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The authors introduce a model of skill acquisition that incorporates elements of both traditional models

and models based on embedded cognition by striking a balance between top-down and bottom-up control.

A knowledge representation is used in which pre- and postconditions are attached to actions. This model

captures improved performance due to learning not only in terms of shorter solution times and lower error

rates during the task but also in an increased flexibility to solve similar problems and robustness against

unexpected events. In 3 experiments using a complex aviation task, the authors contrasted instructions

that explicitly stated pre- and postconditions with conventional instructions that did not. The instructions

with pre- and postconditions led to better and more robust performance than other instructions, especially

on problems that required transfer. The parameters of the model were estimated to obtain a quantitative

fit of the results of Experiment 1, which was then successfully used to predict the results of Experiments

2 and 3.
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Humans have the remarkable ability to acquire almost any skill

given suitable instructions and practice. Models of skill acquisition

(Anderson, 1982, 1987; Logan, 1988; Newell & Rosenbloom,

1981) have mainly focused on two aspects of skill acquisition:

improvement in speed and reduction of errors. Despite the focus on

speed and reduction of error, expertise, which can be considered

the end product of skill acquisition, is associated not only with

speed and accuracy but also with flexibility and robustness (e.g.,

Chi, 2006). Flexibility refers to the ability to apply a skill to new

problems that are different from the problems that served as the

basis for training. Robustness is associated with the ability to

protect skilled performance from various disturbances, including

unexpected events, interruptions, or changing demands. Distur-

bances can also have internal causes, like forgetting what to do

next or making an error, and robustness, in the context of the

present article, also includes recovery from errors and handling

situations if part of the task knowledge has been forgotten. Ro-

bustness finally includes the ability to perform a skill in parallel

with other tasks, without any obvious need for complex strategies

to schedule resources between multiple tasks. The goal of this

article was to discuss a model that can explain the improvement in

speed and the reduction in errors, but also explain why flexibility

and robustness improve with practice. The key to understanding

this improvement is to assume that cognitive task control has both

an internal or top-down component, and an external or bottom-up

component. The bottom-up component is crucial to enable the

model to adapt quickly to changes in the task environment without

needing extra knowledge or inference capabilities. The learning

process involves discovering the right knowledge structures to

support optimal control and then optimizing these structures for

fast performance.

Overview of Models of Skill Acquisition and Skilled

Performance

Traditional Models of Skill Acquisition

Although many models of skill acquisition have been proposed,

most of them share a mechanism in which the model starts with

general knowledge and, through experience, gains more special-

ized knowledge (Anderson, 1987; Crossman, 1959; Fitts, 1964;

Fitts & Posner, 1967). This specialized knowledge has the advan-

tage of faster memory access and, assuming the specialized knowl-

edge is correct, a reduction in errors.

Logan’s (1988) instance theory assumes people start out with a

general-purpose algorithm to solve the problem. Each correct

solution is stored as an instance in memory. For each new problem,

there is a potential race between instances in memory and the

general-purpose algorithm: Whichever produces the answer first

wins and determines the action. Instance retrieval is generally

faster than the algorithm, which explains the speedup in perfor-

mance as instances accumulate.

Newell and Rosenbloom’s (1981) chunking mechanism ex-

plains skill acquisition by specializing general problem-solving

strategies. The model starts out with a general strategy to solve the

problem, which may entail setting subgoals to solve partial prob-

lems. Whenever a partial problem is solved, a new production, or

chunk, is created, which can solve a partial problem for that

specific case on future occasions. An even more fine-grained

version of this idea is used in the ACT-R architecture (Anderson,
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2007; Anderson et al., 2004). ACT-R uses productions to represent

skilled knowledge, which are knowledge structures that map goals,

results of memory retrieval, and perceptual input onto actions.1

ACT-R has a learning mechanism called production compilation

(Taatgen & Anderson, 2002), which combines any two produc-

tions that have been used in sequence into one new production.

Any memory access is substituted into the new production, essen-

tially making it a specialization of the original productions.

Despite many differences in details, the three models have a

similar account of the general characteristics of skill acquisition:

They all assume an initial general strategy that can solve the

problem, and they all explain the speedup in performance and the

reduction in errors by specialization and more efficient use of that

strategy. The main difference is the grain size of specialization: In

instance theory, it is the problem as a whole; in chunking, it is at

the level of individual subtasks (which can include several steps),

and in production compilation, it is the level of individual steps in

problem solving.

Characteristic of all three models is a stress on the internal

representation of knowledge to perform the task. This knowledge

determines the next action, or it can be used to plan ahead multiple

actions. None of the three models addresses robustness and flex-

ibility directly: The nature of the learning process implies special-

ization, which generally means that the learned knowledge cannot

be used for cases that have not been seen before. All three models

do have some means to infuse the specialization process with some

generalization, which can potentially help increasing flexibility. In

instance theory, a similar but not identical instance can be retrieved

and applied to the present situation (Lebiere, Wallach, & Taatgen,

1998); in chunking, a constant can be replaced by a variable

(Newell, 1990), and in production compilation, the general strat-

egy of analogy can be specialized to achieve generalization (Ta-

atgen & Anderson, 2002). Although generalization can improve

flexibility because it helps cover more situations, it can also lead

to overgeneralization, which leads to the choice of inappropriate

actions that reduce robustness instead of improving it.

Embedded Models of Skill Acquisition

A different view of skilled performance can be found in theories

of embedded cognition (e.g., Clark, 1997). These theories stress

that intelligent behavior, including skilled performance, cannot be

studied without acknowledging the impact of interaction with the

world. Brooks’s (1991) work in robotics exemplifies this notion:

Whereas early robotics work focused on the robot planning future

actions on the basis of a task representation (e.g., Fikes & Nilsson,

1971), Brooks’s robots had no plan or representation of a plan.

Instead the robot’s behavior was directly controlled through its

perceptual system. For example, if the robot’s sensors would

perceive an object in the robot’s path, then these percepts would

lead directly to motor actions that would avoid the object without

any elaborate intervening planning steps. This new architecture

made the robot’s behavior much more robust because it automat-

ically corrected errors in the robots trajectory, was able to handle

unknown obstacles in the robot’s path, and made it possible to put

the robot in an unknown environment.

Evidence that a tight coupling between perception and action is

also evident in human behavior can be found in Prinz’s (1997)

work on the relation between perception and action planning. He

found that when the coding of a percept can stimulate the code for

an action directly (e.g., responding by moving the hand to the left

button when a target on the screen moves left), response times are

much faster than when this is not the case. More direct evidence

has been found in monkey research, in which single-cell record-

ings of the visual cortex and the part of the motor cortex that

involves eye movements show that regions corresponding to can-

didate eye movements are activated almost directly by visual

stimuli in the corresponding field of view (Roelfsema, Lamme, &

Spekreijse, 1998).

A property that these approaches share is that the world itself, or

a relatively straightforward encoding of the world, is the main

drive for determining actions. Glenberg and Robertson (1999)

have shown that making connections between instructions and

perceptual input is important for a proper understanding: In an

experiment in which people were instructed to use a compass, one

group received just instructions, and the other received instructions

in which key terms in the instructions were linked to a picture of

the compass. The opportunity to link instructions to perceptual

input proved to lead to better performance. Kirsh (1995) argued

that people actually tend to organize the world around them to

facilitate their performance. For example, in the game of Tetris,

expert players rotate pieces physically (by pressing keys) rather

than mentally because physical rotation is faster than mental

rotation (Kirsh & Maglio, 1994). Similar observations, but in the

domain of aviation and other contexts, have been made by

Hutchins (1995).

The Role of Cognitive Control and Task Representation in

Skill Acquisition

The embedded cognition theories of skilled performance pro-

vide what is lacking in the traditional approaches: explanations of

why skills are robust to unexpected changes in the environment or

changes in the task. However, the direct connection between

perception and action in the embedded approach makes it hard to

give it instructions for a new task and see how these instructions

are developed into a robust skill (although some systems permit

training the system from the bottom up, e.g., Botvinick & Plaut,

2004). The key to a theory that explains both the taskability that

traditional theories provide and the robustness that embedded

theories offer is to analyze why the former leads to brittle skills

and the latter to robust skills.

Traditional models of complex task performance structure the

knowledge for the task in a sequence of steps, each of which leads

to an action. To properly sequence the steps, the model maintains

some sort of internal control state that is used to determine the next

step. This leads to an organization of knowledge in lists, or, in the

case of complex tasks, a hierarchy of lists (e.g., Card, Moran, &

Newell, 1983), and to models that base their actions primarily on

an internal representation of the world. Aligning the internal rep-

resentation with the real world requires additional actions and

knowledge. The alternative used in embedded models is only to

map what is perceived onto actions, which is a much more simple

1 Although productions are also often referred to as rules, we avoid the

term here because ACT-R’s productions lack many properties usually

associated with rules.

549ROBUST AND FLEXIBLE SKILLS



mapping. This simplicity means that it is much more likely that the

available knowledge will cover all possible situations.

An illustration of this is Larkin’s (1989) example of making

coffee. When analyzed in detail, making coffee turns out to be a

complicated task that consists of many mutually dependent steps.

A traditional model would call for an internal representation that

keeps track of the state of the coffee machine (i.e., Is there water

in the reservoir, coffee in the grinder? Is the lid on the pot? etc.)

and uses planning to determine the appropriate next action. This

planning process can break down if certain things in the world are

not consistent with the internal state. For example, if the coffee

reservoir is already full when the model wants to fill it, then it does

not know what to do. Larkin observed that people are able to

navigate through these steps almost without effort, and are also

able to adapt their plan on the fly. The key observation she made

is that individual steps are not triggered by a planning process but

rather by conditions that can be perceived in the world, for exam-

ple, an empty filter holder cues placing a filter in it. Informal

investigation of errors people make in preparing coffee revealed

that errors are often related to aspects of the task that cannot be

observed directly, for example, forgetting to fill an opaque water

reservoir. We suggest that people do not mentally organize the

steps required to make coffee as a list. Instead, the conditions

under which a step can be carried out play an important role in

organizing knowledge and selecting the next steps. For example,

the step to put ground coffee in the filter is not triggered by the

previous step of grinding coffee but by the fact that there is an

empty filter in the holder, and ground coffee in the grinder. Many

of these conditions can be perceived, whereas others have to be

remembered (e.g., whether the opaque container has been filled).

This view of planning is consistent with the embedded theory of

skilled behavior. It also is consistent with the more applied work

of Norman (1988), whose numerous examples illustrate that per-

ceived affordances, actions that the current environment allows,

are the main determiner of action selection and errors if the

environment is poorly designed. Studies of eye movements when

making tea (Land, Mennie, & Rusted, 1999) and sandwiches

(Hayhoe, Shrivastava, Mruczek, & Pelz, 2003) show that people

repeatedly sample the environment and exhibit a tight interaction

between perceptual and motor actions, evidence against internal

representations and explicit planning. Agre and Shrager (1990)

have studied how people get faster when using a photocopier. They

showed that this can be attributed to the fact that people learn to

use perceptual cues to key their next action. For example, when the

light of the photocopier has flashed, the original can be turned to

the next page: It is not necessary to wait for the copy.

Although the embedded theories seem to offer a better expla-

nation for skilled behavior, they have two shortcomings. A first

shortcoming is that sometimes not all the information is available

in the world, making it necessary to maintain some mental repre-

sentation after all. The solution we propose to this problem is to

maintain an internal representation, but only change it when

strictly necessary, a principle called the minimal control principle

(Taatgen, 2005, 2007). This means that control is derived from the

environment, or bottom-up, as much as possible, and that top-

down control, derived from an internal state or representation, is

used only when necessary. The second shortcoming of embedded

theories is that it is not evident how the relatively direct coupling

between perception and action can be learned in cases in which the

learning is partially based on instruction and not just on direct

experience. The solution we propose for this is slightly more

elaborate. The idea is that the direct coupling between perception

and action is the result of a learning process that starts by retriev-

ing task knowledge from memory. This knowledge is not struc-

tured in a hierarchy but is cued by the environment. For example,

a novice at making coffee may have read in the instructions of the

coffee maker to put the lid on the carafe before switching on the

machine. The lid can therefore serve as a cue to retrieve the

appropriate action from memory. If the lid would be out of sight

for some reason, then the novice might forget to put it onto the

carafe. The transformation of the memory retrieval process to a

process that links perception (and internal state) to action directly

is carried out by the production compilation mechanism (Taatgen

& Anderson, 2002). This mechanism, which we discuss in detail in

the Learning section, replaces the memory retrieval process by a

direct perception/action mapping.

In order for perception to cue relevant actions, actions need to be

augmented by a representation of what is perceived when the

action is applicable. We take this idea a step further and also add

to each action a representation of its expected outcome. Encoding

task knowledge in terms of precondition-action-outcome triples

results in what we call an operator representation because of its

similarity to representations used in artificial intelligence (AI;

Stanford Research Institute Problem Solver (STRIPS) operators,

Fikes & Nilsson, 1971) and in the early work of Newell and Simon

(1963). Although STRIPS has also been used to control a robot,

most of the earlier AI systems matched preconditions only to an

internal representation of the problem, giving rise to the criticism

that they only modeled cognition “in the head.” In our approach,

the preconditions of an operator can be matched to both internal

states and to what is perceived in the world. However, matching

the precondition to conditions in the world produces behavior with

maximal flexibility.

To summarize, our theory of skills acquisition consists of a set

of components. The first component is the operator representation

of task knowledge, in which recall of the relevant knowledge is

mainly driven by perceptual input. The second component is the

principle of minimal control that specifies that the task represen-

tation should have a control structure that is as small as possible.

The third component is the production compilation mechanism

that gradually transforms memory retrieval of task knowledge into

direct perception–action mappings. In the present article, we make

these three components explicit in a model of skill acquisition that

we apply to a complex task. This model aims to explain how

missing knowledge is filled in, how problems that do not match the

instructions exactly can nevertheless be solved, and how partially

completed problems and error states can be handled.

To test the model, we conducted three experiments using a

complex task. To test the assumptions of the operator representa-

tion, we constructed two instruction sets (or, in the case of Exper-

iment 3, four instruction sets). One of the instruction sets, which

we call the list instructions, only lists the actions that have to be

taken, whereas the other set, the context instructions, also makes

the pre- and postconditions of actions explicit. If people indeed use

an operator representation, then adding pre- and postconditions

should have a substantial benefit, more than other additions to the

action list (which we explore in Experiment 3).
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The Task Domain: Flight Management Systems

The task used in all experiments was derived from automation in

modern airplanes. Many passenger airplanes use flight manage-

ment systems (FMS) to help pilots control the airplane. On a

routine flight, the FMS can perform almost the whole flight with

the exception of take off and landing. The task of the pilot is to

supply the FMS with the right information and parameters (e.g.,

the load of the plane, and, most importantly, the route it has to fly)

to do its job. This route consists of a list of waypoints that the plane

has to follow from the source to the destination airport. Waypoints

are sometimes specific radio beacons, but they are often just points

on the map with particular coordinates. Although the route in the

FMS has both a vertical and a lateral component, the task focuses

on the lateral part of the task, which is not unlike the kind of routes

that are produced by route planning services for cars.

Interacting with the FMS is typically taught as part of the pilots’

supplementary training when they start flying a plane that has an

FMS. Training consists of a phase in which procedures on the FMS

are learned in the classroom, followed by a phase in which they are

applied in a simulator. Procedures are specified as lists of steps to

carry out. Although 102 different procedures have been identified

for the Boeing 777 FMS (the system we used for our experiments),

knowledge of only around 25 procedures is needed for FAA

certification, and therefore the training focuses on those proce-

dures. The idea behind this is that the pilots can study and/or

discover the remaining procedures on their own. Experience from

training itself shows, however, that it is very hard for pilots to learn

the required procedures, let alone discover any new procedures

(Sherry, Polson, Fennell, & Feary, 2002). Memorizing the proce-

dures during the classroom phase of training turns out to be so hard

that it is virtually useless for the second phase of training in the

simulator. Pilots’ troubles include problems with forgetting par-

ticular steps in a procedure, not knowing how to pick up a partially

completed procedure, and poor generalization. For example, the

procedure to fly toward a waypoint at a certain heading is identical

to the procedure needed to land the plane (which involves ap-

proaching the end of the runway at a certain heading), but pilots

have great trouble executing the former while having no problems

with the latter. Fennell, Sherry, Roberts, and Feary (2006) catego-

rized steps in procedures as recall or recognition. Recognition

steps were steps that had cues in the environment, for example, a

label on a key or a line of text on the screen, whereas recall steps

had no perceptual cues. In an experiment with pilots new to the

FMS, researchers found that if a procedure had no recall steps, but

only recognition steps, then the error rate was 6%; if it had one

recall step, then it was 13%; and if it had two recall steps, then it

was 74%. This indicates that steps that cannot be inferred from the

interface are the main source of errors, which is another indication

that people’s internal representation of instructions tends to be

triggered by external events.

The FMS task is a very suitable task for exploring flexibility and

robustness because the starting point is a training system that, for

many pilots, leads to overspecialized, inflexible and brittle skills.

From the perspective of our minimal control principle, this is

perfectly understandable: If instructions are learned as lists of

steps, then the individual steps cannot be related to the current

environment, and therefore cognitive control has to be completely

internalized.

General Task Description for All Experiments

For the purposes of the experiments, we chose two FMS pro-

cedures participants had to learn and carry out. Both procedures

are part of lateral navigation. Lateral navigation involves planning

and modifying routes. A route is a sequence of waypoints (points

on the map) that the plane will follow and is typically programmed

into the FMS before the flight starts. However, the route is often

changed during the flight. A possible reason for such a change is

that when traffic is light, air traffic control allows the plane to skip

a few waypoints and fly directly to a waypoint further in the flight

plan. The procedure to make this modification is called direct-to.

Another reason for changes in the flight plan is bad weather. This

sometimes requires the pilot to change his heading to a new

waypoint that was not previously on the flight plan and proceed

with the flight plan after that new waypoint. This change requires

two procedures: the direct-to procedure to change the waypoint

that the plane is currently heading for and the remove-discontinuity

procedure, which tells the FMS how to connect the newly entered

waypoint to the rest of the flight plan.

Participants had to carry out route modifications on a simulated

FMS, consisting of a keyboard to enter information into the

scratchpad, a display listing part of the current route, a naviga-

tional display showing a map with waypoints and the current route,

and a pane that shows the current task (see Figure 1). The main

difference between the simulation and a real FMS was that par-

ticipants had to operate the keyboard by clicking on the keys with

the mouse. In the real airplane, the navigational display and the

FMS are not next to each other but require a larger eye and

possibly head movement. For the purposes of the experiments, this

only changes some of the perceptual motor characteristics of the

task, which are not the object of the study.

In Experiments 1 and 2, there were two conditions for the

instruction of the procedures: “list procedures” and “context

procedures.” List procedures, consisting of numbered lists of

steps, were adapted from the United Airlines training program.

The context procedures instructed participants on not only the

steps that they had to take but also the conditions for carrying

out a step, and what its result was. Table 1 lists both procedures

in both styles. Each of the experiments consists of series of

problems that participants have to solve, that is, directives of air

traffic control that have to be entered in the FMS. Figure 2

illustrates how the direct-to procedure is carried out. In some of

the problems, the learned procedures could be carried out

literally, but in some more complicated problems, participants

had to make modifications to make it work. Given that the

context instructions are closer to what we hypothesize as the

internal representation of the task, we expected participants to

be faster and more accurate after receiving the context instruc-

tions than after the list instructions. We also expected that, in

particular, accuracy would be higher in the context condition

for problems that were more complex and that require partici-

pants to go beyond what was given in the instructions. Finally,

we expected participants in the list instruction to carry out every

step in the instructions, even if they were not necessary, but that

the participants in the context condition would more readily

skip such steps.
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Experiment 1

Method

Participants. Thirty-one students from Carnegie Mellon Uni-

versity were paid for participation in the experiment (15 in the list

condition, and 16 in the context condition).

Procedure. Participants first read through the general back-

ground information of the FMS task. They then started with a

series of warm-up trials that taught them how to operate the FMS

interface. These warm-up trials, taking about 10 min, consisted of

typing in text on the keyboard, copying text from a line on the

FMS to the scratchpad, and copying text from the scratchpad to a

line. All of the text on the display during the warm-up was

unrelated to the real FMS task. Participants then studied the

direct-to and remove-discontinuity procedures for 5 min for the

condition that they were in.

The experiment proper consisted of three main blocks of trials,

each consisting of 12 problems. The first three problems in each

block were problems for which the direct-to procedure could

literally be applied (easy problems). The second set of three

problems consisted of problems in which a new waypoint had to be

entered, making it necessary to apply both the direct-to and the

resolve-discontinuity procedure (medium problems). Each of the

final six problems in a block contained some complication, making

it impossible to apply the procedures literally (hard problems).

These complications were one, or a combination of the following:

One of the waypoints referred to in the problem would not be

on the page visible in the FMS. Participants had to use the

page-up/down keys to find them. Although the function of

these keys was explained in the general background, they

were not part of the procedures.

Figure 1. The flight management system (FMS) experiment. The left of the display shows the keyboard and

displays contents of the actual FMS unit, together with a button to either quit or indicate that the task is

completed. The top right of the display shows the navigational display that can be used to verify the route. The

bottom right of the display shows the current problem and will display feedback after the participant has pressed

finish. The rectangles left and right of the FMS display are also keys, called line keys. The keys to the left of

the display are named 1L–6L, and the keys to the right are 1R–6R. The bottom line on the FMS display is called

the scratchpad (which is empty in the figure). Text typed on the keyboard will appear in the scratchpad and can

be transferred to a line in the display by pushing a line key. For example, typing “BOYDD,” which is one of

the waypoints on the map, puts BOYDD in the scratchpad. Pushing the 1L key would then put BOYDD next to

the 1L key on the display, replacing ALICE. An alternative method to put text in the scratchpad is by pushing

one of the line keys. For example, pushing the 1L key copies ALICE into the scratchpad. The LEGS page, which

is currently displayed, lists the current route the plane is taking, starting with a list of waypoints consisting of

ALICE, BOYDD, CONEE, BAETT, and AYMAN and continues on two more pages. The Navigation Display

on the top right shows a graphical version of the route. The triangle represents the current position of the plane

with a line connecting the upcoming waypoints.
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The waypoint to be modified was not the waypoint that the

airplane was currently flying toward, but one later in the flight

plan. This was not covered by the procedures and required

some generalization.

Half of the hard problems only required using the direct-to proce-

dure; the other half required both procedures. Although the problems

were presented in a fixed order of difficulty within a block (3 easy, 3

medium, 6 hard), the problems within a category of difficulty were

assigned randomly (e.g., there were 9 easy problems overall, and they

were randomly assigned to a block and a position within the easy

problem slots of a block). The whole experiment lasted approximately

1 hr. Once the main phase of the experiment had started, participants

were not allowed to refer back to the instructions. If participants were

Table 1

Instructions in the List and in the Context Condition

List condition Context condition

Direct-to: Getting to the LEGS page
1. Press the LEGS key.
2. Enter the desired waypoint in the scratchpad.
3. Push the 1L key.
4. If the word “discontinuity” appears on the screen,

follow the procedure to remove discontinuities.
5. Verify the route on the Navigational Display.
6. Press EXEC.

You can see what page you are on by looking at the top line of the window. If the word
“LEGS” is on that line, then you are on a LEGS page.

If you want to change the route and you are not yet on the LEGS page, then press the
LEGS key in order to go to the LEGS page.

How to modify a waypoint
The item in line 1 on the first LEGS page, displayed in magenta, is the waypoint you

are currently flying to.
You can change this item, by pressing the line key next to it.
If you want to modify a waypoint, you enter the waypoint to replace it with into the

scratchpad, and then press the line key corresponding to the waypoint you want to
modify.

How to confirm your results
Use the NAV display to view the results of your modification. When you are satisfied

with a modification, you can press the EXEC key to make it permanent.
Remove-discontinuity: Discontinuities in the route

1. Press the LEGS key.
2. Press the line select key after the discontinuity.
3. Press the line key with the THEN prompt.
4. Press EXEC.

When the text “Route discontinuity” appears on the LEGS page, the route should be
made continuous. In order to make the route continuous, two points on the route have
to be reconnected. The LEGS page will show the last connected waypoint followed
by “THEN” and a line with boxes. Enter the waypoint that you want to fly to after
the last connected waypoint on that line.

Figure 2. Simplified display of the direct-to procedure based on Figure 1. This example assumes air traffic

control has given the directive to proceed directly to BAETT and that the flight management system (FMS) is

initially not on the LEGS page. Pressing the LEGS key brings it to the LEGS page, showing BAETT as the fourth

waypoint in the flight plan. Pressing the 4L key, which is next to BAETT, brings it to the scratchpad (the bottom

line on the display). Pressing 1L will put it in the top line of the flight plan as a modification (indicated by

white-on-black shading). The next step is to verify that the modification is what was intended. The navigational

display (ND) indeed shows a dotted line from the airplane (the triangle) directly to BAETT. Finally, the EXEC

key is pushed, making the modification final.
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unable to solve the first problem, then the experimenter would reit-

erate the relevant part of the procedure to help them. No help was

offered at any later time in the experiment.

Results

Figure 3 shows the proportion correct for each problem in the two

conditions. The average correctness is 77.0% in the list condition and

91.1% in the context condition. An analysis of variance (ANOVA),

with block and problem difficulty as within-subject factors, condition

as the between-subject factor, and subject as a random factor, showed

a main effect of condition, F(1, 29) �7.09, MSE � 1.85, p � .014; a

main effect of block number, F(1, 29) �56.1, MSE � 2.01, p � .001;

and a main effect of problem difficulty, F(2, 58) �7.12, MSE � 0.42,

p � .002. Furthermore, there was an interaction between condition

and block, F(1, 29) � 6.7, MSE � 0.24, p � .015; an interaction

between block and problem difficulty, F(2, 58) �6.6, MSE � 0.28,

p � .003; an interaction between condition and problem difficulty,

F(2, 58) �3.43, MSE � 0.20, p � .039; and no three-way interaction.

This indicates that correctness was significantly lower in the list

condition and that there was substantial learning between blocks. The

interaction between condition and problem difficulty indicates the

instruction type had different effects on accuracy for different levels

of difficulty. Welch t tests comparing the two conditions for each type

of problem revealed that the difference can mainly be explained by

the hard problems: For the easy problems, there was no significant

difference in difficulty (list condition: 90.4% accuracy; context con-

dition: 93.8% accuracy), t(28.8) � 1.15, p � .26; for the medium

problems, the difference approached significance (list condition:

77.0% accuracy; context condition: 91.0% accuracy), t(18.9) �1.99,

p � .062, whereas for the hard problems, the difference was very clear

(list condition: 70.4% accuracy; context condition: 89.9% accuracy),

t(17.9) � 2.6, p � .018. These results confirm our prediction that the

benefit of context instructions would be stronger in those problems

that required participants to go beyond the actual procedures in-

structed. Nevertheless, the context instructions also provide a benefit

for the medium problems. The model that we discuss in the A Model

of Learning From Instructions section explains this by assuming that

participants sometimes forget some of the instructions and that con-

text instructions are better at enabling recovery from forgetting.

The average solution time for correctly solved problems in the list

condition is 28.7 s; in the context condition, it is 24.8 s. An ANOVA

of the log solution times of correctly solved problems, with block as

the within subject-factor, condition and problem difficulty as

between-subject factors, and subjects as the random factor, showed a

main effect of condition, F(1, 29) �5.85, MSE � 3.91, p � .022; a

main effect of block, F(1, 29) �231.9, MSE � 35.8, p � .001; and a

main effect of problem difficulty, F(2, 58) �130.9, MSE � 10.5, p �

.001. In addition, there was an interaction between block and problem

difficulty, F(2, 58) � 31.7, MSE � 4.48, p � .001, but no other

interactions. Figure 4 shows the average solution times for the correct

trials in both conditions. Unlike accuracy, there is no interaction

between instruction and problem difficulty for latency, and, as we will

see, this is a prediction of our model.

A Model of Learning From Instructions

In the introduction, we made a case that people internally use an

operator representation for task knowledge and instructions. The

first experiment gives qualitative support for this representation.

We want to take this one step further and supply quantitative

support by providing a simulation model that fits accuracies and

solution times in detail. The advantage of this model over a purely

verbal account is that it can be used to make quantitative predic-

tions for new experiments in the same domain and can serve as a

basis for models that make predictions in other domains. We

indeed use the model to make predictions for Experiments 2 and

3,2 in which the same instructions are given, but additional prob-

lems have to be solved.

The general approach is to have a single model that can take two

representations of instructions, list and context. The model has

been built in ACT-R (Anderson, 2007; Anderson et al., 2004) and

2 The model of the experiment is available for downloading from the

ACT-R models page at http://act-r.psy.cmu.edu/models
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Figure 3. Proportion correct for all the 36 problems in the two conditions,

which are divided in three blocks (marked by vertical dashed lines) with three

levels of difficulty each (marked by vertical dotted lines). Circles are the

empirical data with standard error bars, and the dotted line with crosses is the

model fit, which is discussed in the Model Fits section. med. � medium.
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is a further development of our work on learning from instructions

(Anderson, Taatgen, & Byrne, 2005; Taatgen, 2005; Taatgen &

Lee, 2003).

The ACT-R Architecture

One of the basic assumptions of the ACT-R architecture is that

there are two long-term memories: declarative memory and pro-

cedural memory. Declarative memory is used to store facts and

experiences and is basically passive: It retrieves memories upon

request. Procedural memory contains condition–action patterns

and productions, which map internal and external states onto

actions. These productions play an active role because as soon as

the production’s conditions are fulfilled, it triggers an action (as-

suming it wins the competition with other productions whose

conditions are also fulfilled). Figure 5 shows an overview of the

architecture, with procedural memory as the central component,

surrounded by modules that are either part of internal cognitive

processing or communicate with the outside world. Although

procedural memory is the central component, its scope is limited:

It can only access the end product of processing in the modules as

made available in buffers. For example, productions cannot match

any arbitrary fact in declarative memory but, instead, only the fact

that is present in declarative memory’s buffer. Buffers therefore

serve the role of communication ports between the different com-

ponents of the cognitive system. Procedural memory is a fast

system because it can select actions on the basis of input in 50 ms.

It therefore supports an almost direct coupling between perception

and action, assuming the right production is in memory to make

the mapping.

We do not discuss all the details of the ACT-R architecture here

but focus on the mechanisms in the architecture that are important

for the model and discuss them along with the main features of the

model.

Representation of Instructions

Although many models based on productions (in ACT-R, but

also other architectures) start with a task representation in the form

of a set of productions, this is not a plausible account of how new

skills are acquired. As was already pointed out in early work with

ACT-R’s predecessor, the ACT* (Anderson, 1982), it is much

more likely that instructions for a new task are first stored in

declarative memory. These instructions are retrieved step by step

by productions and are then interpreted and carried out by other

productions.

A main problem in the interpretation process is finding the

appropriate next step to be carried out in memory. As pointed out

in the introduction, the easiest way to decide this is to make the

individual steps of an instruction into a list and retrieve and

perform these steps in order. The alternative, which we used in this

article, is to use preconditions to determine what step to do next,

what was the basis for context instructions. This representation is

augmented with a postcondition that specifies the expected out-

come of a step.
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Figure 4. Average solution times for correctly solved problems for all 36

problems in the two conditions, which are divided in three blocks (marked

by vertical dashed lines) with three levels of difficulty each (marked by

vertical dotted lines). Circles are the empirical data with standard error

bars, and the dotted line with crosses is the model fit, which is discussed

in the Model Fits section. med. � medium.
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In order to use the same model for both conditions of the

experiment, we used a representation of instructions that contains

a precondition, an action, and a postcondition. In case of the list

instructions, the pre- and postconditions are symbols whose only

purpose is to link the instructions together in a list. In the context

condition, the pre- and postconditions are representations that can

be matched to the state of the world. Table 2 lists the representa-

tions for the two conditions. As an example, the list-condition

representation specifies “Direct 1” as a precondition for the action

to type the destination (the second line in Table 2). This means that

the internal state has to be “Direct 1” in order to carry out this

action. The “Press LEGS” action, on the first line in the table, is an

action that sets the state to “Direct 1.” In other words, the cue to

type the destination is the internal state that is reached after

pressing the LEGS key. The context-condition representation spec-

ifies “On LEGS page” as a precondition for typing the destination

and refers to an external instead of an internal state. This means

that typing the destination in this representation is cued by the

perceptual cue of being on the LEGS page.

The Basic Decision Cycle

Figure 6 illustrates the basic decision cycle of the model. In the

first step, the model perceives the current state of the environment,

in this case, the state of the FMS, producing the perceived state.

Besides a perceived state, there is also an expected state, which is

set to the postcondition of the previous operator (the value is

initially set to START). On the basis of both the perceived and

expected state, an operator is retrieved from declarative memory.

This retrieval is based on ACT-R’s memory activation: The oper-

ator with the highest activation will be retrieved (see Anderson,

2007, for the details). For the purpose of this model, the important

factor in this process is that operators that share attributes with the

current expected and perceived state receive extra activation and

are therefore considered first. Because the retrieval process is

noisy, the retrieved operator is checked for applicability. If it

cannot currently be applied, then a new operator is retrieved until

an applicable operator is found, or until the retrieval process fails.

To continue the example from the previous paragraph, suppose the

model has just pressed the LEGS key in the list condition. Its

expected state is set to “Direct 1,” because that is the postcondition

of that action, and it has a perceived state of being on the LEGS

page. The expected state now spreads activation to both the “Type

destination” and the “Press line key with destination” actions. The

perceived state (being on the LEGS page) has no associations with

any of the instructions, so it does not contribute to the process. As

a consequence, the most likely outcome is that either “Type

destination” or “Press line key with destination” is selected. In the

case of the context instructions, both the expected state and the

perceived state are “on LEGS page” after pressing the LEGS key.

Because both concur, this gives a stronger activation boost to both

applicable actions, leading to a faster response and a lower prob-

ability that a wrong operator is retrieved (due to noise on activa-

tion).

When the operator is applicable, it is executed, resulting in an

action that leads to a change in the environment, in the perceived

Table 2

Representation of the Instructions in the Model for the Two Conditions of the Experiment

List condition Context condition

Pre Action Post Pre Action Post

Start Press LEGS. Direct 1 On INIT page Press LEGS. On LEGS page
Direct 1 Type destination.a Direct 2 On LEGS page Type destination.a Destination in scratchpad
Direct 1 Press line key with destination.a Direct 2 On LEGS page Press line key with destination.a Destination in scratchpad
Direct 2 Press 1L. Direct 3 Destination in

scratchpad
Press 1L. Modification done

Direct 3 Check for discontinuity. Direct 4 or
Direct 6b

Modification
done

Check navigational display. Check ok

Direct 4 Check navigational display. Direct 5 Check ok Press EXEC. Goal achieved
Direct 5 Press EXEC. Goal Achieved
Discon 6 Press LEGS. Discon 7 Discontinuity Press line key after

discontinuity.
Discontinuity in

scratchpad
Discon 7 Press line key after

discontinuity.
Discon 8 Discontinuity

in scratchpad
Press line key with

discontinuity.
Modification done

Discon 8 Press line key with
discontinuity.

Discon 9

Discon 9 Press EXEC. Direct 4

Note. Discon � Discontinuity.
a The general instructions give two methods to enter a waypoint into the scratchpad; therefore, each is represented by a separate operator. b This step sets
the expected state to Direct 4 when there is no discontinuity, or to Direct 6 when there is one.
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Figure 6. Outline of the model. N � no; Y � yes.
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state and in the expected state. The cycle is repeated until the goal

is reached or time runs out (the model gives up after 120 simulated s).

Forgetting and Discovery of Operators

One of the properties of learning from instructions is that

instructions are forgotten easily. People have some ability in

handling situations in which they have forgotten some of the

instructions. Moreover, for the harder problems in the FMS task,

participants need to discover some operators themselves. To sim-

ulate the aspect of forgetting operators, each operator in the model

had a 25% probability of being forgotten, that is, not being present

in declarative memory at the beginning of the simulation. Forget-

ting operators leads to situations in which the model does not know

what to do, that is, the retrieval attempt of an operator fails. The

model uses a relatively simple strategy to handle the situation: It

takes a random action and tries to perceive what the result of that

action is. It then judges whether this action has brought it closer to

the goal. If that is the case, then the model will create a new

operator with the old state as precondition, the random action as

action, and the new state as postcondition. Random actions were

drawn from the following set: pressing the LEGS or RTE key,

typing any of the waypoints mentioned in the problem, pressing

any line key with any of the waypoints mentioned in the instruc-

tions, or the line key below it, pressing a line key with the term

discontinuity or the line key below it, pressing the Erase key,

pressing the CLR key, or checking the navigational display. The

model’s judgment of whether an action would bring it closer to the

goal was based on the number of steps from the goal. Although it

is likely participants have a sense of whether an action brings them

closer to the goal, the model’s perfect knowledge is an oversim-

plification.

As an example, suppose the model has entered the destination in

the scratchpad but has forgotten that the next action is to push the

1L key. It would fail to retrieve an applicable operator and resort

to randomly picking an action. Many of the possible actions do not

change anything (e.g., pressing the LEGS key), produce a state that

is earlier in the sequence (e.g., pressing CLR or Erase put the

model in the “On LEGS page” state), or may even put the model

in an error state (e.g., typing the destination while there is already

something in the scratchpad). However, once the correct action is

picked, the model will notice progress and learn a new operator

with that action, the original perceptual state (“Destination in

Scratchpad”) as precondition and the resulting perceptual state

(“Modification done”) as postcondition. Although the learned op-

erator is identical in both instructional conditions, the context

condition is better able to use it. After the learned “1L” operator

has been carried out, both the expected and perceived state will be

“Modification done.” The context instructions can pick up from

that state straight away because the “Check Navigational display”

operator has “Modification done” as a precondition, but the list-

instruction model has no knowledge on how to proceed because it

can only match operators with respect to the order in the list. By

guessing an action, it has lost the thread of the instructions.

Some of the participants did in fact use a guessing strategy to try

out new actions. It is, however, likely that there are other strategies

to find a next action, for example, based on means–ends analysis.

The simple guessing strategy turned out to be enough for the

model to learn the missing steps.

Learning

Although ACT-R has a number of learning mechanisms, the

mechanism that explains most of the learning in the model (in

addition to the discovery of new operators) is production compi-

lation (Taatgen & Anderson, 2002). Production compilation en-

codes operators directly into productions, making it unnecessary to

retrieve and test operators from declarative memory. The basic

process is very simple: If two productions fire in sequence, then

they are combined into a single new production that is added to

procedural memory. If the first of these productions makes a

request to declarative memory, and the second production uses the

retrieved fact to perform an action, then the retrieved fact is

substituted into the new production. Table 3 shows an example of

this process, with two productions from the model translated into

pseudo-English. In the example, the two original productions

retrieve and interpret instructions: The first production initiates the

retrieval of an operator for the current task, and the second pro-

duction presses a key after checking whether the preconditions

have been fulfilled. The newly learned production, which com-

bines the two original productions and the retrieved operator,

immediately recognizes the current state, presses the key, and sets

the appropriate expected state. The advantage of the new produc-

tion is that it can bypass the retrieve-operator and check-

applicability cycle and maps perception directly onto action. In

behavioral terms, it therefore produces a considerable speedup and

a reduction in errors.

The first time a production is created, its utility value is set to

zero. Utility values of productions are used in ACT-R to decide

which one to use if there are multiple candidates. In the case of a

Table 3

Example of Production Compilation

Original Production 1 Original Production 2 Learned production

IF the goal is to do a task IF the goal is to do a task IF the goal is to do the FMS task
THEN send a request to declarative memory

for an operator for that task
AND an operator that specifies a press action

has been retrieved from declarative memory
AND the state is Not on the LEGS page

Operator example: AND the precondition of the operator matches
the current state

THEN Press the LEGS key
AND set the expected state to “on LEGS page”

Precondition Not on LEGS page THEN Press the specified key
Action Press LEGS key
Postcondition On LEGS page

AND set the expected state to the postcondition
of the operator

Note. FMS � flight management system.
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new production, its utility value has to compete with the utility

value of the production that it originated from (the “old” produc-

tion), so a new production initially has no chance to win the

competition with the old production. However, each time the

production is recreated, its utility value will be increased to ap-

proximate the value of the old production. If the utility of the old

and the new production are close enough, then the new production

has some probability of being used and begins gaining its own

experiences. The consequence of this is that new productions are

only introduced slowly, which is consistent with the notion that

skill acquisition is slow. The learning speed is controlled by a

learning parameter that determines how fast the utility of the new

production converges with the utility of the old production.

The productions that are learned on the basis of the list instruc-

tions are less general than productions learned on the basis of the

context instructions. The production in Table 3 can fire each time

the FMS is not on the LEGS page, no matter what the reason is.

The production that would be learned on the basis of the list

conditions would require that the current expected state equals

“Start,” which is only true at the beginning of a trial.

Model Fits

The model was run 150 times for each of the two instruction

sets, after which the accuracies and solution times for correct trials

were averaged. Three parameters were estimated to fit the data: the

retrieval threshold, which determines the minimum activation

needed to retrieve facts from declarative memory, the learning

rate, which affects how quickly new productions can compete with

old productions, and visual attention latency, which determines

how long it takes to perceive the current state of the environment.

The model fits are shown alongside the data in Figures 3 and 4.

The model fits the data quite well (R2
� 0.88 and root-mean-

square error of approximation [RMSE] � 0.078 for list-condition

accuracy; R2
� 0.82 and RMSE � 0.043 for context-condition

accuracy; R2
� 0.70 and RMSE � 10.2 for list-condition solution

time; and R2
� 0.52 and RMSE � 9.1 for context-condition

solution time).

Consistent with the idea that we described in the introduction,

the model shows that instructions that are formulated as operators

with pre- and postconditions lead to better performance than

instructions that are just a list of actions. More in detail, the model

explains superior performance in the context condition as due to

basically two factors. First, attempts to retrieve operators are more

successful in this condition. In the list condition, the perceived

state (e.g., being on the LEGS page) is different than the expected

state (e.g., being in state Direct 1 after pressing the LEGS key, see

Table 2). Only the expected state can be used to determine the next

step because the instructions make no reference to a real-world

state. In the context condition, the expected and perceived states

are generally the same, and, therefore, both help activate the

appropriate operator through spreading activation. Therefore, op-

erator retrieval in the list condition will fail more often than in the

context condition.

A second factor is that the model is better able to cope with gaps

in its knowledge in the context condition. As we discussed earlier,

these gaps can occur because of failures in retrieval or, in the

difficult problems, because the model finds itself in situations for

which it does not have operators. The model with a context

representation is much more likely to be able to pick up successful

operation application after such a guess because it can recognize

operators relevant to the state that appears after the guess. The

ability to continue on after a knowledge gap is much more impor-

tant in the difficult problems because there are more knowledge

gaps. This is what accounts for the interaction between instruction

and difficulty.

Interestingly, at knowledge gaps in the list condition, the model

discovers operators that are “context-style” and not “list-style.”

Eventually the list-condition model ends up with a mixture of

operators that refer to internal states and operators that have pre-

and postconditions referring to the perceived state. Thus, with

practice, the knowledge representation in the list condition be-

comes more and more like the knowledge representation in the

context condition.

It is also worth noting that context instructions produce better

performance because they skip unnecessary steps. For example,

the first step is to push the LEGS key. If the FMS is already on the

LEGS page, then this step is unnecessary. In 32 of the 36 prob-

lems, the FMS already displayed the LEGS page at the start of the

problem. This means that optimal performance entails pressing the

LEGS key 0.11 times per problem on average. Figure 7 shows the

number of presses of the LEGS key in the model and the data for

both conditions. Participants in the list condition press the LEGS

key much more often than needed, whereas participants in the

context condition are close to the optimal level. The model fits

these proportions correctly.

A second example is the use of the EXEC key. This key is

normally used as the last step in a route-change procedure because

it commits the FMS to the route change. The list instructions (as

taken from United Airlines) specify that the EXEC key has to be

pressed not only at the end of the direct-to procedure but also at the

end of the procedure to resolve a discontinuity. As Figure 8 shows,

this leads to extraneous presses of the EXEC key in problems with

a discontinuity. In the list condition, neither the participants nor the

model follow the instructions to the letter because the average

number of key presses on the EXEC key condition for disconti-
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nuities is around 1.3 eventually, instead of the 2 that the instruc-

tions prescribe. The model learns to skip the extra EXEC key when

it forms its own operators during exploration at knowledge gaps.

As expected, these extra presses on the EXEC key are virtually

absent in the context condition. The model also fits these data

correctly.

Experiment 2

An advantage of a cognitive model is that it can be used to make

predictions. In order to test the predictive power and robustness of

the model, we designed a second experiment in which the instruc-

tions were identical to the first experiment, but with a new level of

complexity in the actual tasks. The model predictions were gen-

erated before the actual data were collected.

A property of robustness is that a skill can be applied to

situations that deviate from the original instructions. This im-

plies the ability to assess the current situation, even if it is a

situation that has not been encountered before. It also implies

the ability to come up with new actions if a situation cannot be

resolved with the current knowledge. In Experiment 1, we

tested this by introducing hard problems that could not be

solved literally with the given instructions. In Experiment 2, we

introduce a second category of hard problems: problems that are

halfway completed, or that are in an error state. These problems

reflect an aspect of real-life interaction between pilots and the

FMS that is not apparent from the way instructions are formu-

lated, which is that pilots often share tasks on the FMS. It is

possible that one of the pilots initiates a procedure and then asks

the co-pilot to take over. The co-pilot then has to assess the

state of the system and has to decide what steps are still needed

to reach the goal. This situation is similar to the situation in

which a procedure is interrupted and resumed later on because

at the moment of resumption, the state of the system has to be

reassessed (assuming the pilot has not remembered this state).

To simulate this in the experiment, we included blocks of trials

in which the task was already partially completed. To make it

even harder for the participants, some of the half-completed

trials contained an error. For example, in some of the problems,

the destination would already be in the scratchpad, sometimes a

wrong destination.

Although the model was not designed to be able to handle these

cases, it should in principle be able to solve them, especially the

context-condition model, because its precondition-matching strat-

egy should be able to pick up on the current state of the system.

Also, the model should be able to recover from problems contain-

ing an error at least some of the time because it has to recover from
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a second press on EXEC). Top panel represents the list condition; bottom panel represents context condition.
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the errors it makes during exploring unknown actions. Experiment

2 therefore was a strong test of the model because the data that it

had to predict extrapolated from the data on which it had been fit.

On this basis, we were able to make a prediction of the outcome of

the experiment before actually conducting it.

Method

Participants. Forty students from Carnegie Mellon University

were paid for their participation in the experiment (20 in the list

condition, and 20 in the context condition).

Procedure. The procedure was identical to the procedure of

Experiment 1, except that each of the three blocks now consisted

of 24 problems. The first 12 problems were the same as in

Experiment 1: 3 easy problems, followed by 3 intermediate prob-

lems, and then six hard problems. Problems 13–24 in each block

were partially completed. Half of the partially completed problems

contained an error. The partially completed problems, either with

or without error, consisted of equal proportions of easy, interme-

diate, and hard problems. All problems within the partially com-

pleted half of the block were presented in random order. Partici-

pants were not informed that procedures could be partially

completed, nor of the possibility that an error was already present;

in fact, the instructions they received were identical to those of

Experiment 1. The experiment lasted, on average, 1.5 hr.

Results

Empirical results. Figure 9 shows the proportion correct for

each problem in the two conditions. The average correctness in the

list condition is 78.8%; in the context condition, it is 89.0%. An

ANOVA, with block and problem difficulty as within-subject

factors, condition as a between-subject factor, and subject as a

random factor, showed main effects of condition, F(1, 38) �4.5,

MSE � 2.54, p � .040; of block, F(1, 38) � 35.3, MSE � 2.67,

p � .001; and of problem difficulty, F(4, 152) � 26.0, MSE �

1.32, p � .001. In addition, there were significant interactions

between condition and problem difficulty, F(4, 152) � 2.82,

MSE � 0.14, p � .027, and between block and problem difficulty,

F(4, 152) � 5.45, MSE � 0.24, p � .001. Welch t tests, comparing

the two conditions for each problem type, are listed in Table 4.

Overall, Experiment 2 replicated the results of Experiment 1, and

extended it by showing some effect of instruction on partially

completed problems, although this effect only approached signif-

icance in the case of the partially completed problems with an

error. The main effect of instructional manipulation was not as

strong as in Experiment 1. This was probably due to the fact that

the experiment was twice as long, and the difference between the

conditions tends to get smaller with practice.

An ANOVA of the log solution times was conducted, with block

and problem difficulty as within-subject factors, condition as a

between-subject factor, and subject as a random factor. The aver-

age solution time for correctly solved problems in the list condition

was 27.2 s, and in the context condition, it was 23.0 s, F(1, 38) �

3.60, MSE � 4.53, p � .066. There was a main effect of block,

F(1, 38) � 120.9, MSE � 52.1, p � .001, indicating a learning

effect; a main effect of problem difficulty, F(4, 152) � 115.2,

MSE � 12.9, p � .001; and an interaction between problem

difficulty and block, F(4, 152) � 27.4, MSE � 4.12, p � .001.

Figure 10 shows the average solution times for the correct trials for

each trial for both conditions combined.

Model prediction. The prediction of the model is shown along-

side the data in Figures 9 and 10 and in Table 4 (R2
� 0.78 and

RMSE � 0.064 for list-condition accuracy; R2
� 0.66 and

RMSE � 0.072 for context-condition accuracy; R2
� 0.75 and

RMSE � 5.9 for solution times). A first noteworthy result was that

the unmodified model was able to do the new problems at all

because it was not designed to solve them. This shows that the

model indeed exhibited the flexibility and robustness that we were

seeking. For the partially completed problems without error, the

predictions were very accurate. For the partially completed prob-

lems with an error, the model predicted the list condition accu-

rately but slightly underestimated performance in the context con-
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Figure 9. Proportion correct for all the 72 problems in the two conditions

averaged in groups of three. The experiment is divided in three blocks with

five types of problems each (e � easy, m � medium, h � hard, co � copilot,

wco � copilot with error). Circles are the empirical data with standard error

bars, and the dashed line represents the model prediction. Although in the real

experiment co and wco problems were offered in random order, they are sorted

into separate categories within a block for clarity.
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dition. This was probably due to the fact that the model has no real

error recovery strategies: It will just start trying things out when it

is in an unrecognized state. Participants in the context condition

might be better able to recognize an error state and therefore also

better able to cope with one. The latency predictions in Figure 10

are also quite accurate, including the predictions for the partially

completed problems for which we had no previous data. The only

exception was an underestimation of the solution times for the first

few problems (similar to the underestimation in Experiment 1).

Experiment 3

The instructions for Experiments 1 and 2 were designed to

achieve a maximum difference between the two conditions. The

disadvantage is that the version of the context instructions that we

used may have had advantages in addition to the advantage pro-

vided by a pre- and postcondition because they may generally be

more readable. This might mean that participants extract additional

information from the instructions that may lead to better perfor-

mance. In order to separate out the different effects, we con-

structed four different sets of instructions. The first set of instruc-

tions consisted of the list instructions as we have used them in

Experiments 1 and 2, which we refer to as the simple list instruc-

tions. To contrast our specific manipulation of instructions with

alternatives, we constructed extended list instructions, which pro-

vided, in addition to the list instructions, an explanation of how the

information on the screen corresponds to the route of the airplane,

and how the line keys can manipulate this information. The idea is

that additional explanation provides an understanding of the sys-

tem from which participants can derive the actions they have to

take in case the literal instructions do not suffice, which we refer

to as the extended list condition. The third set consisted of the

context instructions, but they are now reduced to the list instruc-

tions with a short description of the pre- and postcondition, which

we refer to as the simple context instructions. Because it might not

always be easy to recognize a particular precondition, we con-

structed a fourth set of instructions, the graphics context instruc-

tions, which consisted of the context conditions with a second

addition: a screenshot of the pre- and postcondition with the

relevant feature highlighted. The Appendix shows the new ex-

tended list and simple context instructions.

The model predicts, consistent with the earlier experiments, that

there should be an advantage of both context conditions over the

simple-list condition, and not much of a difference between the

two context conditions. The model cannot predict the exact impact

of the extended-list condition but has no specific reason to suppose

it would offer a distinct advantage over the simple-list condition.

Method

Participants. One hundred students from Carnegie Mellon

University were paid for their participation, with 25 participants in

each of the four conditions.

Procedure. The procedure was identical to Experiments 1 and

2, except that the experiment consisted of 3 easy problems, fol-

lowed by 3 medium problems, and two blocks of 18 problems.

Each block of 18 problems consisted of 3 easy, 3 medium, 6 hard,

3 partially completed, and 3 partially completed with error prob-

lems. Within the two 18-problem blocks, the order of problems

(including problem type) was fully randomized.

Results

Consistent with the earlier experiments, there was a main effect

of block on log solution time, F(1, 96) � 286.7, p � .001, and on

correctness, F(1, 96) � 51.1, p � .001, a main effect of problem

difficulty on log solution time, F(4, 384) � 158.8, p � .001, and

on correctness, F(4, 384) � 67.6, p � .001, as well as an inter-

action between block and problem difficulty on solution time, F(4,

384) � 24.7, p � .001, and correctness, F(4, 384) � 6.23, p �

.001. However, contrary to the two earlier experiments, there was

no interaction between condition and problem type.

Table 4

Proportions Correct in Experiment 2 by Problem Type

Problem type List correct Context correct t Model list correct Model context correct

Easy 92.2% 91.7% t � 1 90.6% 98.2%
Medium 77.2% 92.8% t(32.0) � 2.28, p � .030 83.3% 96.8%
Hard 76.7% 91.1% t(26.6) � 2.47, p � .020 84.9% 92.6%
Copilot without error 86.9% 95% t(22.8) � 1.47, p � .15 86.5% 96.4%
Copilot with error 66.7% 77.8% t(24.9) � 1.86, p � .074 67.4% 69.2%
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Figure 10. Average solution times for correctly solved problems for all 72

problems averaged in groups of three. The experiment is divided in three

blocks with five types of problems each (e � easy, m � medium, h � hard,

co � copilot, wco � copilot with error). Circles are the empirical data with

standard error bars, and the dashed line represents the model prediction.
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Given the predictions of the model, there should be an advan-

tage of both context conditions over both list conditions, and there

should be no differences between either the two context conditions

or the two list conditions. In fact, the difference between the two

list conditions and the two context conditions is quite significant in

the case of time and marginally so for accuracy (21.3 s vs. 26.5 s),

t(92.2) � 2.97, p � .004 (83.9% vs. 79.9%); t(93.7) � 1.66, p �

.10. The predictions of the model are that both context conditions

should take 21.8 s and have 90.9% accuracy, whereas both list

conditions should take 28.6 s and have 80.8% accuracy. Partici-

pants are performing somewhat less accurately than a priori pre-

dictions of our model. As for the two context conditions, there

were no significant differences between simple context and graph-

ics context (22.3 s vs. 20.3 s), t(40.3) � 1.43, p � .10 (84.9% vs.

82.9%); t(46.6) � 0.66, p � .10. The differences between the

simple-list and extended-list conditions were also not significant

(26.0 s vs. 26.9 s), t(44.1) � 0.80, p � .10 (77.6% vs. 82.1%);

t(43.3) � 1.19, p � .10. Figure 11 depicts detailed outcomes of the

experiment with the model predictions (R2
� 0.79 and RMSE �

0.067 for list-condition accuracy, R2
� 0.44 and RMSE � 0.119

for context-condition accuracy, R2
� 0.56 and RMSE � 9.2 for

list-condition solution time, and R2
� 0.56 and RMSE � 6.9 for

context-condition solution time).

Discussion

Although the difference is smaller in Experiment 3 than in

Experiments 1 and 2, context instructions still provide a significant

improvement over list instructions both in terms of correctness and

solution time. In contrast, an extended-list instruction provides no

significant improvement over simple-list instructions. The graph-

ics context instruction also leads to no significant advantage over

Figure 11. Accuracies and solution times for all 42 problems, averaged in groups of three (e � easy, m �

medium, h � hard, co � copilot, wco � copilot with error). Both list conditions and both context conditions are

averaged. Except for the first six problems, the problems were presented in random order within a block but are

sorted by problem type in this graph for clarity.
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the simple-context instructions. The interaction between problem

difficulty and condition disappeared in Experiment 3, but this is

probably due to the smaller difference in accuracy between the

context and the list condition as a result of the reduced context

instructions. Alternatively, the fact that the order in which the

problem types were offered was now fully randomized may have

reduced the power to find the interaction because each participant

now receives the problem types in a different order. The model still

captures the main effects in the data, although it slightly overes-

timates the correctness in the context condition.

General Discussion

In this article, we presented a model of skill acquisition that takes

into account that cognitive control is both internal, in terms of an

internal control state that keeps track of progress, and external, in the

sense that the environment can prompt the next action. It thereby

shows how two traditions in explaining skilled behavior, the tradi-

tional problem-solving approaches and the embedded cognition ap-

proaches, can be combined, alleviating the weaknesses of both. From

the traditional approaches, we take the concept of a task structure that

can guide the right sequence of actions and that is open to change and

discovery. We go beyond those approaches by explaining how people

can respond to unexpected situations and how they can fill in the gaps

in their knowledge. The key to this is the shift of the focus of control

from an internal representation to perception, which is more consis-

tent with embedded models of skilled performance, and thereby

inherits the robustness of such models. Use of a minimal task structure

allows the model to go beyond simple embedded models in the sense

that it can base its performance on both instruction and experience.

The model gives a detailed account of the various stages of learn-

ing. It starts out with an incomplete set of knowledge and uses

discovery learning to fill in the gaps. Although knowledge is still

declarative, behavior is characterized by a memory retrieval process,

in which perception and possibly an internal state cue memory for the

right action. This retrieval process is slow, with a high probability that

a wrong operator is retrieved. The process of production compilation

gradually transforms these representations into productions that di-

rectly map perception onto action, producing the tight coupling that

embedded cognition theorists propose. This offers a solution to what

many have indicated as an ignored aspect of problem solving: Infor-

mation is in the world as well as in the head (e.g., Brooks, 1991;

Clark, 1997; Hutchins, 1995). A context-style task representation

allows people to offload control to the world: Given a proper under-

standing of the task, people can select their actions on the basis of not

only an internal state but also the state of the world.

The model assumes that the representation of individual steps

that make up a skill consists of an action with pre- and postcon-

ditions. This implies that instructions that are formulated in these

terms should lead to better performance than instructions that just

list the actions. Our experiments showed that context instructions

lead to better performance than list instructions in terms of accu-

racy, solution time, and flexibility, supporting the idea that that

representation is close to our internal representation of task knowl-

edge. In addition, a model constructed on the basis of these

representations provides for an accurate fit and prediction of both

accuracy and latency data. Experiment 3 showed that other addi-

tional information, like additional explanations of how the system

works or screenshots of the display, has little or no impact on

performance. This is consistent with Kieras and Bovair’s (1984)

conclusion that a mental model is only useful insofar as it supports

exact and specific control actions and that general principles,

metaphors, and analogies are generally not very useful. Recent

research by Catrambone and Yuasa (2006) also supports the use-

fulness of connecting preconditions to actions in instructions. In

their experiment, participants had to formulate database queries

and received instructions that either emphasized the connection

between conditions and action or mainly elaborated on just the

conditions. They found that the instructions connecting condition

and action produced significantly lower error rates.

Flexibility is evidenced in problems that required generalization

(the hard problems) and in problems in which the task had to be

picked up in the middle, possibly with an error (the copilot

problems). Nevertheless, even when given list instructions, both

the model and the participants developed flexibility, only slower

and less complete. The model explains this by an exploration

process in which operators are discovered, which have pre- and

postconditions that can be related to the environment. One direct

recommendation from this research is that the standard list proce-

dures used in pilot training should be replaced by procedures for

which the conditions and results of each action are explained

explicitly. Are context instructions always better than list instruc-

tions? Probably so in situations in which useful state information

can be extracted from the environment. Only in cases in which the

environment cues the wrong actions is it possible that list instruc-

tions lead to superior performance (see Norman, 1988, for exam-

ples of how poor design leads to problems).

Besides empirical evidence, we have presented a model fitted to the

data of Experiment 1. This model, in which the only difference

between the two conditions was the representation of the instructions,

could reproduce the accuracy and solution time data very well, and it

was also able to explain some of the details on how often particular

(the LEGS and the EXEC) keys were pressed. The model generalized

to novel situations: It predicted the outcome of Experiments 2 and 3,

which contained partially completed trials for which the model was

not designed. The model not only solved these trials, it did so with

accuracy and solution time comparable to those of participants. We

believe that being able to make predictions is an important property of

cognitive models because it counters some of the criticisms that

cognitive models can fit any data set given enough free parameters

(Roberts & Pashler, 2000). Generalizing the present model to other

tasks is relatively straightforward because a large portion of it is task

independent. A model for a different task would require the appro-

priate set of operators for that task and additional productions to

implement actions that are not part of the FMS task. Otherwise, the

mechanism for matching preconditions and carrying out operator

actions carried over to any other task.3

The approach to skill acquisition taken in the present article can

also be extended to the domain of multitasking. One proposal to

understand how people are able to interleave multiple tasks efficiently

is to assume a general executive (Kieras, Meyer, Ballas, & Lauber,

2000). The general executive is a top-down process that schedules

processing between the different tasks. The problem of this approach

is that such a scheduler runs into problems of computational intrac-

tability and that the scheduler needed to interleave two tasks is

3 We are presently working on such a general system (ACT-R/Lisa), see

http://www.ai.rug.nl/�niels/lisa.html for more information.
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sometimes more complex than the task representation itself. If the

steps in each of the tasks are represented as operators with precondi-

tions, then the scheduling can be taken care of by a bottom-up

process: Each time an operator of either task matches the current

perceptual state, that operator will be executed, assuming the appro-

priate cognitive resources are available. This approach has been

successful in modeling experiments of perfect time-sharing (Schuma-

cher et al., 2001), in which participants, after sufficient training, are

able to do two choice reaction tasks in parallel without any dual-task

interference. By representing each of the steps in both choice-reaction

tasks as operators with preconditions, the model was able to achieve

perfect time-sharing in the same manner as participants did (Salvucci

& Taatgen, 2008).
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Appendix

Simple-Context and Extended-List Instructions in Experiment 3

Context condition:

When Air Traffic Control gives you a directive to proceed directly to some waypoint, use the following list of steps to
accomplish this:

1. When you are not yet on the LEGS page, Press the LEGS key to get to the LEGS page.
2. When you are on the LEGS page, Enter the desired waypoint in the scratchpad so you can put it into the flight

plan.
3. When you have your new destination in the scratchpad, Push the 1L key to move the waypoint from the scratchpad

into the first line of the flight plan.
4. If “route discontinuity” appears on the screen, follow the procedure to remove discontinuities to remove the

discontinuity.
5. When you have modified your route and have removed all route discontinuities, Verify the route on the

Navigational Display to make sure that the FMS has made the changes as you intended them.
6. When you have verified that the route modification looks ok on the Navigational Display, Press EXEC to finalize

the route modification.
There is a separate procedure for removing discontinuities:
1. When you are not yet on the LEGS page, Press the LEGS key to get to the LEGS page.
2. If you are on the LEGS page and there is a discontinuity in one of the lines, Press the line select key after the

discontinuity to copy the waypoint after the discontinuity in the route into the scratchpad.
3. If you have the waypoint after the discontinuity in your scratchpad, Press the line key with the THEN prompt to

copy the waypoint after the discontinuity into the line with the discontinuity, and reconnect the route.
Extended List condition:

The first left line (1L) of the LEGS page is used to show the waypoint that the airplane is currently flying to (see
diagram). The waypoint at 2L is the next one on the route, and so on.

Whenever a waypoint is added to 1L (replacing what was there), the plane will fly directly to that waypoint.
When the added waypoint was not on the route, a discontinuity in the route occurs. This is signaled by the word

“Discontinuity” and an empty space next to one of the line keys (2L, 3L, etc.). If one of the next waypoints on the
route is copied in this empty space, the route becomes continuous.

The scratchpad (the empty space below 6L) can be used to copy and paste waypoints from and to line keys (1L, 2L,
etc.). For example, when the scratchpad is empty, a mouse click on 1L would copy the waypoint from 1L to the
scratchpad. When the scratchpad holds a waypoint, a click on 1L would paste the waypoint from the scratchpad to
1L. The keyboard can also be used to type waypoints in to the scratchpad.

The LEGS key on the keyboard is used to access the LEGS page. Next-page and Prev-page keys are used to browse
through the waypoints on the route. The NAV display is used to view the results of a route modification. The EXEC
key makes a modification permanent.

When Air Traffic Control gives you a directive to proceed directly to some waypoint, go through the following steps:
1. Press the LEGS key.
2. Enter the desired waypoint in the scratchpad.
3. Push the 1L key.
4. If the word “discontinuity” appears on the screen, follow the procedure to remove discontinuities.
5. Verify the route on the Navigational Display.
6. Press EXEC.
There is a separate procedure for removing discontinuities:
1. Press the LEGS key.
2. Press the line select key after the discontinuity.
3. Press the line key with the THEN prompt.
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