4.4) where
(ρ, u, θ) ∈ C([0, ∞); L2(dx; R×RD×R)) is the solution of the acoustic equations
(1.9) with initial data (ρ in, uin, θ in). Moreover,

(〈gε〉, 〈v gε〉, 〈( 1
D

|v|2 − 1)gε〉) → (ρ, u, θ)

in C([0, ∞); w-L1(dx; R× RD× R)).

The normalizations (4.2) on the initial data for the Boltzmann equation and
the assumed entropic convergence of their initial fluctuations around 1 entail the
normalizations (4.6) of the initial data for the acoustic equations. Conversely, Propo-
sition 3.4 shows that allL2 initial data of the acoustic equations satisfying (4.6)
are indeed entropic limits of initial fluctuations for the Boltzmann equation in the
manner described in Proposition 4.2.

This discussion shows that, at variance with the classical methods based on
either the Hilbert or Chapman-Enskog expansion, the strategy proposed in this
paper adressesall physically natural initial data for the Boltzmann equation as well
as for its hydrodynamic limit, here the system of acoustics.

Assuming Proposition 4.1, the proof of Proposition 4.2 is given below; it is a
direct consequence of the weak compactness of fluctuations stated in Proposition
4.1, with additional arguments provided by Propositions 3.2, 3.3, and 3.4.

Proof of Proposition 4.2.Let (ρ in, uin, θ in) be an initial data for the acoustic equa-
tions inL2(dx; R× RD× R), satisfying the normalizations (4.6). By Proposition
3.4, there indeed exists familiesGin

ε in the entropy classE(M dv dx) whose fluctu-
ations satisfy the normalizations (4.2) and converge entropically at orderεm to the
infinitesimal Maxwellian (4.7) asε → 0. Consider therefore such familiesGin

ε of
initial data for the Boltzmann equation (2.1). Because the family of initial fluctua-
tionsgin

ε → gin in w-L1(M dv dx) asε → 0, it follows from Proposition 4.1 that
the familygε is relatively compact inw-L1

loc(dt; w-L1((1 + |v|2)M dv dx)) and
that any of its limit points asε → 0 is of the form (4.4) with(ρ, u, θ) the unique so-
lution of the system of acoustics (1.9) with initial data(ρ in, uin, θ in). Thusgε → g

given by (4.4) inw-L1
loc(dt; w-L1((1 + |v|2)M dv dx)) asε → 0, by compact-

ness and uniqueness of the limit point. By Proposition 3.2 (c), Proposition 3.3, and
(3.19), one has

1
2

∫
TD

(
ρ(t)2 + |u(t)|2 + D

2 θ(t)2) dx = 1
2

∫
TD

〈g(t)2〉 dx

5 lim inf
ε→0

∫
TD

〈 1

ε2m
h(εmgε(t))〉 dx

5 lim sup
ε→0

∫
TD

〈 1

ε2m
h(εmgε(t))〉 dx

5 1
2

∫
TD

〈gin 2〉 dx

= 1
2

∫
TD

(
ρ in 2 + |uin|2 + D

2 θ in 2) dx.
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The quantity on the left-hand side of the chain of inequalities above is invariant
under the evolution of the system of acoustics. Therefore all inequalities above are
in fact equalities, which in turn implies that the convergencegε → g is entropic of
orderεm for all t = 0. The proof is complete. ut

The proof of Proposition 4.1 occupies the remaining part of Section 4. Its main
step consists in establishing the limiting conservation laws (2.27); this is done in
Section 4.4 (see Proposition 4.7 below). The proof of Proposition 4.7 itself depends
upon controlling the collision integrals so as to dispose of the defects in the relations
(2.10). These controls are provided in Section 4.3 (see Propositions 4.5 and 4.6
below) and depend themselves upon a decomposition of fluctuations, the flat-sharp
decomposition, introduced in [3] and recalled in Section 4.2 below.

4.2. The Flat-Sharp Decomposition of Fluctuations

As stated in Proposition 3.2, the limiting fluctuations are estimated inL∞(dt ;
L2(Mdv dx)) by the entropy inequality. However, the fluctuations are not known
to be bounded inL∞(dt; L2(Mdv dx)) before the limit asε → 0 is taken. The
absence of such a bound was addressed in [3] (section 3) by the introduction of the
following decomposition for the normalizationNε = 1 + 1

3εmgε:

gε = [gε + εm ]gε,
[gε = gε

Nε

, ]gε = g2
ε

3Nε

. (4.8)

The second term in the decomposition (4.8) is precisely the obstruction to proving
such a uniform bound. Notice that this term is nonnegative: this observation will
be crucial in what follows. Thus[gε is aL∞(dt; L2(Mdv dx)) substitute forgε;
another natural one is the quantity naturally involved in the renormalized form of
the Boltzmann equation

γε = 3

εm
log(1 + 1

3εmgε). (4.9)

The various properties of this decomposition are recalled in

Proposition 4.3 (The Flat-Sharp Decomposition Lemma). Assume that the family
of initial dataGin

ε satisfies the bounds(4.1) and the normalizations(4.2). Then the
flat-sharp decomposition(4.8) of the fluctuationsgε has the following properties:

(a) the family [gε is bounded inL∞(dt; L2(Mdv dx));
(b) the family ]gε is bounded inL∞(dt; L1(Mdv dx)) and, for anyα > 0, the

family εα|v|2 ]gε converges to0 in L∞(dt; L1(Mdv dx));
(c) the familyγε is bounded inL∞(dt; L2(Mdv dx));
(d) (1 + |v|2)|gε − γε| → 0 in L∞(dt; L1(Mdv dx)) asε → 0;
(e) for any sequenceεn → 0 such that

gεn → g in w-L1
loc(dt; w-L1((1 + |v|2)Mdv dx))

the corresponding subsequences

[gεn andγεn both converge tog in w-L1
loc(dt; w-L2(Mdv dx)).
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Statements (a), (c), (d) and the first half of statement (b) follow from Corollary
3.2 of [3]. Statement (e) is a straightforward consequence of statements (b) and (d).
As for the second half of statement (b), it is a direct application of Proposition 3.2
in [3].

4.3. Controls of the Collision Integral

In this section are gathered some crucial preparations for the proofs of Proposi-
tions 4.1 and 4.2. As recalled in Section 3.1, the local conservation laws of momen-
tum and energy do not hold for renormalized solutions of the Boltzmann equation.
This destroys the argument given in the “formal proof” of Section 2.

One can however circumvent this difficulty by considering moments of the
Boltzmann equation in renormalized form; the resulting equations are no longer
conservation laws because renormalization and velocity averaging are not commut-
ing operations. Specifically, we find

∂t 〈χγε〉 + ∇x ·〈vχγε〉 = 1

ε

〈 (
1 − 1

Nε

)
χLgε

〉
+ εm−1

〈
χ

Q(gε, gε)

Nε

〉
(4.10)

whenχ ≡ χ(v) is one of the collision invariants 1,v1, . . . ,vD and|v|2 or a linear
combination thereof with constant coefficients.

The purpose of the present subsection is to study the limit asε → 0 of the
right-hand side of (4.10).

First, both terms on the right-hand side of (4.10) can be recast in a way that
clearly indicates that they are of the same nature. Indeed, the obvious formula

1 − 1

Nε

= 1

3
εm gε

Nε

shows that

1

ε

〈 (
1 − 1

Nε

)
χLgε

〉
= 1

3
εm−1

〈〈
χ

gε(gε + gε1 − g′
ε − g′

ε1)

Nε

〉〉
, (4.11)

while

εm−1
〈
χ

Q(gε, gε)

Nε

〉
= εm−1

〈〈
χ

g′
εg

′
ε1 − gεgε1

Nε

〉〉
. (4.12)

The next Proposition shows that the first term in the right-hand side of (4.10)
converges to 0 asε → 0.

Proposition 4.4.Assume(A1) and(A2). Setχ(v) = 1+|v|2
1+D

. Assume that the family

of initial dataGin
ε satisfies the bound(4.1) and the normalizations(4.2). Then

(a) asε → 0, the family

εm−1
〈〈

χ
g2

ε

Nε

〉〉
→ 0 in L∞(R+; L1(TD));
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(b) asε → 0, the family

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
→ 0 in L∞(R+; L1(TD));

(c) asε → 0, the families

εm−1
〈〈

χ
|gε||g′

ε|
Nε

〉〉
and εm−1

〈〈
χ

|gε||g′
ε1|

Nε

〉〉

both converge to0 in L∞(R+; L1(TD)).

Proof. By assumption (A2)

εm−1
〈〈

χ
g2

ε

Nε

〉〉
5 ‖b‖L∞εm−1

〈
χ

g2
ε

Nε

〉
= ‖b‖L∞εm−1〈χ ]gε〉

so that statement (a) follows from Proposition 4.3(b).
Assumption (A2) again implies that

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
5 εm−1(1 + D)

〈〈
χχ1

|gε||gε1|
Nε

〉〉

5 (1 + D)‖b‖L∞εm−1
〈
χ

|gε|
Nε

〉
〈χ |gε|〉

(4.13)

Now consider the new normalizationNε = 1 + 1
3εm|gε|. BecauseGε = 0 a.e.,

the first normalization is bounded below:Nε = 2
3 + 1

3Gε = 2
3. Besides,Nε and

Nε coincide wherevergε = 0 while, at points wheregε < 0, one hasεm|gε| 5 1
becauseGε = 0. Thus, at points wheregε < 0, Nε 5 4

3, so thatNε = 2
3 = 1

2Nε.
Putting all this together leads to the following inequalities which hold independently
of the sign ofgε:

1
2Nε 5 Nε 5 Nε. (4.14)

Thus, by (4.13),

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
5 2(1 + D)‖b‖L∞εm−1

〈
χ

|gε|
Nε

〉
〈χ |gε|〉. (4.15)

Observe thatχMdv is a probability measure onRD. Further, the mapz 7→
z/(1 + 1

3z) is concave. The Jensen inequality then implies that

〈
χ

εm|gε|
Nε

〉
5 εm〈χ |gε|〉

1 + 1
3εm〈χ |gε|〉

which, when used in (4.15) leads to

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
5 2(1 + D)‖b‖L∞εm−1 〈χ |gε|〉2

1 + 1
3εm〈χ |gε|〉

. (4.16)
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Next observe that the mapz 7→ z2/(1 + 1
3z) is convex. A further application of the

Jensen inequality shows that

ε2m〈χ |gε|〉2

1 + 1
3εm〈χ |gε|〉

5
〈
χ

ε2m|gε|2
1 + 1

3εm|gε|
〉
,

which, when substituted in (4.16), gives

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
5 2(1 + D)‖b‖L∞εm−1

〈
χ

|gε|2
1 + 1

3εm|gε|
〉
. (4.17)

Finally, the second inequality in (4.14) yields

εm−1
〈〈

χ
|gε||gε1|

Nε

〉〉
5 2(1 + D)‖b‖L∞εm−1〈χ ]gε〉. (4.18)

Statement (b) then follows from Proposition 4.3 (b).
It remains to prove statement (c). By inequality (4.14),

εm−1
〈〈

χ
|gε||g′

ε|
Nε

〉〉
5 2εm−1

〈〈
χ

|gε||g′
ε|

Nε

〉〉
. (4.19)

At this point, we need to recall the geometry of collisions. According to (1.3)

v′ = v − (v − v1) · ωω.

This suggests the decomposition of bothv andv′ in the direct orthogonal sum
RD = Rω ⊕ (Rω)⊥:

v = v‖ + v⊥, v′ = v
‖
1 + v⊥. (4.20)

Because the decomposition (4.20) is orthogonal, it is easy to check the relations

M(v)dv = M(v‖)dv‖ ⊗ M(v⊥)dv⊥, M(v1)dv1 = M(v
‖
1)dv

‖
1 ⊗ M(v⊥

1 )dv⊥
1 .

For simplicity, we denote below the centered, reduced Gaussian volume element
in the Euclidian space by the single symboldG, without mention of the space
dimension.

Of course, these decompositions depend onω; however, for notational conve-
nience, we shall refrain from indicating theω dependence inv‖, v

‖
1 andv⊥. The

integral on the right-hand side of (4.19) can thus be estimated by

εm−1
〈〈

χ
|gε||g′

ε|
Nε

〉〉
5 2εm−1‖b‖L∞ ×

∫∫∫
dGv⊥dGv⊥

1 dω

·
∫∫

χ(v‖ + v⊥)
|gε|
Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)dGv‖dGv

‖
1. (4.21)
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Let us first estimate the inner integral on the right-hand side of (4.21):∫∫
χ(v‖ + v⊥)

|gε|
Nε

(v|| + v⊥)|gε|(v||
1 + v⊥)dGv‖dGv

‖
1

5 1

1 + D
(1 + |v⊥|2)

∫∫ |gε|
Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)dGv‖dGv

‖
1

+ 2

1 + D

∫∫ |gε|
Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)1

2(1 + |v‖|2)dGv‖dGv
‖
1.

(4.22)

Using the Jensen inequality as in the proof of statement (b) (see (4.17) in particular),
we obtain∫∫ |gε|

Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)dGv‖dGv

‖
1 5

∫ |gε|2
Nε

(v‖ + v⊥)dGv‖,

while∫∫ |gε|
Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)1

2(1 + |v‖|2)dGv‖dGv
‖
1

5 2
∫ |gε|2

Nε

(v‖ + v⊥)1
2(1 + |v‖|2)dGv‖.

Using these last two inequalities in (4.22) shows that∫∫
χ(v‖ + v⊥)

|gε|
Nε

(v‖ + v⊥)|gε|(v‖
1 + v⊥)dGv‖dGv

‖
1

5 1 + |v⊥|2
1 + D

∫ |gε|2
Nε

(v‖+v⊥)dGv‖+ 4

1 + D

∫ |gε|2
Nε

(v‖+v⊥)1
2(1+|v‖|2)dGv‖.

(4.23)
It suffices then to estimate the inner integral in (4.21) as done in (4.23) to arrive at

εm−1
〈〈

χ
|gε||g′

ε|
Nε

〉〉
5 6‖b‖L∞εm−1

〈
χ

|gε|2
Nε

〉
. (4.24)

By a similar method, one can prove that

εm−1
〈〈

χ
|gε||g′

ε1|
Nε

〉〉
5 6‖b‖L∞εm−1

〈
χ

|gε|2
Nε

〉
. (4.25)

Statement (c) follows then from (4.24), (4.25) and Proposition 4.3 (b). This con-
cludes the proof of Proposition 4.4.ut

The next Proposition summarizes the conclusions of Proposition 4.4 in the form
that they are actually used below.

Proposition 4.5.Assume that the family of initial dataGin
ε satisfies the bound(4.1)

and the normalizations(4.2). Then whenχ ≡ χ(v) is one of the collision invariants
1, v1, . . . ,vD, |v|2 or a linear combination thereof with constant coefficients,

1

ε

〈 (
1 − 1

Nε

)
χLgε

〉
and εm−1

〈
χ

Q−(gε, gε)

Nε

〉

both converge to0 asε → 0 in L∞(dt; L1(dx)).
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It remains to control the gain part of the collision integral (4.12). Instead of
proving directly that

εm−1
〈
χ

Q+(gε, gε)

Nε

〉
→ 0

asε → 0 in L∞(dt; L1(dx)), we use the flat-sharp decomposition ofgε in the
gain term above and show in Proposition 4.6 below that all the resulting quadratic
expressions vanish in the limit asε → 0, except for the one involving only sharp
terms, namely

ε3m−1
〈
χ

Q+( ]gε,
]gε)

Nε

〉
.

However, this term happens to be nonnegative, a property which we use in Propo-
sition 4.8 below to prove eventually that it also vanishes in the limit asε → 0.

Proposition 4.6.Assume that the family of initial dataGin
ε satisfies the bound(4.1)

and the normalizations(4.2). Then whenχ ≡ χ(v) is one of the collision invariants
1, v1, . . . ,vD, |v|2 or a linear combination thereof with constant coefficients,

εm−1
〈
χ

Q+(gε, gε)

Nε

〉
− ε3m−1

〈
χ

Q+( ]gε,
]gε)

Nε

〉
→ 0 in L∞(dt; L1(dx)).

(4.26)

Proof. First, one has

εm−1
〈
χ

Q+(gε, gε)

Nε

〉
− εm−1

〈
χ

Q+(εm ]gε, ε
m ]gε)

Nε

〉

= εm−1
〈〈

χ
[g′

ε
[g′

ε 1

Nε

〉〉
+ εm−1

〈〈
χ

εm ]g′
ε

[g′
ε 1

Nε

〉〉
+ εm−1

〈〈
χ

εm [g′
ε

]g′
ε 1

Nε

〉〉
(4.27)

Then, in the case whereχ(v) = 1 + |v|2, using the fact thatNε = 2
3 + 1

3Gε = 2
3,

one has 〈〈
χ

| [g′
ε|| [g′

ε 1|
Nε

〉〉
5 3

2

〈〈
(1 + |v|2 + |v1|2)| [g′

ε|| [g′
ε 1|

〉〉

= 3
2

〈〈
(1 + |v|2 + |v1|2)| [gε|| [gε 1|

〉〉
5 3

2‖b‖L∞〈χ | [gε|〉2

5 3
2‖b‖L∞(D2 + 4D + 1)〈| [gε|2〉.

Thus, asε → 0

∣∣∣∣∣εm−1
〈〈

χ
[g′

ε
[g′

ε 1

Nε

〉〉∣∣∣∣∣ 5 3
2‖b‖L∞(D2 + 4D + 1)εm−1〈| [gε|2〉 → 0 (4.28)

in L∞(dt; L1(dx)) by Proposition 4.3 (a).
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By the same token

〈〈
χ

εm| ]g′
ε|| [g′

ε 1|
Nε

〉〉
5 3

2

〈〈
(1 + |v|2 + |v1|2)εm| ]g′

ε|| [g′
ε 1|

〉〉

= 3
2

〈〈
(1 + |v|2 + |v1|2)εm| ]gε|| [gε 1|

〉〉
5 9

2

〈〈
(1 + |v|2 + |v1|2)| ]gε|

〉〉
5 9

2‖b‖L∞(1 + D)〈χ | ]gε|〉,
where the penultimate inequality above rests on the estimate|εm [gε| 5 3 inherited
from the bounds

−3
2 5 z

1 + 1
3z

5 3, z > −1.

Therefore, asε → 0∣∣∣∣∣εm−1
〈〈

χ
εm ]g′

ε
[g′

ε 1

Nε

〉〉∣∣∣∣∣ 5 9
2‖b‖L∞(1 + D)εm−1〈χ | ]gε|〉 → 0 (4.29)

in L∞(dt; L1(dx)) by Proposition 4.3 (b).
Estimates (4.28), (4.29) show that the first two terms on the right-hand side of

(4.27) converge to 0 inL∞(dt; L1(dx)) asε → 0. The third term on the right-hand
side of (4.27) is accommodated as in (4.29), which completes the proof.ut

4.4. The Limiting Local Conservation Laws

With the preparations contained in Propositions 4.4–4.7, we now state the propo-
sition upon which rest the proofs of Proposition 4.1 and 4.3. This proposition re-
moves the gap in the “formal proof” of the acoustic limit, namely the fact that
renormalized solutions of the Boltzmann equation do not in general satisfy either
the local conservation law of momentum or that of energy.

Proposition 4.7.Assume that the family of initial dataGin
ε satisfies the bound(4.1)

and the normalizations(4.2). Assume further that the family of fluctuationsgε

converges tog in w∗-L∞(dt; w-L1((1 + |v|2)M dv dx)) asε → 0. Then

∂t 〈χg〉 + ∇x ·〈vχg〉 = 0 (4.30)

whenχ = χ(v) is any one of the collision invariants1, v1, . . . , |v|2 or a linear
combination thereof with constant coefficients.

The key argument in the proof of Proposition 4.7 has been isolated in Proposition
4.8 below.

Proposition 4.8.Assume that the family of initial dataGin
ε satisfies the bound(4.1)

and the normalizations(4.2). Then, asε → 0,

ε3m−1Q+( ]gε,
]gε)

Nε

→ 0 in L1
loc(R+; L1((1 + |v|2)Mdvdx)). (4.31)
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Although we have not been able to control the term appearing in (4.31) in the
same fashion as in Section 4.4, it so happens that this term is nonnegative and would
contribute an unphysical growth of energy were it not vanishingly small in the limit
asε → 0.

Proof of Proposition 4.8.Choose anyT > 0 and setχ(v) = 1 + |v|2 in (4.10).
Integrating (4.10) over[0, T ] × TD and reshuffling the terms leads to

∫ T

0

∫ 〈
χ

ε3m−1Q+( ]gε,
]gε)

Nε

〉
dx dt

= εm−1
∫ T

0

∫ 〈
χ

Q−(gε, gε)

Nε

〉
dx dt − 1

ε

∫ T

0

∫ 〈 (
1 − 1

Nε

)
χLgε

〉
dx dt

−
∫ T

0

∫ [
εm−1

〈
χ

Q+(gε, gε)

Nε

〉
− εm−1

〈
χ

Q+(εm ]gε, ε
m ]gε)

Nε

〉]
dx dt

+
[∫

〈χγε(T )〉 dx −
∫

〈χγε(0)〉 dx

]
. (4.32)

On the right-hand side of (4.32), the first two integrals converge to 0 asε → 0 by
Proposition 4.5 while the third integral converges to 0 by Proposition 4.6. The last
term between brackets on the right-hand side of (4.32) can be recast as

∫
〈χγε(T )〉 dx −

∫
〈χγε(0)〉 dx

=
∫

〈χ [γε(T ) − gε(T )]〉 dx −
∫

〈χ [γε(0) − gin
ε ]〉 dx

+ 1

εm

[∫
〈χGε(T )〉 dx −

∫
〈χGε(0)〉 dx

]
. (4.33)

On the right-hand side of (4.33), the two first integrals converge to 0 asε → 0 by
Proposition 4.3 (d), while the term between brackets is nonpositive by the energy
inequality (3.8). Therefore

lim sup
ε→0

∫ T

0

∫ 〈
χ

ε3m−1Q+( ]gε,
]gε)

Nε

〉
dx dt

= lim sup
ε→0

1

εm

[∫
〈χGε(T )〉 dx −

∫
〈χGε(0)〉 dx

]
5 0.

(4.34)

But the integrand on the left-hand side of (4.34) is nonnegative, because the collision
cross-section entering the definition ofQ+ is nonnegative (1.6) while the functions
]gε in the decomposition (4.8) also are nonnegative. Therefore the inequality (4.34)
implies the convergence (4.31).ut

With this last preparation, the proof of Proposition 4.7 is a mere formality.
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Proof of Proposition 4.7.Write (4.10) in the form

∂t 〈χγε〉 + ∇x ·〈vχγε〉 = 1

ε

〈 (
1 − 1

Nε

)
χLgε

〉
− εm−1

〈
χ

Q−(gε, gε)

Nε

〉

+
[
εm−1

〈
χ

Q+(gε, gε)

Nε

〉
−ε3m−1

〈
χ

Q+( ]gε,
]gε)

Nε

〉]
+

〈
χ

ε3m−1Q+( ]gε,
]gε)

Nε

〉
,

(4.35)

whereχ ≡ χ(v) is any one of the collision invariants 1,v1, . . . ,vD or |v|2. The
left-hand side of (4.35) converges to

∂t 〈χg〉 + ∇x ·〈vχg〉 (4.36)

in D(R∗+ × RD) asε → 0 by Proposition 4.3(e). The first two terms on the right-
hand side of (4.35) converge to 0 inL∞(dt; L1(dx)) asε → 0 by Proposition 4.5.
The third term on the right-hand side of (4.35) converges to 0 inL∞(dt; L1(dx))

as ε → 0 by Proposition 4.6. Finally, the last term on the right-hand side of
(4.35) converges to 0 inL1

loc(dt; L1(dx)) asε → 0 by Proposition 4.8. Thus, the
expression (4.36) is 0, which establishes Proposition 4.7.ut

4.5. Proof of Proposition 4.1

It follows from Proposition 3.2 (a) that the familygε is relatively compact in
w-L1

loc(dt; w-L1((1 + |v|2)M dv dx)). Again by Proposition 3.2 (a) and Proposi-
tion 4.3 (d), the family of moments

(〈γε〉, 〈vγε〉, 〈 1
D

(|v|2 − D)γε〉) (4.37)

is bounded inL∞(dt; L1(dx)). The system (4.30) and Proposition 4.3 (c) imply that
the family (4.37) is also bounded inW1,∞([0, ∞); W−1,1(TD)). By Proposition
3.2 (b) and Ascoli’s theorem in the form stated in Appendix C of [20] as Lemma
C.1, the family (4.37) is relatively compact inC([0, ∞); w-L1(dx; R× RD× R)).
This and Proposition 4.3 (d) show that the family of moments

(〈gε〉, 〈vgε〉, 〈 1
D

(|v|2 − D)gε〉) (4.38)

is relatively compact inC([0, ∞); w-L1(dx)). Letg be a limit point ofgε asε → 0
and letεn → 0 define a subsequencegεn → g asn → +∞. By Proposition 4.7,
g must satisfy the system of moment equations (4.30). By Proposition 3.2 (d),g is
a local infinitesimal Maxwellian of the form (4.4). Substituting the form (4.4) into
the local conservation laws (4.30) shows that the parameters(ρ, u, θ) of g must
satisfy the system of acoustics (1.9) – this being the essence of the formal proof of
the acoustic limit in Section 2. Finally, the subsequence

(〈gεn〉, 〈vgεn〉, 〈 1
D

(|v|2 − D)gεn〉) → (ρ, u, θ)

in C([0, ∞); w-L1(dx)). That this convergence is uniform locally int ∈ [0, ∞)

implies in particular that

(〈gin
εn

〉, 〈vgin
εn

〉, 〈 1
D

(|v|2 − D)gin
εn

〉) → (ρ, u, θ)|t=0

in w-L1(dx), which establishes the initial data (4.5).ut
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5. Conclusions

Propositions 4.1 and 4.2 are very likely the optimal formulations of the acoustic
limit of the Boltzmann equation, save for assumptions (A1) and (A2). Both assump-
tions (A1) and (A2) reflect the fact that our results use the entropy inequality (3.14)
to propagate the entropy bound (3.9) to any positive time, thereby neglecting the
bound on the entropy dissipation rateR(Gε) provided by (3.14). We therefore feel
that these assumptions are of a purely technical nature. Indeed, (A1) requires that
m > 1 while the formal derivation (Proposition 2.1) allows for everym > 0.
Likewise, (A2) excludes the natural case of a hard-sphere gas (see [13]) or more
generally that of cutoff potentials harder than that for Maxwell molecules (see
[12, Chapter II.4, 5]). Possibly both (A1) and (A2) could be dispensed with by an
appropriate use of the bound on the entropy dissipation estimate (3.14).
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