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Accepted for publication in the Astrophysical Journal Supplement Series.

ABSTRACT

The ACS Virgo Cluster Survey is a Hubble Space Telescope program to obtain high-resolution imaging,
in widely separated bandpasses (F475W ≈ g and F850LP ≈ z), for 100 early-type members of the
Virgo Cluster, spanning a range of ≈ 460 in blue luminosity. We use this large, homogenous dataset to
examine the innermost structure of these galaxies and to characterize the properties of their compact
central nuclei. We present a sharp upward revision in the frequency of nucleation in early-type galaxies
brighter than MB ≈ −15 (66 . fn . 82%) and show that ground-based surveys underestimated
the number of nuclei due to surface brightness selection effects, limited sensitivity and poor spatial
resolution. We speculate that previously reported claims that nucleated dwarfs are more concentrated
to the center of Virgo than their non-nucleated counterparts may be an artifact of these selection
effects. There is no clear evidence from the properties of the nuclei, or from the overall incidence
of nucleation, for a change at MB ∼ −17.6, the traditional dividing point between dwarf and giant
galaxies. There does, however, appear to be a fundamental transition at MB ∼ −20.5, in the sense
that the brighter, “core-Sérsic” galaxies lack resolved (stellar) nuclei. A search for nuclei which may
be offset from the photocenters of their host galaxies reveals only five candidates with displacements
of more than 0.′′5, all of which are in dwarf galaxies. In each case, though, the evidence suggests that
these “nuclei” are, in fact, globular clusters projected close to the galaxy photocenter. Working from
a sample of 51 galaxies with prominent nuclei, we find a median half-light radius of 〈rh〉 = 4.2 pc, with
the sizes of individual nuclei ranging from 62 pc down to ≤ 2 pc (i.e., unresolved in our images) in
about a half dozen cases. Excluding these unresolved objects, the nuclei sizes are found to depend on
nuclear luminosity according to the relation rh ∝ L0.50±0.03. Because the large majority of nuclei are
resolved, we can rule out low-level AGN as an explanation for the central luminosity excess in almost
all cases. On average, the nuclei are ≈ 3.5 mag brighter than a typical globular cluster. Based on their
broadband colors, the nuclei appear to have old to intermediate-age stellar populations. The colors
of the nuclei in galaxies fainter than MB ≈ −17.6 are tightly correlated with their luminosities, and
less so with the luminosities of their host galaxies, suggesting that their chemical enrichment histories
were governed by local or internal factors. Comparing the nuclei to the “nuclear clusters” found in
late-type spiral galaxies reveals a close match in terms of size, luminosity and overall frequency. A
formation mechanism that is rather insensitive to the detailed properties of the host galaxy is required
to explain this ubiquity and homogeneity. The mean of the frequency function for the nucleus-to-
galaxy luminosity ratio in our nucleated galaxies, 〈log10 η〉 = −2.49 ± 0.09 dex (σ = 0.59 ± 0.10), is
indistinguishable from that of the SBH-to-bulge mass ratio, 〈log10 (M•/Mgal)〉 = −2.61 ± 0.07 dex
(σ = 0.45±0.09), calculated in 23 early-type galaxies with detected supermassive black holes (SBHs).
We argue that the compact stellar nuclei found in many of our program galaxies are the low-mass
counterparts of the SBHs detected in the bright galaxies. If this interpretation is correct, then one
should think in terms of Central Massive Objects — either SBHs or compact stellar nuclei — that
accompany the formation of almost all early-type galaxies and contain a mean fraction ≈ 0.3% of the
total bulge mass. In this view, SBHs would be the dominant formation mode above MB ≈ −20.5.

Subject headings: galaxies: clusters: individual (Virgo)–galaxies: elliptical and lenticular–galaxies:
nuclei–galaxies: structure
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1. INTRODUCTION

Early-type galaxies are found in virtually all environ-
ments — from the field, to small groups, to rich clus-
ters (Hubble & Humason 1931; Oemler 1974; Dressler
1980). In the highest density environments, ellipticals
and lenticulars are known to dominate the overall frac-
tion of bright galaxies, fE+S0 ∼ 0.4 − 0.9, with the pre-
cise contribution depending on local galaxy density and
redshift (Smith et al. 2004; Postman et al. 2005). In
the Virgo Cluster, the rich cluster nearest to our own
Galaxy, fE+S0 ≈ 0.44 for galaxies brighter than B . 13
or MB . −18.1 (Julian et al. 1997).15 If one considers
not just giant galaxies, but also the much more common
dwarfs, then the dominance of early-type galaxies is even
more pronounced: i.e., among the confirmed members
of Virgo with unambiguous morphological classifications,
the early-type fraction is ≈ 0.8 (Reaves 1983; Binggeli,
Tammann & Sandage 1987, hereafter BTS87).

It has long been recognized that early-type galaxies,
both in Virgo and elsewhere, often show compact nu-
clei near their centers. In their landmark study of the
Virgo Cluster, BTS87 carried out a visual search for nu-
clei using wide-field, blue-sensitive photographic plates
from the 2.5-m du Pont telescope. Of the 1277 mem-
bers and 574 probable members in their Virgo Cluster
Catalog (hereafter VCC), a total of 1192 were classified
as non-nucleated dwarfs (dEs or dS0s) while an addi-
tional 415 dwarfs (predominantly dE,Ns) were found to
be nucleated. Thus, roughly 25% of the dwarf galaxies
in Virgo were found by BTS87 to have a discernible nu-
cleus, although the precise fraction was also found to de-
pend on galaxy luminosity and position within the clus-
ter (see Figure 8 of Sandage, Binggeli & Tammann 1985
and Figure 19 of BTS87, respectively). Unfortunately,
progress toward understanding the nature of these nuclei
has been limited because of several factors: e.g., ground-
based studies must contend with the contamination from
the underlying galaxy light, it is difficult to de-couple the
brightness profiles of the nuclei from those of their host
galaxies, and the nuclei are sufficiently compact that they
appear unresolved in even the sharpest ground-based im-
ages (Caldwell 1983, 1987; Durrell 1997).

While the photographic survey of BTS87 remains a
landmark study of nucleated galaxies in the local uni-
verse, there are reasons to believe that a modern survey
of the nuclei belonging to early-type galaxies would be
advisable — preferably one which capitalizes on the high
angular resolution afforded by the Hubble Space Tele-
scope (HST). First, HST imaging of late-type galaxies has
revealed that 50–70% of these systems have compact stel-
lar clusters at or near their photocenters (Phillips et al.
1996; Carollo, Stiavelli & Mack 1998; Matthews et al
1999; Böker et al. 2002; Böker et al. 2004). Second,
if the early-type members of the Local Group are any
guide, then one may expect estimates for the fraction of

Hilo, HI 96720; westm@hawaii.edu
12 Theoretical Astrophysics, California Institute of Technology,

Mail Stop 130-33, Pasadena, CA 91125; milos@tapir.caltech.edu
13 Sherman M. Fairchild Fellow
14 Institute for Astronomy, University of Hawaii, 2680 Wood-

lawn Drive, Honolulu, HI 96822; jt@ifa.hawaii.edu
15 Throughout this paper, we adopt a Virgo distance modulus

of (m − M)0 = 31.09 mag (Tonry et al. 2001; Mei et al. 2005b).

nucleated galaxies to increase as better imaging becomes
available. For instance, in recent years a number of Lo-
cal Group dwarfs have been found to contain previously
unrecognized central substructures and/or nuclei, includ-
ing Sagittarius (Layden & Sarajedini 2000; Monaco et al.
2005), Ursa Minor (Kleyna et al. 2003; Palma et al.
2003), Andromeda II (McConnachie & Irwin 2006) and
Fornax (Coleman et al. 2004). Third, in their WFPC2
survey of dwarfs in the Virgo and Fornax Clusters, Lotz
et al. (2004) found that six of the 30 “non-nucleated”
dwarf ellipticals in their sample actually contained nuclei
which had gone unnoticed in the ground-based surveys
(Binggeli, Tammann & Sandage 1985, hereafter BTS85;
BTS87; Ferguson 1989). Very recently, Grant, Kuipers &
Phillipps (2005) used imaging from the Wide Field Cam-
era on the Isaac Newton Telescope to show that faint
nuclei in Virgo dwarfs were frequently missed in photo-
graphic surveys.

These results suggest that there may be significant in-
completeness in our census of nuclei in early-type galax-
ies. Indeed, in their photographic study of Virgo, BTS87
cautioned that “most nuclei in the luminous E and S0
galaxies were probably missed due to [the] high surface
brightness [of the underlying galaxy.]” In addition to this
surface-brightness selection effect, BTS87 state explicitly
that any nuclei with B & 23 (MB & −8) would fall be-
low their plate detection limits and hence be missing from
their catalog.

The central regions of early-type galaxies have been
favorite targets for HST since its launch in 1990. For
the most part, such surveys have tended to focus on the
core structure of the galaxies. However, several studies
reported the discovery of compact nuclei in (predomi-
nantly bright) samples of early-type galaxies, beginning
with pre-refurbishment (WFPC) imaging (Crane et al.
1993; Lauer et al. 1995) and continuing with imaging
from WFPC2 (Rest et al. 2001; Lauer et al. 2005) and
NICMOS (Ravindranath et al. 2001). These studies,
which are primarily based on single-filter imaging of sam-
ples of (33–77) galaxies with distances between 1 and
100 Mpc, have confirmed that some early-type galax-
ies do contain compact nuclei, but there is disagreement
over their overall frequency (with estimates ranging from
13% to ≈ 50%), whether or not they are resolved struc-
tures, and their classification as stellar or non-thermal
(AGN) sources. A better understanding of the physical
properties of these nuclei is important since they almost
certainly hold clues to the violent processes that have
shaped the central regions of galaxies, which could in-
clude star formation triggered by infalling gas, collisions
and mergers of stars and star clusters, tidal disruption
of clusters and the growth of stellar “cusps” by central
black holes, and the mechanical and radiative feedback
from accreting black holes or intense nuclear starbusts.

This paper presents a homogenous analysis of the nu-
clei belonging to a sample of 100 early-type galaxies in
the Virgo Cluster. Our images, taken with the Advanced
Camera for Surveys (ACS; Ford et al. 1998), form the
basis of the ACS Virgo Cluster Survey (ACSVCS; Côté
et al. 2004; hereafter Paper I). Other papers in this series
have discussed the data reduction pipeline (Jordán et al.
2004a = Paper II), the connection between low-mass X-
ray binaries in M87 (Jordán et al. 2004b = Paper III),
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the measurement and calibration of surface brightness
fluctuation magnitudes (Mei et al. 2005ab = Papers IV
and V), the morphology, isophotal parameters and sur-
face brightness profiles for early-type galaxies (Ferrarese
et al. 2006a = Paper VI), the connection between glob-
ular clusters and ultra-compact dwarf galaxies (Haşegan
et al. 2005 = Paper VII), the color distributions of glob-
ular clusters (Peng et al. 2006a = Paper IX), the half
light radii of globular clusters and their use as a distance
indicator (Jordán et al. 2006 = Paper X) and the dis-
covery of diffuse star clusters in early-type galaxies (Peng
et al. 2006b = Paper XI).

There are several features of the ACS Virgo Cluster
Survey which make it uniquely suited to the study of
nuclei in early-type galaxies. First, the survey itself tar-
gets a large sample of 100 early-type galaxies lying at a
common distance of about 16.5 Mpc so that the ≈ 0.′′1
FWHM of the ACS point-spread function (PSF) corre-
sponds to a small, and nearly constant, physical scale of
≈ 8 pc. This excellent spatial resolution, coupled with
the fine plate scale of 0.′′049 pix−1, makes it possible to
measure structural parameters for any nuclei larger than
a few parsecs in size. Second, with blue magnitudes in
the range 9.31 . BT . 15.97 (−21.88 . MB . −15.21),
our program galaxies span a wide range in luminosity
so it is possible to study the phenomenon of nucleation
in giant and dwarf galaxies simultaneously. Third, the
images are sufficiently deep that they reveal not only
the nuclei, but also the many globular clusters belonging
to our program galaxies; thus, the same images which
provide information on the nucleus and host galaxy can
also be used to study the associated globular cluster sys-
tems and to explore possible evolutionary links between
the clusters and nuclei. And finally, because multi-band
imaging is available in two widely-separated bandpasses
(F475W and F850LP) for each object in the survey, it
is possible to use broadband colors to place rough con-
straints on the star formation and chemical enrichment
histories of the nuclei and their host galaxies.

The organization of this article is as follows. §2 gives a
brief summary of the observational material used in our
analysis. A description of the galaxy brightness profiles
and the method of their analysis is presented in §3. §4
contains a discussion of the empirical properties of the
nuclei in our survey, such as their overall numbers, pos-
sible displacements from the galaxy photocenters, lumi-
nosities, colors, surface brightnesses and half-light radii.
In §5 we discuss the implications of our findings for var-
ious formation scenarios. The article concludes with a
summary of the main results in §6. A future paper in
this series will discuss the broader implications of our
findings for models of nucleus formation in early-type
galaxies (Merritt et al. 2006).

2. OBSERVATIONS AND DATA REDUCTIONS

Our analysis is based on HST imaging for 100 early-
type galaxies having morphological types E, S0, dE, dE,N
and dS0. All are confirmed members of the Virgo Clus-
ter based on radial velocity measurements. Images were
taken with the ACS instrument used in Wide Field Chan-
nel (WFC) mode with the F475W and F850LP filter
combination, which are roughly equivalent to the g and z
bands, respectively, in the Sloan Digital Sky Survey pho-

tometric system. These images form the basis of the ACS
Virgo Cluster Survey, a complete description of which
may be found in Paper I. Note that the 26 brightest
galaxies in this survey constitute a complete sample of
early-type members of Virgo with BT ≤ 12.15, and that
the full sample represents 44% of all early-type members
of Virgo spanning the magnitude range 9.3 . BT . 16.
A customized data pipeline (described in detail in Pa-
per II) produces geometrically-corrected, flux-calibrated,
cosmic-ray-free images in the F475W and F850LP band-
passes.

Table 1 gives some basic information about the target
galaxies, tabulated in order of increasing blue magnitude
(decreasing luminosity). An identification number for
each galaxy is given in the first column, followed by the
identification from the VCC (BST85) and other names
for the galaxy in the Messier, NGC, UGC or IC cat-
logs. Blue magnitudes, BT , from BST85 are presented
in column 4, while the fifth column records the adopted
Galactic reddening from Schlegel, Finkbeiner & Davis
(1998). Columns 6 and 7 record the surface brightness
of each galaxy, in both the g and z bandpasses, measured
via spline interpolation at a geometric mean radius16 of
r = 1′′ (≈ 80 pc). This model-independent choice of sur-
face brightness should closely approximate the galaxy’s
central surface brightness, but is measured at a radius
large enough to ensure negligible contamination from any
central nucleus.

The remaining columns of Table 1 will be described be-
low. Coordinates, morphological classifications and other
information on the program galaxies may be found in Pa-
pers I and VI.

3. ANALYSIS

Our goals in this paper include the measurement of
the structural and photometric properties of the nuclei
in our program galaxies, and an investigation into the
relationship between these nuclei and their host galax-
ies. Additionally, we wish to compare the properties of
the nuclei to those of the globular clusters in the pro-
gram galaxies and, more generally, to the Virgo ultra-
compact dwarf (UCD) galaxies (e.g., Drinkwater et al.
1999; Hilker et al. 1999; Drinkwater et al. 2000; Phillipps
et al. 2001) identified in the course of this survey and de-
scribed in Haşegan et al. (2005; hereafter Paper VII) and
Haşegan et al. (2006). A companion paper in this series
(Paper VI) presents an analysis of the surface brightness
profiles of the program galaxies along with a tabulation of
the best-fit structural parameters, while two other arti-
cles examine the photometric (Paper IX) and structural
(Paper X) parameters of the globular clusters. As we
make use of several results from these studies, the reader
is referred to these papers for complete details.

3.1. Parameterization of the Surface Brightness Profiles

Because the nuclei are always superimposed on the
light of the underlying galaxy, measuring their photo-
metric and structural properties requires a model for
the galaxy surface brightness profile. For each galaxy

16 The geometric mean radius is defined as r ≡ a
√

(1 − ǫ) where
a is the semi-major axis and ǫ is the ellipticity.
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in our survey, g- and z-band azimuthally-averaged radial
surface brightness profiles are available from Paper VI.
These profiles were derived by fitting the isophotes with
the ELLIPSE task in IRAF which, in turn, is based on
the algorithm of Jedrzejewski (1987). The g- and z-band
brightness profiles were parameterized with a standard
Sérsic (1968) model,

Ig(r) = I0 exp[−bn(r/re)
1/n)], (1)

where I0 is the central intensity and n is a shape param-
eter which yields an R1/4-law profile for n = 4 (de Vau-
couleurs 1948) and an exponential profile for n = 1. The
parameter bn is defined such that Γ(2n) = 2Γ1(2n, bn),
where Γ and Γ1 are the complete and incomplete gamma
functions, respectively (e.g., Graham & Driver 2005). As
shown by Caon, Capaccioli & D’Onofrio (1993), a conve-
nient approximation relating bn to the shape parameter
n is bn ≈ 1.9992n − 0.3271 for 1 . n . 10. Given this
definition of bn, re is the effective radius of the galaxy.

The g- and z-band brightness profiles for each galaxy
were also fit with a “core-Sérsic” model,

I(r) = I ′
[

1 +

(

rb

r

)α]γ/α

exp

[

−bn

(

rα+rα
b

rα
e

)1/(αn)]

,

(2)
where

I ′ = Ib2
−γ/α exp

[

bn

(

21/αrb/re

)1/n]

(3)

This model, which was first proposed by Graham et al.
(2003), consists of a power-law component in the inner
region of a galaxy, which “breaks” to a traditional Sèrsic
profile beyond some radius, rb. The model has a total
of six free parameters: the logarithmic slope of the in-
ner power-law (γ); the shape of the Sérsic function (n);
the break radius (rb); the effective half-light radius of
the Sérsic profile (re); the intensity at the break radius
(Ib) and a parameter (α) which governs the sharpness
of the transition between the inner power law and the
outer Sérsic function. After some experimentation, it
was decided to use the modified parametrization of Tru-
jillo et al. (2004),

Ig(r) = Ib

[

(rb/r)γu(rb − r)+

+ ebn(rb/re)1/n

e−bn(r/re)
1/n

u(r − rb)

]

(4)

in which α → ∞ and u(x − z) is the Heaviside step
function. This model produced more stable fits, with
better consistency between the five remaining parameters
(Ib, γ, n, re and rb) measured in the g and z bandpasses.

Equations (1) and (4) are intended to describe the pro-
files of galaxies which have no central nucleus. However,
it is obvious that many galaxies in our sample do in-
deed have compact sources at or near their centers. For
such nucleated galaxies, a single-component King model
(Michie 1963; King 1966) was used to represent this cen-
tral component. This introduces three additional param-
eters to the fit: the total intensity of the nucleus (I); the
projected half-light radius (rh); and the King concentra-
tion index (c). In other words, for nucleated galaxies, the

fitted model, I(r), takes the form

I(r) = Ig(r) + Ik(r), (5)

where Ig(r) is either a pure Sérsic model (Equation 1)
or a core-Sérsic model (Equation 4), depending on the
galaxy in question, and Ik(r) is the central King model
component. For non-nucleated galaxies, the profiles are
fit simply with models of the form of Equations (1) or (4).
A detailed justification for the choice of galaxy model
(i.e., Sérsic vs. core-Sérsic) is given on a case-by-case
basis in Paper VI. We adopt these classifications verba-
tim, with the exception of three intermediate-luminosity
galaxies: VCC543 (UGC7436), VCC1528 (IC3501) and
VCC1695 (IC3586).17 While the global brightness pro-
files of these galaxies are adequately represented by Sérsic
models, such models overpredict the amount of galaxy
light on subarcsecond scales. For the purposes of mea-
suring photometric and structural properties for the nu-
clei in these galaxies, we parameterize the galaxy profiles
with core-Sérsic models in all three cases.

We note that the definition of a “nucleus” invariably
hinges on some assumption — explicit or otherwise —
about the intrinsic brightness profile of the host galaxy.
Our study is no exception in this regard. Choices for the
galaxy profiles made by previous workers have included
King models (Binggeli & Cameron 1993), pure exponen-
tials (Binggeli & Cameron 1993; Stiavelli et al. 2001),
Nuker laws (Rest et al. 2001; Ravindranath et al. 2001;
Lauer et al. 2005) and Sersic profiles (Durrell 1997; Sti-
avelli et al. 2001). After considerable experimentation
(Paper IV), we opted to use the family of models repre-
sented by Equations (1) and (2) because they have the
great advantage they are flexible enough to provide ac-
curate fits to the brightness profiles of both giant and
dwarf galaxies (see Paper VI). The use of a single (Sérsic)
model to describe the full sample of galaxies also seems
advisable in light of mounting evidence that, at least
in terms of their structural parameters, the longstand-
ing perception of a fundamental dichotomy between gi-
ant and dwarf ellipticals (e.g., Kormendy 1985) may be
incorrect (see, e.g., Jerjen & Binggeli 1997; Graham &
Guzman 2003; Paper VI). From a theoretical perspective,
the choice of Equations (1) and (4) also seems reasonable
given recent findings that the Sérsic law provides an ac-
curate representation of the spatial and surface density
profiles of dark matter halos in high-resolution ΛCDM
simulations (Navarro et al. 2004; Merritt et al. 2005).

At the same time, our decision to parameterize the
central nuclei with King models is motivated by high-
resolution observations of the nuclei in nearby galaxies.
In nucleated Local Group galaxies such as NGC205 and
Sagittarius, King models are found to provide accurate
representations of the central components (e.g., Djorgov-

ski et al. 1992; Butler & Mart́inez-Delgado 2005; Monaco
et al. 2005). Nevertheless, for galaxies at the distance of
the Virgo Cluster, we are working close to the limits of
resolvability, so we caution that our choice of King mod-
els to parameterize the central components may not be
unique, particularly for faint nuclei in the highest surface
brightness galaxies. Alternative parameterizations of the
central brightness “cusps” in our sample galaxies will be

17 Note that rb >> rh for all nucleated (Type Ia) core-Sérsic
galaxies; 〈rb/rh〉 = 74 for the four galaxies in this category.
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explored in a future paper in this series (Merritt et al.
2006).

3.2. Choice of Drizzling Kernel, PSF Determination
and Fitting Procedure

As described in Paper II, our analysis of the nuclei,
brightness profiles, and isophotal structure of the galax-
ies is based on F475W and F850LP images in which a
Gaussian kernel is used to distribute flux onto the out-
put (drizzled) images. This choice of kernel has the ad-
vantage that, relative to Lanczos3 kernel, bad pixels can
be repaired more effectively, albeit with the penalty of a
slight reduction in angular resolution.18 Due to the com-
pact nature of the nuclei (even the most extended objects
have effective radii . 1′′), it is important that the effects
of the PSF are taken into account when fitting models
to the observed brightness profiles.

PSFs in the F475W and F850LP filters, varying
quadratically with CCD position, were derived using
DAOPHOT II as described in Paper II. Briefly, archival
images of the Galactic globular cluster NGC104 (47 Tu-
canae) taken during programs G0-9656 and GO-9018
were used to construct empirical PSFs in the two band-
passes. These archival images were drizzled in the same
manner as the images for the program galaxies. A to-
tal of ≈ 200 stars in each filter were used to construct
the PSFs, which extend to a radius of 0.′′5 in both band-
passes. To follow the behavior of the PSFs to still larger
radii, we matched our empirical PSFs at a radius of 0.′′3
to those measured for high-S/N composite stars by Siri-
anni et al. (2005). These latter PSFs extend to radii
of 3′′, and were constructed from images of 47 Tuc fields
taken as part of the photometric calibration of ACS. Fig-
ure 1 shows azimuthally averaged PSFs for the F475W
and F850LP filters measured at the position of the nu-
cleus in VCC1303 (NGC4483) — the program galaxy
whose center is nearest to the mean position for the full
sample of program galaxies.

A χ2 minimization scheme was used to find the models
which best fit the azimuthally-averaged, one-dimensional
intensity profiles for each galaxy. Minimizations were
carried out using the Minuit package in the CERN pro-
gram library; initial determinations of the minima, ob-
tained using a Simplex minimization algorithm (Nelder
& Mead 1965), were later refined using a variable metric
method with inexact line search (MIGRAD). Following
Byun et al. (1996), all points in the profile were assigned
equal weight. For both nucleated and non-nucleated
galaxies, the PSFs at the location of the galaxy’s center
were convolved with the models before fitting to the in-
tensity profiles. Customized PSFs were created for each
galaxy in the survey, centered at the exact (sub-pixel) lo-
cation of the nucleus. While, in practice, the PSF convo-
lution has little impact on the fitted Sérsic or core-Sérsic
model parameters, with the exception of γ, this step is
critically important when evaluating accurate structural
parameters for the central nucleus.

18 Using the Lanczos3 kernel produces images with better noise
characteristics and a somewhat sharper PSF (0.′′09 versus 0.′′1),
so this kernel was used for both the surface brightness fluctuation
measurements and the determination of the globular cluster pho-
tometric and structural parameters.

Profile fits are carried out independently in the two
bandpasses, with the exception of the 11 nucleated galax-
ies brighter than BT = 13.5 (i.e., Type Ia galaxies; see
§4). Our numerical experiments suggest that in this
high surface brightness regime, the profile of the un-
derlying galaxy makes the measurement of nuclei half-
light radii and total magnitudes extremely challenging
(see Appendix A). For these galaxies, the composite g-
and z-band profiles were first fitted simultaneously and
the individual fits constrained so that the galaxy shape
index parameter, nucleus concentration index and half-
light radius were the same in the two bandpasses. When
dust is present (see below), the models are fitted to the
dust-corrected surface brightness profiles if ≥ 50% of the
points along a given isophote are affected; otherwise the
dust affected regions are masked. More details on the
correction for dust obscuration are given in Paper VI.

Sufficiently compact nuclei will appear unresolved even
in our ACS images. To estimate the resolution limit of
our observations, we constructed brightness profiles for
a number of likely stars which appear in our images.
These candidate stars were classified as unresolved in
the object catalogs produced by KINGPHOT, the reduc-
tion package used to measure structural and photometric
parameters for the globular clusters in these fields (see
Papers II and X). Fitting King models to the bright-
ness profiles of these objects gives median half-light radii
of 0.′′011±0.′′004 and 0.′′018±0.′′005 in the F475W and
F850LP bandpasses, respectively. As an additional test,
we may make use of the fact that VCC1316 (M87 =
NGC4486), one of the AGN galaxies in our survey (see
below), contains a prominent non-thermal central point
source. Although this source is saturated in our F475W
images, a King model fitted to the central source in the
z-band brightness profile gives rh = 0.′′021. In what fol-
lows, we adopt a conservative upper limit of 0.′′025 ≈ 2 pc
for the resolution limit in both bandpasses.

Before proceeding, we pause to demonstrate that the
vast majority of the nuclei belonging to our program
galaxies are indeed more extended than point sources.
In Figure 2, we show g-band surface brightness profiles
for a representative sample of nine nucleated galaxies,
chosen to span the full range in fitted half-light radius
(with 〈rh〉 decreasing from left to right and from top
to bottom). In each panel, the red curves show the re-
sults of fitting the nuclear component with a King model,
while the blue curves show the results of fitting a cen-
tral point source; residuals from both fits are shown
in the lower panel. With the exception of VCC1528
(IC3501), the central nucleus is resolved for all of the
galaxies in Figure 2. In total, six galaxies in our sample
— VCC1883 (NGC4612), VCC140 (IC3065), VCC1528,
VCC1695 (IC3586), VCC1895 (UGC7854) and VCC1826
(IC3633) — have best-fit half-light radii, measured in at
least one bandpasses, that fall below our nominal reso-
lution limit of 0.′′025. These half-light radii are given in
parantheses in Table 1. They have been included in the
following analysis, but we caution that they are formally
unresolved in our ACS images. We shall return to the
issue of these compact nuclei in §5.2. Additional tests on
the resolution limits, possible biases in the derived pho-
tometric and structural parameters, and a discussion of
measurement errors, are given in §4.1 and Appendix A.



6 Côté et al.

4. RESULTS

As many as eighteen of the 100 galaxies in Table 1
show evidence for dust — either as isolated patches and
filaments, or in the form of disks having varying de-
grees of regularity (see Paper VI). For the most part,
this dust has no impact on the identification of possible
nuclei. However, for four galaxies in our sample (i.e.,
VCC1535 = NGC4526, VCC1030 = NGC4435, VCC685
= NGC4350 and VCC571) the central dust obscuration
is severe enough to make a reliable classification of these
galaxies as nucleated or non-nucleated impossible. More-
over, for VCC1535 and VCC1030, both of which harbour
massive, kpc-scale dust disks, the surface brightness pro-
files are themselves so limited that it is not even possible
to place the galaxies in the appropriate Sérsic or core-
Sérsic categories.

In general, the census of active galactic nuclei (AGN)
in intrinsically faint galaxies — and in the ACS Virgo
Cluster Survey galaxies in particular — is far from com-
plete. However, two of the brighter galaxies in our sam-
ple (VCC1316 = NGC4486, M87, 3C 274 and VCC763 =
NGC4374, M84, 3C 272.1) are known to host AGNs with
strongly non-thermal spectral energy distributions (e.g.,
Wrobel 1991; Ho 1999; Chiaberge, Capetti & Celotti
1999). In both cases, the unresolved non-thermal nu-
cleus is clearly seen in the ACS images; in neither in-
stance, however, does there appear to be a resolved stel-
lar nucleus. A third galaxy (VCC1619 = NGC4550), is
classified as a LINER by Ho et al. (1997). This galaxy
contains some dust within the central ∼ 25′′, but there
is clear evidence for a resolved stellar nucleus.

Wrobel (1991) detected nuclear radio emission in three
other galaxies in our survey (VCC1226 = NGC4472,
M49; VCC1632 = NGC4552, M89; and VCC1978 =
NGC4649, M60). In both VCC1226 and VCC1632, the
innermost ∼ 1′′ are slightly obscured by dust (see Paper
VI), but once a correction for dust obscuration is per-
formed, there is no evidence of a stellar nucleus in either
case. We see no sign of a nucleus in VCC1978.

A search for low-level AGN in our program galaxies
is now underway using low- to intermediate-resolution
ground-based optical spectra, the results of which will
be presented in a future paper in this series. These spec-
troscopic data will be useful in establishing the extent
to which non-thermal sources are responsible for, or con-
tribute to, the central luminosity excesses observed in a
number of these galaxies. For the time being, Table 2
summarizes our classifications for the program galaxies,
as discussed in the next section. We begin by defining
a class of galaxies (Type 0) in which dust obscuration
(four galaxies) or AGN emission (two galaxies) renders a
reliable classification as nucleated or non-nucleated im-
possible. In what follows, we shall limit our analysis to
the remaining 94 galaxies.

4.1. Identification and Classification of the Nuclei

As a first step in the identification of nuclei in our pro-
gram galaxies, the g- and z-band surface brightness pro-
files were each fitted with the appropriate galaxy model
(i.e., either a pure Sérsic or core-Sérsic model) outside
a geometric mean radius of 0.′′5. Those galaxies with
brightness profiles which lay systematically above the in-

ward extrapolation of fitted model for . 0.′′5 were con-
sidered to be nucleated. Because many of the nuclei are
somewhat bluer than the underlying galaxies, a central
excess was often more apparent in the g-band profile
than in the redder bandpass. In addition to classifying
the galaxies on the basis of their brightness profiles, the
F475W and F850LP images for each galaxy were care-
fully inspected for the presence of a distinct central ex-
cess. Using these two criteria, a total of 62 galaxies were
found to show clear evidence for a central nucleus; such
galaxies are classified as Type Ia or Ib.

Unfortunately, for 11 of these 62 galaxies, although the
presence of a faint central component could be estab-
lished from the images themselves or from the brightness
profiles, the nucleus itself was too faint to allow us to re-
cover trustworthy photometric or structural parameters
from the surface brightness profiles. Such galaxies are
referred to as Type Ib in Tables 1 and 2. Our analysis of
the structural and photometric properties of the nuclei
is therefore based on the subset of 51 nucleated galaxies
for which it was possible to obtain a reliable fit to the
central brightness profiles: i.e., Type Ia galaxies. The
Type Ib galaxies are classified as nucleated for the pur-
poses of computing the overall frequency of nucleation,
but their nuclei are omitted from the analysis in §4.4 to
4.8.

Of the remaining 94–62 = 32 galaxies, five may have
nuclei which are offset by ≈ 0.′′5 or more from the cen-
ters of the isophotes (Type Ie galaxies). We consider
these five galaxies in more detail in §4.3. The remaining
94–62–5 = 27 objects consist of galaxies which are ei-
ther unquestionably non-nucleated, or galaxies with un-
certain classifications. As described in Appendix A, we
have carried out a series of experiments in which simu-
lated nuclei having sizes and luminosities that obey the
empirical scaling relations found in §4, are added to —
and removed from — the observed brightness profiles. By
re-fitting the brightness profiles obtained in this way, we
aim to refine the nuclear classifications of these galaxies.
To summarize our conclusions from these simulations, we
classify 12 of these 27 galaxies as certainly non-nucleated
(Type II), 11 as possibly nucleated (Type Id) and four
others as likely nucleated (Type Ic). These classifications
are reported on a case-by-case basis in Table 1, and sum-
marized for the entire sample in Table 2.

Figure 3 shows F475W images for the central
10′′×10′′ regions (≈ 800×800 pc) of all 100 galaxies in
the survey. Each galaxy is labelled according to the clas-
sifications from Table 1. Azimuthally-averaged surface
brightness profiles in the g-band for all 100 galaxies are
shown in Figure 4. For the 51 Type Ia galaxies shown
in this figure, the dashed and dotted curves indicate the
best-fit models for the nucleus and galaxy, while the com-
bined profile is shown by the solid curve. For all remain-
ing galaxies, the solid curve simply shows the best-fit
Sérsic or core-Sérsic model. Note that no fit was pos-
sible for either VCC1535 or VCC1030, the two galaxies
with the most severe dust obscuration. Open symbols in
Figure 4 denote datapoints that were omitted when fit-
ting the galaxy profile (e.g., the innermost datapoints for
galaxies which contain nuclei too faint to be fit reliably,
outer datapoints for the close companions of luminous
giant galaxies, and, occasionally, datapoints correspond-
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ing to pronounced rings, shells, or other morphological
peculiarities).

4.2. Errors on Fitted Parameters

Given that independent fits of the g- and z-band
brightness profiles are performed for the Type Ia galax-
ies, it is natural to ask how well the photometric and
structural parameters of the nuclei measured in the two
bands agree. The first two panels of Figure 5 compare
the King model half-light radii, rh, and total magnitudes,
gAB and zAB, measured from the separate profiles (filled
circles). Note that for 11 of these 51 galaxies (i.e., those
objects with BT . 13.5), the King concentration index
and half-light radii of the nuclei were constrained to be
the same in the two bandpasses; these nuclei are plotted
as open stars in the first panel of Figure 5. In addition,
we include in this figure the five galaxies with possible
offset nuclei, bearing in mind that in these cases, the rh,
gAB and zAB measurements were carried out in a rather
different way (see §4.3 for details). The open circles show
the nuclei of these five galaxies.

The third panel of Figure 5 compares two estimates for
the color of the nuclei: i.e., that obtained by integrating
the best-fit g- and z-band King models, (g − z )AB , and
an aperture color, (g − z )a

AB
, obtained using a circular

aperture of radius 4 pixels (0.′′20 ≈ 16 pc) applied to the
nucleus of the galaxy-subtracted image. The mean differ-
ence between the total and aperture colors is 0.018 mag,
in the sense that the aperture colors are slightly red-
der. The rms scatter in the measured radii and col-
ors is found to be 〈σ(rh)〉 ∼ 0.′′007 and 〈σ(g − z)〉 ∼
0.059 mag, respectively. Assuming the latter uncertainty
arises equally from errors in the g and z bands, we find
〈σ(g)〉 = 〈σ(z)〉 ∼ 0.041 mag for the nuclei magnitudes.
We adopt these values for the typical uncertainties on the
fitted radii, colors and magnitudes, bearing in mind that
additional systematic errors (e.g., in the photometric ze-
ropoints or in the construction of the PSFs) may affect
the measurements. In any case, we conclude from Fig-
ure 5 that there is excellent internal agreement between
the measured sizes, colors and magnitudes.

4.3. Frequency of Nucleation

VCC classifications for our program galaxies are given
in Table 1 where column (8) reports the classification
from BST85: Y means nucleated, N means non-nucleated.
Our new classifications are given in column (9). Column
10 indicates which type of model was used to represent
the galaxy: “S” = Sérsic or “cS” = core-Sérsic.

The most basic property of the nuclei which might
serve as a constraint on theories for their origin is the
overall frequency, fn, with which they are found in our
program galaxies. Among the 94 galaxies which can be
reliably classified as either nucleated or non-nucleated,
we find 62 galaxies, or fn = 62/94 ≈ 66% of the sample
to show clear evidence for a central nucleus (Types Ia
and Ib). However, we believe this estimate should be
considered a firm lower limit on the frequency. Includ-
ing the Type Ic galaxies (which are very likely to be
nucleated but could not be classified as such unambigu-
ously), gives fn = 66/94 ≈ 70%. If one also includes the
Type Id galaxies, which may be nucleated, one then finds

fn = 77/94 ≈ 82%. Finally, if all five galaxies with pos-
sible offset nuclei are included (although we caution in
§4.3 that the weight of evidence argues against doing so),
the percentage of nucleated galaxies could be as high as
fn = 82/94 ≈ 87%. While the true frequency probably
lies between these extremes, it is nevertheless striking to
think that, among our sample of 94 classifiable galaxies,
in only 12 cases can the absence of a nucleus be estab-
lished with any degree of certainty.

4.3.1 Comparison with Ground-Based Studies

Among the 100 elliptical, lenticular and dwarf galax-
ies in the ACS Virgo Cluster Survey, 24 dwarf galaxies
(dE,Ns) and one E galaxy were classified as nucleated in
the original VCC (BST85; see also Table 1 of Paper I).19

The frequency of nucleation which we derive here, fn ≈
66–87%, is much higher than the value of fn ≈ 25%
found using the classifications of BST85, and represents
a sharp upward revision of the nucleation frequency for
early-type galaxies in this luminosity range.

There are several reasons why such a discrepancy
should come as no surprise. To the best of our knowl-
edge, ours is the first systematic census of nuclei in early-
type galaxies that includes both dwarf and giant galaxies
(spanning a factor of ∼ 460 in blue luminosity). More im-
portantly, the studies of BST85 and BTS87, along with
most of the major subsequent studies of dwarf galax-
ies and their nuclei (e.g., Binggeli & Cameron 1991;
1993), were based on visual inspection of photographic
plates. As pointed out in §1 and stressed by BST85 them-
selves, the VCC classifications are known to be incom-
plete fainter than B & 23 (MB & −8) and to suffer from
surface brightness selection effects for the luminous E
and S0 galaxies. Clearly, selection effects of this sort are
less of an issue for our survey, where the identification
of the nuclei is relatively straightforward thanks to the
depth and high spatial resolution of the ACS images.

In any case, care must be taken when comparing our
measurement to previous estimates since the frequency
of nucleation is known to depend on the luminosities of
the galaxies under consideration (e.g., Sandage, Binggeli
& Tammann 1985). Figure 6 shows the luminosity func-
tions for our sample of 62 nucleated galaxies (Types Ia
and Ib) as the double-hatched histogram; the hatched
histogram shows this same sample plus the 15 likely or
possibly nucleated galaxies of Types Ic and Id (i.e., 77
galaxies in total). For comparison, the 25 galaxies clas-
sified as nucleated by BST85 are shown by the filled his-
togram, and the open histogram shows the distribution
of the 94 classifiable galaxies from the ACS Virgo Clus-
ter Survey. As expected, the disagreement between our
classifications and that of BST85 is quite dramatic for
galaxies brighter than BT ≈ 13.7. This happens to be
the approximate dividing point between dwarf and giant
galaxies in the VCC, which strongly suggests that the
disagreement is the result of selection effects that made
it difficult or impossible for BST85 to identify nuclei in

19 The lone elliptical in our sample which was classified as nucle-
ated by BST85 is VCC1422 = IC3468 (E1,N:). However, Binggeli
& Cameron (1991) argue that this galaxy is in fact a misclassified
dwarf. In what follows, we take the total number of nucleated dwarf
galaxies in our sample, estimated from the BTS87 classifications,
to be 25.
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bright, high-surface-brightness galaxies. For BT & 13.7,
there is better agreement although we still find signifi-
cantly more nuclei even among these faint galaxies: i.e.,
we classify 46 of 53 galaxies, or 87%, of this subsample
as nucleated, compared to just 25/56 (≈ 47%) using the
BST85 classifications. The luminosity dependence of fn

is shown explicitly in the lower panel of Figure 6.

A vivid demonstration of the importance of surface
brightness selection effects when classifying nuclei is
shown in Figures 7 and 8. The first of these figures
compares the distribution of galaxy surface brightnesses,
measured at a geometric mean radius of 1′′, for the same
four samples shown in the Figure 6. By contrast, Fig-
ure 8 shows nucleus magnitude as a function of galaxy
surface brightness measured at a geometric mean radius
of 1′′. Filled symbols show the 51 Type Ia galaxies in
our sample, while the open squares show the 25 galaxies
classified as nucleated by BST85. Open circles in this
figure denote the five galaxies with possible offset nuclei.

Figures 7 and 8 leave little doubt that the survey
of BST85 preferentially missed nuclei in the bright,
high-surface-brightness galaxies. We further note that
a recent survey of 156 Virgo dwarfs with the Wide
Field Camera on the Isaac Newton Telescope uncovered
faint nuclei in 50 galaxies previously classified as non-
nucleated, consistent with our upward revision for fre-
quency of nucleation (Grant, Kuipers & Phillipps 2005).
Of course, it is conceivable we too may be missing faint
nuclei in the highest surface brightness galaxies; it is cer-
tainly true that the 11 galaxies for which we are unable
to measure reliable photometric or structural parameters
for the nuclei are among the highest surface brightness
galaxies in our survey. Accordingly, we stress once again
that the estimate of fn ≈ 66% from §4.1, which is based
on galaxies with unambiguous nuclei, is certainly a lower
limit to the true frequency of nucleation among our sam-
ple of early-type galaxies. We shall return to this point
in §5.2 (see also Appendix A).

Figures 9 and 10 illustrate the importance of HST
imaging for the identification of nuclei in these galax-
ies. In Figure 9 we show a comparison between the co-
added F475W image for VCC2048 (IC3773) — a Type Ia
galaxy — with three simulated ground-based images for
this same galaxy. In these three cases, the co-added
F475W frame has been binned 4× 4 and convolved with
Gaussians having dispersions of 1, 2 and 3 pixels, corre-
sponding to FWHM of 0.′′5, 0.′′9 and 1.′′4. It is clear that
seeing effects alone make the detection of faint, compact
nuclei challenging under normal conditions of ground-
based seeing. This finding is all the more sobering when
one considers that VCC2048, classified as dS0(9) in the
VCC, was thought on the basis of the original BST85
classifications to be the brightest non-nucleated dwarf
galaxy in our sample.

The first two panels of Figure 10 compare the F475W
image for VCC784 (NGC4379) with a V -band image
taken with the 2.4m Hiltner MDM telescope on 21 April,
1993 in conditions of 1.′′14 seeing. This galaxy, one of the
brightest Type Ia galaxies in our survey, was also clas-
sified as non-nucleated in the study of BST85. As the
third panel of Figure 10 demonstrates, there is no hint
of a central nucleus in the ground-based surface bright-
ness profile, despite the fact that the nucleus, which is

clearly visible in the ACS brightness profile, is among the
brightest and largest in our sample.

4.3.2 Comparison with Previous HST Studies

As noted in §1, a few HST studies had previously re-
vealed the presence of compact nuclei in bright early-
type galaxies (e.g., Rest et al. 2001; Ravindranath et al.
2001; Lauer et al. 2005). While these programs preferen-
tially focussed on distant, high-luminosity ellipticals and
lenticulars — with 80% of the galaxies in these respec-
tive surveys having absolute magnitudes brighter than
MV ∼ −20,−20 and −20.8, compared to MV ∼ −16 for
the present survey — there is nevertheless some overlap
with our sample at the bright end due to the large num-
ber of luminous E and S0 galaxies in the Virgo Cluster.
In this section, we compare our nuclear classifications
with those reported in these previous surveys, limiting
the comparison to those galaxies in our survey which
have unambiguous classifications (i.e., Types Ia, Ib and
II). For completeness, we also compare our classifications
for three faint galaxies to those of Lotz et al. (2004)
who carried out a WFPC2 snapshot survey of early-type
dwarf galaxies in the Virgo and Fornax Clusters. Ta-
ble 3 summarizes the nuclear classifications for galaxies
in common with the surveys of Rest et al. (2001), Ravin-
dranath et al. (2001), Lauer et al. (2005) and Lotz et al.
(2004).

The Rest et al. (2001) study presented WFPC2
(F702W ≈ R) imaging for 67 early-type galaxies be-
tween 6 and 54 Mpc, with a mean distance of 〈d〉 = 28±9
Mpc. To minimize spurious detections, Rest et al. (2001)
adopted rather conservative criteria in their search for
nuclei, identifying nucleated galaxies as those objects
which showed a central excess, along both the major and
minor axes, over the best-fit “Nuker” model inside a ra-
dius of 0.′′15. Based on these criteria, they identified
nuclei in 9 of their 67 galaxies (13%). No structural and
photometric parameters were measured for the nuclei.
There are six galaxies in common between their survey
and ours. We find reasonable agreement between the two
studies, with the exception of VCC731 (NGC4365): Rest
et al. (2001) report no nucleus in this galaxy, whereas
we find a small, but definite, central brightness excess.
Accordingly, we classify this galaxy as Type Ib (i.e., cer-
tainly nucleated).

The NICMOS study of Ravindranath et al. (2001) was
carried out using F160W (≈ H) images from the NIC2
(FWHM = 0.′′17, scale = 0.′′076) and NIC3 (FWHM =
0.′′22, scale = 0.′′2) cameras. For 33 galaxies with dis-
tances in the range 7 to 69 Mpc and 〈d〉 = 21±14 Mpc,
these authors fitted two-dimensional, PSF-convolved
“Nuker” models to their NICMOS images. Compact
sources — consisting of narrow, PSF-convolved Gaus-
sians — were then included for those galaxies whose one-
dimensional surface brightness profiles showed evidence
for a central excess (14 of their 33 galaxies). FWHMs
and magnitudes for the nuclei were then obtained by χ2

minimization. We find good agreement with the Ravin-
dranath et al. (2001) classifications. Specifically, we con-
firm the absence of nuclei in VCC1226 and VCC881 (M86
= NGC4406). For VCC763 (M84 = NGC4374), which is
classified as nucleated by these authors, we confirm the
presence of a central point source, although the galaxy
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is classified as Type 0 in Table 1 due to the presence of
strong AGN activity. All of the nuclei in the study of
Ravindranath et al. (2001) were found to be unresolved
point sources, although this is probably a consequence
of the relatively poor resolution of their images: i.e., at
the mean distance of their sample galaxies, the NICMOS
FWHM corresponds to ∼ 20 pc.

The WFPC2 study of Lauer et al. (2005) was based on
F555W or F606W (≈ V ) imaging for 77 galaxies; a little
more than half of their galaxies (45) were also imaged in
the F814W (≈ I) bandpass. The galaxies have distances
in the range 10 to 97 Mpc, with mean 〈d〉 = 33 ± 21,
so the 0.′′07 FWHM for the PC1 CCD corresponds to a
physical scale of 11 pc for the typical galaxy. Magni-
tudes and colors for the nuclei in their sample — iden-
tified as an excess above the “Nuker” model which best
fits the observed brightness profile — were derived by
direct integration of the model residuals. In only two
of their 25 nucleated galaxies did the nucleus appear re-
solved. There are seven ACSVCS galaxies having un-
ambiguous nuclear classifications which are in common
with Lauer et al. (2005). The classifications are in agree-
ment in three cases: VCC1978, VCC731 and VCC1903
(M59 = NGC4621). For VCC1146 (NGC4458), which
Lauer et al. (2005) classify as non-nucleated, we believe
the discrepancy may be due to the highly extended na-
ture of the nucleus. With rh ≈ 0.′′8 = 62 pc, it is largest
nucleus in our sample, and would be difficult to distin-
guish from the underlying galaxy profile in brightness
profiles of limited radial extent; the Lauer et al. (2005)
brightness profile for this galaxy covers just the inner 5′′.

The three remaining galaxies — VCC1226, VCC881
and VCC1632 — are listed as nucleated in Lauer et al.
(2005), but we classify each of these galaxies as Type II
(non-nucleated). We speculate that the detection of nu-
clei in VCC1226 and VCC1632 is an artifact resulting
from the presence of dust in both galaxies, which partly
obscures the innermost ∼ 1′′. Lauer et al. (2005) do not
correct their images for dust obscuration; once such a
correction is performed, we find no indication of a cen-
tral nucleus in either galaxy (see also Paper VI).

In the case of VCC881, which is classified as nucleated
by Lauer et al. (2005), a faint continuum enhancement
is indeed detected in both the g and z bands at the cen-
tral location. This feature would certainly be enhanced
by the deconvolution procedure applied by Lauer et al.
(2005) to their data. However, it is unclear whether this
corresponds to a stellar nucleus. If one assumes that
VCC881 follows the scaling relation between nucleus and
galaxy luminosity obeyed by the rest of the sample, then
the putative nucleus would be underluminous by a fac-
tor of ∼ 250. Furthermore, starting around 0.′′4, the
surface brightness profile of VCC881 decreases towards
the center (Carollo et al. 1997). The origin of this cen-
tral surface brightness depression is unclear (Lauer et al.
2002; Paper VI): e.g., an intrinsic decrease in the lumi-
nosity (or mass) density, or perhaps obscuration by gray
dust, might be responsible. Since either processes could
produce a modest and localized continuum enhancement
such as the one seen at the nuclear location, we believe
this galaxy is best classifed as non-nucleated (Type II).
We further note that there is no evidence of nuclear ac-
tivity in VCC881 from its optical, radio and X-ray prop-

erties (Ho et al. 1997; Rangarajan et al. 1995; Fabbiano
et al. 1989).

Lotz et al. (2004) carried out WFPC2 (F555W ≈ V
and F814W ≈ I) imaging for 69 dEs and dE,Ns, mostly
belonging to the Virgo and Fornax Clusters. In their
analysis, a nucleus was identified as a bright compact
object within 1.′′5 of the galaxy photocenter. While
the Lotz et al. (2004) survey tended to focus on fainter
galaxies than does our survey (i.e., their program galax-
ies have absolute blue magnitudes in the range −17 .
MV . −11.7 mag, with mean 〈MV 〉 = −14.2 mag), there
are three galaxies which appear in both studies: VCC9
(IC3019), VCC543 and VCC1948. In the case of VCC9
and VCC1948, the two studies agree in finding no evi-
dence of a nucleus at the position of the galaxy photocen-
ter. However, we have identified both of these galaxies
as possible examples of galaxies with offset nuclei (see
§4.4). Although Lotz et al. (2004) do not comment on
a possible offset nucleus in the case of VCC1948, they
state that: “VCC9 was originally classified as nucleated
by Binggeli et al. (1985), but its brightest globular clus-
ter candidate is 1.′′8 from its center”. For comparison,
we measure an offset of 1.′′91±0.′′07 for this object and,
like Lotz et al. (2004), conclude that it is probably a star
cluster projected close to the galaxy photocenter, rather
than a bonafide nucleus. The remaining galaxy, VCC543,
appears in the list of non-nucleated galaxies in Table 3
of Lotz et al. (2004), although we find unmistakable ev-
idence for a nucleus in this object (see Figures 3 and 4)
that is offset by no more than 0.′′07±0.′′12 from the galaxy
photocenter.

Finally, we note that two recent papers (de Propris
et al. 2005; Strader et al. 2006) have examined the prop-
erties of nuclei belonging to subsets of the galaxies from
the ACS Virgo Cluster Survey, based on the same obser-
vational material used in this paper. A detailed compar-
ison of the sizes, magnitudes and colors we measure for
the nuclei with those reported by de Propris et al. (2005)
and Strader et al. (2006) is given in Appendix B.

4.4. Possible Offset Nuclei

Before proceeding, we pause to consider those galaxies
that may have offset nuclei. Nuclei displaced from the
photocenters of their host galaxies are potentially inter-
esting since they may hold clues to the general processes
which trigger and/or regulate the formation of nuclei in
general. For instance, offsets may arise through the ongo-
ing merging of globular clusters through dynamical fric-
tion (Tremaine, Ostriker & Spitzer 1975; Miller & Smith
1992), the fading of stellar populations in dwarf irregular
or blue compact dwarf galaxies as they evolve into dwarf
ellipticals (e.g., Davies & Phillips 1988), recoil events fol-
lowing the ejection of a supermassive black hole from the
nucleus (Merritt et al. 2004) or counter-streaming insta-
bilities that develop in flat and/or non-rotating systems
(Zang & Hohl 1978; De Rijcke & Debattista 2004).

From an observational perspective, the identification
of such nuclei is a complicated problem. They are prone
to confusion with globular clusters, foreground stars or
background galaxies — difficulties that are particularly
serious in ground-based imaging, where the nuclei and
contaminants will appear unresolved. The most ambi-
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tious study of offset nuclei undertaken to date is that
of Binggeli, Barazza & Jerjen (2000), who measured
offsets for a sample of 78 nucleated dwarf galaxies in
the Virgo Cluster using digitized images of blue photo-
graphic plates obtained in conditions of FWHM ≈ 1.′′2
seeing. They found offset nuclei to be commonplace, with
δrn & 0.′′5 in 45 (58%) and δrn & 1′′ in 14 of the objects
(18%). It is of interest to check these results given the
small sizes of the measured offsets relative to the ground-
based seeing disk, the absence of color information that
might be used to identify contaminants, and the possi-
bility of confusion with Galactic stars, globular clusters
and, to a lesser extent, background galaxies.

We have used our ACS images to measure offsets for
the nuclei of the 62 Type Ia and Ib galaxies in our sample.
In both the F475W and F850LP images for each galaxy,
we first calculate the centroid of the nucleus and its cor-
responding uncertainty. The location of the galaxy pho-
tocenter is then found by averaging the centers of ellipses
fitted to the galaxy isophotes over the range 1′′ ≤ r ≤ re

(Paper VI). The uncertainty on the position of the pho-
tocenter is taken to be the standard deviation about the
mean ellipse center. Adding in quadrature the uncertain-
ties for the position of the nucleus and photocenter then
yields the uncertainties for the offset. The results re-
ported in column 17 of Table 1 are averages of the offsets
measured from the F475W and F850LP images.

Figure 11 shows the measured offsets for the 62 galax-
ies. Offsets are shown both in arcseconds (upper panel)
and in units of the effective radius of the galaxy, 〈re〉,
taken from Paper VI (lower panel). In only three galax-
ies do we see evidence for an offset as large as 1′′. Using
a less restrictive criterion of δrn & 0.′′5, we find only five
galaxies that may have offset nuclei (i.e., Type Ie galax-
ies). These galaxies, which are shown as the open circles
in Figure 11, are:

VCC9. This very low surface brightness galaxy has
multiple bright sources near its photocenter; it may
be a dIrr/dE transition object and seems to con-
tain a rich population of “diffuse star clusters” (Pa-
per XI). In addition to the presumed nucleus, there
is a second source about two magnitudes fainter
which is located ≈ 1.′′5 from the photocenter (and a
similar distance from the presumed nucleus). Both
the color and the half-light radius of the presumed
nucleus are similar to those of metal-poor globular
clusters in our dwarf galaxies. Thus, it is conceiv-
able that this galaxy has no nucleus at all.

VCC21 (IC3025). More than a dozen bright
sources are found in the inner regions of this very
low surface brightness galaxy. Based on its mottled
appearance, this galaxy too should be re-classified
as a dIrr/dE transition object. The presumed nu-
cleus is located ≈ 0.′′76±0.′′07 from the galaxy pho-
tocenter, the smallest offset in our sample of five
candidates. There are, however, two fainter sources
close by, and given the large number of sources in
this galaxy, its transitional morphology, and the
fact that the presumed nucleus has a very blue color
of (g − z) ≈ 0.3, we believe the evidence indicates
that the “nucleus” in VCC21 is probably a young
star cluster.

VCC1779 (IC3612). This highly flattened galaxy
(ǫ ≃ 0.5) is noteworthy in that it contains dust
filaments — unusual for low- and intermediate-
luminosity galaxies in our sample (see Paper VI).
Like VCC9 and VCC21, this galaxy may be a
dIrr/dE transition object. The ACS images reveal
four bright sources, all of which may be globular
clusters, near the galaxy center. We identify the
brightest of these sources, which is not the nearest
to the center, as the putative nucleus. If the near-
est (and second brightest) source is instead identi-
fied as the nucleus, then the offset would be ≈ 0.′′4
rather than ≈ 0.′′5.

VCC1857 (IC3647). This galaxy, another very low
surface brightness object, has a very bright source
located ≈ 7′′from its center. This is by far the
largest offset for any galaxy in our sample, so the
identification of this source as a nucleus should be
viewed with some caution. The color and half-
light radius of the presumed nucleus are consis-
tent with those expected for an otherwise normal
(metal-poor) globular cluster.

VCC1948. The presumed nucleus in this galaxy,
another very low surface brightness object, is lo-
cated ≈ 1.′′4 from the galaxy photocenter. It is the
brightest of several sources in the inner few arcsec-
onds. There also appears to be a very faint surface
brightness “excess” that is nearly coincident with
the galaxy photocenter. It is therefore possible that
this galaxy may be a normal (Type Ib) nucleated
galaxy, albeit one with an unusually faint nucleus.
If so, then the source identified as the possible nu-
cleus may be a globular cluster.

We conclude that in every case there is considerable
uncertainty regarding the nature of the presumed off-
set nucleus. It is possible — and we consider it likely
— that the “offset nuclei” in all five of these galaxies
are merely globular clusters residing in non- or weakly-
nucleated galaxies.

Are there nuclei with even smaller offsets? The nuclei
of four other galaxies (VCC1539, VCC2019, VCC1895
and VCC1695) have offsets 0.′′1 . δrn . 0.′′5 and, in frac-
tional terms, there are four other galaxies that have nu-
clei offset by more than 1% of the galaxy effective radius
(VCC2019, VCC1199, VCC1695 and VCC1895). We re-
mind the reader, however, that these offsets correspond
to just two ACS/WFC pixels, and should be confirmed
using deeper, higher resolution imaging. Our only secure
conclusion is that, at most, only five of the nucleated
galaxies in our survey, or ≈ 7% of the sample, have nuclei
that are offset by more than 0.′′5 from their photocenters
— at least three times smaller than the value of ∼ 20%
found by Binggeli et al. (2001). Moreover, we believe
that most — and perhaps all — of the “nuclei” in the
Type Ie galaxies are probably globular clusters, so this
should be considered a firm upper limit on the percent-
age of galaxies with nuclei offset by more than 0.′′5. The
actual percentage may in fact be zero.

4.5. The Spatial Distribution of Nucleated and
Non-Nucleated Galaxies
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A key result to emerge from the survey of BTS87 was
the discovery of a spatial segregration between nucleated
and non-nucleated dwarf galaxies in Virgo: the dE,Ns
are more strongly concentrated to the cluster center than
the dEs (see, e.g., Figure 9 of BTS87). A similar trend
was later reported for the Fornax Cluster by Ferguson &
Sandage (1989). Our discovery of nuclei in many of the
galaxies classified as non-nucleated by BST85 suggests
that it is worth reconsidering this important issue.

To facilitate comparison with the BTS87 and BST85
results, we limit our analysis in this section to those
galaxies fainter than BT & 13.7, the approximate di-
viding point between dwarfs and giants in the VCC. As
it happens, this magnitude also divides the ACS Virgo
Cluster Survey equally into two samples of 50 galaxies.

In the left panel of Figure 12, the heavy solid curve
shows the cumulative distribution of projected distances
from the center of the Virgo Cluster for the 50 galax-
ies with BT & 13.7.20 Using the VCC classifications,
one finds this sample to be composed predominantly of
dwarfs (i.e., 33 of 50 galaxies according to Table 1 of
Paper I). The dotted and dashed curves show the cor-
responding distributions for the nucleated (23) and non-
nucleated (27) galaxies in this sample, once again using
the VCC classifications. A KS test confirms the visual
impression from this figure that the nucleated galaxies in
our survey exhibit the same trend noted by BTS87 for
the full sample of nucleated dwarfs in the VCC: i.e., the
dE,N galaxies are more centrally concentrated than their
non-nucleated counterparts.

In the right panel of this figure, we show the sample
of 49 galaxies with BT & 13.7 which we are able to clas-
sify as nucleated or non-nucleated from our ACS images
(heavy solid curve).21 Excluding for the moment the five
galaxies with possible offset nuclei, whose true nature
is uncertain, we find 40 of 44 remaining galaxies to be
nucleated (dotted curve). Given the preponderance of
nucleated galaxies, it is not surprising to see that a sys-
tematic difference in central concentration between the
two populations is no longer apparent. Of course, with
just four non-nucleated galaxies in this regime, the sam-
ple falls below the minimum size needed for statistically
reliable results using a KS test, but our point in showing
this comparison is to stress again that the overwhelming
majority of program galaxies with BT ≤ 13.7 contain
nuclei.

A definitive investigation into the spatial distribution
of nucleated and non-nucleated galaxies in the Virgo
Cluster would require ACS imaging for many hundreds
of galaxies. Nevertheless, we can speculate on the origin
of the trend noted by BTS87. It has long been known
that galaxies in Virgo show some segregation in terms of
luminosity and morphology. Ichikawa et al. (1988) noted
that the dwarf elliptical galaxies in the central regions of
Virgo appear to be larger and brighter than those in the
cluster outskirts. At the same time, BTS87 showed that
the bright early-type galaxies (E+S0) are less strongly

20 The cluster center is taken to be the position of M87: α(J2000)
= 12:30:49.4 and δ(J2000) = 12:23:28.

21 One galaxy in this magnitude range, VCC571, is excluded
because of an irregular dust lane which obscures the nucleus and
makes a definitive classification impossible.

concentrated to the cluster center than the faint (dE)
early-type galaxies (see their Figures 7 and 8). Since cen-
tral surface brightness is proportional to total luminosity
for early-type galaxies, the BTS87 finding implies that
bright, high-surface-brightness dwarfs (HSBDs) in Virgo
are more spatially extended than low-surface-brightness
dwarfs (LSBDs). Because the original BTS87 classifica-
tions suffer from a serious surface brightness selection ef-
fect — in the sense that nuclei belonging to galaxies with
central surface brightnesses µg(1

′′) . 20 mag arcsec−2

will go undetected; see Figure 8 — the observed trend
may simply be a consequence of this surface brightness
selection effect.

To put this claim on a more quantitative footing, we
have calculated the density profiles for HSBD and LSBD
early-type galaxies in Virgo, using a surface bright-
ness of µg(1

′′) ≈ 20 mag arcsec−2 as a dividing point
between the two subgroups. As shown in Figure 8,
BTS87 would have tended to classify LSBDs as nucle-
ated, while the HSBDs would have been preferentially
classified as non-nucleated. A least-squares fit to our
sample galaxies gives µg(1

′′) = 1.139BT + 3.44, so that
µg(1

′′) . 20 mag arcsec−2 corresponds to a total galaxy
magnitude of BT ≈ 14.55. Restricting ourselves to the
early-type members of Virgo with 13.7 . BT . 18,
this leaves us with a total of 448 galaxies. The upper
limit of BT = 13.7 represents the approximate transi-
tion between dwarfs and giants in Virgo, while the lower
limit reflects the completeness limit of the BTS87 sur-
vey. Among this sample of 448 galaxies, there are 42
HSBDs with 13.7 . BT . 14.55, and 406 LSBDs with
14.55 . BT . 18.

Figure 13 shows the density profiles, Σ(r), for these
two populations. In calculating the profiles, we have ex-
cluded galaxies belonging to the M and W Clouds, and
discarded galaxies with declinations less than 9◦ to guard
against contamination from the Virgo B subgroup cen-
tered on VCC1226 (M49). Fitting exponentials of the
form Σ(R) ∝ e−αR gives scalelengths of α = 0.49 ± 0.06
and 0.36± 0.06 deg−1 for the LSBD and HSBD popula-
tions, respectively. In other words, there is a statistically
significant tendency for the HSBD early-type galaxies —
the same galaxies which would preferentially be misclas-
sified as non-nucleated in the VCC because of their high
central surface brightnesses — to be more spatially ex-
tended. This is consistent with the interpretation that
the differing spatial distributions for dE and dE,N galax-
ies noted by BTS87 is, in fact, a consequence of their
survey’s surface brightness limit.

4.6. The Nucleus-to-Galaxy Luminosity Ratio

Lotz et al. (2004) and Grant, Kuipers & Phillipps
(2005) found that brighter galaxies tend to contain
brighter nuclei. The upper panels of Figure 14 plot the
magnitudes of the nuclei against those of the host galax-
ies; results for the g and z bandpasses are shown in the
left and right panels, respectively. Filled and open sym-
bols show the results for 51 Type Ia and five Type Ie
galaxies. The dashed lines in these panels show the least-
squares lines of best fit: g′n = (0.90 ± 0.18)g′g + (7.59 ±
2.50) and z′n = (1.05± 0.18)z′g + (5.77± 2.19). For com-
parison, the solid lines show the best-fit relations, with
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(fixed) unity slope:

g′n = g′g + (6.25 ± 0.21)
z′n = z′g + (6.37 ± 0.22)

(6)

The lower panels of Figure 14 show these same data
in a slightly different form. In these panels, we plot the
ratio of nucleus luminosity, Ln, to host galaxy luminosity,
Lg,

η = Ln/Lg, (7)

as a function of galaxy magnitude. Total luminosities for
the nuclei were obtained by integrating the brightness
profiles of the best-fit King model components (see §3).
These magnitudes are recorded in columns (11) and (12)
of Table 1. Galaxy luminosities are taken from Paper VI,
in which the best-fit galaxy model — either Sérsic or
core-Sérsic, as specified in column (10) of Table 1 — was
integrated over all radii to obtain the total luminosity.
The contribution of the nucleus itself was excluded in
the calculation of Lg.

The primary conclusion to be drawn from Figure 14 is
that the nucleus-to-galaxy luminosity ratio does not vary
with galaxy luminosity, although there is considerable
scatter about the mean value. In terms of η, the relations
in equation 6 are equivalent to

〈ηg〉 = 0.32 ± 0.06 %
〈ηz〉 = 0.28 ± 0.06 %

(8)

for the two bands, where the quoted uncertainties refer to
the mean errors. Our best estimate for the mean nucleus-
to-galaxy luminosity ratio is then

〈η〉 = 0.30 ± 0.04 %. (9)

This is well below previous estimates: only 5 of the 51
nucleated galaxies in Figure 9 of Binggeli, Barazza & Jer-
jen (2000) have nuclei with fractional luminosities smaller
than this. While the discrepancy may partly be the re-
sult of different choices for the models used to parame-
terize the galaxy brightness profiles (e.g., Binggeli et al.
2000 use King models for the galaxy when calculating
the luminosity of the central excess), it is also true that
the greater depth and sensitivity of the ACS imaging al-
lows us to identify fainter nuclei than is possible from the
ground, while the high spatial resolution allows a more
accurate subtraction of the underlying galaxy light.

4.7. Luminosity Functions

The luminosity function of nuclei is one of the most
powerful observational constraints on models for their
formation. For instance, one theory involves the growth
of a central nucleus through mergers of globular clusters
whose orbits have decayed because of dynamical friction
(Tremaine, Ostriker & Spitzer 1975; Tremaine 1976; Lotz
et al. 2001). While this scenario is consistent with the
well known fact that the brightest nuclei have luminosi-
ties that exceed those of the brightest globular clusters
(e.g., Durrell et al. 1996; Durrell 1997), a reliable mea-
surement for the luminosity function of the nuclei has
been hard to come by due to the lack of high-resolution
CCD imaging for large, homogenous samples of early-
type galaxies. The need for HST imaging in this instance
is clear, since subtle differences in the subtraction of the
galaxy light (particularly the choice of model to represent

the galaxy) can lead to large differences in the inferred
luminosities of the nuclei (see, e.g., section 5 of Binggeli
& Cameron 1991).

In Figure 15, we plot the luminosity functions, in g and
z, for the sample of 51 Type Ia nuclei given in Table 1.
A Gaussian distribution,

Φ(m0
n) ∝ Ane−(m0

n−m0
n)2/2σ2

n (10)

provides an adequate representation of the luminosity
functions, although there is no physical justification for
this particular choice of fitting function (and it is likely
that the luminosity function suffers from some degree of
incompleteness at both the bright and faint ends). More-
over, if the mean luminosity of nuclei in early-type galax-
ies is indeed a roughly constant fraction, η ≈ 0.3%, of
that of their host (§4.6), then the distribution shown in
Figure 14 may largely be a reflection of the luminosities
of the program galaxies. With these caveats in mind,
we overlay the best-fitting Gaussian distributions in Fig-
ure 15 as the dotted curves. Fitted parameters and their
uncertainties are recorded in Table 4.

A core objective of the ACS Virgo Cluster Survey is a
study of the globular cluster populations associated with
early-type galaxies. Since many thousands of Virgo glob-
ular cluster candidates have been identified in the course
of the survey (e.g., Papers IX, X and XI), it is possible to
compare directly the luminosity functions of the nuclei
with those of the globular clusters. Figure 15 shows the
g- and z-band luminosity functions for ≈ 11,000 high-
probability globular cluster candidates from the survey.
These objects were chosen to have globular cluster prob-
ability indices, Pgc, in the range 0.5 ≤ Pgc ≤ 1 (see
Jordán et al. 2006 for details). A complete discussion
of the globular cluster luminosity function is beyond the
scope of this paper and will be presented in a future ar-
ticle. For the time being, we simply note that, brighter
than the 90% completeness limits of glim ∼ 26.1 mag and
zlim ∼ 25.1 mag, the luminosity functions of the globular
clusters in Virgo (which are dominated by the contribu-
tions from the brightest galaxies) are well described by
Gaussian distributions with σ = 1.3 mag and reddening-
corrected turnover magnitudes of gto ≈ 23.9 mag and
zto ≈ 22.8 mag. These Gaussians are shown as the up-
per dotted curves in each panel of Figure 15.

It is apparent that the luminosity function of the nuclei
extends to higher luminosities than that of the globular
clusters and that, irrespective of the functional form used
to parameterize the luminosity function of the nuclei,
their distribution is significantly broader than that of
the globular clusters. In addition, their distribution is
displaced to higher luminosities than that of the globular
clusters. We measure this offset to be ∆g = 3.52 mag
and ∆z = 3.63 mag in the two bands. Thus, on average,
the nuclei are ∼ 25 times brighter than a typical globular
cluster. We shall return to this point in §5.2.

Also shown in Figure 15 are seven probable UCD galax-
ies in the Virgo Cluster, drawn from Paper VII and from
Haşegan et al. (2006). These objects were identified on
the basis of magnitude and half-light radius from the
same images used to study the nuclei and globular clus-
ters. Although the UCD sample is limited in size, mem-
bership in Virgo has been established for each object
through radial velocity measurements, surface brightness
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fluctuation distances, or both. Furthermore, the mass-
to-light ratios presented in Paper VII demonstrate that
at least some of these objects appear genuinely distinct
from globular clusters. Several explanations for their
origin have been proposed; according to what is prob-
ably the leading formation scenario, they are the sur-
viving nuclei of dwarf galaxies which have been exten-
sively stripped by gravitational tidal fields in the host
cluster (e.g., Bassino et al. 1994; Bekki et al. 2001). The
UCDs shown in Figure 15 have luminosities which co-
incide with the peak of the nuclei luminosity function,
which is certainly consistent with this “threshing” sce-
nario. However, it is important to bear in mind that the
luminosities of the UCDs shown in Figure 15 are entirely
due to the construction of the sample: i.e., candidates
from Paper VII and Haşegan et al. (2006) were selected
to have 18 ≤ g ≤ 21 mag and 17 ≤ z ≤ 20 mag.

4.8. Structural Properties

Prior to the launch of HST, virtually nothing was
known about the sizes of the nuclei in dwarf galaxies. A
notable exception was the compact, low-luminosity nu-
cleus of the Local Group dwarf elliptical galaxy NGC205,
which was measured to have rh ∼ 0.′′4 = 1.4 pc by
Djorgovski et al. (1992). This early estimate, which
was based on deconvolved ground-based images, is in
good agreement with more recent values obtained us-
ing ACS surface brightness profiles (e.g., Merritt et al.
2006). However, measuring half-light radii for nuclei at
the distance of Virgo using ground-based images is im-
possible (e.g., Caldwell 1983; Sandage, Binggeli & Tam-
mann 1985; Caldwell & Bothun 1987). For instance, us-
ing high-resolution CFHT images for ten Virgo dwarfs,
Durrell (1997) was only able to place an upper limit of
rh . 0.′′4–0.′′5 (30–40 pc) on the sizes of the nuclei.

Even with the excellent angular resolution and spa-
tial sampling afforded by HST/ACS, the measurement
of structural parameters for the nuclei is challenging —
more so than for a typical Virgo globular cluster because
the nuclei are observed on a bright background which is
varying rapidly in both the radial and azimuthal spatial
directions. In their WFPC2 snapshot survey of dwarf
galaxies in the Virgo and Fornax clusters, Stiavelli et al.
(2001) and Lotz et al. (2004) did not attempt to mea-
sure half-light radii for the nuclei, but they noted that
these nuclei have “sizes” less than 0.′′13 (10 pc). Working
from the same WFPC2 data for a subset of five nucleated
dwarfs, Geha, Guhathakurta & van der Marel (2002) de-
rived half-light radii in the range 9–14 pc (0.′′11–0.′′18).

With their greater depth and superior sampling of the
instrumental PSF, our ACS images are better suited to
the measurement of half-light radii than any previous
dataset, including the WFPC2 imaging. Moreover, im-
ages are available in two filters, so it is also possible to
carry out independent size measurements and identify
possible systematic errors arising from uncertainties in
the F475W and F850LP PSFs. As shown in Figure 5,
we have made such a comparison and find good agree-
ment between the half-light radii measured in the dif-
ferent bandpasses, with a typical random measurement
error of σ(rh) ∼ 0.′′007. We note that half-light radii mea-
sured for the nuclei of approximately two dozen of our
program galaxies have recently been reported by de Pro-

pris et al. (2005) and Strader et al. (2006). Appendix B
presents a comparison of our structural and photometric
parameters with those measured in these studies.

Figure 16 shows the distribution of half-light radii for
the nuclei of Type Ia galaxies from Table 1. The distri-
bution is evidently quite broad, with a peak at rh . 0.′′05
(4 pc) and an extended tail to much larger radii (0.′′83 ≈
62 pc). The dashed line at 0.′′025 (≈ 2 pc) in each panel
shows our estimate for the resolution limit of the images
used to characterize the properties of the nuclei.22 In
both bandpasses, the median half-light of the nuclei in
our sample is found to be 0.′′05 (4 pc). Clearly, the nu-
clei have a size distribution that is different from that of
the globular clusters. In the latter case, the distribution
is sharply peaked, with a typical (and nearly constant;
Paper X) half-light radius of 〈rh〉 = 0.′′033 ≈ 2.7 pc (i.e.,
∼ 30% larger than the resolution limit for the nuclei). It
is clear that the nuclei are not only brighter than typi-
cal globular clusters (§4.5) but they are also, on average,
larger. There is, however, considerable overlap between
the two distributions, and the most compact nuclei have
half-light radii that are indistinguishable from those of
globular clusters. The UCDs, on the other hand, have
half-light radii which resemble those of the nuclei. As
with the luminosity functions, this agreement may be
a consequence of the selection process: i.e., UCD can-
didates were identified from the sample of sources with
sizes in the range 0.′′17–0.′′5 (14–40 pc).

Figure 17 shows that there is a clear correlation be-
tween size and luminosity for the nuclei, in the sense that
the brighter objects have larger half-light radii. We have
fit relations of the form rh ∝ Lβ to the data in Figure 17,
excluding both the offset nuclei and the 5–6 nuclei which
fall below the nominal resolution limit of 0.′′025 (shown
by the dashed lines in the two panels). The solid lines in
the two panels show the relations:

rh,g ∝ L0.505±0.042
g

rh,z ∝ L0.503±0.039
z

(11)

This luminosity dependence constitutes another clear
point of distinction between nuclei and globular clusters:
the latter, both in the Milky Way (van den Bergh et al.
1991; Paper VII) and in our program galaxies (Paper X),
have a near-constant size of 〈rh〉 = 2.7 pc. This value
is indicated by the arrows in Figure 17. Nuclei fainter
than g ∼ 19 mag and z ∼ 18 mag have typical half-light
radii of 0.′′04 (3.2 pc), or about 20% larger than a typi-
cal globular cluster; the brightest nuclei are an order of
magnitude larger still. Given their uncertain nature, it
is worth noting that all five of the candidate offset nuclei
from §4.3 have half-light radii close to the mean of the
globular clusters.

It is interesting to see that the UCDs — which in
Figure 16 were found to have half-light radii compara-
ble to those of the largest nuclei — are outliers in this

22 Note that this resolution limit applies only to those images
which were drizzled with a Gaussian kernel. In Paper X, we esti-
mated from numerical simulations that the half-light radii of globu-
lar clusters — which are measured using the KINGPHOT software
package directly from 2D images generated with a Lanczos3 ker-
nel — are largely unbiased for rh & 0.′′0125 ≈ 1 pc. However,
the negative lobes of this kernel makes it difficult to repair bad
pixels, so the Gaussian kernel is preferred for the analysis of the
galaxy/nucleus surface brightness profiles.



14 Côté et al.

size-luminosity plane. Compared to nuclei of compara-
ble luminosity, the UCDs are nearly three times larger,
with rh ≈ 0.′′2–0.′′5. Alternatively, one might consider the
UCDs to be ∼ 2 mag underluminous for their size. In
any event, the fact that UCD candidates from Paper VII
were chosen to lie within a specific range of magnitude
and half-light radius suggests that a general conclusion
about systematic size differences between the two popu-
lations would be premature.

Figure 18 shows that there also exists a difference in
surface brightness between the globular clusters and nu-
clei. This figure plots the average surface brightness
within the half-light radius,

〈µ′
h〉 = m′ + 0.7526 + 2.5 log (πrh

2), (12)

for these two populations. Because of their near-constant
size, the globular clusters fall along a diagonal swath in
this diagram. Note that the dashed line in Figure 18 is
not a fit to the globular clusters, but simply the expected
relation for clusters which obey Equation 11 and have
a constant half-light radius of rh ≡ 2.7 pc. Although
there is sizeable scatter, The nuclei have a mean surface
brightness of 〈µh〉 = 16.5 mag arcsec−2 in g and 15.2
mag arcsec−2 in z, although there is considerable scatter
(σ ≈ 1.5 mag) about these values. The basic proper-
ties for the UCDs and nuclei in Virgo are compared in
Table 5.

By virtue of their larger radii at fixed luminosity, the
Virgo UCDs have surface brightnesses that are lower
than those of comparably bright nuclei. This is opposite
to the claim of de Propris et al. (2005) who argued that
Fornax UCDs have higher surface brightness than the
Virgo nuclei. However, these authors seem to base this
conclusion on a visual comparison of the nuclei brightness
profiles with that for their “mean UCD”. We have calcu-
lated the average surface brightness within the half-light
radius for the four Fornax UCDs which have absolute
magnitudes and half-light radii reported in their Table 2.
In doing so, we have transformed their V -band magni-
tudes into the g and z bandpasses using assumed colors
of (g − V ) = 0.48 and (V − z) = 0.76, which are appro-
priate for old, intermediate-metallicity populations (see
Table 3 of Paper III). Their radii have been converted
from parsecs to arcseconds using their adopted Fornax
distance modulus of (m − M)0 = 31.39. The resulting
surface brightnesses for these four UCDs are shown as
the open squares in Figure 18. We find that the Fornax
and Virgo UCDs occupy similar locations in the diagram,
and that both populations have lower surface brightness
(by ∼ 2.5 mag arcsec−2 in both bandpasses) than compa-
rably bright nuclei, contrary to the claims of de Propris
et al. (2005).

Finally, we note that the five candidate offset nuclei are
observed to fall along the diagonal swath defined by the
globular clusters in Figure 18. This strengthens the con-
clusion from §4.3 that these objects are globular clusters,
rather than bonafide nuclei.

4.9. Nuclei Colors

The first comprehensive investigation into the colors of
nuclei in dwarf galaxies was the series of papers by Cald-
well (1983; 1987) and Caldwell & Bothun (1987). Based

on imaging of 30 dwarfs in the Fornax Cluster, Caldwell
& Bothun (1987) found no evidence for a color differ-
ence between the nuclei and their host galaxies. They
did, however, find a correlation between nuclei luminos-
ity and galaxy color, in the sense that the reddest galax-
ies tended to harbor the brightest nuclei. At a given
luminosity the nucleated galaxies were also found to be
slightly redder than their non-nucleated counterparts.
A decade later, high-resolution CFHT imaging for two
Virgo dwarfs (Durrell 1997) hinted at an apparent diver-
sity in nuclei colors: in one galaxy (VCC1254), the nu-
cleus was found to be significantly bluer than the galaxy,
while in the case (VCC1386), the colors were indistin-
guishable.

Recently, Lotz et al. (2004) have carried out aper-
ture photometry for the nuclei of 45 dE,N galaxies in the
Virgo and Fornax Clusters using V I images from three
WFPC2 snapshot programs. They find that: (1) the
nuclei are consistently bluer than the underlying galaxy
light, with offset ∆(V − I) = 0.1–0.15 mag; (2) the nu-
clei colors correlate with galaxy colors and luminosities,
in the sense that the redder nuclei are found in the redder
and brighter galaxies; (3) and the nuclei are slightly red-
der than the globular clusters associated with the host
galaxy.

Our examination of the nuclei colors begins with Fig-
ure 19. The left panel of this figure shows the color-
magnitude diagram for the nuclei of the 51 Type Ia galax-
ies (filled circles) and the five galaxies with possible off-
set nuclei (open circles). For the Type Ia galaxies, the
symbol size is proportional to the blue luminosity of the
host galaxy. For reference, 11 galaxies with nuclei red-
der than (g − z)′AB = 1.35 have been labeled.23 Note
that one other galaxy, VCC21, has a very blue nucleus
with (g − z)′AB ≈ 0.30. Although it is listed in Table 1
as a possible example of a galaxy with an offset nucleus,
we have argued in §4.3, §4.6 and §4.7 that such offset
“nuclei” are likely to be misclassified star clusters. In
the case of VCC21, the blue color of the object points
to a young age (i.e., ≤ 1 Gyr for virtually any choice
of metallicity; see Figure 6 of Paper I). This interpreta-
tion is consistent with the galaxy’s dIrr/dE transitional
morphology.

There are a number of noteworthy features in the color-
magnitude diagram shown in Figure 19. First, both the
colors and luminosities of the nuclei are seen to correlate
with host galaxy luminosity, in the sense that the nuclei
belonging to the most luminous galaxies are the bright-
est and reddest objects in our sample. This finding is
consistent with the trend noted by Lotz et al. (2004).
Even more striking, though, is the tendency for the nu-
clei themselves to follow a clear color-luminosity relation.
To the best of our knowledge, this is the first time such
a trend has been detected. The dashed line in Figure 19
shows the relation

(g − z)′AB = −0.095(±0.015)g′AB + 2.98(±0.30),
(13)

obtained from a least-squares fit to the 37 nuclei belong-
ing to galaxies with BT ≤ 13.5. While this relation pro-

23 These galaxies are VCC1146, VCC1619, VCC1630, VCC1913,
VCC784, VCC1720, VCC828, VCC1627, VCC1250, VCC1242 and
VCC1283.
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vides an excellent description of the color-magnitude re-
lation for the nuclei in faint galaxies, it appears to break
down for brighter galaxies: in this regime, the nuclei not
only show considerable scatter, but they lie systemati-
cally to the faint/red side of the extrapolated relation.
These red nuclei cause the histogram of nuclei colors to
have secondary peak at (g − z)′AB ≈ 1.5 (see the right
panel of Figure 19). They are found exclusively in high-
surface-brightness environments, which raises the possi-
bility of a bias in the measured colors. However, the sim-
ulations described in Appendix A — in which artificial
nuclei of known size, magnitude and color are added to
the non-nucleated galaxy VCC1833 and their properties
measured in the same way as the actual nuclei — show no
evidence for a significant color bias for such bright nuclei.
In addition, the colors for most of these nuclei are actu-
ally redder than the galaxies themselves, by ∼ 0.1 mag,
so it seems unlikely that contamination from the host
galaxy can entirely explain their red colors.

For comparison, the open stars in Figure 19 show the
sample of Virgo UCDs from Paper VII and Haşegan et al.
(2006). The agreement with the nuclei is striking: i.e.,
with a mean color of 〈(g − z)′AB〉 = 1.03±0.06 mag, the
UCDs have colors that are virtually identical to those of
comparably bright nuclei. This constitutes yet another
piece of evidence for a link between UCDs and the nuclei
of early-type galaxies.

To better visualize how the properties of the host
galaxy may affect the relationship between nuclei color
and magnitude, Figure 20 divides the sample by host
galaxy magnitude into four subgroups. These subsam-
ples are shown in the four separate panels, with the color-
magnitude relation given by Equation (13) repeated in
each case (the dashed line). Also included in each panel
are the globular clusters (small points) belonging to the
galaxies in each of these magnitude intervals; to reduce
contamination from stars and compact galaxies, we plot
only those sources with “globular cluster probabilities”
(see Paper IX for details) in the range 0.5 ≤ Pgc ≤ 1.
Note the clear bimodality in the colors of globular clus-
ters belonging to these galaxies (Paper IX). With the ex-
ception of the very red nuclei noted above, we conclude
that the nuclei in our Type Ia galaxies have colors which
fall within the range spanned by the bulk of the globu-
lar clusters in these same galaxies: 0.7 . (g − z)′AB .
1.4 mag. Comparing the globular cluster colors to those
of the UCDs from Figure 19, we see that the UCDs are ≈
0.1–0.2 mag redder than the population of blue globular
clusters, but ≈ 0.2–0.3 mag bluer than the red clusters.
This may be a point of distinction with the UCDs in
Fornax, which Mieske et al. (2006) find to have colors
similar to the red globular clusters.

Figure 21 shows how the colors of the galaxies, nu-
clei and globular clusters depend on the galaxy luminos-
ity. Results are shown for the g and z bands in the left
and right panels, respectively. A common distance of
16.5 Mpc has been assumed for all galaxies (Mei et al.
2005). Galaxy colors are taken from Paper VI and repre-
sent the average color in the range 1′′ ≤ r ≤ re, subject
to the ACS/WFC field view and excluding those regions
with surface brightnesses 1 mag arcsec−2 or more below
the sky. The majority of our galaxies show no evidence
for strong color gradients, so these colors should accu-

rately reflect their integrated colors. For the globular
clusters, we plots colors for the red and blue subpopula-
tions, as determined in Paper IX, along with that of the
composite cluster system. To highlight the subtle trends
exhibited by these various samples, we show mean col-
ors for the nuclei, globular clusters and galaxies in four
broad bins of approximately equal width in galaxy mag-
nitude (∼ 2 mag). Results for the nuclei are shown for
three bins containing an equal number of objects.

This figure reveals a correlation between nucleus color
and galaxy luminosity that is broadly consistent with the
finding of Lotz et al. (2004) for fainter galaxies. However,
the trend is relatively weak and is in fact due mainly to
the ∼ one dozen galaxies noted above that have very red
nuclei. These galaxies make up most of the objects in the
bins at Mg ≈ −18.6, (g − z)′AB ≈ 1.4 and Mz ≈ −19.6,
(g−z)′AB ≈ 1.35. In the fainter galaxies, the nuclei colors
show essentially no correlation with galaxy luminosity.
For galaxies fainter than Mg = −17, the nuclei have 〈(g−
z)AB〉 ≈ 1.02 — intermediate in color to the globular
clusters and stars in galaxies in this luminosity regime.

5. DISCUSSION

In the preceding sections we have focussed on the ob-
served properties of the nuclei found in our program
galaxies. We now turn to the broader question of what
these observations may be telling us about the origin
and evolution of galactic nuclei. Before doing so, we
pause to briefly review some of the scenarios that have
been proposed as possible explanations for stellar nuclei
in early-type galaxies. A more complete discussion of the
theoretical implications of our findings will be given in
Merritt et al. (2006).

5.1. A Review of Formation Models

Tremaine, Ostriker & Spitzer (1975) were the first to
suggest that galactic nuclei may be the remains of merged
globular clusters, which were driven inward to the galac-
tic center by dynamical friction (Chandrasekhar 1943).
According to this “merger model”, the metallicity and
luminosity of the nucleus should be a superposition of
the metallicity and luminosity of the progenitor clusters.
Because dynamical friction causes the orbits of most mas-
sive globular clusters to decay most rapidly, a nucleated
galaxy would be expect to show a selective depletion
of bright globular clusters, at least in the inner regions
where the dynamical friction timescale is short compared
to a Hubble Time. The contribution of globular clus-
ters mergers to the growth of central black holes and
galactic nuclei has been explored in a series of papers by
Capuzzo-Dolcetta and coworkers (e.g., Capuzzo-Dolcetta
1993; Capuzzo-Dolcetta & Tesseri 1999). Recently, Bekki
et al. (2004) have used numerical simulations to exam-
ine the physical properties (e.g., half-light radii, central
velocity dispersion, mean density) of nuclei that form in
such mergers.

Motivated by the discovery that the dE galaxies in
Virgo are less centrally concentrated than the dE,N
galaxies (c.f. §4.4), Oh & Lin (2000) revisited the ques-
tion of how the tidal field from the Virgo cluster affects
the evolution of globular cluster orbits within dE galax-
ies. They found that tidal perturbations acting on galax-
ies near the center of the cluster tend to be compressive,
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and have little net effect on the rate of decay of the glob-
ular cluster orbits. In the outer regions of the Virgo
cluster, tidal forces tend to disrupt galaxies, and the re-
sulting decrease in density leads to longer time scales for
dynamical friction. Thus, tidal forces favor the forma-
tion of nuclei in galaxies which are located in the cluster
core, and suppress the formation in more distant galax-
ies. Clearly, this will cause the relative number of nu-
cleated and non-nucleated galaxies to vary within the
cluster, with the highest fraction of nucleated galaxies in
the core.

A second, broad category of models focuses on a dis-
sipational origin for the nuclei. Noting that galaxies
with nuclei are typically rounder than those without, van
den Bergh (1986) speculated that nuclei form from the
gas which collects more easily in the centers of slowly-
rotating galaxies. Silk, Wyse & Shields (1987) argued
that dwarf galaxies experience late accretion of cool gas
from the intergalactic medium, leading to star formation
and the growth of compact central nuclei. In a similar
vein, Davies & Phillips (1988) proposed that early-type
dwarfs result from the fading of stellar populations in
dwarf irregular or blue compact dwarf galaxies. In this
scenario, intermittent bursts of central star formation —
driven by the infalling gas — continue until the gas reser-
voir is depleted. According to this scenario, the final
star-forming event gives rise to the nucleation observed
today.

Babul & Rees (1992) examined the impact of the lo-
cal intergalactic medium on the evolution of a low-mass
galaxy. They argued that the pressure of the intergalac-
tic medium acts as a confining agent: in a high-pressure
environment, early-type dwarfs are able to retain more
gas and produce a nucleus from the gas that has been pre-
vented from escaping by the intergalactic medium. Since
the external pressure acting on galaxies decreases with
increasing distance from the cluster center, some prop-
erties of the nuclei (such as their luminosity and color)
should also depend on position within the cluster, with
the highest frequency of nucleation in the central regions
of a cluster.

Gas inflow models have also been explored within
the context of disk galaxy mergers. Mihos & Hern-
quist (1994) used N-body/hydrodynamical simulations
to show that such mergers are accompanied by gas dis-
sipation and central star formation which may result in
the formation of a dense stellar core, or the fueling of
a pre-existing AGN. Following Weedman (1983), Mihos
& Hernquist (1994) further note that the dense stellar
core may itself collapse to form a supermassive black
hole (SBH). The observational evidence for a possible
link between such SBHs and the stellar nuclei of early-
type galaxies is examined in §5.2.0.

5.2. Implications for Nucleus Formation

5.2.1 Connection to Nuclear Star Clusters in Late-Type
Galaxies

High-resolution HST imaging for Sa-Sd galaxies has
shown that these objects frequently contain compact nu-
clear clusters near their photocenters (e.g. Phillips et al.
1996; Carollo, Stiavelli & Mack 1998; Matthews et al
1999; Böker et al. 2002; Böker et al. 2004). Figure 22

compares the sample of nuclear clusters from Böker et al.
(2004) to our sample of early-type nuclei. In the upper
panel, we plot the physical sizes for both samples, where
we have assumed a common distance of 16.5 Mpc for the
Virgo galaxies (Tonry et al. 2001; Paper V). It is clear
that the nuclear clusters of Böker et al. (2004) have sizes
similar to the early-type nuclei.

The lower panel of Figure 22 compares the absolute
magnitudes of the two samples. Note that the observa-
tions of Böker et al. (2004) were carried out in the F814W
(I) bandpass. Comparing the means of the samples, we
find the two populations to be comparably bright, with
〈Mg〉 = −10.9 and 〈Mz〉 = −12.0 for the early-type nu-
clei, and 〈MI〉 = −11.7 for the nuclear clusters. Böker
et al. (2002) further report that 59 of 77 late-type spi-
rals in their survey contain a nuclear cluster close to the
galaxy photocenter, giving an overall frequency of nu-
cleation of fn ≈ 77%. For comparison, in §4.2 we es-
timated 66 . fn . 82% for our sample of early-type
galaxies, counting galaxies with possible offset nuclei as
non-nucleated. Thus, in all these respects, the nuclear
clusters found in late-type galaxies are nearly identical
to the nuclei studied here. The lone point of distinction
between the nuclear clusters and the early-type nuclei
seems to be one of age: the majority of the nuclear clus-
ters appear to have τ . 108 yr (Walcher et al. 2005 and
references therein), while the broadband colors rule out
such young ages for all of the Type Ia nuclei, irrespective
of metallicity (see §5.2.0 and Figure 6 of Paper I). This
difference notwithstanding, the similar properties of the
nuclei and nuclear clusters — and their appearance in
galaxies of such disparate morphology — clearly points
to a rather generic formation mechanism: e.g., one which
is largely independent of local or global environmental
factors, such as the gas content and present-day mor-
phology of the host galaxy, or the density of neighboring
galaxies.

5.2.2 A Fundamental Division Between Sérsic and
core-Sérsic Galaxies

The above conclusion applies equally well to the lumi-
nosity of the host galaxy: i.e., the nuclei are not confined
to just the dwarfs, but are also found with regularity in
many of the giants. In fact, half (21/42) of the galaxies
brighter than BT = 13.6 or MB ≈ −17.6 (the approx-
imate division between dwarfs and giants in the VCC)
have classifications of Type Ia or Ib.24 The fact that nu-
clei are common above and below the canonical dwarf-
giant boundary suggests that, at least in terms of their
nuclear properties, there is no evidence for a fundamental
change in galaxies at this magnitude. This is consistent
with the mounting evidence from photometric scaling re-
lations that the “dichotomy” between normal and dwarf
ellipticals, as originally envisioned by Kormendy (1985)
and others, may not be real (e.g., Jerjen & Binggeli 1997;
Graham & Guzmán 2003; Paper VI).

On the other hand, there does appear to be a funda-
mental transition at MB ≈ −20.5 in terms of nuclear
properties. Brighter than this, we measure fn ∼ 0 and,
in almost all cases, the presence of a nucleus can be
ruled out with some confidence (see Appendix A). Fainter

24 Excluding the five Type 0 galaxies in this luminosity range.
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than MB ≈ −20.5, the fraction of nucleated galaxies
rises sharply, as shown in the lower panel of Figure 6.
It has been argued (Graham & Guzmán 2003; Trujillo
et al. 2004; Graham 2004; Paper VI) that this magni-
tude marks a transition from faint, Sérsic-law galaxies
to bright, core-Sérsic-law galaxies, whose flat “cores” are
presumed to result from core depletion by coalescing of
supermassive black holes (Ebisuzaki et al. 1991; Quin-
lan & Hernquist 1997; Faber et al. 1997; Milosavljević &
Merritt 2001). The absence of nuclei in galaxies brighter
than MB ≈ −20.5 is consistent with this scenario. Of
course, it is equally possible that these “missing” nuclei
are absent in the bright galaxies not because of the dis-
ruptive effects of mergers and black hole coalescence, but
because they failed to form in such galaxies in the first
place. Discriminating between these competing scenarios
should prove to be a fruitful area for future theoretical
study.

5.2.3 Coincidence of Nuclei with Galaxy Photocenters

In almost all cases, the nuclei are found to be coinci-
dent with the photocenters of their host galaxies. In only
five cases does there appear to be a statistically signifi-
cant offset of δrn/〈re〉 ≥ 0.04. The bulk of the evidence,
however, favors the view that these “nuclei” are, in actu-
ality, star clusters projected close to the galaxy photocen-
ters. That is to say, the sizes, surface brightnesses and
colors of the five possible offset nuclei more closely re-
semble those of globular clusters than those of the other
nuclei in our sample. Interestingly, all five of the host
galaxies show some characteristics of dIrr/dE transition
objects, including blue colors, low central surface bright-
nesses, the presence of dust, and a mottled or irregular
appearance. This suggests that if dwarf ellipticals rep-
resent an evolutionary stage that follows gas exhaustion
and stellar fading (Davies & Phillips 1988), ram pressure
stripping (Mori & Burkert 2000) or harrassment (Moore,
Lake & Katz 1998) of gas-rich dIrr/disk galaxies, then
the formation of a central nucleus is not an immediate
or inevitable consequence. Additional time seems to be
required to “grow” a central nucleus.

5.2.4 Nucleus Formation through Globular Clusters
Mergers?

Because the theoretical framework for the globular
cluster merger model is at a more mature stage than
for any other model, we now turn our attention to the
question of whether this scenario is consistent with our
new observations for the nuclei. We note that Lotz
et al. (2001) have previously examined the viability of
the merger hypothesis on the basis of data collected for
nuclei and globular clusters in their WFPC2 snaphot sur-
vey of dwarf galaxies. Apart from identifying a possible
depletion of bright clusters in the innermost regions of
the galaxies, they could find no strong evidence for a
merger origin of the nuclei, either from the spatial distri-
bution of the clusters or from the measured luminosities
of the nuclei.

As pointed out in §4.6, a comparison of the luminosity
functions of nuclei and globular clusters in these galax-
ies shows that the typical nucleus is ≈ 3.5 magnitudes
brighter than a typical globular cluster. If cluster merg-
ers are responsible for the formation of a central nucleus,

then one might expect an average of ∼ 25 mergers would
be needed to assemble a nucleus from typical clusters. Of
course, as Figure 20 shows, a single number does not tell
the whole story. The four panels of this figure plot the
distribution of nuclei and globular clusters in the color-
magnitude diagram. For the brightest galaxies (shown in
the first panel), the nuclei have a median luminosity ≈
125× that of globular clusters at the peak of the cluster
luminosity function. For the fainter galaxies (shown in
the three remaining panels), the nuclei are brighter than
a typical globular clusters by factors of 29, 15 and 17,
respectively.

Are these numbers feasible? In Figure 23 we attempt
to answer this question by plotting the integrated lumi-
nosity in globular clusters against the luminosity of the
nucleus for Type Ia galaxies in our survey. Results are
shown in the upper panels, with measurements made in
the g and z bands given in the left and right panels,
respectively. As in Figures 19 and 20, symbol type indi-
cates the magnitude of the host galaxy. In calculating the
total luminosity in globular clusters for these galaxies, we
have simply summed the luminosities of globular clus-
ter candidates with probabilities in the range Pgc ≥ 0.5.
Although this approach will obviously miss any globu-
lar clusters located outside the ACS field, the correction
should be small for the Type Ia galaxies in our survey
which, with MB . −19, have 〈Re〉 ∼ 15′′ or less (Pa-
per VI). The correlations apparent in these panels are
a consequence of the fact that both the total number of
globular clusters, and the luminosity of the nucleus, scale
with host galaxy luminosity.

The lower panels of Figure 23 plot the ratio of globular-
to-nucleus luminosities, κ, in the two bandpasses. In
both cases, the ratio is near unity. This should perhaps
come as no surprise since the mean nucleus-to-galaxy lu-
minosity ratio, η = 0.30 ± 0.04%, found in §4.5 is nearly
identical to the globular cluster formation efficiency of
ǫ = 0.26 ± 0.05% measured by McLaughlin (1999) for
early-type galaxies. This latter measurement is in turn
based on observations of 97 early-type galaxies and repre-
sents the total mass in globular clusters normalized to the
total baryonic (stellar + gas) mass. While the agreement
may be purely coincidental, it is a remarkable empirical
result that the formation of early-type galaxies results in
a nearly constant fraction of the initial baryonic mass,
∼ 0.3%, being deposited into both globular clusters and,
in many cases, a central nucleus. Of course, this con-
clusion appears not to apply to galaxies brighter than
MB ≈ −20.5, which lack nuclei either because they did
not form in the first place or because they were subse-
quently destroyed by some as-yet-unidentified process.

In any case, galaxies which lie below the dashed line at
κ = 1 in Figure 23 pose a clear challenge to the merger
model for the obvious reason that they simply have too
few clusters to explain the luminosity of the nucleus. The
difficulty is most severe for the dozen or so red nuclei as-
sociated with the brightest Type Ia galaxies. Of course,
this argument is based on the number of clusters con-
tained by the host galaxy at the present time. If the ob-
served clusters are the rare “survivors” descended from
a much larger initial cluster population, then it may be
possible to circumvent this problem.

An additional test of the merger model is possible. If
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the mergers were dissipationless so that star formation
and chemical enrichment can be ignored, then we can
use the observed colors of globular clusters to predict
colors for the nuclei. Since both globular cluster color
and the fraction of red globular clusters are increasing
functions of host galaxy luminosity (Paper IX), we ex-
pect the nuclei in this model to become progressively
redder in brighter galaxies. The heavy solid curve shown
in the four panels of Figure 20 shows the predicted color
magnitude relation for nuclei which grow through globu-
lar cluster mergers. This curve is based on Monte Carlo
experiments in which the color evolution of the nuclei is
followed using the observed colors of the globular clusters
in these galaxies. The thin curves show the 95% confi-
dence limits on the relation. Although these simulations
do indeed predict redder colors for the brighter nuclei
(which are found preferentially in the brighter galaxies
containing a larger proportion of red clusters), the pre-
dicted scaling is much milder than what is observed.

Bekki et al. (2004) have used numerical simulations to
investigate the physical properties of nuclei which form
through repeated mergers of globular clusters. Their pre-
dicted scaling relation between half-light radius and lu-
minosity, rh ∝ L0.38, is shown by the dotted line in Fig-
ure 17. The relation has a somewhat milder luminosity
dependence than the observed relation, rh ∝ L0.50±0.03,
but is nevertheless in reasonable agreement. A similar
conclusion applies to the luminosity dependence of sur-
face brightness averaged within the half-light radius. We
find no strong correlation between 〈µh〉 and L, but the
predicted relation, rh ∝ L0.23 (shown as the dotted line
in Figure 18), is reasonably consistent with the obser-
vations, having only a weak luminosity dependence. In
the future, it will be of interest to compare the predicted
and observed relationship between luminosity and cen-
tral velocity dispersion. Spectra for most of our program
galaxies are now in hand and such a comparison will be
the subject of a future paper in this series.

5.2.5 Stellar Populations in the Nuclei: Clues from
Colors

Ground-based spectroscopy will also be useful for in-
vestigating the history of star formation and chemical
enrichment in the nuclei, although care must be exer-
cised when decoupling the contributions from the galaxy
and nucleus. This separation is more straightforward in
the ACS imaging, although in this case we are limited
in our ability to measure ages and metallicities because
of the well known age-metallicity degeneracy of broad-
band colors. The upper panel of Figure 24 shows linear
interpolations of the [Fe/H]-(g−z)′AB relation for simple
stellar populations from the models of Bruzual & Charlot
(2003). The four relations show color-metallicity relation
for ages of τ = 1, 2, 5 and 10 Gyr, although it is, need-
less to say, quite unlikely that a single age is appropriate
for all of the nuclei in our sample. For comparison, the
heavy dashed curve in black shows the color-metallicity
relation derived from globular clusters in the Milky Way,
M49 and M87 (Paper IX). If it is assumed that the nu-
clei have ages similar to the globular clusters, then this
empirical relation may be used to derive metallicities for
the nuclei.

Converting from colors to metallicities with these rela-

tions, we find the five metallicity distributions shown in
the lower panel of Figure 24. The results are summarized
in Table 6. Not suprisingly, the metallicity distributions
derived from the models depend sensitively on the as-
sumed age. For τ = 10 Gyr, the colors of the bluest
nuclei, with (g − z)AB ∼ 0.8 mag, would require very
low metallicities: i.e., [Fe/H] ∼ −2 or less. By the same
token, the reddest nuclei in our sample would require
metallicities 1-100× solar for an assumed age of 1 Gyr.
For ages as young as τ . 108 yr, which is appropri-
ate for many of the nuclear clusters in late-type galaxies
(see §5.2.0) no reasonable choice of metallicity can ex-
plain the colors of ≈ 0.8–1.5 that are observed. Thus,
to the extent that the nuclei can be characterized by a
single formation epoch, they show evidence for an old to
intermediate age: i.e., τ > 1 Gyr. Using the globular
cluster color metallicity relation gives a mean metallicity
of 〈[Fe/H]〉 = −0.88 ± 0.79 dex. Firmer conclusions on
the ages and metallicities of the nuclei must await the
spectroscopic analysis.

Spectroscopic constraints on the mix of stellar pop-
ulations in the nuclei should also shed some light on
what may be the most serious challenge facing the merger
model: the existence of a tight correlation between nu-
cleus luminosity and color (Figures 19-20). Such a corre-
lation is generally thought to be a signature of self enrich-
ment in stellar systems, and is reminiscent of the color-
magnitude relation for dwarf and giant galaxies (e.g.,
Bower, Lucey & Ellis 1992; Caldwell et al. 1992). That
the colors correlate tightly with the luminosities of the
nuclei, and less so with those of the host galaxies, sug-
gests that the chemical enrichment process was governed
primarily by local/internal factors. The existence of a
tight color-magnitude relation for the nuclei is a diffi-
culty for the merger model as envisioned by Tremaine
et al. (1975) since the clusters from which the nuclei are
assembled show no color-magnitude relation themselves,
and our Monte-Carlo experiments reveal the slope of the
observed color-magnitude relation is steeper than that
predicted in dissipationless cluster mergers.

We speculate that the merger model in its original form
(i.e., “dry” mergers of stellar clusters) is an oversimpli-
cation of a process that almost certainly involves some
gas dissipation. In fact, if nuclei do indeed have stellar
ages of a few Gyr old or more, then they were assem-
bled during the earliest, most gas-rich stage of galaxy
evolution. It would be interesting to revisit the merger
model with the benefit of numerical simulations that in-
clude the effects of not just dark matter and stars, but
also gas, to see if star formation and chemical enrich-
ment caused by mergers/inflows are capable of producing
a color-magnitude relation consistent with that shown in
Figure 19. In a number of respects, the dozen or so bright
nuclei labelled in Figure 19 appear to form a population
distinct from their faint counterparts, most notably in
their integrated colors (which appear redder than the
galaxies themselves). These nuclei may be candidates
for the “dense stellar cores” which form in numerical
simulations (Mihos & Hernquist 1994) when (chemically-
enriched) gas is driven inward, perhaps as a result of
mergers.
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5.2.6 Ultra-Compact Dwarfs, Nuclei and Galaxy
Threshing

Our ACS observations may also provide some clues to
the origin of UCD galaxies. In terms of color, luminos-
ity and size, the UCDs from Paper VII bear a strong
resemblance to many of the nuclei studied here, leading
credence to the galaxy threshing scenario (Bassino et al.
1994; Bekki et al. 2001). However, these UCDs were se-
lected for study on the basis of luminosity and half-light
radius, so it is unclear to what extent these conclusions
may apply to the population of UCDs as a whole. An
unbiased survey of the UCD population in Virgo should
be undertaken to clarify this issue, although this will be
a difficult and time-consuming task as it requires high-
resolution spectroscopy and HST imaging to distinguish
true UCDs from bright globular clusters (see §7 of Pa-
per VII). Jones et al. (2006) have recently reported the
first results from a program to search for UCDs in Virgo
using radial velocities for ∼ 1300 faint, star-like sources in
the direction of the cluster. However, lacking structural
and internal dynamical information for UCD candidates
found in this way, it is impossible to know to what extent
their sample has been “polluted” by globular clusters:
either those associated with galaxies or intergalactic in
nature (e.g., West et al. 1995).

For the time being, we may use the existing sample of
Virgo UCDs from Paper VII and Haşegan et al. (2006)
to re-examine the threshing model in light of our findings
for the Virgo nuclei. Specifically, we may estimate the
luminosities of the UCD progenitor galaxies within the
context of the threshing model: for the typical ratio of
nucleus-to-galaxy luminosity found in §4.5, 〈η〉 ≈ 0.3%,
we expect the progenitors to have −18.2 . MB . −16.6,
with a value mean of 〈MB〉 = −17.3± 0.6. If the thresh-
ing scenario is correct, then we might expect the surviv-
ing analogs of the UCD progenitors to resemble galaxies
#40–69 in Table 1. It is interesting to note that only
about half (16/30) of these galaxies were classified as
dwarfs by BST85, meaning that a significant fraction of
bright galaxies may need to have been “threshed” to ex-
plain the UCD luminosity function within the context
of this model. Photometric, dynamical and structural
parameters for these candidate UCD progenitor galaxies
may serve as useful constraints for self-consistent numer-
ical simulations of galaxy threshing and UCD formation.

5.2.7 Connection to Supermassive Black Holes

A large body of literature now exists on the SBHs that
reside in the centers of many galaxies (see, e.g., the re-
view of Ferrarese & Ford 2005). While it had been known
for some time that SBH masses, M•, correlate with the
bulge masses, Mgal, of their host galaxies (Kormendy
& Richstone 1995), it was only after the discovery of a
tight relation between M• and bulge velocity dispersion
(Ferrarese & Merritt 2001; Gebhardt et al. 2001) that
Merritt & Ferrarese (2001) were able to show that the
frequency function for galaxies with SBHs has a roughly
normal distribution in log10 (M•/Mgal). Fitting to the
data available at that time, Merritt & Ferrarese (2001)
found a mean of value of −2.90 (0.13%) and a standard
deviation of 0.45 dex.

Remarkably, this mean value is, to within a factor of

≈ two, identical to the mean fractional luminosity con-
tributed by nuclei to their host galaxies (§4.6). In fact,
the nuclei and SBHs share a number of other key sim-
ilarities that are highly suggestive of a direct connec-
tion: e.g., they share a common location at the bottom of
the gravitational potential wells defined by their parent
galaxies and dark matter halos, and both are probably
old components that formed during the earliest stages
of galaxy evolution (§5.2.0; Haehnelt et al. 1998; Silk
& Rees 1998; Wyithe & Loeb 2002). Could it be that
the compact nuclei which are found so frequently in the
low- and intermediate-luminosity early-type galaxies are
related in some way to SBHs dectected in the brighter
galaxies?

Figure 25 examines the connection between nuclei and
SBHs in more detail. In the upper panel, we show the
distribution of absolute blue magnitudes, MB, for the
51 galaxies in our survey that contain Type Ia nuclei
(solid histogram). This distribution should be compared
to that for the early-type galaxies having SBH detec-
tions (open squares and dotted histogram). This lat-
ter sample is based on data from Table II of Ferrarese
& Ford (2005), which reports SBH mass measurements
from resolved dynamical studies for 30 galaxies. Among
this sample, there are 23 early-type galaxies with mea-
sured SBH masses (all based on stellar and/or gas dy-
namical methods). It is clear from Figure 25 that the
two samples have very different distributions. With
the exception of M32 (with MB = −15.76 mag and
M• = 2.5 × 106 solar masses), the SBH galaxies are
all brighter than MB ≈ −18, a cutoff that is thought
to reflect the formidable technical challenges involved in
detecting smaller SBHs in fainter early-type galaxies.

By contrast, the Type Ia galaxies have MB &
−18.9 mag. Note that this does not reflect the true upper
boundary for nucleated galaxies, since nuclei definitely
exist in galaxies brighter than this — Table 1 lists 14
galaxies with certain or suspected nuclei (i.e., Types Ib,
Ic or Id) having MB . −18.9 mag — but the high sur-
face brightness of the host galaxies do not allow a reliable
measurement of the nuclei luminosities or sizes. As we
have argued in §5.2.0, the more fundamental cutoff seems
to occur at MB ∼ −20.5 mag since we find no nucleated
galaxies brighter than this.

Before moving on, we note that four of the galax-
ies with SBH masses in Table II of Ferrarese & Ford
(2005) appear in our survey. In two cases — VCC1978
(NGC4649) and VCC1231 (NGC4473) — there is no ev-
idence for a nucleus so we classify the galaxies as Type
II. In a third case, VCC763 (NGC4374), the center of
the galaxy is partly obscured by an AGN (Type O) but
we see no evidence of a resolved stellar nucleus (§4). The
fourth and final galaxy, VCC1664 (NGC4564), has a re-
ported SBH mass of 5.6×107M⊙ (Gebhardt et al. 2003).
We classify this object as Type Ic, meaning that we see
evidence for a resolved nucleus but are unable to measure
its properties owing to the high surface of the galaxy.

In the lower panel of Figure 25, we compare the fre-
quency functions of SBHs and Type Ia nuclei. Bulge
masses for the SBH galaxies were found by assuming a
constant bulge color of (B−V ) = 0.9 mag and combining
the magnitudes from Ferrarese & Ford (2005) with the
mass-to-light ratio relation ΥV = 6.3(LV /1011)0.3 from
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Paper VII. For the SBH sample, we find

〈log10(M•/Mgal)〉 = −2.61 ± 0.07 dex
= 0.25 ± 0.04 %

σ(log10 M•/Mgal) = 0.45 ± 0.09 dex
(14)

whereas for the nuclei, we find

〈log10 η〉 = −2.49± 0.09 dex (= 0.32 ± 0.07%)
σ(log10 η) = 0.59 ± 0.10 dex

(15)
For comparison, Gaussian distributions with these pa-
rameters are shown in the lower panel of Figure 25.

In our view, the available evidence favors the view that
the compact stellar nuclei found in many of the fainter
galaxies may indeed be the counterparts of SBHs in the
brighter galaxies. If this speculation is correct, then it
might be more appropriate to think in terms of Central
Massive Objects — either SBHs or compact stellar nuclei
— that accompany the formation of almost all early-type
galaxies and contain a mean fraction ≈ 0.3% of the total
bulge mass. We note that a similar conclusion has been
reached independently by Wehner & Harris (2006). Mod-
els for the formation of SBHs in massive galaxies would
then be confronted with the additional challenge of ex-
plaining the different manifestations of Central Massive
Object formation along the galaxy luminosity function,
with an apparent preference for SBH formation above
−20.5 . MB ∼ −18 mag. These issues are explored in
more detail in Ferrarese et al. (2006b).

6. SUMMARY

Using multi-color ACS imaging from the Hubble Space
Telescope, we have carefully examined the central struc-
ture of the 100 early-type galaxies which make up the
ACS Virgo Cluster Survey. In this paper, we have fo-
cussed on the compact nuclei which are commonly found
at, or close to, the photocenters of many of the galaxies.
Our main conclusions are as follows:

1. Nuclei in early-type galaxies are more common
than previously believed. Excluding the six galax-
ies for which the presence of a nucleus could not
be established, either because of dust obscura-
tion or the presence of an AGN, and counting
the five galaxies with possible offset nuclei as non-
nucleated, we find the frequency of nucleation to
fall in the range 66% . fn . 82% for early-type
galaxies brighter than MB ≈ −15.

2. Nuclei are found in galaxies both above and be-
low the canonical dividing line for dwarfs and gi-
ants (MB ≈ −17.6). Half (21/42) of the galaxies
brighter than MB ≈ −17.6 are found to contain
nuclei. This is almost certainly a lower limit on
the true frequency of nucleation because of incom-
pleteness and surface brightness selection effects in
these bright galaxies.

3. On the other hand, galaxies brighter than MB ≈
−20.5 appear to be distinct in that they do not
contain nuclei — at least, not those of the kind
expected from upward extrapolations of the scal-
ing relations obeyed by nuclei in fainter galaxies.
Whether this means that nuclei never formed in

these “core-Sérsic” galaxies (see Paper VI and ref-
erences therein), or were instead subsequently de-
stroyed by violent mergers and core evacuation due
to coalescing supermassive black holes, is unclear.
The absence of nuclei in galaxies brighter than
MB ≈ −20.5 adds to the mounting evidence for
a fundamental transition in the structural proper-
ties of early-type galaxies at this magnitude.

4. Few, if any, of the nuclei are found to be signif-
icantly offset from the photocenters of their host
galaxies. In only five galaxies do we measure off-
sets δrn & 0.′′5 or δrn/〈re〉 & 0.04. In all fives
cases, however, the available evidence (i.e., mag-
nitudes, colors, half-light radii and surface bright-
ness measurements) suggests that such “nuclei” are
probably star clusters projected close to the galaxy
photocenters.

5. The central nuclei are resolved, with a few notable
exceptions: such as the two AGN galaxies, M87
and M84, which have prominent non-thermal nu-
clei, and a half dozen of the faintest galaxies with
very compact, but presumably stellar, nuclei. This
observation rules out low-level AGN as an expla-
nation for the central luminosity excess in the vast
majority of the galaxies. Excluding those galaxies
with faint, unresolved nuclei, we find the half-light
radii of the nuclei to vary with luminosity accord-
ing to the relation rh ∝ L0.50±0.03.

6. A Gaussian distribution provides an adequate,
though by no means unique, description of the lu-
minosity function for the nuclei. The peak of the
luminosity function occurs at 〈Mg〉 = −11.2 ± 0.6
and 〈Mz〉 = −12.2 ± 0.6, or roughly 25× brighter
than the peak of the globular cluster luminosity
functions in these same galaxies. We find the ratio
of nucleus-to-galaxy luminosities to be η ≈ 0.3%,
independent of galaxy luminosity but with signifi-
cant scatter.

7. A comparison of the nuclei to the nuclear star
clusters in late-type galaxies shows a remarkable
similarity in luminosity, size and overall frequency.
This suggests that a quite generic formation mech-
anism is required to explain the nuclei: one which is
largely independent of local or global environmen-
tal factors, such as the gas content and present-day
morphology of the host galaxy, or the density of
neighboring galaxies.

8. In terms of color, luminosity and size, the UCDs
from Paper VII bear a strong resemblance to the
compact nuclei in a number of these galaxies, lead-
ing credence to the “threshing” scenario in which
UCDs are assumed to be the tidally stripped re-
mains of nucleated galaxies. If this model is cor-
rect, then we argue that the UCD progenitor galax-
ies would — if they avoided “threshing” — now
resemble galaxies with magnitudes in the range
−18.2 . MB . −16.6. Simulations to test the via-
bility of the threshing mechanism for such galaxies
are advisable.
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9. The colors of the nuclei are tighly correlated with
their total luminosities, but only weakly with those
of their host galaxies. This may suggest that the
history of chemical enrichment in the nuclei was
governed by local or internal factors.

10. The mean of the frequency function for the nucleus-
to-galaxy luminosity ratio in our nucleated galax-
ies, 〈log10 η〉 = −2.49± 0.09 dex (σ = 0.59± 0.10),
is indistinguishable from that of the SBH-to-bulge
mass ratio, 〈log10 (M•/Mgal)〉 = −2.61± 0.07 dex
(σ = 0.45±0.09), calculated in 23 early-type galax-
ies with detected SBHs.

11. We argue that the compact stellar nuclei found in
many of our program galaxies may be the low-mass
counterparts of SBHs detected in the bright galax-
ies, a conclusion reached independently by Wehner
& Harris (2006). If this view is correct, then one
should think in terms of Central Massive Objects
(CMOs) — either SBHs or compact stellar nu-
clei — that accompany the formation of almost all
early-type galaxies and contain a mean fraction ≈
0.3% of the total bulge mass. In this view, SBHs
would be the dominant mode of CMO formation
above MB ≈ −20.5.

As the nearest large collection of early-type galax-
ies, the Virgo cluster is likely to remain, for the forsee-
able future, at the center of efforts to understand the
physical processes that drive nucleus formation. Un-
fortunately, exploring the stellar dynamics of the most
compact nuclei — and modeling the mass distribution

within the central few parsecs of the host galaxies — re-
quires integrated-light spectra with an angular resolution
of ∼ 0.′′1 or better. Thus, the Virgo nuclei are obvious
targets for diffraction-limited, near-IR spectrographs on
8m-class ground-based telescopes, particularly since the
demise of the Space Telescope Imaging Spectrograph on
HST. For the time being, though, ACS imaging of the
nuclei should serve to guide models of their formation
and evolution. This will be the subject of a future paper
in this series, in which we will examine the implications
of these observations for theories of nucleus formation
(Merritt et al. 2006).
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APPENDIX

TESTS FOR COMPLETENESS, RESOLVABILITY AND BIAS

The approach used to classify galaxies according to the presence or absence of a central nucleus has been described
in §4. Briefly, the classification procedure relies on both a visual inspection of the ACS images and the detection of
a central “excess” in the brightness profile relative to the fitted Sérsic or core-Sérsic galaxy model. The results are
summarized in Table 2. We find a total of 62 galaxies in which the presence of a nucleus could be established with a
high level of confidence (i.e., the Type Ia and Ib galaxies). Five more galaxies (Type Ie) may contain an offset nucleus
but, as we have argued above, the weight of evidence favors the view that these “nuclei” are actually globular clusters.
Six other galaxies (Type 0) contain either an AGN or dust at the photocenters, making the identification of a nucleus
difficult or impossible.

This leaves us with a sample of 100 – 62 – 5 – 6 = 27 galaxies which may be classified provisionally as non-nucleated.
Of course, the faintest, most extended nuclei will go undetected in any survey, especially when superimposed on a
bright galaxy background. It therefore seems likely that at least some of these galaxies may, in fact, be nucleated. In
this Appendix, we attempt to elucidate the nature of these galaxies with the aid of numerical simulations guided by
our findings from §4.

For the 27 galaxies in question, Figure 26 plots residuals, over the innermost 10′′, between the observed brightness
profile and the fitted models shown in Figure 4. Because a few of these galaxies contain multiple components (e.g.,
rings, bars or shells), or have outer brightness profiles that are contaminated by the light of nearby giant galaxies,
the profiles were sometimes fit over a restricted range in radius. In two cases where this outer fitting radius is
≤ 10′′ (VCC778 = NGC4377 and VCC575 = NGC4318), an upward arrow shows the adopted limit. Likewise, six
galaxies (VCC1664 = NGC4564, VCC944 = NGC4417, VCC1279 = NGC4478, VCC355 = NGC4262, VCC1025 =
NGC4434 and VCC575) in which the presence of a faint central nucleus was suspected on the basis of an upturn in
the central brightness profile, an upward arrow at 0.′′2–0.′′3 shows the inner limit used to avoid biasing the fitted galaxy
parameters. Note that in most cases, the fitted Sérsic or core-Sérsic model provides a reasonably accurate match to
the central brightness profile, meaning that any nuclei which may be hiding in these galaxies have had only a minor
impact on the observed profiles.

Of course, two possibilities exist for any given galaxy: either it contains a nucleus or it does not. To test the first
possibility, we use the scaling relation from §4 which links the luminosity of the galaxy to that of its nucleus (Equation
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6). Meanwhile, Equation 11 provides a link between galaxy luminosity and nucleus size (half-light radius). For each of
the 27 galaxies in Figure 26, we then subtract a nucleus of the expected size and luminosity based on the magnitude of
the galaxy itself. If the nucleus-subtracted profile of the galaxy is better represented by a Sersic or core-Sérsic model
than the original profile, this would be (circumstantial) evidence for the presence of a faint nucleus.

The alternative possibility is that the galaxy is truly non-nucleated. In this case, we can add a simulated nucleus
of the appropriate size and magnitude to see if it would be detectable from the images and/or the surface brightness
profile. Taken together, these two experiments allow us to crudely estimate the overall completeness of our survey and
to refine the provisional classifications for these 27 galaxies. We caution, however, that the approach of adding and
subtracting nuclei not only assumes that the scaling relations found in §4 are valid for all galaxies in the survey, but
it ignores the significant scatter about the fitted relations.

With these caveats in mind, we present the results of this exercise in Figure 26. In each panel, the small blue squares
show the residuals profile obtained after adding a simulated nucleus to the image and recalculating the brightness
profile. Small red squares show the profile obtained if this nucleus is instead subtracted. For four galaxies (VCC1692,
1664, 944 and 1025), the best-fit Sérsic/core-Sérsic model for the subtracted profile provides some improvement over
the original fit. We therefore classify these four as galaxies as Type Ic systems.

At the same time, we identify 12 other galaxies which can be classified unambiguously as non-nucleated (Type II).
In these galaxies, the subtracted brightness profiles show strong inward gradients in their central regions: an obviously
non-physical result. Interestingly, these 12 galaxies fall into two rather distinct categories: (1) bright giants which
have shallow “cores” in the central few arcseconds and thus are best fit with core-Sérsic models; and (2) faint dwarfs
which are best fit with pure Sérsic models. The common feature linking these two populations is the presence of a
low-surface brightness core that facilitates the detection of a central nucleus. For this reason, we can say with some
confidence that these 12 galaxies do not contain nuclei that follow the scaling relations observed in §4 for the Type Ia
galaxies. The final 11 galaxies remain elusive since we can neither confirm nor rule out the presence of a nucleus in
these cases. We classify these objects as possibly nucleated (Type Id).

Figures 6-7 clearly demonstrate that it is possible to detect nuclei in galaxies that span a wide range in luminosity
and central surface brightness. But to what extent is our ability to detect nuclei — and to measure their sizes and
magnitudes — affected by the surface brightness of the underlying galaxy and their own luminosity or size? Needless
to say, a complete characterization of the biases and incompleteness affecting the nuclei requires a priori knowledge of
their intrinsic properties: information that we are obviously lacking. Nevertheless, we may take a first step towards
answering these questions by adding simulated nuclei of known size and magnitude to the center of a non-nucleated
galaxy. For these experiments, we focus on a single non-nucleated galaxy, VCC1833, which, as a Sérsic-law galaxy
with a central surface brightness of µg(1

′′) ≈ 19.3 and µz(1
′′) ≈ 18.1 mag arcsec−2, is representative of the Type Ia

galaxies in our survey.

Nuclei that span a range in both magnitude and size were added to the galaxy photocenter. Input magnitudes
covered the intervals 16 ≤ g ≤ 25 and 16 ≤ z ≤ 24 in 1 mag increments; at each magnitude, nuclei were added with
half-light radii of 0.′′00, 0.′′02, 0.′′03, 0.′′04, 0.′′1, 0.′′05, 0.′′1, 0.′′15 and 0.′′2. Simulations were carried out independently
for the F475W and F850LP images, and for each simulation, the surface brightness profile was measured from the
artificial image using the same procedure as for the real galaxy. A nucleated Sérsic model was then fitted to the profile
of the simulated galaxy+nucleus and the best-fit parameters for the nucleus recorded.

The results of these simulations are shown in Figure 27. The upper panel of this figure shows the difference between
the recovered and input half-light radius, ∆rh, as a function of input radius. The lower panel plots the difference
between the recovered and input magnitude, ∆m, as a function of input magnitude. In both panels, results are shown
for the separate F475W and F850LP bandpasses (blue and red squares, respectively). The symbol size is proportional
to either input magnitude (as in the upper panel, where larger symbols correspond to brighter nuclei) or input radius
(as in the lower panel, where larger symbols correspond to more compact nuclei).

There are several conclusions which may be drawn from this figure, although sweeping claims must be avoided
because the results of the simulations will almost certainly depend on the central surface brightness of the galaxy,
the steepness of its brightness profile, etc, so the findings are not generalizable to the other program galaxies in any
straightforward way. With these caveats in mind, we note that nuclei brighter than g ≈ 19 mag or z ≈ 18 mag in this
particular galaxy would be detected for any choice of rh in the range 0-0.′′2. Conversely, nuclei fainter than g ≈ 23 mag
or z ≈ 24 mag would never be detected. There appears to be no serious bias affecting the rh measurements for nuclei
with rh ≤ 0.′′05, at least for nuclei brighter than g ∼ 20–21 mag. In this size regime — a range which encompasses half
of the nuclei in Table 1 — the input half-light radii are recovered to a precision of ∼ 15% or better. For larger nuclei,
with rh & 0.′′05, there is a bias which ranges from . 10% for the brightest nuclei, to nearly a factor of two for the
faintest detectable nuclei, in the sense that the recovered nuclei are smaller. Unfortunately, the intrinsic distribution of
nuclei sizes is unknown, so it is not possible to apply an a posteriori correction to the measured sizes. In any case, we
note that the result from §4 that would be most directly affected by a bias of this sort is the observed scaling between
nucleus and luminosity (Figure 17), where it was found L ∝ rβ with β = 0.50 ± 0.03. If we make the admittedly
dubious assumption that the luminosity dependence of the bias found in the case of VCC1833 is representative of the
full sample of Type Ia galaxies, then we would expect the exponent in Equation 11 to fall to β ∼ 0.4.

For the faintest nuclei, the simulations reveal that completeness is a function of surface brightness, in the expected
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sense that, at fixed luminosity, more compact nuclei (i.e., higher surface brightness) are more likely to be detected. As
the lower panel of Figure 27 shows, there is also a tendency to measure fainter magnitudes for the simulated nuclei, at
least in this galaxy. Not surprisingly, the importance of this bias depends sensitively on the input magnitude; for the
brightest nuclei, the bias is less than 0.1 mag in both filters, irrespective of the input rh. For the fainter nuclei, the
bias can be as large as ∼ 0.5 mag, and is slightly worse in the F850LP filter. To the extent that the simulations for
VCC1833 are applicable to other galaxies in the survey, this means that the faintest Type Ia nuclei may have measured
colors that are systematically too blue by ∼ 0.1 mag.

COMPARISON WITH DE PROPRIS et al. (2005) AND STRADER et al. (2006)

Two recent papers, de Propris et al. (2005) and Strader et al. (2006), have presented magnitudes, colors and half-light
radii for the nuclei belonging to a subset of our program galaxies. Since the same observational material that forms
the basis of our analysis was used in each of these studies, it is of interest to compare the various measurements.

Based on the VCC classifications that were available when the ACS Virgo Cluster Survey was begun, 25 of the 100
program galaxies were thought to contain nuclei (see Table 1 of Paper I). As we have shown in §4, the actual number
of nucleated galaxies in our survey is about three times larger than this, although in a number of cases the nuclei were
too faint to determine reliable photometric or structural parameters; in the final analysis, magnitudes, colors and sizes
could be measured for 51 (Type Ia) nuclei.

We first consider the results of de Propris et al. (2005), who studied 18 of the 25 galaxies originally classified as
nucleated dwarfs. These authors parameterized the underlying galaxies as Sérsic models. After subtracting this Sérsic
component, colors and magnitudes for the nuclei were determined by summing the light within a 1′′ aperture, while
half-light radii for the nuclei were measured with the ISHAPE software package (Larsen 1999) for a circular Plummer
profile and Tiny Tim PSF. We have transformed the de Propris et al. (2005) VEGAMAG photometry onto the AB
system using the zeropoints given in Table 11 of Sirianni et al. (2005). Their half-light radii were converted from
parsecs to arcseconds using their adopted Virgo distance of 15.3 Mpc. Extinction corrections, which in both studies
are based on the DIRBE maps of Schlegel et al. (1998), were applied to our photometry as described in Paper II.

The two upper panels of Figure 28 compare our magnitudes with those of de Propris et al. (2005) (filled circles),
where the dashed lines show the one-to-one relations. There is only fair agreement between the measured magnitudes
(the rms scatter is ≈ 0.30 mag in both bands). In the lower left panel of Figure 28, we compare our two estimates
for the nuclei colors with those of de Propris et al. (2005). Whether one uses integrated or aperture colors, the
agreement is fair at best (rms scatter ≈ 0.17 mag in either case). As discussed in §4.1, an internal comparison of
our color measurements shows a an rms scatter of 0.059 mag between the integrated and aperture colors. In any
case, the scatter in the comparison with the de Propris et al. (2005) colors is largely driven by three galaxies —
VCC200, VCC1826 and VCC2050 (IC3779) — which de Propris et al. (2005) find to host exeptionally blue nuclei,
(g − z)AB . 0.75 mag. For single burst stellar populations, such colors would require ages . 3 Gyr for virtually any
choice of metallicity (see Figure 6 of Paper I). By contrast, we measure colors in the range 0.8–1.2 for these three
nuclei.

In addition, we find poor agreement (rms scatter = 0.′′056) between the half-light radii measured in the two studies.
In the lower right panel of Figure 28, we plot the de Propris et al. (2005) half-light radii against the mean of our
measurements in the g and z bandpasses. An internal comparison of our g− and z-band measurements shows good
agreement, with an rms scatter of ∼ 0.′′01 (§4.1). Unfortunately, an internal comparison of the de Propris et al. (2005)
is not possible since they report a single value of the half-light radius for each nucleus, and it is not clear if this value
refers to a measurement made in a single bandpass, or the average of measurements in the g and z bandpasses.

Figure 28 also shows a comparison of our magnitudes, colors and half-light radii for 25 nuclei to those of Strader
et al. (2006) (open squares). The Strader et al. (2006) measurements were also determined using the ISHAPE package
(Larsen 1999), although these authors used an empirical PSF and assumed a King model nucleus of fixed concentration
index c ≡ log (rt/rc) = 1.477. Although there is no discussion of how the contribution from the underlying galaxy was
modeled in their analysis of the nuclei, the authors do state that photometry and size measurements for the nuclei
were carried out using procedures identical to the globular clusters, in which the background is usually modeled as a
constant or a plane. However, near the photocenter where the nuclei are found, the galaxy light is varying rapidly in
both the radial and azimuthal directions, and since the galaxy brightness profiles nearly always exhibit an inward rise,
this procedure will lead to overestimates of the nuclei luminosities and sizes.

From the upper panels of Figure 28, we see that the Strader et al. (2006) magnitudes are, on average, ∼ 0.4 mag
brighter than ours. In addition, the discrepancy rises to & 1 mag for the faintest nuclei — those which should be most
prone to errors in modeling the underlying galaxy light. There is better agreement between the measured colors from
the two studies, as the lower left panel shows (rms scatter = 0.098 and 0.072 mag for the integrated and aperture
colors, respectively). At the same time, however, there is poor agreement between the measured half-light radii (rms
scatter = 0.′′055), where their radii are ∼ 80% larger than ours. Unfortunately, Strader et al. (2006) tabulate a single
value of the radius for each nucleus, so no internal comparison of their size measurements is possible.
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Merritt, D., Milosavljević, M., Favata, M., Hughes, S.A., & Holz,

D.E. 2004, ApJ, 607, L9
Merritt, D., Navarro, J.F., Ludlow, A., & Jenkins, A. 2005, ApJ,

624, L85
Merritt, D., et al. 2006, in preparation
Michie, R.W. 1963, MNRAS, 125, 127
Mieske, S., Hilker, M., Infante, L., & Jordán, A. 2006, AJ, in press

(astro-ph/0512474)
Mihos, J.C., & Hernquist, L. 1994, ApJ, 437, L47
Miller, R.H., & Smith, B.F. 1992, ApJ, 393, 508
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Table 1. Basic Data for Nuclei of Program Galaxies

ID VCC Other BT E(B-V) µg(1′′) µz(1′′) Class Class Mod gAB zAB (g − z)AB (g − z)aAB rh,g rh,z δn Comments

(mag) (mag) (mag ✷
′′) (mag ✷

′′) (VCC) (ACS) (mag) (mag) (mag) (mag) (′′) (′′) (′′)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

1 1226 M49, N4472 9.31 0.022 16.74 15.12 N II cS · · · · · · · · · · · · · · · · · · · · · Dust. AGN?a

2 1316b M87, N4486 9.58 0.023 17.58 15.95 N 0 cS · · · · · · · · · · · · · · · · · · Dust. AGN.c

3 1978 M60, N4649 9.81 0.026 16.93 15.27 N II cS · · · · · · · · · · · · · · · · · · · · · AGN?a

4 881 M86, N4406 10.06 0.029 16.66 15.08 N II cS · · · · · · · · · · · · · · · · · · · · · Dust.
5 798 M85, N4382 10.09 0.030 16.23 14.89 N II cS · · · · · · · · · · · · · · · · · · · · · Dust:.
6 763 M84, N4374 10.26 0.041 16.47 14.88 N 0 cS · · · · · · · · · · · · · · · · · · Dust. AGN.c

7 731 N4365 10.51 0.021 16.95 15.34 N Ib cS · · · · · · · · · · · · · · · · · · 0.014±0.008
8 1535 N4526 10.61 0.022 · · · · · · N 0 · · · · · · · · · · · · · · · · · · · · · · · · Dust.

9 1903b M59, N4621 10.76 0.032 16.44 14.80 N Id S · · · · · · · · · · · · · · · · · · · · ·

10 1632 M89, N4552 10.78 0.041 16.34 14.68 N II cS · · · · · · · · · · · · · · · · · · · · · Dust. AGN?a

11 1231 N4473 11.10 0.028 16.45 14.87 N II S · · · · · · · · · · · · · · · · · · · · ·

12 2095 N4762 11.18 0.022 16.76 15.25 N Ib S · · · · · · · · · · · · · · · · · · 0.009±0.009
13 1154 N4459 11.37 0.045 16.67 15.11 N Id S · · · · · · · · · · · · · · · · · · · · · Dust.
14 1062 N4442 11.40 0.022 16.63 15.02 N Id S · · · · · · · · · · · · · · · · · · · · ·

15 2092 N4754 11.51 0.032 16.77 15.15 N Ib S · · · · · · · · · · · · · · · · · · 0.027±0.008
16 369 N4267 11.80 0.047 16.98 15.36 N Ib S · · · · · · · · · · · · · · · · · · 0.015±0.004
17 759 N4371 11.80 0.036 17.50 15.93 N II S · · · · · · · · · · · · · · · · · · · · · Dust.
18 1692 N4570 11.82 0.022 16.65 15.06 N Ic S · · · · · · · · · · · · · · · · · · · · ·

19 1030 N4435 11.84 0.029 · · · · · · N 0 · · · · · · · · · · · · · · · · · · · · · · · · Dust.

20 2000b N4660 11.94 0.034 16.47 14.89 N Id S · · · · · · · · · · · · · · · · · · · · ·

21 685 N4350 11.99 0.028 16.57 14.98 N 0 S · · · · · · · · · · · · · · · · · · · · · Dust.
22 1664 N4564 12.02 0.033 16.90 15.27 N Ic S · · · · · · · · · · · · · · · · · · · · ·

23 654 N4340 12.03 0.026 17.45 15.95 N Ib S · · · · · · · · · · · · · · · · · · 0.025±0.007
24 944 N4417 12.08 0.025 16.93 15.42 N Ic S · · · · · · · · · · · · · · · · · · · · ·

25 1938 N4638 12.11 0.026 16.97 15.43 N Ib S · · · · · · · · · · · · · · · · · · 0.017±0.069
26 1279 N4478 12.15 0.024 17.40 15.90 N Id S · · · · · · · · · · · · · · · · · · · · ·

27 1720 N4578 12.29 0.021 17.66 16.13 N Ia S 18.40 16.82 1.57 1.57 0.085 0.085 0.007±0.005
28 355 N4262 12.41 0.036 16.75 15.15 N Id S · · · · · · · · · · · · · · · · · · · · · Dust.

29 1619 N4550 12.50 0.040 17.69 16.25 N Ia S 17.13 15.58 1.55 1.58 0.323 0.323 0.058±0.028 Dust. AGN.d

30 1883 N4612 12.57 0.025 17.20 15.86 N Ia S 18.74 17.60 1.14 1.11 (0.024) (0.024) 0.013±0.006
31 1242 N4474 12.60 0.042 17.59 16.09 N Ia S 19.84 18.14 1.70 1.68 0.035 0.035 0.017±0.007
32 784 N4379 12.67 0.024 17.53 16.05 N Ia S 18.34 16.68 1.66 1.67 0.161 0.161 0.018±0.006
33 1537 N4528 12.70 0.046 17.30 15.82 N Id S · · · · · · · · · · · · · · · · · · · · ·

34 778 N4377 12.72 0.038 16.94 15.44 N Id S · · · · · · · · · · · · · · · · · · · · ·

35 1321 N4489 12.84 0.028 17.92 16.52 N Id S · · · · · · · · · · · · · · · · · · · · ·

36 828 N4387 12.84 0.033 18.01 16.50 N Ia S 18.53 16.96 1.57 1.59 0.208 0.208 0.011±0.005
37 1250 N4476 12.91 0.028 17.81 16.58 N Ia cS 19.73 18.19 1.55 1.52 0.026 0.026 0.083±0.054 Dust.
38 1630 N4551 12.91 0.039 18.00 16.46 N Ia S 17.39 15.72 1.68 1.71 0.501 0.501 0.014±0.007
39 1146 N4458 12.93 0.023 18.03 16.59 N Ia S 15.37 13.95 1.42 1.47 0.780 0.780 0.006±0.008
40 1025 N4434 13.06 0.022 17.48 16.00 N Ic S · · · · · · · · · · · · · · · · · · · · ·

41 1303 N4483 13.10 0.020 18.00 16.50 N Ib S · · · · · · · · · · · · · · · · · · 0.016±0.008
42 1913 N4623 13.22 0.022 18.51 17.02 N Ia S 17.55 15.95 1.60 1.64 0.597 0.597 0.011±0.010
43 1327 N4486A 13.26 0.023 17.49 15.90 N II S · · · · · · · · · · · · · · · · · · · · · Dust.
44 1125 N4452 13.30 0.030 18.57 17.15 N Ia S 20.48 19.51 0.97 0.950 0.060 0.060 0.021±0.029
45 1475 N4515 13.36 0.031 17.85 16.46 N Ib S · · · · · · · · · · · · · · · · · · 0.017±0.008
46 1178 N4464 13.37 0.022 17.47 15.99 N Ib S · · · · · · · · · · · · · · · · · · 0.014±0.008
47 1283 N4479 13.45 0.029 19.11 17.62 N Ia S 20.65 19.07 1.58 1.55 0.053 0.053 0.034±0.021
48 1261 N4482 13.56 0.029 19.71 18.49 Y Ia S 19.50 18.28 1.22 1.25 0.041 0.036 0.028±0.018
49 698 N4352 13.60 0.026 18.43 17.03 N Ia S 19.93 18.61 1.32 1.29 0.041 0.041 0.041±0.016
50 1422 I3468 13.64 0.031 20.04 18.76 Y Ia S 20.22 19.00 1.22 1.26 0.038 0.035 0.038±0.018 Dust:.
51 2048 I3773 13.81 0.032 19.39 18.17 N Ia S 21.45 20.30 1.15 1.14 0.037 0.031 0.076±0.033
52 1871 I3653 13.86 0.030 18.89 17.42 N Ia S 18.73 17.48 1.25 1.35 0.125 0.108 0.030±0.013
53 9 I3019 13.93 0.039 22.11 20.95 Y Ie S 22.01 21.22 0.79 0.88 0.040 0.034 1.907±0.070 dIrr/dE.
54 575 N4318 14.14 0.025 18.38 16.96 N Id S · · · · · · · · · · · · · · · · · · · · ·

55 1910 I809 14.17 0.031 20.05 18.64 Y Ia S 19.82 18.63 1.19 1.19 0.038 0.038 0.005±0.018
56 1049 U7580 14.20 0.022 19.74 18.73 N II S · · · · · · · · · · · · · · · · · · · · ·

57 856 I3328 14.25 0.024 20.67 19.46 Y Ia S 18.97 17.85 1.12 1.17 0.163 0.153 0.073±0.047
58 140 I3065 14.30 0.037 19.60 18.37 N Ia S 22.09 21.19 0.91 0.93 0.030 (0.022) 0.045±0.023
59 1355 I3442 14.31 0.034 21.84 20.59 Y Ia S 21.10 20.07 1.03 1.03 0.043 0.038 0.030±0.069
60 1087 I3381 14.31 0.027 20.60 19.27 Y Ia S 20.22 18.89 1.33 1.33 0.027 0.027 0.012±0.032
61 1297 N4486B 14.33 0.021 17.49 15.93 N Id S · · · · · · · · · · · · · · · · · · · · ·

62 1861 I3652 14.37 0.029 20.76 19.43 Y Ia S 20.11 19.06 1.04 1.19 0.137 0.119 0.061±0.053
63 543 U7436 14.39 0.031 20.56 19.29 N Ia cSe 22.56 21.20 1.36 1.19 0.157 0.196 0.056±0.034
64 1431 I3470 14.51 0.051 19.82 18.40 Y Ia S 19.66 18.54 1.13 1.17 0.238 0.233 0.073±0.027
65 1528 I3501 14.51 0.028 19.51 18.18 N Ia cSe 22.27 21.31 0.96 0.89 (0.015) (0.018) 0.016±0.016
66 1695 I3586 14.53 0.045 20.34 19.22 N Ia cSe 22.61 21.23 1.38 1.35 (0.022) (0.024) 0.433±0.196
67 1833 14.54 0.036 19.28 18.09 N II S · · · · · · · · · · · · · · · · · · · · ·

68 437 U7399A 14.54 0.029 20.75 19.45 Y Ia S 20.00 19.01 1.00 1.03 0.089 0.083 0.032±0.029
69 2019 I3735 14.55 0.022 20.83 19.63 Y Ia S 20.31 19.20 1.12 1.18 0.037 0.029 0.183±0.077
70 33 I3032 14.67 0.037 20.79 19.75 Y Ia S 22.18 21.27 0.91 0.91 0.033 0.032 0.046±0.056
71 200 14.69 0.030 20.56 19.31 Y Ia S 22.86 21.94 0.92 1.06 0.053 0.038 0.068±0.043
72 571 14.74 0.022 20.12 19.11 N 0 S · · · · · · · · · · · · · · · · · · · · · Dust.
73 21 I3025 14.75 0.021 20.42 18.79 N Ie S 20.64 20.36 0.28 0.32 0.033 0.029 0.759±0.070 dIrr/dE
74 1488 I3487 14.76 0.021 20.24 19.51 N Ia S 23.71 22.99 0.72 0.69 0.025 0.025 0.038±0.071
75 1779 I3612 14.83 0.028 20.45 19.62 N Ie S 22.41 21.58 0.83 0.85 0.021 0.024 0.542±0.191 Dust. dIrr/dE
76 1895 U7854 14.91 0.017 20.54 19.42 N Ia S 23.48 22.61 0.88 0.89 (0.023) (0.021) 0.198±0.043
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Table 1. Basic Data for Nuclei of Program Galaxies— Continued

ID VCC Other BT E(B-V) µg(1′′) µz(1′′) Class Class Mod gAB zAB (g − z)AB (g − z)aAB rh,g rh,z δn Comments

(mag) (mag) (mag ✷
′′) (mag ✷

′′) (VCC) (ACS) (mag) (mag) (mag) (mag) (′′) (′′) (′′)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

77 1499 I3492 14.94 0.030 19.55 19.12 N II S · · · · · · · · · · · · · · · · · · · · · dIrr/dE
78 1545 I3509 14.96 0.042 19.98 18.53 N Ia S 21.93 20.88 1.05 1.16 0.050 0.037 0.027±0.017
79 1192 N4467 15.04 0.023 19.05 17.53 N Ia S 19.09 17.90 1.19 1.22 0.120 0.121 0.007±0.013
80 1857 I3647 15.07 0.025 22.72 21.72 Y Ie S 21.11 20.27 0.84 0.86 0.041 0.041 6.986±0.347
81 1075 I3383 15.08 0.027 21.43 21.40 Y Ia S 21.07 20.11 0.96 0.97 0.040 0.039 0.012±0.070
82 1948 15.10 0.025 21.59 20.57 N Ie S 24.30 23.21 1.09 1.04 0.041 0.054 1.426±0.057
83 1627 15.16 0.039 19.04 17.59 N Ia S 18.83 17.39 1.44 1.46 0.197 0.197 0.024±0.017
84 1440 I798 15.20 0.028 19.25 17.96 N Ia S 19.70 18.38 1.32 1.33 0.063 0.056 0.015±0.014
85 230 I3101 15.20 0.028 21.14 19.91 Y Ia S 20.31 19.22 1.09 1.08 0.038 0.033 0.058±0.032
86 2050 I3779 15.20 0.023 21.02 19.82 Y Ia S 22.38 21.41 0.97 1.08 0.073 0.066 0.037±0.039
87 1993 15.30 0.025 20.61 19.34 N Ib S · · · · · · · · · · · · · · · · · · 0.043±0.052
88 751 I3292 15.30 0.032 19.92 18.58 N Ia S 21.22 20.17 1.05 1.22 0.046 0.035 0.030±0.024
89 1828 I3635 15.33 0.037 21.40 20.12 Y Ia S 21.50 20.50 1.00 1.04 0.060 0.057 0.018±0.070
90 538 N4309A 15.40 0.020 20.14 18.98 N Ia S 21.27 20.15 1.13 1.13 0.033 0.030 0.028±0.016
91 1407 I3461 15.49 0.032 20.75 19.50 Y Ia S 20.39 19.40 0.98 1.08 0.145 0.127 0.060±0.029
92 1886 15.49 0.033 22.08 21.12 Y Ia S 22.05 21.04 1.01 0.97 0.036 0.041 0.022±0.070
93 1199 15.50 0.022 19.56 17.97 N Ia S 19.75 18.39 1.36 1.45 0.075 0.063 0.040±0.036
94 1743 I3602 15.50 0.019 21.45 20.31 N Ib S · · · · · · · · · · · · · · · · · · 0.015±0.078
95 1539 15.68 0.032 22.01 20.86 Y Ia S 20.93 19.81 1.11 1.02 0.231 0.265 0.143±0.063
96 1185 15.68 0.023 21.89 20.62 Y Ia S 20.86 19.91 0.95 1.00 0.057 0.050 0.004±0.069
97 1826 I3633 15.70 0.017 20.52 19.34 Y Ia S 20.10 18.91 1.19 1.17 (0.024) (0.025) 0.043±0.028
98 1512 15.73 0.050 20.27 19.42 N II cS · · · · · · · · · · · · · · · · · · · · · dIrr/dE
99 1489 I3490 15.89 0.034 22.03 20.98 Y Ia S 22.38 21.51 0.87 0.83 0.051 0.058 0.021±0.070
100 1661 15.97 0.020 22.57 21.34 Y Ia S 20.30 19.25 1.05 1.02 0.079 0.082 0.027±0.069

Key to Columns:
(1) identification number;
(2) Virgo Cluster Catalog (VCC) number (Binggeli, Sandage & Tammann (1987);
(3) alternative names in the Messier, NGC, UGC or IC catalogs;
(4) total blue magnitude from VCC;
(5) extinction from Schlegel, Finkbeiner & Davis (1998);
(6-7) g- and z-band surface brightness measured at a geometric radius of 0.′′1
(8) nuclear classification in VCC;
(9) nuclear classification (see Table 2);
(10) model used fit the galaxy brightness profile: (cS) = core-Sérsic; (S) = Sérsic;
(11-12) g- and z-band magnitudes for nucleus;
(13) integrated color of nucleus;
(14) nucleus color within a 4-pixel aperture;
(15-16) King model half-light radii in the g- and z-bands. Radii in parantheses indicate that the nucleus is formally unresolved in our images;
(17) offset from galaxy photocenter in arcseconds;
(18) comments on galaxy morphology, AGN and dust properties. Magnitudes and colors in this table have not been corrected for extinction.

a Low-level radio emission detected by Wrobel (1991) and/or Ho et al. (1997).
b Central .0.3′′saturated in F475W images.
c Fr I radio galaxy (e.g., Ho 1999; Chiaberge et al. 1999).
d LINER galaxy according to Ho et al. (1997).
e Galaxy classified as Sérsic in Paper VI.
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Table 2. Nuclear Classifications for the ACS Virgo
Cluster Survey.

Classification Number

No Classification Possible (Type 0)
Dust 4
AGN 2
Total 6

Nucleated (Type I)
fitted nucleus (Ia) 51
no fit possible (Ib) 11
Total 62

Non-Nucleated (Type II) 12

Uncertain (Type I)
likely nucleated (Ic) 4
possibly nucleated (Id) 11
possible offset nucleus (Ie) 5
Total 20

All Galaxies 100
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Table 3. Comparison of Nuclear Classifications from
Previous HST Studies.

VCC Other MB Rest et al. (2001) Ravindranath et al. (2001) Lauer et al. (2005) Lotz et al. (2004) ACSVCS
(mag)

1226 NGC4472 -21.87 · · · no yes · · · no (II)
1978 NGC4649 -21.39 · · · · · · no · · · no (II)
881 NGC4406 -21.15 · · · no yes · · · no (II)
798 NGC4382 -21.13 · · · · · · · · · · · · no (II)
763 NGC4374 -21.01 · · · yes · · · · · · AGN (O)
731 NGC4365 -20.67 no · · · yes · · · yes (Ib)
1632 NGC4552 -20.49 · · · · · · yes · · · no (II)
1903 NGC4621 -20.47 no · · · no · · · possibly (Id)
1231 NGC4473 -20.11 · · · · · · no · · · no (II)
2000 NGC4660 -19.30 · · · · · · no · · · possibly (Id)
1664 NGC4564 -19.21 no · · · · · · · · · probably (Ic)
944 NGC4417 -19.12 · · · no · · · · · · probably (Ic)
1279 NGC4478 -19.04 no · · · yes · · · possibly (Id)
1242 NGC4474 -18.67 yes (II) · · · · · · · · · yes (Ia)
1146 NGC4458 -18.26 · · · · · · no · · · yes (Ia)
1261 NGC4482 -17.65 yes (III) · · · · · · · · · yes (Ia)

9 IC3019 -17.33 · · · · · · · · · no possible offset (Ie)
1297 NGC4486B -16.85 · · · · · · no · · · possibly (Id)
543 UGC7436 -16.93 · · · · · · · · · no yes (Ia)
1948 IC3693 -16.10 · · · · · · · · · no possible offset (Ie)

Note: Classifications from Rest et al. (2001) vary from I (weakly nucleated) to III (strongly nucleated).
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Table 4. Luminosity Function Parameters.

An m0
n σn M

0

n
a

(mag) (mag) (mag)

g 12.3±1.1 20.35±0.18 1.47±0.16 –10.74±0.23
z 11.5±0.9 19.12±0.19 1.77±0.15 –11.97±0.24

Table 5. Global Properties of Nuclei and Ultra Com-
pact Dwarfs.

Parameter Nuclei UCDs

rh (pc) ≤2–62 25.9±9.1
4.2±3.8 (med.)

〈µh,g〉 (mag arcsec−2) 16.5±1.5 19.2±0.5
〈µh,z〉 (mag arcsec−2) 15.2±1.6 18.5±0.6
〈Mg〉 (mag) −10.9±1.7 −11.2±0.6
〈Mz〉 (mag) −12.0±1.9 −12.2±0.6
〈(g − z)AB〉 (mag) 0.67–1.61 1.03±0.06

1.13±0.25

Table 6. Mean Metallicities for Galactic Nuclei.

(g − z)0-[Fe/H] τ 〈[Fe/H]〉
(Gyr) (dex)

Bruzual & Charlot (2003) 1 +0.82±0.52
2 +0.04±0.64
5 −0.54±0.65
10 −0.90±0.71

Peng et al. (2006)a · · · −0.88±0.79

a Adopted Virgo distance: 16.52±0.22 (random) ±1.14 (systematic) Mpc.
a Broken linear relation based on gz photometry and spectroscopic metallicities for 95 globular clusters in the Milky Way, M49 and M87

(Peng et al. 2006 = Paper IX).
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Fig. 1.— Azimuthally-averaged point spread functions for the nucleus of VCC1303, the galaxy closest to the mean position of the centers
for the full sample of galaxies. The profiles for F475W and F850LP are shown as squares and circles, respectively. The profiles have been
normalized to the same central intensities.
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Fig. 2.— Surface brightness profiles for nine Type Ia galaxies whose nuclei span the full range in half-light radius. In each panel, we show
the azimuthally-averaged brightness profile in the g band (small squares) along with the fitted models. The respective components for the
nucleus and galaxy (a Sersic model in all cases except for VCC1528, where a core-Sésic model was used) are shown as the dotted and short
dashed curves. Two different assumptions for the nucleus component are shown for each galaxy — red curves show the results obtained
for a King model while blue curves show the results obtained by fitting a central point source. In the latter case, both the data and model
have been shifted upwards by 1.5 mag for clarity. Residuals about the fitted relations, ∆µg , are shown below in each panel. For VCC1528,
the best-fit half-light radius of rh,g = 0.′′015 falls below the resolution limit of 0.′′025, meaning that the nucleus is formally unresolved in
this case. In the eight remaining cases, a point-source nucleus provides an inadequate representation of the measured brightness profiles.
The median half-light radii measured for the sample of Type Ia galaxies (see §4.1) are 0.′′051 (g band) and 0.′′048 (z band).
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Fig. 3.— F475W (g) images for galaxies from the ACS Virgo Cluster Survey. Panels show the inner 10′′ × 10′′ (≈ 800×800 pc) of
each galaxy. Galaxies are rank ordered by blue magnitude, which increases from left to right and from top to bottom (i.e., decreasing
luminosity). Classifications from Table 1 are reported in the lower left corner of each panel. The classification scheme itself is summarized
in Table 2. For those galaxies with possible offset nuclei (Type Ie galaxies), the arrow shows the presumed nucleus while the cross indicates
the galaxy photocenter. Only the brightest 25 galaxies are included in this submission; images for the remaining galaxies can be found in
the version posted on the ACSVCS webpage: http://www.cadc.hia.nrc.gc.ca/community/ACSVCS/publications.html#acsvcs8.

http://www.cadc.hia.nrc.gc.ca/community/ACSVCS/publications.html#acsvcs8
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Fig. 4.— Azimuthally-averaged g-band surface brightness profiles for the galaxies from the ACS Virgo Cluster Survey (see Figure 3).
The galaxies are rank ordered by blue magnitude, which decreases from left to right and from top to bottom. Classifications from Table 1
are reported in the lower left corner of each panel. The classification scheme itself is summarized in Table 2. In each panel, the solid curve
shows the best-fit galaxy model; open symbols show datapoints that were excluded during the fitting of the models. For Type Ia galaxies,
dashed and dotted curves show the respective models for the galaxy and the nucleus. The fitted models for galaxies with possible offset
nuclei (the Type Ie galaxies) do not include components for the nuclei. For VCC1316, VCC1903 and VCC2000, the crosses show regions
affected by saturation of the F475W images; these regions were excluded when fitting models to the brightness profiles. The brightness
profiles for two galaxies (VCC1192 and VCC1199) flatten outside of ≈ 10′ due to contamination from the halo of VCC1226 (M49), which
is . 5′ away in both cases. These outer points have been excluded in the fits.
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Fig. 4.— Azimuthally-averaged g-band surface brightness profiles for the galaxies from the ACS Virgo Cluster Survey (see Figure 3).
The galaxies are rank ordered by blue magnitude, which decreases from left to right and from top to bottom. Classifications from Table 1
are reported in the lower left corner of each panel. The classification scheme itself is summarized in Table 2. In each panel, the solid curve
shows the best-fit galaxy model; open symbols show datapoints that were excluded during the fitting of the models. For Type Ia galaxies,
dashed and dotted curves show the respective models for the galaxy and the nucleus. The fitted models for galaxies with possible offset
nuclei (the Type Ie galaxies) do not include components for the nuclei. For VCC1316, VCC1903 and VCC2000, the crosses show regions
affected by saturation of the F475W images; these regions were excluded when fitting models to the brightness profiles. The brightness
profiles for two galaxies (VCC1192 and VCC1199) flatten outside of ≈ 10′ due to contamination from the halo of VCC1226 (M49), which
is . 5′ away in both cases. These outer points have been excluded in the fits.
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Fig. 4.— Azimuthally-averaged g-band surface brightness profiles for the galaxies from the ACS Virgo Cluster Survey (see Figure 3).
The galaxies are rank ordered by blue magnitude, which decreases from left to right and from top to bottom. Classifications from Table 1
are reported in the lower left corner of each panel. The classification scheme itself is summarized in Table 2. In each panel, the solid curve
shows the best-fit galaxy model; open symbols show datapoints that were excluded during the fitting of the models. For Type Ia galaxies,
dashed and dotted curves show the respective models for the galaxy and the nucleus. The fitted models for galaxies with possible offset
nuclei (the Type Ie galaxies) do not include components for the nuclei. For VCC1316, VCC1903 and VCC2000, the crosses show regions
affected by saturation of the F475W images; these regions were excluded when fitting models to the brightness profiles. The brightness
profiles for two galaxies (VCC1192 and VCC1199) flatten outside of ≈ 10′ due to contamination from the halo of VCC1226 (M49), which
is . 5′ away in both cases. These outer points have been excluded in the fits.
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Fig. 4.— Azimuthally-averaged g-band surface brightness profiles for the galaxies from the ACS Virgo Cluster Survey (see Figure 3).
The galaxies are rank ordered by blue magnitude, which decreases from left to right and from top to bottom. Classifications from Table 1
are reported in the lower left corner of each panel. The classification scheme itself is summarized in Table 2. In each panel, the solid curve
shows the best-fit galaxy model; open symbols show datapoints that were excluded during the fitting of the models. For Type Ia galaxies,
dashed and dotted curves show the respective models for the galaxy and the nucleus. The fitted models for galaxies with possible offset
nuclei (the Type Ie galaxies) do not include components for the nuclei. For VCC1316, VCC1903 and VCC2000, the crosses show regions
affected by saturation of the F475W images; these regions were excluded when fitting models to the brightness profiles. The brightness
profiles for two galaxies (VCC1192 and VCC1199) flatten outside of ≈ 10′ due to contamination from the halo of VCC1226 (M49), which
is . 5′ away in both cases. These outer points have been excluded in the fits.
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Fig. 5.— (Left Panel): Comparison of the King model half-light radii, rh, measured for the nuclei in the F850LP (z) and F475W (g)
filters (filled circles). The 51 nuclei with reliable photometric and structural measurements are shown by the filled circles and open stars.
The latter symbols indicate the 11 galaxies with BT ≤ 13.5, for which the half-light radii were constrained to be the same in the two
bandpasses. The five galaxies with possible offset nuclei are shown as open circles. The dashed line shows the one-to-one relation. (Middle
Panel): Comparison of the measured z- and g-band magnitudes for the nuclei. The dotted line shows the least-squares line of best fit.
The dashed line shows the relation corresponding to the mean color of the nuclei: 〈(g − z)〉 = 1.15 mag. (Right Panel): Comparison of the
nuclei colors obtained by direct integration of the best-fit model, (g − z)AB , with those from 4-pixel aperture measurements, (g − z)a

AB .
The dashed line shows the one-to-one relation.
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Fig. 6.— (Upper Panel) Luminosity distribution of the 94 program galaxies for which a classification as nucleated or non-nucleated
is possible from our ACS images (open histogram). The double-hatched histogram shows the luminosity distribution for the 62 galaxies
which we classify unambiguously as nucleated (i.e., Types Ia and Ib). The hatched histogram shows this same sample plus the 15 galaxies
which may have central nuclei (i.e., Types Ia and Ib, plus Types Ic and Id). The solid histogram shows the 25 galaxies in our survey which
were classified as nucleated in the Virgo Cluster Catalog (Binggeli, Sandage & Tammann 1985). (Lower Panel) Percentage of nucleated
galaxies, fn, as a function of blue magnitude. Open and filled squares show the frequency of nucleation for Types Ia and Ib (62 galaxies)
and Types Ia, Ib, Ic and Id (77 galaxies). Open triangles show results found using the classifications of Binggeli, Sandage & Tammann
(1985).
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Fig. 7.— (Upper Panel) Distribution of g-band surface brightnesses, measured at a geometric mean radius of 1′′, for the 94 galaxies
from the ACS Virgo Cluster Survey for which a classification as nucleated or non-nucleated is possible (open histogram). The hatched
histogram shows the luminosity distribution for the 62 galaxies which we classify unambiguously as nucleated (i.e., Types Ia and Ib). The
double-hatched histogram shows this same sample plus the 15 galaxies which may have central nuclei (i.e., Types Ia, Ib, Ic or Id). The
25 ACS Virgo Cluster Survey galaxies classified as nucleated in Binggeli, Sandage & Tammann (1985) are shown by the filled histogram.
(Lower Panel) Same as above, except for the z band.
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Fig. 8.— (Upper Panel): Galaxy g-band surface brightness, measured at a geometric mean radius of 1′′, plotted against the dereddened
magnitude of the nucleus. Filled circles represent the 51 galaxies in our survey which show unambiguous evidence for a nucleus at or near
their photocenters, and for which we are able to measure reliable photometric and structural parameters (i.e., Type Ia galaxies). Open
circles show the five galaxies with possible offset nuclei (i.e., Type Ie galaxies). Open squares show the 25 galaxies classified as nucleated
by Binggeli, Sandage & Tammann (1985). The shaded region shows the approximate region of the magnitude vs. surface brightness plane
where selection effects were relatively unimportant in the survey of Binggeli, Tammann & Sandage (1987). (Lower Panel): Same as above,
except for the z band.
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Fig. 9.— (Panel a): A magnified view of the F475W image of VCC2048 (IC3773). This is the brightest dwarf galaxy in our sample
according to the morphological classifications of Binggeli, Sandage and Tamman (1985). It is classified as non-nucleated in the Virgo
Cluster Catalog, with type d:S0(9). (Panels b–d): The same image, after binning 4×4 pixels and convolving with Gaussians of FWHM =
0.′′5, 0.′′9 and 1.′′4, respectively.
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Fig. 10.— (First Panel) F475W (g) image for VCC784 (NGC4379), one of the brightest Type Ia galaxies in our survey. (Second Panel)
Ground-based V -band image of VCC784, taken with the 2.4m Hiltner telescope (FWHM = 1.′′14). (Third Panel) Comparison of surface
brightness profiles measured for VCC784 using the ACS (filled squares) and ground-based images (open squares). To aid in the comparison,
the V -band profile has been matched to the ACS profile at a radius of 1′′. The best-fit two-component model for the galaxy and nucleus
based on the ACS profile are shown by the dashed and dotted curves. The solid curve shows the combined profile.
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Fig. 11.— (Upper Panel): Projected offset, δrn, between the position of the galaxy center and that of the nucleus, plotted as a function
of galaxy magnitude. Filled circles show 62 galaxies of Types Ia and Ib. Open circles indicate the five galaxies in our sample which may
have offset nuclei (Type Ie). The dotted line shows an offset of δrn = 0.′′5, or ten ACS/WFC pixels; a single pixel is represented by the
lower, dashed line. (Lower Panel) Ratio of the offset to the mean effective radius, 〈re〉, of the host galaxy in the two bands, plotted
as a function of galaxy magnitude. The symbols are the same as in the previous panel. The upper dotted line in this case is drawn at
δrn/〈re〉 = 0.′′5/13.′′13 ≈ 0.038, where 〈re〉 = 13.′′13 is the mean effective radius of Type Ia galaxies. The lower dotted line is drawn at a
fractional offset of 1% the effective radius. A total of nine galaxies lie above this lower line.
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Fig. 12.— (Left Panel): Cumulative distribution of Virgocentric radii for the 50 galaxies from the ACS Virgo Cluster Survey fainter than
BT = 13.7. Using the morphological classifications from Binggeli, Sandage & Tammann (1985), this sample is sub-divided into 23 nucleated
and 27 non-nucleated galaxies. The dotted and dashed curves show the cumulative distributions for these two samples. (Right Panel)
Cumulative distribution of Virgocentric radii for the 49 galaxies from the ACS Virgo Cluster Survey fainter than BT = 13.7 for which a
classification as nucleated or non-nucleated is possible from our ACS images. (One galaxy in this magnitude range, VCC571, cannot be
classified due to the presence of dust.) This sample is shown sub-divided into 40 nucleated (Type Ia and Ib) and 4 non-nucleated (Type
II) galaxies (dotted and dashed curves, respectively). The five galaxies with possible offset nuclei have been excluded from the analysis.
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Fig. 13.— Surface density profile for early-type, low-surface-brightness dwarf (LSBD) galaxies in the Virgo Cluster (open circles). These
galaxies have blue magnitudes in the range 14.55 < BT ≤ 18.0, which correspond to central g-band surface brightnesses of µg(1′′) &
20 mag arcsec−2. High-surface-brightness dwarfs (HSBDs) are defined as early-type galaxies with 13.7 ≤ BT ≤ 14.55 and µg(1′′) .
20 mag arcsec−2 (filled circles). Nuclei in the HSBDs were preferentially missed in the survey of Binggeli, Tamman & Sandage (1987),
which may explain their observation that the non-nucleated dwarfs in Virgo have a more extended distribution within the cluster than the
nucleated dwarfs.
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Fig. 14.— (Upper Panels): Nucleus magnitude plotted against against that of the host galaxy. Results for the g and z bands are shown
in the left and right panels, respectively. Filled circles show the 51 galaxies of Type Ia. Open circles indicate the five galaxies in our sample
which may have offset nuclei (Type Ie). The dashed line shows the best-fit linear relation while the best-fit relation with unity slope is
shown by the solid line. (Lower Panels): Ratio of nucleus luminosity to that of the host galaxy, η, plotted against galaxy magnitude.
Results for the g and z bands are shown in the left and right panels, respectively. Filled circles show the 51 galaxies of Types Ia. Open
circles indicate the five galaxies in our sample which may have offset nuclei (Type Ie). The dashed and dotted lines show the mean and
±1σ limits for the sample of Type Ia galaxies.



48 Côté et al.

Fig. 15.— (Upper Panel): Luminosity function, measured in the g band, for the nuclei of the 51 galaxies classified as Type Ia. For
comparison, we also show Virgo globular cluster candidates from Jordán et al. (2006) and seven probable ultra-compact dwarf galaxies
(UCDs) from Haşegan et al. (2005; 2006). (Lower Panel): Same as above, except for the z band.



The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies 49

Fig. 16.— (Upper Panel): Distribution of half-light radii, measured in the g-band, for the nuclei of the 51 galaxies classified as Type
Ia. Also shown are seven probable ultra-compact dwarf galaxies (UCDs) from Haşegan et al. (2005; 2006) and a sample of Virgo globular
cluster candidates from Jordán et al. (2006). The vertical dotted line shows the approximate resolution limit for the ACS images drizzled
using a Gaussian interpolation kernel. (Lower Panel): Same as above, except for the z band.
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Fig. 17.— (Left Panel): The size-magnitude relation, in the g band, for the nuclei of the 51 galaxies classified as Type Ia (filled circles).
Open circles indicate the five galaxies which may have offset nuclei (Type Ie). Typical errorbars for the nuclei are shown in the right had
side of the panel. Also shown are seven probable ultra-compact dwarf galaxies (UCDs) from Haşegan et al. (2005; 2006) and a sample of
globular clusters from Jordán et al. (2006). The arrow shows the “universal” half-light radius of 〈rh〉 = 0.′′033 ≈ 2.7 pc for globular clusters
in Virgo (Jordán et al. 2005), while the dashed line shows a conservative estimate for the resolution limit of those ACS images which were
drizzled using a Gaussian interpolation kernel (rather than a Lanczos kernel). The diagonal lines shows relations of the form rh ∝ Lβ . The
long-dashed line shows the extrapolation of the size-luminosity relation for giant galaxies, from Equation (11) of Haşegan et al. (2005). See
text for details. (Right Panel): Same as the left panel, except for the z band.
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Fig. 18.— (Left Panel): Average surface brightness within the half-light radius plotted against magnitude for the nuclei of the 51 galaxies
classified as Type Ia (filled circles). Open circles indicate the five galaxies which may have offset nuclei (Type Ie). Both the magnitude and
surface brightness measurements refer to the g band. Also shown are seven probable ultra-compact dwarf galaxies (UCDs) from Haşegan
et al. (2005; 2006), a sample of Virgo globular clusters candidates from Jordán et al. (2006) and four UCDs in the Fornax Cluster studied
by de Propris et al. (2005). The dashed line shows the relation expected for globular clusters if they have a “universal” half-light radius
of 〈rh〉 = 0.′′033 ≈ 2.7 pc (Jordán et al. 2005). The dotted line shows the predicted scaling relation for nuclei formed by the mergers of
globular clusters (Bekki et al. 2004). Arrows indicate lower limits on the surface brightness for unresolved nuclei. (Right Panel): Same as
the left panel, except for the z band.
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Fig. 19.— (Left Panel) Color-magnitude diagram for the nuclei of the 51 galaxies classified as Type Ia (filled circles). Open circles
indicate the five galaxies which may have offset nuclei (Type Ie). Magnitudes and colors have been corrected for extinction and reddening.
The size of the symbol for the nuclei is proportional to the magnitude of the host galaxy. Galaxies with unusually blue or red nuclei are
labelled. For comparison, we show seven probable ultra-compact dwarf galaxies from Haşegan et al. (2005; 2006). The short-dashed line
shows the best-fit relation for the nuclei of galaxies fainter than BT = 13.5 (see §4.9). The dashed line shows the the best-fit relation for
the nuclei of galaxies fainter than BT = 13.5 (see §4.9). (Right Panel) Histogram of de-reddened nuclei colors.
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Fig. 20.— Comparison of the color magnitude diagrams for the nuclei of the 51 galaxies classified as Type Ia (filled circles) with those
of the globular clusters belonging to our program galaxies (points). Possible offset nuclei are shown as open circles (i.e., Type Ie galaxies).
The samples have been divided into four panels based on the blue luminosity of the host galaxy. The dashed line in each panel shows the
best-fit relation for the nuclei of galaxies fainter than BT = 13.5 (see §4.9). The heavy solid curve shows the color magnitude relation
predicted by Monte-Carlo experiments in which the nuclei are assembled from globular cluster mergers; the thin solid curves show the 95%
confidence limits (see §5.2 for details).
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Fig. 21.— (Left Panel) Comparison of the Mg vs. (g − z)′AB color magnitude relation for nuclei (filled circles), globular clusters (open
triangles) and galaxies (open squares) from the ACS Virgo Cluster Survey. The galaxies have been divided into four bins in absolute
magnitude. The globular clusters have been further divided into red and blue subcomponents as described in Peng et al. (2006a). The
nuclei of the 51 Type Ia galaxies have been divided into three magnitude bins containing roughly equal numbers of nuclei. (Right Panel)
Mz vs. (g − z)′AB color magnitude relation for nuclei, globular clusters and galaxies.
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Fig. 22.— (Upper Panel) Distribution of half-light radii for the nuclei of early-type galaxies from the ACS Virgo Cluster Survey,
compared to those of late-type galaxies from Böker et al. (2004). The plotted half-light radii for the early-type galaxies are averages of the
measurements in the g and z bands. (Lower Panel) Distribution of absolute magnitudes for the nuclei of early-type galaxies from the ACS
Virgo Cluster Survey, compared to those of late-type galaxies from Böker et al. (2004). Results in both the g and z bands are shown for
the early-type galaxies, while those for the late-type galaxies refer to the I band.
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Fig. 23.— (Upper Left Panel) Total g-band luminosity of globular clusters belonging to 51 nucleated (Type Ia) galaxies, plotted against
g-band nucleus luminosity. Symbols are color coded according to the blue magnitude of host galaxy. (Lower Left Panel) Ratio of total
g-band luminosity in globular clusters to that contained in the nucleus. The dashed line corresponds to κg = 1. (Right Panels) As before,
except for the z band.
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Fig. 24.— (Upper Panel) Color-metallicity relations for old stellar populations. The long-dashed (broken linear) relation shows the
empirical metallicity relation of Peng et al. (2006 = Paper IX) which is based on 95 globular clusters (asterisks) in the Milky Way, M49
(NGC4472 = VCC1226) and M87 (NGC4486 = VCC1316). The remaining relations show theoretical predictions based on the models of
Bruzual & Charlot (2003) which assume simple stellar populations with a Chabrier (2003) initial mass function and ages of τ = 1, 2, 5 and
10 Gyr. The curves show linear interpolations of the models. (Lower Panel) Histograms of metallicities for the 51 Type Ia nuclei in our
sample, based on the color metallicity relations shown in the upper panel. The symbols are the same as above.
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Fig. 25.— (Upper Panel) Distribution of absolute blue magnitudes for 23 early-type galaxies with supermassive black holes (SBHs)
taken from the compilation of Ferrarese & Ford (2005) (open squares). The distribution of 51 nucleated (Type Ia) galaxies in the ACS
Virgo Cluster Survey is shown by the solid histogram; 11 galaxies with Type Ib nuclei are shown by the dashed histogram. (Lower Panel)
Distribution of the mass fraction, η, for early-type galaxies containing supermassive black holes (SBHs) with that for nucleated galaxies
(Type Ia) in the ACS Virgo Cluster Survey. In the former case, M•/Mgal measures the dynamical mass of the SBH relative to host
galaxy’s bulge mass. For the nucleated galaxies, η is the ratio of the nucleus and galaxy luminosities, averaged in the g and z bandpasses.
The smooth curves show the best-fit Gaussians.
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Fig. 26.— The 27 galaxies from the ACS Virgo Cluster Survey which are classified as non-nucleated, or having uncertain classifications,
in Tables 1 and 2. Galaxies are ordered according to blue luminosity, which decreases left to right and top to bottom. Galaxy names and
nuclear classifications from Table 2 are given in the upper right corner of each panel. In each panel, we plot the difference, ∆µg , between
the fitted model surface brightness profile and: (1) the observed profile (black squares); (2) the profile obtained after adding a central
nucleus to the observed profile (blue squares); and (3) the profile obtained after subtracting a central nucleus from the observed profile
(red squares). In the interests of clarity, residuals are shown for the inner 10′′ only. For VCC1903 (M59 = NGC4621) and VCC2000
(NGC4660), no data are plotted with . 0.′′3 since their g-band profiles are saturated inside this point.
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Fig. 27.— (Upper Panel) Difference between the recovered and input half-light radii, ∆rh, for simulated nuclei added to VCC1833, the
faintest non-nucleated galaxy in our survey (excluding two dIrr/dE transition objects). The central surface brightness of this galaxy is
µg(1′′) ≈ 19.3 and µz(1′′) ≈ 18.1 mag arcsec−2, near the average for our sample galaxies. The blue and red squares show the respective
results for the F475W and F850LP images, where the symbol size is proportional to the input magnitude (in the sense that brighter nuclei
are plotted with larger symbols). (Lower Panel) Difference between the recovered and input magnitude ∆m, for simulated nuclei added to
VCC1833. In this case, the symbol size is proportional to input radius: i.e., the most compact nuclei are plotted with the largest symbols.
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Fig. 28.— Comparison of photometric and structural parameters for nuclei in common with the studies of de Propris et al. (2005; dP06)
and Strader et al. (2006; S06). (Upper Left Panel) Comparison of g-band magnitudes, on the AB system, for 18 and 25 nuclei from dP06
and S06 (open squares and filled circles, respectively). (Upper Right Panel) Comparison of z-band magnitudes, on the AB system. (Lower
Left Panel) Integrated (g − z) colors, on the AB system (filled circles and open squares). Circled symbols show our aperture measurements
for the nuclei colors. (Lower Right Panel) Comparison of measured half-light radii in arcseconds. Our measurements refer to unweighted
averages from the two bandpasses. VCC1861 (IC3652) has been labelled since the half-light radius reported by Strader et al. (2006), rh =
0.′′007, is ∼ 4× below the ACS resolution limit.
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