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Abstract

The acoustic equations are the linearization of the compressible Euler equations
about a spatially homogeneous fluid state. We first derive them directly from the
Boltzmann equation as the formal limit of moment equations for an appropriately
scaled family of Boltzmann solutions. We then establish this limit for the Boltzmann
equation considered over a periodic spatial domain for bounded collision kernels.
Appropriately scaled families of DiPerna-Lions renormalized solutions are shown
to have fluctuations that converge entropically (and hence strongjhy) to a unique
limit governed by a solution of the acoustic equations for all time, provided that its
initial fluctuations converge entropically to an appropriate limit associated to any
given L? initial data of the acoustic equations. The associated local conservation
laws are recovered in the limit.

1. Introduction

The endeavor to understand how fluid dynamical equations arise from kinetic
theory originates in the founding works MfaxweLL [21] andBoLTzZMANN [10].
While there has been considerable success at the formal level, full mathematical
justifications have proved elusive. Here we establish the so-called acoustic fluid
dynamical limit for the classical Boltzmann equation considered over a periodic
spatial domain for bounded collision kernels. We do so in the physical setting of
DiPerna-Lions renormalized solutions.

1.1. The Boltzmann Equation

The state of a fluid composed of identical point particles confined to a spatial
domainQ c RP is described at the kinetic level by a mass densgitpver the
single-particle phase spa&e x RP. At any instant of timer = 0 and point
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(x,v) € Q x RP, F(t, x, v) dv dx is understood to give the mass of the particles
that occupy the infinitesimal volum#& dx about the pointx, v). To remove com-
plications due to boundaries, we taReto be the periodic boX? = RP/zP. If

the particles interact only through a conservative interparticle force with a finite
range, then at low densities this range will be much smaller than the interparticle
spacing. In that regime all but binary collisions can be neglected and the evolution
of F = F(t, x, v) is governed by the classical Boltzmann equation [13]:

&F+v-VoF =B(F,F),  F(@O,x,v)=F"(x,v) =0. (1.1)

The Boltzmann collision operatd@(F, F) acts only on the argument ofF. It is
formally given by

B(F, F) = // (F{F'— F1F) b(v1 — v, w) dwdvy, 1.2

SD-14RD

wherev; ranges oveR? endowed with its Lebesgue measdrg while o ranges
over the unit spher8”~1 = {w € R? : |w| = 1} endowed with its rotationally
invariant unit measuréw. The F, F1, F' and F; appearing in the integrand are
understood to meaFi(z, x, -) evaluated at the velocitiesvy, v" andv] respectively,
where the primed velocities are defined by

V=v+wo-(v1—), V] =v1 — oo (v1 —v), (1.3)

forany given(w, v1, v) € SP~IxRPx RP. Quadratic operators lik8 are extended
by polarization to be bilinear and symmetric.

The unprimed and primed velocities are possible velocities for a pair of particles
either before and after, or after and before, they interact through an elastic binary
collision. Conservation of momentum and energy for particle pairs during collisions
is expressed as

vhvr=v vl P4 el = P+ gl (1.4)

Equation (1.3) represents the general solution of tlizgel equations for the B
unknownsv, vy, v, andv] in terms of the ® — 1 parametersw, v1, v).

The Boltzmann kerneb is a nonnegative, locally integrable function. The
Galilean invariance of the collisional physics implies thditas the classical form

w-(v1 — v)

b(v1 — v, w) = vy —v| X(Jvr — vl, [1e)), Me = , (@5

lv1 — v
whereX is the specific differential cross-section. It will be assumed that there exists
a constanC < oo that is independent @ such thab satisfies the bounds
0<b(v1—v,w) £C(1+|v1—v®) almosteverywhete  (1.6)

This condition is met by classical Boltzmann kernels with a small deflection cut-off
(see [12, Chapter I1.4, 5]). Additional technical requirement$ orill be imposed
later.
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1.2. Fluid Dynamical Approximations

Fluid dynamical regimes are those where the mean free path is small compared
to the macroscopic length scales. Formal derivations of the compressible Euler
equations are rather direct. Formal derivations of other fluid dynamical equations,
such as the compressible Navier-Stokes equations, are more subtle. Early deriva-
tions of the Navier-Stokes equations rested on arguments as to how the various
terms in a kinetic equation balance each other. These balance arguments seemed
arbitrary to some, sHILBERT [18] proposed that such derivations should be based
on a systematic asymptotic expansion. This expansion takes the form of a power
series in a nondimensional parameteg 1, now called the Knudsen number, that
is a ratio of the mean free path to the macroscopic length scales. With the Knudsen
number introduced [3], the initial-value problem for the Boltzmann equation (1.1)
takes the nondimensional form

1 .
& F +v-ViF = =B(F, F), F(,x,v) = F™"(x,v) = 0. 1.7
&

A bit later Enskoc [16] proposed a somewhat different asymptotic expansion, now
called the Chapman-Enskog expansion, in the same small paramEitdrer the
Hilbert or the Chapman-Enskog expansion yields at successive orders: the com-
pressible Euler equations, the compressible Navier-Stokes equations, the Burnett
equations, and the so-called super-Burnett equations (see [17]).

Justification of these formal approximations has proved difficult in part because
many basic well-posedness and regularity questions remain open for both these fluid
equations and the Boltzmann equation. The problem is exacerbated by the fact that
to bound the error of the asymptotic expansions requires the control of successively
higher order spatial derivatives of the fluid variables, thereby requiring unphysical
restrictions to a meager subset of all physically natural initial data and possibly to
finite periods of time. For example, the compressible Euler equations have been
derived from the Boltzmann equation BrLiscH [11] using a method based on
the Hilbert expansion; this derivation holds for smooth initial data and for as long as
the limiting solution of the compressible Euler system is smooth. Because solutions
of the compressible Euler equations are known to become singular in finite time
for a very general class of initial data (see [22]), Caflisch’s result [11] is about the
best one can hope for by appealing to the Hilbert expansion.

Two approaches to circumventing these difficulties have emerged recently. First,
some authors have studied direct derivations of incompressible Stokes, Navier-
Stokes, and Euler equations [1,2,6-8,14,9,23,24] about which more is known.
Second, some authors have abandoned the traditional expansion-based derivations
in favor of moment-based formal derivations [2,6, 7, 9], which put fewer demands
on the well-posedness and regularity theory. Here we embrace both of these ap-
proaches.

To begin with, we will also consider a fluid dynamical limit obtained through
a scaling in which the densit¥ is close to a spatially homogeneous Maxwellian
M = M(v). By an appropriate choice of a Galilean frame and of mass and velocity
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units, it can be assumed that this so-called absolute Maxwallidnas the form
1 1,2

This corresponds to the spatially homogeneous fluid state with density and temper-
ature equal to 1 and the bulk velocity equal to 0. If the compressible Euler equations
are linearized about this state, then one obtains the acoustic equations

90+ Vi-u =0, 0(0, x) =,0_in(x),
du+Ve(p+60)=0, u(0, x) = u'(x), (1.9
20,0+ Veu=0,  0(0,x)=60"(x).

This is about the simplest system of fluid dynamical equations imaginable, being
essentially the wave equation. We will show how it can be formally derived from
the Boltzmann equation. We will also employ a moment-based formal derivation
that will enable us to establish the acoustic limit within the class of DiPerna-Lions
global weak solutions to the classical Boltzmann equation.

The existence of global weak solutions to the classical Boltzmann equation for
all initial data within the entropy class was first established by DiPerna and Lions
[15]. Their theory has the virtue of considering physically natural classes of initial
data. However, it suffers deficiencies in that its solutions are not known either to
be unique, or to satisfy all the local conservation laws one would formally expect.
These solutions were subsequently studied in the incompressible Navier-Stokes
limit [3] and the incompressible Euler limit [9] with partial success, and in the
linearized Boltzmann limit [19] with complete success. In those studies a notion of
entropic convergenceas used as a natural tool for obtaining strong convergence
results for fluctuations about an absolute Maxwellian. This paper establishes the
convergence of such fluctuations of DiPerna-Lions solutions to so-called infinites-
imal Maxwellians that have the form

p+uv+0GghP -2, (110

and that are each governed by &R solution (p, u, 8) of the acoustic equa-
tions (1.9). Here, the notion of entropic convergence again plays a major role.

Loosely stated, our main result (Proposition 4.2, announced in [4]) is the fol-
lowing: for any L2 initial data for the acoustic equations and any sequence of
DiPerna-Lions solutions whose initial fluctuations abditonverge entropically
to the infinitesimal Maxwellian associated with théf initial data, the fluctu-
ations of the DiPerna-Lions solutions converge entropically to the infinitesimal
Maxwellian associated with the? solution of the acoustic initial-value problem
(2.9) for all positive values of time. The key points being made are that the limit of
the DiPerna-Lions Boltzmann dynamics mapsothe L2 acoustic dynamics, and
that the limit is strong. The main obstacle we overcome is that the DiPerna-Lions
solutions are not known to satisfy local conservation laws of either momentum or
energy.

The next section contains preliminary material regarding the Boltzmann equa-
tion and the formal derivation of the acoustic equations. Section 3 lays the analytical
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groundwork. It includes a statement of the DiPerna-Lions result and of the basic re-
sults on fluctuations from [3]. These propositions are fully stated for completeness.
Their proofs can essentially be found in [15] and [3], and so are not reproduced
here. It also reintroduces the notion of entropic convergence. Section 4 establishes
the acoustic limit. The associated local conservation laws of momentum and en-
ergy are recovered only in the limit. In a companion paper [5] we establish a similar
result for an incompressible Stokes limit, also announced in [4].

2. Formal Preliminaries

In this section are recalled the basic formal properties of the Boltzmann equa-
tion, together with a formal derivation of the acoustic equations by a moment-based
method, in the style of [2]. The notation introduced here is a subset of that in the
first section of [3].

2.1. Formal Structure of the Boltzmann Equation

It is natural to introduce the relative density,= G (¢, x, v), defined byF =
MG. Recasting the initial-value problem (1.7) f6ryields

1
3G +v-V,G = -9(G, G), (2.19)
€

GO, x,v) = G"(x,v) = 0, (2.1b)

where the collision operator is now given by

(G, G) = // (G1G' — G1G) b(v1 — v, ) dw M1dv1. (2.2

SP—1xRD

We take the nondimensionalization with the normalizations

/ do =1, Mdv = 1, / dx =1, (2.3
Sh-1 RD TD

associated with the domai®® 1, R?, andT? respectively, and
/// b(v1 — v, w)dw M1dvy Mdv =1, (2.9
SP-1xRDPxRD

associated with the Boltzmann kernel.
BecauseM dv is a positive unit measure d®”, we denote by¢) the average
over this measure of any integrable functipe- £ (v),

(&) = /R & Mav. 25)
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Becausé(vi—v, ) dw M1dvi Mdvis apositive unitmeasure @~ Ix RPx RP,
we denote by(E)) the average over this measure of any integrable funcica
E(v, v1, @),

«E»: /// E(v, vy, w) b(vy — v, w) dw M1dvy Mdv. (2.6)
SP-1xRPxRD

We now present the basic formal structure of the Boltzmann equation in the setting

of this notation for later reference. All of these results are standard and their proofs

can be essentially found in [12, Chapter I1.6, 7].

The structure of the Boltzmann equation derives from properties of the Boltz-
mann collision operator (2.2) relating to conservation, dissipation, and Galilean
symmetry. The key to these properties is the following identity discovered by Boltz-
mann:

(€ Q(G. G)) = (& (G1G' — G1G)))
= (¢ + & — &' — &) (G1G' - G10))),

for everyé = &£(v) andG = G(v) for which the integrals make sense. Here we
will recall just those properties related to conservation and dissipation.

First, upon successively settigg= 1, vy, --- , v, |v|? into the Boltzmann
identity (2.7), the microscopic conservation laws (1.4) yield the conservation laws

2.7)

(Q(G, G)) =0, (vQ(G,G)) =0, (3PQG,G) =0, (28

for everyG = G(v) for which the integrals make sense. It can be shown that
these are essentially all the quantities conserve@y, G). More precisely, the
following statements are equivalent:

() (QG,G)=0
for everyG = G(v) for which the integral makes sense; (2.9)

(i) & esparl, vy, -, v, [v]?).

If G solves the Boltzmann equation (2.1), then (2.8) implies thaatisfies
local conservation laws of mass, momentum, and energy:

%(G) + V- (vG) =0,
WG+ V- (®vG) =0, (2.10)
3 (3Iv1°G) + Vi (v3|v°G) = 0.

Integrating these over space and time yields the global conservation laws of mass,
momentum, and energy:

f (G (1)) dx = / (G dx.

TD TD

/(vG(t))dx:/ (vGMydx, (2.11)
TD TD

/<%|v|2G<r)>dx=/ (31v2G™) dx.
TD TD
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Next, upon setting = — log(G) into identity (2.7), Boltzmann observed that
the resulting integrand is nonnegative, and hence obtained the dissipation law

GG’
G1G

—(log(G) Q(G, G)) = %1<< Iog( ) (G1G' — GlG)» =0 (2.12

for everyG = G (v) for which the integrals make sense. He then characterized the
equilibria of the collision operator. He found that for afiy= G (v) for which the
integrals make sense, the following statements are equivalent:

(i) (log(G) Q(G, G)) =0;
(i) Q(G,G)=0; (2.13
(i) log(G) e spanl, vy, --- , v, [v]?).

Equilibria characterized by (iii) that have finite mass, momentum, and energy
density can be written a6 = M,...9)/M, where M, , ¢y are the classical
Maxwellians defined by

P v —uf?
M u0)(v) = W eXp(—T), (2.14

and where the density > 0, the velocityu € R”, and the temperatuse> 0 are
determined by the relations

p=(G), pu=(WG),  FplulP+5p6=(30PG). (215

In particular,G = 1 is the unique equilibrium associated with initial da# that
satisfies

/ (G™ dx =1, / (vG™ dx =0, / (326" dx = 2.
TD TD TD
(2.16)
This is consistent with the choice of absolute Maxwellldmmade in (1.8).
Now, if G solves the Boltzmann equation (2.1), then the dissipation law (2.12)
implies thatG satisfies the local entropy dissipation law

9((Glog(G) — G + 1)) + Vi - (v (Glog(G) — G + 1))

11 GG’
= Al <
; 4<< Iog( GG ) (GLG GlG)>> <o.

Integrating this over space and time gives the global entropy equality

t

1 .
H(G®)) + —f R(G(s))ds = H(G™), (2.17)
¢ Jo
whereH (G) is the relative entropy functional

H(G) = / ((Glog(G) — G + 1)) dx, (2.18)
TD
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andR(G) is the entropy dissipation rate functional

GG’
R(G)z/ <<Iog< )(GlG/ G1G)>>dx. (2.19)
10 4

This choice ofH as the relative entropy functional (2.18) is based on the fact
that its integrand is a nonnegative strictly convex functiotzofvith a minimum
value of 0 atG = 1. Thus for anyG,

H(G) =0, and H(G)=0 ifandonlyif G =1. (2.20

This relative entropy provides a natural measure of the proximitg db that
equilibrium.

2.2. Formal Derivation of the Acoustic Equations

Before describing the mathematical apparatus necessary to establish the acous-
tic limit, we give below a formal theorem in the style of [2] whose proof will serve
as a guideline.

We suppose there exists a famify, of nonnegative weak solutions of the
Boltzmann equation (2.1) whose fluctuations about the equilibrium \@lge 1
are of ordee™ ase — 0 for somen > 0. We then introduce the scaled fluctuations
ge by

G.=1+¢"g,. (2.21)

By (2.1) the fluctuationg. will then be weak solutions of

1
0ige +v-Vage + = Lge = "8, g6, (2.22)
where/ is the linearized collision operator defined by

This operator has a nonnegative, self-adjoint extension b¥é¥ dv). Possible
limits of the fluctuationg, ase — 0 are then governed by the following theorem.

Proposition 2.1 (Formal Acoustic Limit TheoreLetm > 0. LetG, be a fam-

ily of nonnegative weak solutions of the Boltzmann equation (2.1) whose fluc-
tuations g, given by (2.21) converge in the sense of distributions to a function
g € L®(dt; L3(M dv dx)) ase — 0. Furthermore, assume that the moments

(ge), (vge), (v@uvg),  (vlvPge), (2.233

satisfy the local conservation laws and converge in the sense of distributions as
¢ — 0to the corresponding moments

(@), (g, (vevg), (v, (2.23b)

and that
ﬁgs - £g7 EmQ(gs’ g&) - 07 (224)
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in the sense of distributions as— 0. Theng has the form of the infinitesimal
Maxwellian
g=p+uv+0GpP-53), (2.25)

where(p, u, 9) solve the acoustic equations (1.9).

Proof. First, multiply (2.22) bye and lete — 0. By the convergences assumed in
(2.23) and (2.24), we obtain
Lg =0. (2.26)

It is known (see for example [12, Chapter IV.1]) that th& extension of the lin-
earized collision operator has its nullspace given by M)ll= sparil, vq, - - -,
vy, |v|2}. Because the limiting fluctuatiog is assumed to belong th>(dt;
L%(M dvdx)), (2.26) implies that it must have the form of an infinitesimal
Maxwellian (2.25).

Second, by the local conservation laws (2.10) the fluctuaitomnell satisfy

at<gs) + Vi (v gs) =0,
0 (vge) + Vi-(v®uvge) =0, (2.27)
3 (31vI%ge) + Vi~ (v3|v]2g,) = 0.

The theorem then follows by letting — 0 in these equations using the conver-
gences assumed in (2.23) and then using the limiting forg gizen by (2.25).
]

3. Analytical Preliminaries

Going beyond the formal derivation of the last section requires clarification of
(1) the notion of a solution for the Boltzmann equation, and (2) the sense in which
the phase-space density is to be close to the background absolute Maxwellian.
The first is provided by the theory of global solutions of DiPerna-Lions, while the
second is provided by the theory of fluctuations developed in [3].

3.1. Global Solutions

DiPerna and Lions [15] proved the existence of a temporally global weak solu-
tion to the Boltzmann equation over the whole spgékfor any initial data satis-
fying natural physical bounds. As they pointed out, with only slight modifications
their theory can be extended to the periodic BéX It gives the existence of a global
weak solution to a class of formally equivalent initial-value problems obtained by
dividing the Boltzmann equation (2.1a) by normalizing functidhs= N (G) > O:

_1Q(G.G)
(9 +v-Vi)T(G) = s NG) (3.1a)
G0, x,v) = G"(x, v), (3.1b)

where eachV is continuous ovej0, co) and satisfies a bourd +2z)/N(z) £ Cn
overz 2 0forsome constarify < oo, andwherd”(z) = 1/N(z). Their solutions
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lie in C([0, c0); w-L1(Mdv dx)), where the prefix {b-" on a space indicates that
the space is endowed with its weak topology. They say@hat0 is a weak solution
of (3.1) provided that it is initially equal t&'"", and that it satisfies the normalized
Boltzmann equation (3.1a) in the sense that for eyeey L® (Mdv; C1(T?)) and
every[t1, t2] C [0, co) it satisfies

1%}
/TD<F(G(t2))X>dx—/T <F<G<r1>>x>dx—/ /TD<F(G>v-vxx>dxdr

/ Q(G 9 d dt. (3.2)
-|-D N(G)

They show that ifG is a weak solution of (3.1) for one sudh and satisfies cer-

tain bounds then it is a weak solution for every sw¢hThey call such solutions
renormalized solutions of the Boltzmann equation (2.1).

Proposition 3.1 DiPerna-Lions Renormalized Solutign&iven any initial data
G in the entropy class
E(Mdvdx) = {G" 20 : H(G™) < oo},
there exists atleastor@ > 0in C ([0, o0); w-L1(Mdv dx)) thatis aweak solution
of (3.1) such that:
QL G.G) ¢ 1oogs: LY (Mdvdx)),

1+N
(3.3)

s
QG0 ¢ L} (dr; L\(Mdv dx)),

where 9~ and QT are the source and sink components of the collision opera-
tor (2.2)

97(G,G) = // GG’ b(v1 — v, w) dw Midv1,
SP-1xRD

(3.4
Q (G,G) = // G1G b(v1 — v, w) dw M1dv,.
SP-1xRD
Moreover,G also satisfies the global entropy inequality
1! i
H(G(t)) + Ef R(G)ds £ H(G™), (3.5
0
a weak form of the local conservation law of mass
0 (G) + V- (vG) =0, (3.6
the global conservation law of momentum
/ (wG@))dx = f (vG™ dx, 3.7
TD TD

and finally, the global energy inequality

|, gl < [ dweem @8



The Acoustic Limit for the Boltzmann Equation 187

The finiteness of the entropy is enough to insure the integrability of the con-
served densities. However, the DiPerna-Lions theory does not assert the local con-
servation of momentum, the global conservation of energy, the global entropy
equality (2.17), or a local entropy inequality; nor does it assert the uniqueness
of the solution.

3.2. Controlling Fluctuations

In order to derive fluid dynamical equations from the Boltzmann equation for
regimes near a background absolute Maxwellian, be they the acoustic, Stokes,
or incompressible Navier-Stokes equations, one needs a proper definition of the
sense in which these limits hold. While? based spaces are natural for these fluid
equations, the natural setting for global solutions of the Boltzmann equation are
rather weighted.! or L log(L) spaces. These two different types of spaces were
reconciled in the limit of small fluctuations about a background equilibrium in
[3]. Here we do not need the entire theory developed there. We have extracted the
relevant parts below.

Let G, = 0 be a family of DiPerna-Lions renormalized solutions to the scaled
Boltzmann initial-value problem (2.1) such that the initial d&td satisfies the
entropy bound . _

H(G™M) < cing?m, (3.9

for some fixed”™™ > 0. Consider the families of fluctuatiogs andg™" defined by
the relations . .
Ge=1+¢"g,, GN'=1+¢&"gl". (3.10)

The DiPerna-Lions entropy inequality (3.5) and the entropy bound (3.9) are consis-
tent with this order of fluctuation about the equilibriugh= 1. More specifically,
below it will be shown that these families of fluctuations are of order one.
With this in mind, we choose to work with a DiPerna-Lions normalization in
the form
Ne=N(Gy) =3+3G. =1+ 1e"g., (31D

One reason for this choice is that formaNy — 1 ase tends to zero; thus, the nor-
malizing factor will conveniently disappear from all algebraic expressions consid-
ered in this limit. Another reason lies in simplification of the specifics encountered
during some subsequent estimates. Of course, our main results are independent of
this particular choice of normalization. Given this choice, the normalized Boltz-
mann equation (3.1) becomes

19(G, G
By +0-oye = 2 202G (3.12)
e N,
where we have introduceg by
1 3 1.m

Becausey, formally behaves likes, for small ¢, it should be thought of as the
normalized form of the fluctuations..
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The first objective is to characterize properties of the limit of the fluctuations
gs. The a priori estimates needed are found in the combination of the entropy
inequality (3.5) and the entropy bound (3.9) assumed for the initial data:

t

H(G:(1) + %f R(Ge)ds < H(G™) < CMe?m, (3.14)
0

As can be seen from (2.20) and the comment thereafter, the terms involving the
entropyH measure the proximity af, andG!" to the absolute equilibrium value
of 1.

As in [3], the relative entropy can be recast as

HG) = [ e"go)ar, 3.15)
where the integrand is written in terms of the convex function

h(z) =1 +2)log(1+2) —z. (3.16)

Becauséi(z) ~ %Zz asz — 0, one easily sees that(G,) asymptotically behaves
almost like anZ? norm of g, ase tends to zero. This observation lies behind the
following proposition, which follows from Propositions 3.1, 3.4, and 3.8 of [3] and
is set in the notation therein.

Proposition 3.2 (Controlling Fluctuations LemmalLet G. = 0 be a family in

C ([0, 00); w-Ll(Mdv dx)) that satisfies the entropy inequality and the bound
(3.14 with GI" = G.(0). Letg, andg!" be the corresponding fluctuatiori3.10).
Then

(a) The family{(14|v|?) g¢ }e~0is boundedirL % (dr; LY(Mdv dx)) and relatively
compact inw-Li (dt; w-LY(Mdv dx)).

(b) For eacht > 0 the family{(1 + |v|?) g.(1)}s=0 is relatively compact inv-L1
(Mdvdx).

(©) If g is a w-L} (dt; w-LY(Mdvdx)) limit point of the family{g.}.-0 as
e — Otheng e L™®(dt; L?(Mdv dx)) and for almost every > 0 satisfies the
inequality

/T 3P0y dx < liminf / (" gete) dx

1 _ _ (3.17)
< lim nf /<mh(8mg'sn)>dx <,
(d) Moreover,g has the form of an infinitesimal Maxwellian
g=p+uv+oGh’-5), (318

where(p, u, 8) € L®(dt; L?(dx; Rx RP x R)) and for almost every > 0
satisfies

/ <g2(t)>dx=/ (P + lu®) > + 26(1)?) dx. (3.19)
TD TD
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Statement (a) is Proposition 3.1 (1) of [3]. Statement (b) is proved essentially the
same way. Statement (c) follows from Proposition 3.4 (2) of [3] — more specifically,
from the inequality (3.31) there. Finally, statement (d) is Proposition 3.8 of [3],
which makes full use of the bound on the dissipation term in (3.14).

The above proposition does not take into account the fact thgt tvél even-
tually represent fluctuations of the number density in the Boltzmann equation;
only the entropy and entropy dissipation bounds (3.14) provide the needed weak
compactness.

Proposition 3.2 shows how tHe? setting for the macroscopic variables arises
from the limiting form of the entropy inequality (3.14) applied to fluctuations of
the number density. The notion of “entropic convergence” introduced in [3] and
recalled below will strengthen this view by using the entropy inequality not only
to produce bounds on, but also to measure the distance from the asymptotic state.

Definition 1. Let G, > 0 be a family inL(Mdv dx)) and letg, be the corre-
sponding fluctuations as in (3.10). The famglyis said toconverge entropically at
ordere” to g € L2(Mdv dx) if and only if

. . 1
g — g inw-LY(Mdvdx), and IIm/ <Wh(8mg8)>dx :/ %(gz)dx.
e—=0J1p \¢ TD
(3.20

It was shown in Proposition 4.11 of [3] that entropic convergence is stronger
than norm convergence it ((1 + |v|2)Mdv dx)). This notion immediately leads
to the following sharpening of inequality (3.17) in Proposition 3.2.

Proposition 3.3 Dissipation Inequality Corollajy Let G, = 0 be a family in
C([0, 0); w-LY(Mdv dx)) that satisfies the entropy inequality and bouBd.4),
whereG!' = G,(0) has fluctuationg" that converge entropically at ordef" as
& — 0Oto som@in € L?(Mdvdx). Letg, be the corresponding fluctuatio(®10)
andg be a weak limit. Then, for almost every 0,

1 . .
1,2 .. 1,,in2

/_;D 5(g(1)) dx < ||fg1_)|l3f f<gmh(8mgén >dx = /TD 5(e"%dx. (321

In particular, if g™ is an infinitesimal Maxwellian of the form
M= p" +uo 40" (302 - B). (322
where(p™, u", 6™ € L2(dx; Rx RP x R), then
/ <g|n2>dx zf (p|n2+ |u|n|2+ %einZ)dx’
TD TD

and for almost every > 0,

/D (P2 + lu@®)* + 20(1)?) dx < /D (P2 + 1™ + Do2) dx. (3.23)
T T
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Remark. Itis clear from (3.20) that the assumption that the initial fluctuat'gihs
converge entropically at ordef’ ase — 0 to someg™ that is in L2(Mdv dx)
implies that those fluctuations satisfy the entropy bound (3.9).

The significance of Proposition 3.3 becomes more apparent upon noticing that
for everym > 0 and everyg" e L?(Mdvdx) there are familiesG" in the
entropy class£(Mdv dx) with fluctuationsg;" that converge entropically at order
g™ ase — 0 to g". For example, it was pointed out in [19] that one can take
g(i‘:n — max{gi”, —g™MY,

One can say more whe!" is an infinitesimal Maxwellian (3.22).

Proposition 3.4 Realizability of the Initial Data Lemnm)aLetm > 0 and let
(oM, u™, 6" e L?(dx; Rx RP x R) satisfy the normalizations

/ o"dx =0, / u"dx =0, / oM dx = 0. (3.24)
TD TD TD
Then there exists a family of local Maxwelliatﬁ*'g1 that satisfy the normalizations
/ (GMdx =1, / (vGMdx =0, / (3PN dx =2, (3.25
TD TD TD

and whose fluctuationgiEn = e*m(Gign — 1), converge entropically at order” as
¢ — 0to the infinitesimal Maxwelliag™ given by(3.22).

Proof. Let(p™, u™",0"™) € L?(dx; Rx RP x R) satisfy (3.24). Lefj € C>*(RP)
be a mollifying function:

j20,  supj) C Bi(0), f jodx =1
2 RD

For everys € (0, 1] definej, € C*®(TP) by

. 1 fx+z
Je) = =237 J(gm/D)

zeZD

The assumption on the support pfguarantees that the supports of the various
terms in the above sum never overlap for@ < 1. Thenj, is a mollifying family
overT?. Define ' _
in _ - in
Pg =Je*x P,
where the symbol+#” designates the convolution ov&". The Cauchy-Schwarz
inequality gives

. . . 1 .
log Iz = el 210" 2 = o2 Ijallz2llo™ 2,

whereby it is clear that for all € (0, 1] sufficiently small one has % &” p" > 3.

For all suche define

in Je xu" in Je % 0" in 2
= = — " Slug |

u5_1+81np£i€n’ 3 _1+8’”an D
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Several more applications of the Cauchy-Schwarz inequality give

a0 < 21l 2™z = —s 2l

g IL> = £l Jell 2 L2 = T2 JiliL2 L2

gin <9|i gin mi inj 2
10 11 = 2l jell 22107 N2 + € Dllug 700

2 . in 4 . 2 in 2
= m”JlHLZHQ 22 + BllulleIIu 117 20.

It is therefore clear that for adl € (0, 1] sufficiently small one has% 8’“6@” > %
Now for all suche define

in _ . ) )
GS — M(l+£mp;n,8mu;”,1+£m0;”)/M'

Direct calculations show that this satisfies the normalizations (3.25). One can also
easily check that the associated fluctuations converge entropically atsSrder
¢ — 0 to the infinitesimal Maxwellian (3.22).0

4. Establishing the Acoustic Limit

4.1. Mathematical Statement of the Acoustic Limit

In the previous section we introduced all the notions contained in the mathe-
matical statement of the otherwise formal Proposition 2.1. The proof of Proposi-
tion 2.1 itself suggests that all that remains to be done is to pass to the limit in
the local conservation laws (2.27). Unfortunately, these local conservation laws are
not guaranteed by the DiPerna-Lions theory of renormalized solutions. In order to
circumvent that difficulty, we will rely on the two following technical assumptions:

(A1) m > 1;

(A2) b e L®(dw M1dv1).

Assumption (A2) is satisfied by the Boltzmann kernels corresponding to either
Maxwell molecules or soft cutoff potentials (see [12], Chapter 11.4-5 and I1.9 for
a thorough discussion of these matters). While the relations (2.10) may not be
satisfied by the renormalized solutions of the Boltzmann equation (2.1), the defects
are proved to vanish in the limit as— 0 thanks to the assumptions above.

Thus, consider a famiIYGL”} of nonnegative measurable functions in the en-
tropy classE (Mdv dx) that satisfies the bounds

G">o, H(GM = 0(2™), 4.1)

as well as the normalizations

/ (GMdx =1, f (vGMydx =0, / (lv?G™dx = D. (4.2
TD TD TD
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Foreacle > 0, letG. be arenormalized solution of the scaled Boltzmann equation
(2.1) with initial dataG'". Consider the fluctuations @f, around 1 at the scal",
ie.
1 i 1
E_m(Ge -1, g = E—m(GLn -1. (4.3
The firstmain resultin this paper shows thatthe acoustic equations (1.9) describe
all possible limit points of the familgs . ase — 0 under the sole assumption (4.1),

(4.2).

8e =

Proposition 4.1 Weak Acoustic Limit Theoren AssumdAl) and (A2). LetGisn
be any family in the entropy clag&(Mdv dx) satisfying the bound&t.1) as well
as the normalization¢4.2). Let G, be any family of DiPerna-Lions renormalized
solutions of the Boltzmann equati@hl) that havergn as initial values. Then the
family of fluctuationg, is relatively compactim-LL .(dt; L1((1+|v|?)M dv dx))
while the associated family of moments

(ge), (v ge)s (B2 =D ge))

is relatively compact irC ([0, oo); w-L1(dx; R x RP x R)). Any limit pointg of
the familyg, ase — 0Ois an infinitesimal Maxwellian of the form

g=p+uv+0(zv?-2), (4.4
where(p, u, 0) is the solution of the acoustic equatiofis9) with initial data
(" a0 = lim (g). (vgf). (FIv® = Dgih)) (4.5)
En—>

for every sequence, such thatg,, — g in w-Li (dt; L1((1 + |[v[>)Mdvdx))
whileg, — 0.

The second main result is an amplification of Proposition 4.1 when the initial
fluctuations are known to converge entropically to some infinitesimal Maxwellian;
it shows that any physically natural solution of the acoustic equations (1.9) is indeed
a strong hydrodynamic limit of renormalized solutions of the Boltzmann equation
(2.2).

Proposition 4.2 Strong Acoustic Limit Theorejn AssumeAl) and (A2). Let
(o™, u™, 6" e L%(dx; Rx RP x R) satisfy the normalizations

/ pin dx =0, f uMdx = 0, / 6" dx = 0. (4.6)
TD TD TD

LetG™" be any family in the entropy clag& Mdv dx) whose fluctuationg" satisfy
the normalizationg4.2) and converge entropically at order” ase — 0 to the
infinitesimal Maxwellian

Let G. be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(2.1) that haveG!" as initial values. Then, as — 0, the family of
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fluctuationsg, converges entropically at ordef’ for everyr > Oand inw-Lﬁ)C(dt;
LY((1 + |v|%Mdvdx)) to an infinitesimal Maxwelliarg of the form(4.4) where
(p,u,0) € C([0, 00); L%(dx; Rx RPx R)) is the solution of the acoustic equations
(1.9) with initial data (o', ™™, 6"). Moreover,

((ge)s (v &e)s (V12— Dge)) — (p,u,0)
in C([0, 00); w-L1(dx; Rx RP? x R)).

The normalizations (4.2) on the initial data for the Boltzmann equation and
the assumed entropic convergence of their initial fluctuations around 1 entail the
normalizations (4.6) of the initial data for the acoustic equations. Conversely, Propo-
sition 3.4 shows that alL? initial data of the acoustic equations satisfying (4.6)
are indeed entropic limits of initial fluctuations for the Boltzmann equation in the
manner described in Proposition 4.2.

This discussion shows that, at variance with the classical methods based on
either the Hilbert or Chapman-Enskog expansion, the strategy proposed in this
paper adressedl physically natural initial data for the Boltzmann equation as well
as for its hydrodynamic limit, here the system of acoustics.

Assuming Proposition 4.1, the proof of Proposition 4.2 is given below; it is a
direct consequence of the weak compactness of fluctuations stated in Proposition
4.1, with additional arguments provided by Propositions 3.2, 3.3, and 3.4.

Proof of Proposition 4.2.Let (o™, ™", 6™) be an initial data for the acoustic equa-
tions inL2(dx; Rx RP x R), satisfying the normalizations (4.6). By Proposition
3.4, there indeed exists famili€g" in the entropy clasg (M dv dx) whose fluctu-
ations satisfy the normalizations (4.2) and converge entropically at ofderthe
infinitesimal Maxwellian (4.7) as — 0. Consider therefore such familié;én of
initial data for the Boltzmann equation (2.1). Because the family of initial fluctua-
tionsg" — ¢ in w-LY(M dv dx) ase — 0, it follows from Proposition 4.1 that
the family g. is relatively compact inv-LL (dt; w-L1((1 + [v|>)M dv dx)) and
thatany of its limit points as — 0 is of the form (4.4) with(p, u, 6) the unique so-
lution of the system of acoustics (1.9) with initial d&d", u™, "). Thusg, — g
given by (4.4) inw-Li (dt; w-L1((1 + [v|>)M dv dx)) ase — 0, by compact-
ness and uniqueness of the limit point. By Proposition 3.2 (c), Proposition 3.3, and
(3.19), one has

1 / (02 + P + 20()?) dx = & / (6% dx
TD TD
< liminf (% h(e™g. (1)) dx
TD &

: 1w
< lim sup D<sﬂh(8 ge(1))) dx

£—0 T
<1 / (¢"?) dx
D
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The quantity on the left-hand side of the chain of inequalities above is invariant
under the evolution of the system of acoustics. Therefore all inequalities above are
in fact equalities, which in turn implies that the convergence»> g is entropic of
ordere™ for all ¢+ = 0. The proof is complete. o

The proof of Proposition 4.1 occupies the remaining part of Section 4. Its main
step consists in establishing the limiting conservation laws (2.27); this is done in
Section 4.4 (see Proposition 4.7 below). The proof of Proposition 4.7 itself depends
upon controlling the collision integrals so as to dispose of the defects in the relations
(2.10). These controls are provided in Section 4.3 (see Propositions 4.5 and 4.6
below) and depend themselves upon a decomposition of fluctuations, the flat-sharp
decomposition, introduced in [3] and recalled in Section 4.2 below.

4.2. The Flat-Sharp Decomposition of Fluctuations

As stated in Proposition 3.2, the limiting fluctuations are estimatdciiidr;
L?(Mdv dx)) by the entropy inequality. However, the fluctuations are not known
to be bounded il (dr; L2(Mdv dx)) before the limit ag — 0 is taken. The
absence of such a bound was addressed in [3] (section 3) by the introduction of the
following decomposition for the normalizatia, = 1+ %smgsi

b g b 8e g g2
— &M ) — ; — %
8e 8e + 8e 8e _Ng 8e 3N,

The second term in the decomposition (4.8) is precisely the obstruction to proving
such a uniform bound. Notice that this term is nonnegative: this observation will
be crucial in what follows. Thug, is a L®(dr; L2(Mdv dx)) substitute forg,;
another natural one is the quantity naturally involved in the renormalized form of
the Boltzmann equation

(4.8)

1.m

3
ve = log(1+ 5¢™ge). (4.9)
The various properties of this decomposition are recalled in

Proposition 4.3 (The Flat-Sharp Decomposition LemjnAssume that the family
of initial dataG!" satisfies the boundg.1) and the normalization&.2). Then the
flat-sharp decompositio.8) of the fluctuationg. has the following properties:

(a) the familyz, is bounded inL>(dt; L2(Mdv dx));

(b) the family g, is bounded inL>(dt; LY (Mdv dx)) and, for anya > 0, the
family ¥ |v|? %, converges t® in L>(dt; LY (Mdv dx));

(c) the familyy, is bounded in.>°(dt; L2(Mdv dx));

(d) (L+ [v|?)|ge — ye| — 0in L®(dt; LY (Mdv dx)) ase — O;

(e) for any sequence, — 0 such that

g, — & iInw-Li.(dr; w-LY((1 4+ [v|>)Mdv dx))
the corresponding subsequences

%., andy,, both converge t@ in w-Li (dt; w-L?(Mdv dx)).
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Statements (a), (c), (d) and the first half of statement (b) follow from Corollary
3.2 of [3]. Statement (e) is a straightforward consequence of statements (b) and (d).
As for the second half of statement (b), it is a direct application of Proposition 3.2
in [3].

4.3. Controls of the Collision Integral

In this section are gathered some crucial preparations for the proofs of Proposi-
tions 4.1 and 4.2. As recalled in Section 3.1, the local conservation laws of momen-
tum and energy do not hold for renormalized solutions of the Boltzmann equation.
This destroys the argument given in the “formal proof” of Section 2.

One can however circumvent this difficulty by considering moments of the
Boltzmann equation in renormalized form; the resulting equations are no longer
conservation laws because renormalization and velocity averaging are not commut-
ing operations. Specifically, we find

_ 1 1 m—1 Q(g&‘» g&‘)
0 (X Ve) + Ve (vxye) = g( (1 - E) x£g5> +e (x T) (4.10
wheny = x (v) is one of the collision invariants 1y, ... ,vp and|v|? or a linear

combination thereof with constant coefficients.

The purpose of the present subsection is to study the limit as 0 of the
right-hand side of (4.10).

First, both terms on the right-hand side of (4.10) can be recast in a way that
clearly indicates that they are of the same nature. Indeed, the obvious formula

Iy 73
N. 37 N,
shows that
1 1 1, 1) 88+ ge1— e — &h1)
1 = £>=_m1 e Sell )\ 411
8(( N£>X 8| =3¢ <<x N, (4.1
while L
m—1 Q(ga,gs)> m—1 881 — 8e8el
—_— ) = —t= ). 4.12
€ <x N, € X N, (4.12)

The next Proposition shows that the first term in the right-hand side of (4.10)
convergesto 0 as— O.

Proposition 4.4.AssumégAl) and(A2). Sety (v) = 11%’;)'2. Assume that the family

of initial data GL” satisfies the boun@!.1) and the normalization4.2). Then

(a) ase — 0, the family

2
g’"—1<<x fv—s» — 0 inL®Ry; LYTP));

&
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(b) ase — 0, the family

8m1<<)( —|g8]|\|]g81|>> — 0 inL®Ry; LY(TPy);
&

(c) ase — 0, the families

m_1f]_18ellge] me1/] 18ellgil
e <<X N and ¢ X—Ng

both converge t0 in L (R, ; L1(T?)).

Proof. By assumption (A2)

[, 8 ., 82 1
e <<x ﬁ» < Iblloe” H{x3) = 1bllme" 1 %)
& &

so that statement (a) follows from Proposition 4.3(b).
Assumption (A2) again implies that

€m1<<x |ge]|\|,gsl|>> < e l14 D)<<XX1|gs]|\|]g81I>>
¢ € (4.13)

et/ 18
< @+ D)l gl

Now consider the new normalizatiokl;, = 1 + %8m|g8|. Because5, = 0 a.e.,
the first normalization is bounded below; = 3 + 3G, > 2. BesidesN, and
N, coincide whereveg, = 0 while, at points whergs < 0,0ne hag™|g.| £ 1
becauses, > 0. Thus, at points wherg. < 0, \; < 2, so thatN, = 2 > I\,
Putting all this together leads to the following mequalltles which hold mdependently
of the sign ofg,:

3Ne S N: S A (4.14)

Thus, by (4.13),

) < aqs pyppsen S e, @19

Observe thaty Mdv is a probability measure oR”. Further, the mag
z/(1+ %z) is concave. The Jensen inequality then implies that

<X5m|gs|>< ™ (x1gel)
Ne T7 14 3em(xlgel)

which, when used in (4.15) leads to

2
Sm_1<<)( |g€||g81|>> g 21+ D)”b”LOOEm lM (4.16)
N 1+ 3e (x1gel)
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Next observe that the map— z2/(1+ %z) is convex. A further application of the
Jensen inequality shows that

e2"(xge1)?

1+ 3em(xlgel)

A

< 82m|g5|2>
1+ 3em|gel!

which, when substituted in (4.16), gives

m—1 Igsllg81|>> < me1f, gl
€ X ) S 20+ D)Iblipe™ A\ x — 77— 4.17)
<< Ne e 1+ gem|g8|>
Finally, the second inequality in (4.14) yields
8’"1<<x fee et] >> <20+ D)bl=e” ). (418)
&

Statement (b) then follows from Proposition 4.3 (b).
It remains to prove statement (c). By inequality (4.14),

meff 1818\ o moaff l8ellgel
L T T B

At this point, we need to recall the geometry of collisions. According to (1.3)
V=v—(W-—1) - oo.

This suggests the decomposition of batland v’ in the direct orthogonal sum
R? = Rw & (Rw)*:

v =10l +vt, v = vﬂ + vt (4.20)
Because the decomposition (4.20) is orthogonal, it is easy to check the relations
M@)dv = M@hdv! @ MYydvt,  M@i)dv = M@)dv] @ M@i)dut.

For simplicity, we denote below the centered, reduced Gaussian volume element
in the Euclidian space by the single symligy, without mention of the space
dimension.

Of course, these decompositions dependphowever, for notational conve-
nience, we shall refrain from indicating taedependence in!, v} andvt. The
integral on the right-hand side of (4.19) can thus be estimated by

m—1fl  1gellg m_1 L
€ XN = 26"7|bll Lo x dgv-dgvydw
&€

-//X(v“Jrvi)%(v"+vi)|g8|(uﬂ+vl)dGu“de£. (4.21)

&
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Let us first estimate the inner integral on the right-hand side of (4.21):

// x @l + vty 'jf;' @ 4+ v g | 0] + vh)dev!dgu)

<
_+D

|
1+D/,/ Sl ()l 4 vb)lgel ) + v + ! Prdavldaul.

Using the Jensen mequality asin the proof of statement (b) (see (4.17) in particular),
we obtain

f/ 18] ol 4 vy lgel 0] 4+ vh)dg vl dau! </|gg o+ vh)dgu!

while

A+ viP // 'gi(u” +vh) gl ] + vhydg vl dgv) (4.22)

// '/gv—g'(v” +vD)lgel (0] + vH A+ Pl 1Pdevdev]
&

2
< 2/ 8 +vH 3@+ Pdeul.
Ne
Using these last two inequalities in (4.22) shows that

/f x @l + vJ‘)%(v” + b gel ) + vhdev! dgv)

1 1,2
< H”D| /'gs (v”+vJ‘)de”+1+D/ L I oy 3 @+1v1P)dgo!.
(4.23)
It suffices then to estimate the inner integral in (4.21) as done in (4.23) to arrive at
_ Igsllg’|>> qf lgel?
em1( x B8l < B)p) e < > 4.24
<<x N, S 6[blle N, (4.24)
By a similar method, one can prove that
_ |88||g/1|>> 1 |g€|
e H( 22t ) < 6)|b| oo™ < > 4.2
<<x N, S 6lbll. N, (4.25)

Statement (c) follows then from (4.24), (4.25) and Proposition 4.3 (b). This con-
cludes the proof of Proposition 4.40

The next Proposition summarizes the conclusions of Proposition 4.4 in the form
that they are actually used below.

Proposition 4.5. Assume that the family of initial daGi" satisfies the boung#.1)
and the normalization&t.2). Thenwherny = x (v) is one of the collision invariants

1,v1, ... ,up, |v|? or a linear combination thereof with constant coefficients,
1 1 _ Q7 (e &)
N(1- E)xce) ang enify St
£< < Ng) X~8e X N.

both converge t® ase — 0in L>®(dt; L1(dx)).
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It remains to control the gain part of the collision integral (4.12). Instead of
proving directly that

£m71<x Q*(f]i, gs)> 50

ase — 0in L>®(dt; L1(dx)), we use the flat-sharp decompositionggfin the

gain term above and show in Proposition 4.6 below that all the resulting quadratic
expressions vanish in the limit as— 0, except for the one involving only sharp
terms, namely

83’"*1()( OT (%, tigs)>
N, '

However, this term happens to be nonnegative, a property which we use in Propo-
sition 4.8 below to prove eventually that it also vanishes in the limit as 0.

Proposition 4.6. Assume that the family of initial dataig" satisfies the boun@!.1)
and the normalizationgl.2). Thenwhery = yx (v) is one of the collision invariants
1,v1, ... ,up, |v|? or alinear combination thereof with constant coefficients,

em_l(x Q* (g, gs)> B ng_1<x Q* (%, ")

H 00 .7l
N 5 >—>o in L®(dr: L (dx)).

(4.26)

Proof. First, one has

5m71<X QJr(gss ge)) _ 8m71(x Q+(8m ﬁgm e nga)>
N, N,

bt b m g,/ b/ m by g,/
m—1 8e 81 m—1 €7 "8 81 m—1 € 8:78c1
= Se el o Oedel Z e Selll (427
‘ <<X N. >> e <<X N. » e <<X N. » @27

Then, in the case whepe(v) = 1+ |v|?, using the fact thaV, = 3 + 3G,

one has
X FAEA
N

v
WIN

A
100

S+ 1012+ a1 211 1)

M@+ 1012 + w11 el e 1)
31B0 Lo (x1 %2 1)?
311bll o (D? + 4D + 1)() %:12).

A NIA

Thus, ag — 0

8m—l<< bgé‘ bg; l>>
X
N

in L>®(dt; L1(dx)) by Proposition 4.3 (a).

< 31bllp(D? + 4D + De" (%) - 0 (4.28)
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By the same token

NI\
N¢ =

=

@+ 102 + To1lDe™ el 2L l)

3

2

@+ 1P+ [vi®e™ el e al))

@+ 1P + w11l < bl L+ D) (x| %gel),

where the penultimate inequality above rests on the estiffate.| < 3 inherited
from the bounds

Therefore, as — 0

Sm—l X " jgé %é 1
N

in L°(dr; LY(dx)) by Proposition 4.3 (b).

Estimates (4.28), (4.29) show that the first two terms on the right-hand side of
(4.27) converge to 0 i °°(dr; L1(dx)) ase — 0. The third term on the right-hand
side of (4.27) is accommodated as in (4.29), which completes the praof.

< 1Bl 1+ D)e" x| %) —> 0 (4.29)

4.4. The Limiting Local Conservation Laws

With the preparations contained in Propositions 4.4—4.7, we now state the propo-
sition upon which rest the proofs of Proposition 4.1 and 4.3. This proposition re-
moves the gap in the “formal proof” of the acoustic limit, namely the fact that
renormalized solutions of the Boltzmann equation do not in general satisfy either
the local conservation law of momentum or that of energy.

Proposition 4.7.Assume that the family of initial daGi" satisfies the boung#.1)
and the normalizationg4.2). Assume further that the family of fluctuatiogs
converges t@ in w*-L>®(dt; w-L1((1+ |[v|?)M dv dx)) ase — 0. Then

0r(xg) + Vi-{vxg) =0 (4.30)

wheny = x(v) is any one of the collision invariants v1, ... , |v|? or a linear
combination thereof with constant coefficients.

The key argument in the proof of Proposition 4.7 has beenisolated in Proposition
4.8 below.

Proposition 4.8.Assume that the family of initial daG" satisfies the boung#.1)
and the normalization&4.2). Then, ag — 0,

83m,1 Q+( tga, ﬁgs)

v — 0in LE(Ry: LY(1 + [v[?) Mdvdx)). (4.31)
&
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Although we have not been able to control the term appearing in (4.31) in the
same fashion as in Section 4.4, it so happens that this term is nonnegative and would
contribute an unphysical growth of energy were it not vanishingly small in the limit
ase — 0.

Proof of Proposition 4.8.Choose anyi’ > 0 and sety (v) = 1+ |v|? in (4.10).
Integrating (4.10) ovef0, 7] x T and reshuffling the terms leads to

T 3m—-1+t i
/ /<x8 Q" (%ge, gs)>dxdt
0 Ns

=t S [ [((a ) rewasa

I e R e |

4 [ f (ye(T)) dx — / (xyg(0)>dx]~ (4.32)

On the right-hand side of (4.32), the first two integrals converge tos0-as0 by
Proposition 4.5 while the third integral converges to 0 by Proposition 4.6. The last
term between brackets on the right-hand side of (4.32) can be recast as

/(XVS(T))d-x - /(Xya(o))dx
= /(X[VS(T) —8:(D))dx — /(X[Vs(o) — g dx
+ sim [f(ng(T))dx — /(XG,;(O))dxi| . (4.33)

On the right-hand side of (4.33), the two first integrals converge tos0-as0 by
Proposition 4.3 (d), while the term between brackets is nonpositive by the energy
inequality (3.8). Therefore

T e3m=10% (%, %)
limsu . dx dt
pfo f(x N, > o

e—0

. (4.34)
= limsup— [/(XGg(T))dx - /(XGE(O)) dx] <0.

e—0

Butthe integrand on the left-hand side of (4.34) is nonnegative, because the collision
cross-section entering the definition@f" is nonnegative (1.6) while the functions

%e. in the decomposition (4.8) also are nonnegative. Therefore the inequality (4.34)
implies the convergence (4.31)0

With this last preparation, the proof of Proposition 4.7 is a mere formality.
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Proof of Proposition 4.7.Write (4.10) in the form

O (xve) + V- (vxye) = ;L< (1— i) Xﬁgg> _gm 1<X Qi(ga,gs)>

N N,
+ +t it 3m71 +(t i
m—1 Q7 (ge» &) _ 3m-1 Q" ("ge, "ge) O™ ("ge, "ge)
+ [‘9 (X N, > ¢ <X N, > +<X N. >
(4.35)
wherex = x(v) is any one of the collision invariants #, ... ,up or |v|2. The
left-hand side of (4.35) converges to
9 (xg) + Vi-(vxg) (4.36)

in DR x RP) ase — 0 by Proposition 4.3(e). The first two terms on the right-
hand S|de of (4.35) converge to 0AR°(dt; L1(dx)) ase — 0 by Proposmon 4.5.
The third term on the right-hand side of (4.35) converges to D°fdr; L1(dx))

ase — 0 by Proposition 4.6. Finally, the last term on the right-hand side of
(4.35) converges to 0 |ﬂ|oc(dt; L(dx)) ase — 0 by Proposition 4.8. Thus, the
expression (4.36) is 0, which establishes Proposition 4.

4.5. Proof of Proposition 4.1

It follows from Proposition 3.2 (a) that the family, is relatively compact in
IOC(dt w-L1((1 + |v|?)M dv dx)). Again by Proposition 3.2 (a) and Proposi-
t|on 4.3 (d), the family of moments

(¥e)s (¥e), (B (W12 = D)ye)) (4.37)

is boundedirL > (dr; L1(dx)). The system (4.30) and Proposition 4.3 (c) imply that
the family (4.37) is also bounded ¥ 1> ([0, oco); W—11(TP)). By Proposition
3.2(b) and Ascoli’s theorem in the form stated in Appendix C of [20] as Lemma
C.1, the family (4.37) is relatively compact@x[0, oo); w-L1(dx; Rx RP? x R)).

This and Proposition 4.3 (d) show that the family of moments

((ge)s (vge), (& (V12— D)ge)) (4.38)

is relatively compact i ([0, 0o); w-L1(dx)). Letg be alimit point ofg, ase — 0

and lets,, — 0 define a subsequengg, — g asn — +o00. By Proposition 4.7,

g must satisfy the system of moment equations (4.30). By Proposition 3 2i&),

a local infinitesimal Maxwellian of the form (4.4). Substituting the form (4.4) into
the local conservation laws (4.30) shows that the paramétetrs 6) of g must
satisfy the system of acoustics (1.9) — this being the essence of the formal proof of
the acoustic limit in Section 2. Finally, the subsequence

({8e,)» (v8e,)s (F (V[P = D)ge,)) — (o, u, 0)

in C([0, 00); w-L1(dx)). That this convergence is uniform locally ine [0, co)
implies in particular that

((gM), (vgM), (£ (vI? = D)gM) — (o, u, 00
in w-L1(dx), which establishes the initial data (4.5)x



The Acoustic Limit for the Boltzmann Equation 203

5. Conclusions

Propositions 4.1 and 4.2 are very likely the optimal formulations of the acoustic
limit of the Boltzmann equation, save for assumptions (A1) and (A2). Both assump-
tions (A1) and (A2) reflect the fact that our results use the entropy inequality (3.14)
to propagate the entropy bound (3.9) to any positive time, thereby neglecting the
bound on the entropy dissipation ratéG.) provided by (3.14). We therefore feel
that these assumptions are of a purely technical nature. Indeed, (Al) requires that
m > 1 while the formal derivation (Proposition 2.1) allows for every> O.
Likewise, (A2) excludes the natural case of a hard-sphere gas (see [13]) or more
generally that of cutoff potentials harder than that for Maxwell molecules (see
[12, Chapter 11.4, 5]). Possibly both (A1) and (A2) could be dispensed with by an
appropriate use of the bound on the entropy dissipation estimate (3.14).
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