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The Active Disturbance Rejection Control to
Stabilization for Multi-Dimensional Wave Equation

With Boundary Control Matched Disturbance
Bao-Zhu Guo, Senior Member, IEEE, and Hua-Cheng Zhou

Abstract—In this paper, we consider boundary stabilization
for a multi-dimensional wave equation with boundary control
matched disturbance that depends on both time and spatial vari-
ables. The active disturbance rejection control (ADRC) approach
is adopted in investigation. An extended state observer is de-
signed to estimate the disturbance based on an infinite number of
ordinary differential equations obtained from the original multi-
dimensional system by infinitely many test functions. The distur-
bance is canceled in the feedback loop together with a collocated
stabilizing controller. All subsystems in the closed-loop are shown
to be asymptotically stable. In particular, the time varying high
gain is first time applied to a system described by the partial
differential equation for complete disturbance rejection purpose
and the peaking value reduction caused by the constant high gain
in literature. The overall picture of the ADRC in dealing with the
disturbance for multi-dimensional partial differential equation is
presented through this system. The numerical experiments are
carried out to illustrate the convergence and effect of peaking
value reduction.

Index Terms—Boundary control, disturbance rejection, stabi-
lization, wave equation.

I. INTRODUCTION

E SSENTIALLY speaking, if there is no uncertainty in
systems, the feedback control is not necessary in many

situations. In the past three decades, many different approaches
have been developed to deal with disturbance such as the
internal model principle for output regulation, the robust control
for systems with uncertainties from both internal and external
disturbance, the adaptive control for systems with unknown pa-
rameters, to name just a few. Most of these approaches however,
focus on the worst case scenario which makes the controller
designed conservative. The active disturbance rejection control

Manuscript received September 18, 2013; revised January 19, 2014;
accepted May 19, 2014. Date of publication July 8, 2014; date of current
version December 22, 2014. This work was supported by the National Natural
Science Foundation of China, the National Basic Research Program of China
(2011CB808002), and the National Research Foundation of South Africa.
Recommended by Associate Editor C. Prieur.

B.-Z. Guo is with the School of Mathematical Sciences, Shanxi University,
Taiyuan, China, with the Academy of Mathematics and Systems Science,
Academia Sinica, Beijing 100190, China, and also with the School of
Computational and Applied Mathematics, University of the Witwatersrand,
Johannesburg 2000, South Africa (e-mail: bzguo@iss.ac.cn).

H.-C. Zhou is with the Academy of Mathematics and Systems Science,
Academia Sinica, Beijing 100190, China (e-mail: hczhou@amss.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2014.2335511

(ADRC), as an unconventional design strategy similar to the
external model principle ([22]), was first proposed by Han in
[17]. The uncertainties dealt with by the ADRC are much more
complicated. It can be the coupling of the external disturbances,
the system un-modeled dynamics, and the superadded unknown
part of control input. One of the remarkable features of ADRC
is that the disturbance is estimated in real time through an
extended state observer ([8]) and is canceled in the feedback
loop which reduces the control energy significantly in practice
([29]). The convergence of the ADRC for general nonlinear
lumped parameter systems is only available recently in [9].
The generalization of the ADRC to the systems described by
one-dimensional partial differential equations (PDEs) are also
available in our recent works [10]–[12] but the ADRC for multi-
dimensional PDEs has not yet been studied.

It should be pointed out that many control methods afore-
mentioned have also been applied to deal with uncertainties in
PDEs in literature. The sliding mode control (SMC) that is in-
herently robust is the most popular one for infinite-dimensional
systems but most often, it requires that the input and output op-
erators to be bounded which is not the case for boundary control
of PDEs ([24]). Very recently, the boundary SMC controllers
are designed for one-dimensional heat, wave, Euler-Bernoulli,
and Schrödinger equations with boundary input disturbance in
[3], [5], [10]–[12]. In [14], [15], and [19] the adaptive controls
are designed for one-dimensional wave equations in which the
uncertainties are the unknown parameters in disturbance. An-
other powerful method in dealing with uncertainties is based on
the Lyapunov functional approach. In [7], a boundary control is
designed by the Lyapunov method for one-dimensional Euler-
Bernoulli beam equation with spatial and boundary disturbance.
The internal model principle is also generalized to infinite-
dimensional systems [18], [25]. However, there are not many
works, to the best of our knowledge, on stabilization for multi-
dimensional PDEs with disturbance.

In this paper, we are concerned with stabilization for a multi-
dimensional wave equation with Neumann boundary control
and control matched external disturbance. The system is gov-
erned by the following partial differential equation:

⎧⎪⎨⎪⎩
wtt(x, t) = Δw(x, t), x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0, t ≥ 0,
∂w
∂ν |Γ1

= v(x, t) + d(x, t), t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω

(1)
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where Ω ⊂ R
n(n ≥ 2) is an open bounded domain with a

smooth C2-boundary Γ = Γ0 ∪ Γ1 where Γ0 and Γ1 are rela-
tively open sets of Γ, int(Γ0) �= ∅, int(Γ1) �= ∅, Γ0 ∩ Γ1 = ∅,
and ν is the unit normal vector of Γ pointing the exterior of Ω;
v is the control input, d is the unknown external disturbance
which is supposed to satisfy

d ∈ L∞ (0,∞;C(Γ1)) ∩ C (0,∞;C(Γ1)) ,

dt ∈ L∞ (0,∞;C(Γ1)) . (2)

In what follows, we use wt or ẇ to denote the derivative of w
respect to t which is clear from the context.

The wave equation is perhaps one the most important second-
order linear partial differential equations for the description of
waves occurred in physics such as sound waves, light waves,
and water waves. It arises also in the fields like acoustics,
electromagnetics, and fluid dynamics. Owing to its hyperbolic
nature, the wave system (1) represents an essential infinite-
dimensional system for which there are infinitely many unstable
poles on the imaginary axis if there are not control and distur-
bance on the boundary. This is sharp contrast to the linear heat
equation which has at most a finite number of unstable poles.
Among many applications of system (1), one of them is in the
vibration control of membranes in industry like traveling belts.
The boundary disturbance happens typically in combustion
process of automotive engine where the knocking phenomena
can be described by the wave (1) driven by a periodic unknown
signal, for which we refer to [15] and [4].

It is well known that when there is no disturbance, the
collocated feedback control

v(x, t) = −kwt(x, t), x ∈ Γ1, t ≥ 0, k > 0 (3)

exponentially stabilizes system (1) provided that there exists
a coercive smooth vector field h on Γ, that is, the following
condition is satisfied ([20, p. 668]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i). h · ν ≤ 0 on Γ0.
(ii). h is parallel to ν on Γ1, h(σ) = �(σ)ν(σ) for

a smooth �, σ ∈ Γ1.
(iii). For some constant ρ > 0 and all vectors

y ∈
(
L2(Ω)

)n
:∫

Ω H(x)y(x) · y(x)dx ≥ ρ
∫
Ω |y(x)|2 dx

where H(x) =
{

∂hi

∂xj

}n

i,j=1
.

(4)

The assumption (4) is satisfied if the Ω is the “star-
complemented-star-shaped” ([2]), that is, there exists a point
x0 ∈ R

n such that⎧⎪⎨⎪⎩
(x− x0) · ν ≤ 0 on Γ0,

(Γ0 is star complemented with respect to x0),
(x− x0) · ν > 0 on Γ1,

(Γ1 is star shaped with respect to x0)

by setting H(x) = In×n, ρ = 1, and h(x) = x− x0, where
In×n stands for n-dimensional identity matrix.

However, the stabilizing controller (3) is not robust to the
external disturbance, which is seen from the following example.

Example 1.1: Let Ω={x=(x1, x2)∈R
2|1<x2

1+x2
2<4}

be a two-dimensional annulus. Let Γ0 = {x = (x1, x2) ∈
R

2|x2
1 + x2

2 = 1}, Γ1 = Γ \ Γ0, and d(x, t) ≡ d be a constant.
Then, the condition (4) is satisfied with h(x) = x. However,
system (1) under the feedback (3) admits a solution (w,wt) =
(d ln(x2

1 + x2
2), 0).

From example 1.1, we see that in the presence of disturbance,
the control must be re-designed.

We consider system (1) in the energy Hilbert state space
H = H1

Γ0
(Ω)× L2(Ω) where H1

Γ0
(Ω) = {f ∈ H1(Ω)|f =

0 on Γ0} with the usual inner product given by

〈(f1, g1), (f2, g2)〉 =
∫
Ω

[∇f1(x)∇f2(x)+

g1(x)g2(x)]dx, ∀ (f, g) ∈ H

and the control space U = L2(Γ1). Define the operator A as
follows:⎧⎪⎪⎨⎪⎪⎩

A(f, g) = (g,Δf), ∀ (f, g) ∈ D(A),

D(A) =
{
(f, g) ∈ H ∩ (H2(Ω)×H1(Ω))

| ∂f
∂ν

∣∣∣
Γ1

= g|Γ0
= 0
}
.

(5)

Then it is easy to verify that A∗ = −A in H.
Let A = −Δ be the usual Laplacian with D(A) = {f |f ∈

H2(Ω) ∩H1
Γ0
(Ω), (∂f/∂ν)|Γ1

= 0}, which is a positive def-
inite unbounded operator in L2(Ω). It is easily shown (see
e.g., [13]) that D(A1/2) = H1

Γ0
(Ω) and A1/2 is a canonical

isomorphism from H1
Γ0
(Ω) onto L2(Ω). We consider L2(Ω) as

the pivot space. Then, the following Gelfand triple inclusions
are valid:[

D(A
1
2 )
]
↪→ L2(Ω) =

(
L2(Ω)

)′
↪→
[
D(A

1
2 )
]′

where [D(A1/2)]
′
is the dual space of [D(A1/2)] with the pivot

space L2(Ω). An extension Ã ∈ L([D(A1/2)], [D(A1/2)]
′
) of

A is defined by

〈Ãf, g〉[
D(A

1
2 )

]′
×
[
D(A

1
2 )

]
= 〈A 1

2 f,A
1
2 g〉L2(Ω), ∀ f, g ∈ D(A

1
2 ) = H1

Γ0
(Ω).

Define the Neumann map Υ ∈ L(Hs(Γ1), H
3/2+s(Ω))

([20, p. 668]), i.e., Υ(u+ d) = v if and only if{
Δv = 0 in Ω,
v|Γ0

= 0, ∂v
∂ν |Γ1

= u+ d.
(6)

Using the Neumann map, one can write (1) in [D(A1/2)]
′
as

ẅ + Ã (w −Υ(u+ d)) = 0 (7)

which is further written as

ẅ = −Ãw +B(u+ d) (8)

where B ∈ L(U, [D(A1/2)]
′
) is given by

Bu0 = ÃΥu0, ∀u0 ∈ U. (9)
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Define B∗ ∈ L([D(A1/2)], U), the adjoint of B, by

〈B∗f, u0〉U = 〈f,Bu0〉[
D(A

1
2 )

]
×
[
D(A

1
2 )

]′ ,
∀ f ∈ D(A

1
2 ), u0 ∈ U.

Then, for any f ∈ D(A) and u ∈ C∞
0 (Γ1), By Green’s formula

〈f,Bu0〉[
D(A

1
2 )

]
×
[
D(A

1
2 )

]′ = 〈Af, Ã−1Bu0〉L2(Ω)

= 〈Af,Υu0〉L2(Ω) = 〈Af, v0〉L2(Ω) = −
∫
Ω

Δf(x)v0(x)dx

= −
∫
Ω

fΔv0(x)dx −
∫

Γ0∪Γ1

∂f(x)

∂ν
v0(x)dx

+

∫
Γ0∪Γ1

f(x)
∂v0(x)

∂ν
dx = −

∫
Γ1

f(x)u0(x)dx

= 〈f, u0〉U

where v0 = Υu0. Since C∞
0 (Γ1) is dense in L2(Γ1), we obtain

B∗f = f |Γ1
. (10)

Therefore, system (1) can be written as

d

dt

(
w

wt

)
= A

(
w

wt

)
+ B [u(x, t) + d(x, t)] (11)

where B = (0, B∗)

B∗(f, g) = g|Γ1
, ∀ (f, g) ∈ (H1

Γ0
(Ω))2. (12)

From (12), we see why the controller (3) is collocated. How-
ever, since B is not admissible for the semigroup eAt generated
by A on H (see [28] and [20, p. 669]), (11) does not always
admit a unique solution in H for general v ∈ L2

loc(0,∞, U). To
overcome this difficulty, we first introduce a damping on the
control boundary by designing

v(x, t) = −kwt(x, t) + u(x, t), k > 0, ∀x ∈ Γ1, t ≥ 0 (13)

under which, system (1) becomes⎧⎪⎨⎪⎩
wtt(x, t) = Δw(x, t), x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0, t ≥ 0,
∂w
∂ν |Γ1

= −kwt(x, t) + u(x, t) + d(x, t), t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω.

(14)

Exactly the same as from (1)to (8), we can write (14) as

ẅ = −Ãw − kBB∗ẇ −B(u+ d) in [D(A
1
2 )]′ (15)

or in the first order form

d

dt

(
w

wt

)
= A

(
w

wt

)
+ B(u+ d)

in
[
D(A

1
2 )
]
×
[
D(A

1
2 )
]′

(16)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A
(
f
g

)
=
( g

−Ãf−kBB∗g

)
, ∀

(
f
g

)
∈ D(A),

D(A) =
{
(f, g)|f, g ∈ D

(
A

1
2

)
,

Ãf + kBB∗g ∈ L2(Ω)
}
,

B = (0,−B).

(17)

Proposition 1.1: The operator A defined in (17) generates a
C0-semigroup of contractions eAt on H and B is admissible to
eAt. Therefore, for any initial value (w(·, 0), ẇ(·, 0)) ∈ H and
control input u ∈ L2

loc(0,∞, U), (14) admits a unique solution
(w, ẇ) ∈ H.

Proof: We first show the first assertion. Actually, for any
(f, g) ∈ D(A)

Re
〈
A(f, g), (f, g)

〉
H = Re 〈A 1

2 g,A
1
2 f〉L2(Ω)

− Re 〈Ãf + kBB∗g, g〉L2(Ω)

= Re
〈
A

1
2 g,A

1
2 f
〉
L2(Ω)

− Re 〈Ãf + kBB∗g, g〉[
D(A

1
2 )

]′
,

[
D(A

1
2 )

]
= Re 〈Ãf, g〉[

D(A
1
2 )

]′
,

[
D(A

1
2 )

]
− Re 〈Ãf + kBB∗g, g〉[

D(A
1
2 )

]′
,

[
D(A

1
2 )

]
= −kRe 〈BB∗g, g〉[

D(A
1
2 )

]′
,

[
D(A

1
2 )

]
= −kRe〈B∗g,B∗g〉U = −k‖B∗g‖2U ≤ 0. (18)

This shows that A is dissipative. Now we show that A
−1 ∈

L(H). Solve the equation

A

(
f

g

)
=

(
g

−Ãf − kBB∗g

)
=

(
φ

ψ

)
∈ H

to obtain g = φ ∈ D(A1/2), −Ãf − kBB∗g = ψ. The latter is
equivalent to

Ãf = −kBB∗φ− ψ ∈
[
D(A

1
2 )
]′
.

Since Ã is isometric from [D(A1/2)] to [D(A1/2)]
′
, we find that

f = Ã−1(−kBB∗φ− ψ) ∈ D(A
1
2 ).

Hence

A
−1

(
φ

ψ

)
=

(
Ã−1(−kBB∗φ− ψ

φ

)
. (19)

By the Lumer-Phillips theorem [23, Theorem 1.4.3], A gener-
ates a C0-semigroup of contractions eAt on H. To prove the
second assertion, we consider the following system:

d

dt

(
p

ṗ

)
= A

(
p

ṗ

)
. (20)
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Since A generates a C0-semigroup on H that is justified by the
first assertion, for any (p(·, 0), ṗ(·, 0)) ∈ D(A), the solution
to (20) satisfies (p, ṗ) ∈ D(A). Take the inner product on both
sides of (20) with (p, ṗ) and take (18) into account to obtain

Re〈p̈, ṗ〉+Re〈A 1
2 p,A

1
2 ṗ〉 = −k‖B∗ṗ‖2

that is

Ḟ (t) = −k‖B∗ṗ‖2U , F (t) =
1

2

[∥∥∥A 1
2 p
∥∥∥2
L2(Ω)

+ ‖ṗ‖2L2(Ω)

]
.

Therefore

k

∫ T

0

‖B∗ṗ‖2Udt = F (0)− F (T ) ≤ F (0).

This shows that the operator B is admissible to eAt ([28]). �
By proposition 1.1, the (weak) solution of (14) is understood

in the sense of

d

dt

〈(
w

wt

)
,

(
f

g

)〉
H
=

〈(
w

wt

)
,A∗
(
f

g

)〉
H

+

∫
Γ1

[u(x, t) + d(x, t)] g(x)dx, ∀ (f, g) ∈ D(A∗). (21)

A simple computation shows that⎧⎪⎪⎨⎪⎪⎩
A

∗(f, g)=−(g,Δf),

D(A∗)=
{
(f, g)∈

(
H2(Ω)∩H1

Γ0
(Ω)
)
×H1

Γ0
(Ω) |

∂f
∂ν

∣∣∣
Γ1

=kg|Γ1

}
.

(22)

Equation (21) demonstrates clearly the infinite-dimensional
nature of PDEs where (f, g) ∈ D(A∗) is called the (smooth)
test function. The aim of the abstract formulation from (5) to
(21) is to deduce (21) because (21) is a system of infinitely
many ODEs for which the ADRC can be applied like that in
[8], [9] for lumped parameter systems.

Let us briefly indicate the main contributions of this paper.
First of all, we reduce (14) into an infinite number of ordinary
differential equations by appropriately chosen time varying
test functions in (21) from which the disturbance is estimated
through an extended state observer. Secondly, the disturbance
is canceled in the feedback loop together with the collocated
stabilizing controller (3). Finally, all internal subsystems in the
closed-loop are shown to be asymptotically stable. In particular,
the time varying high gain is first applied to the extended
state observer for a system described by the partial differential
equation for complete disturbance rejection purpose and the
peaking value reduction caused by the constant high gain in
literature. The overall picture of the ADRC in dealing with the
disturbance for multi-dimensional partial differential equation
is demonstrated through system (14). The numerical experi-
ments are carried out to illustrate the convergence and the effect
of peaking value reduction.

We process as follows. In Section II, we state the main
results. Section III is devoted to the proof of the main results.
Some numerical simulations for Example 1.1 are presented in
Section IV for illustration.

II. THE MAIN RESULTS

In addition to (2), we suppose further that d(·, t) is Hölder
continuous with index α ∈ (0, 1], that is, there exists a positive
nondecreasing differentiable continuous function K such that

|d(x1, t)−d(x2, t)|≤K(t)|x1−x2|α, ∀x1, x2∈Γ1, t≥0. (23)

The examples of such kinds of disturbances include all spatial
independent disturbance d(x, t) = d(t), all finite sum of har-
monic disturbances like d(x, t) = sin(xt) with K(t) = t+ 1,
α = 1 and d(x, t) = sinx sin t with K = α = 1, and all peri-
odic disturbances with respect to t.

Let ε be a continuous function such that

ε(t) ∈ (0, 1], ε̇(t) < 0, lim
t→∞

ε(t) = 0. (24)

In addition, suppose that we can choose ε appropriately so that

δ(t) =

(
ε(t)

K(t)

) 1
α

satisfies sup
t>0

∣∣∣δ̇(t)δn−2(t)
∣∣∣ < ∞ (25)

where r ∈ C(R̄+,R+) is a time varying gain to be required to
satisfy

ṙ(t) > 0, lim
t→∞

r(t) = ∞,

ṙ(t)

r(t)
≤ M,M > 0, lim

t→∞
r(t)δn−1(t) = ∞. (26)

To deal with the disturbance that depends on the spatial vari-
able, we need the time varying covers of Γ1 so that the measures
of these covers are uniformly bounded with respect to time.

Lemma 2.1: Let δ be defined by (25). Then, there exists
{x(i)}∞i=1 ⊂ Γ1 so that a finite number of time varying covers

{Γ1 ∩ U(x(i), δ(t))}N(t)

i=1 of Γ1 satisfies

Γ1 =
{
Γ1 ∩ U

(
x(i), δ(t)

)}N(t)

i=1
,

N(t)∑
i=1

meas
(
Γ1 ∩ U

(
x(i), δ(t)

))
≤ C0(Γ1)(n− 1)

n−1
2 2n−1 meas (Γ1) (27)

where U(x(i), δ(t)) denotes the ball in R
n centered at x(i) ∈ Γ1

with radius δ(t), the boundary measure is the Lebesgue measure
in R

(n−1) space, C0(Γ1) is a positive constant depending on Γ1

only, the time dependent integer N depends on δ directly for
which we denote by N(t) = N δ(t) and limt→∞ N(t) = +∞.

The next step is to construct an extended state observer
to estimate the disturbance by the constructed time varying
covers in Lemma 2.1. To this purpose, let (f t

i , g
t
i)

 ∈ D(A∗),
i = 1, 2, · · ·, so that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δf t
i = 0, f t

i

∣∣∣Γ0
= 0,

∂ft
i

∂ν

∣∣∣
Γ1

= kgti ,

gti |Γ0
= 0, gti |Γ1\U(x(i),δ(t)) = 0, gti |Γ1∩U(x(i), 12 δ(t))

= 1,

0 ≤ gti |Γ1∩U(x(i),δ(t)) ≤ 1, |gtit|Γ1∩U(x(i),δ(t))| ≤ π
∣∣∣ δ̇(t)δ(t)

∣∣∣ ,∣∣∣∇gti |Γ1∩(U(x(i),δ(t))\U(x(i), 12 δ(t)))

∣∣∣ ≤ π
δ(t) ,∣∣∣∇gti |Γ1\(U(x(i),δ(t))\U(x(i), 12 δ(t)))

∣∣∣ = 0.

(28)



GUO AND ZHOU: ADRC TO STABILIZATION FOR MULTI-DIMENSIONAL WAVE EQUATION WITH BOUNDARY CONTROL MATCHED DISTURBANCE 147

It is seen from (6) that f t
i = kΥgti and hence f t

it = kΥgtit, and
the function gti can be constructed analytically as follows (there
are many ways to choose different gti ):

gti(x)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1,
∣∣x−x(i)

∣∣< δ(t)
2 ,

− 1
2 sin

(
2π|x−x(i)|

δ(t) − 3π
2

)
+ 1

2 ,
δ(t)
2 ≤|x−x(i)|<δ(t),

0, |x−x(i)|≥δ(t).
(29)

It is found that gti(x) is continuously differentiable with respect
to t and

gtit(x) =
∂gti(x)

∂t

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0,
∣∣x− x(i)

∣∣ < δ(t)
2 or

∣∣x− x(i)
∣∣ ≥ δ(t),

−π
∣∣x− x(i)

∣∣ δ̇(t)
δ2(t) cos

(
2π|x−x(i)|

δ(t) − 3π
2

)
,

δ(t)
2 ≤

∣∣x− x(i)
∣∣ < δ(t).

(30)

Moreover, it is also found that ∇gti(x) is continuous as well,
and

∇gti(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0,
∣∣x− x(i)

∣∣ < δ(t)
2 or

∣∣x− x(i)
∣∣ ≥ δ(t),

−π x−x(i)

|x−x(i)|
1

δ(t) cos

(
2π|x−x(i)|

δ(t) − 3π
2

)
,

δ(t)
2 ≤

∣∣x− x(i)
∣∣ < δ(t).

(31)

Substitute (f t
i , g

t
i)

 into (21) to obtain

d

dt

∫
Ω

[
∇w(x, t)∇f t

i (x) + wt(x, t)g
t
i(x)

]
dx

=

∫
Ω

[
∇w(x, t)∇f t

it(x) + wt(x, t)g
t
it(x)

]
dx

−
∫
Ω

[∇w(x, t)∇gti(x)dx+

∫
Γ1

[u(x, t) + d(x, t)] gti(x)dx

=

∫
Ω

[
∇w(x, t)∇f t

it(x) + wt(x, t)g
t
it(x)

]
dx

−
∫
Ω

∇w(x, t)∇gti(x)dx+

∫
Γ1

u(x, t)gti(x)dx

+ d (ξi(t), t)

∫
Γ1

gti(x)dx (32)

where ξi : [0,∞) → Γ1 ∩ U(x(i), δ(t)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (ξi(t), t)

=

∫
Γ1

d(x,t)gt
i(x)dx∫

Γ1
gt
i
(x)dx

,

d
dt

(
d (ξi(t), t)

∫
Γ1

gti(x)dx
)

=
∫
Γ1

dt(x, t)g
t
i(x)dx+

∫
Γ1

d(x, t)gtit(x)dx,∣∣∣∫Γ1
d(x, t)gtit(x)dx

∣∣∣
≤ C ′(Γ1)‖d‖L∞(0,∞;C(Γ1))

∣∣∣δ̇(t)∣∣∣ δn−2(t)

(33)

where C ′(Γ1) > 0 is a constant. Let M be a constant such
that |d(x, t)| ≤ M , |dt(x, t)| ≤ M for all x ∈ Γ1 and t ≥ 0.
By (25), it has, for all t ≥ 0, that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|d (ξi(t), t) | ≤ M,∣∣∣ ddt (d (ξi(t), t) ∫Γ1
gti(x)dx

)∣∣∣
≤ M + C ′(Γ1)‖d‖L∞(0,∞;C(Γ1))

sup
t>0

(∣∣∣δ̇(t)∣∣∣ δn−2(t)
)
< ∞.

(34)

Let⎧⎨⎩
yi(t) =

∫
Ω [∇w(x, t)∇f t

i (x) + wt(x, t)g
t
i(x)] dx,

y2i(t) =
∫
Ω [∇w(x, t)∇f t

it(x) + wt(x, t)g
t
it(x)] dx

−
∫
Ω ∇w(x, t)∇gti(x)dx, i = 1, 2, . . . .

(35)

Then

ẏi(t) = y2i(t) +

∫
Γ1

u(x, t)gti(x)dx

+ d (ξi(t), t)

∫
Γ1

gti(x)dx, i = 1, 2, . . . . (36)

The system (36), as an infinite number of ordinary differential
equations, is our starting point to estimate the general distur-
bance d(x, t) motivated from the ADRC to lumped parameter
systems ([8]). To this purpose, we design a time varying high
gain extended state observer as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂yi(t) = y2i(t) +
∫
Γ1

u(x, t)gti(x)dx

+ d̂i(t)
∫
Γ1

gti(x)dx− r(t) [ŷi(t)− yi(t)] ,

d
dt

(
d̂i(t)

∫
Γ1

gti(x)dx

)
= −r2(t) [ŷi(t)− yi(t)] ,

i = 1, 2, . . .

(37)

where r is defined in (26). We regard d̂i(t) as an approximation
of d(ξi(t), t) which is confirmed by the succeeding Lemma 2.2.

Lemma 2.2: Let {x(i)} be defined in Lemma 2.1, gti be
defined by (29), ξi and d(ξi(t), t) be defined by (33), and yi
and y2i by (35). Then, under the conditions (24), (25), and (26),
the solution of (37) satisfies

lim
t→∞

∣∣∣d̂i(t)− d (ξi(t), t)
∣∣∣ = 0, lim

t→∞
|ŷi(t)− yi(t)| = 0 (38)

uniformly for all i = 1, 2, · · ·.
Now, we define

d̂(x,t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂1(t), x∈Γ1∩U
(
x(1), δ(t)

)
,

d̂2(t), x∈Γ1∩
(
U
(
x(2), δ(t)

)
\U
(
x(1), δ(t)

))
,

· · · ,
d̂i(t), x∈Γ1∩(U

(
x(i), δ(t)

)
\∪i−1

j=1U(x(j), δ(t))),
· · · ,
d̂N(t)(t), x∈Γ1

∩
(
U
(
xN(t), δ(t)

)
\∪N(t)−1

j=1 U
(
x(j), δ(t)

))
(39)

where x(i) is defined in Lemma 2.1. The following Lemma 2.3
shows that d̂ can be regarded as an approximation of d.
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Lemma 2.3: Let d̂ be defined by (39). Then, under the
conditions of Lemma 2.2

lim
t→∞

∥∥∥d̂(·, t)− d(·, t)
∥∥∥
L2(Γ1)

= 0. (40)

The last step is to design the feedback control. By (40), we
design naturally a collocated like state feedback controller to
(14) as follows:

u(x, t) = d̂(x, t). (41)

Compared with (3), it is seen that in (41), the d̂ is used to cancel
the effect of the disturbance which is just the essence of the
ADRC in dealing with the disturbance. Under the feedbacks
(13) and (41), the closed-loop system of (14) becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wtt(x, t)−Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0,
∂w
∂ν (x, t)|Γ1

=−kwt(x, t)−d̂(x, t)+d(x, t), t ≥ 0,
˙̂yi(t)=y2i(t)− k

∫
Γ1

gti(x)wt(x, t)dx−r(t) [ŷi(t)−yi(t)],

d
dt

(
d̂i(t)

∫
Γ1
gti(x)dx

)
=−r2(t) [ŷi(t)−yi(t)] , i=1, 2, . . . .

(42)

Now we are in a position to state the convergence of the ADRC
for system (14), the main result of this paper.

Theorem 2.1: Let {x(i)} be defined in Lemma 2.1, gti be
defined by (29), d̂ be defined by (39), and yi and y2i by (35).
Then, for any initial value (w(·, 0), wt(·, 0)) ∈ H, the closed-
loop system (42) admits a unique solution (w(·, t), wt(·, t)) ∈
C(0,∞,H); {ŷi, d̂i)}

∞
i=1 ∈ C(0,∞). Moreover, under the

conditions (2), (4), (23), (24), (25), and (26), system (42) is
asymptotically stable in the sense of

lim
t→∞

Ei(t) = 0 (43)

uniformly for i = 1, 2, . . ., where

Ei(t) =

∫
Ω

[
|∇w(x, t)|2 + |wt(x, t)|2

]
dx+ |ŷi(t)|

+

∫
Γ1

|d̂(x, t)− d(x, t)|2dx. (44)

Remark 2.1: In the disturbance estimator (37), if we replace
the time varying high gain r(t) by the constant high gain r(t) ≡
1/κ, then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂yi(t) = y2i(t) +
∫
Γ1

u(x, t)gti(x)dx

+d̂i(t)
∫
Γ1

gti(x)dx− 1
κ [ŷi(t)− yi(t)] ,

d
dt

(
d̂i(t)

∫
Γ1

gti(x)dx

)
= − 1

κ2 [ŷi(t)− yi(t)] ,

i = 1, 2, . . .

(45)

and the convergence (43) becomes

lim
t→∞

supEi(t) ≤ Ĉκ (46)

where Ĉ > 0 is a constant independent of κ and i.

The constant high gain (45) shares the advantage of many
high gain controls that the high frequency noise can be filtered
yet brings the peaking value problem ([27]). Recommended
control strategy is to use the time varying gain first to reduce the
peaking value in the initial stage to a reasonable level and then
apply the constant high gain. This will be explained numerically
in Section IV.

At the end of this section, we point out that in Theorem 2.1,
both d(·, t) and dt(·, t) are supposed to be uniformly bounded in
time t in L∞(Γ1). The boundedness of d is necessary because
this ensures that the controller (41) is bounded, which is the
basic requirement for ADRC due to its estimation/cancellation
nature as well as for many other methods even the sliding
mode control ([10]–[12]). However, the boundedness of dt(·, t)
with respect to time t is not necessary since otherwise, some
disturbance like d(x, t) = sin(xt2) will be excluded. From the
proof of Theorem 2.1 in next section (see (74)), we see that the
boundedness of dt(·, t) is to guarantee that

d

dt

∫
Γ1

d(x, t)gti(x)dx

=

∫
Γ1

dt(x, t)g
t
i(x)dx+

∫
Γ1

d(x, t)gtit(x)dx (47)

is uniformly bounded with respect to t and i. Now, by (25)
and (30), the second term on the right-hand side of (47) is
estimated as∣∣∣∣∣∣
∫
Γ1

d(x, t)gtit(x)dx

∣∣∣∣∣∣≤C‖d‖L∞ sup
t≥0

(∣∣∣δ̇(t)∣∣∣ δn−2
)
<∞ (48)

for some constant C > 0. So the boundedness of
(d/dt)

∫
Γ1

d(x, t)gti(x)dx is guaranteed if the first term
on the right-hand side of (47) is uniformly bounded with
respect to t and i. However, by the construction of gti in (29)∣∣∣∣∣∣
∫
Γ1

dt(x, t)g
t
i(x)dx

∣∣∣∣∣∣ ≤ C1 ‖dt(·, t)‖L∞(Γ1)
δn−1(t), ∀ t ≥ 0

(49)

where C1 > 0 is a constant and δ is defined by (25). Since
limt→∞ δ(t) = 0, ‖dt(·, t)‖L∞(Γ1)

can be relaxed to grow
slowly than 1/δn−1(t). However, since from (25), there exists
t0 > 0 such that 1/δn−1(t) < r(t) for all t ≥ t0 and (26) limits
the exponential growth rate of r, ‖dt(·, t)‖L∞(Γ1)

can grow

at most exponentially. For instance for d = sin(eλtx) where
λ > 0, we have K(t) = eλt, α = 1 in (23). Hence for this
special example, (24), (25), and (26) are satisfied by choosing
ε(t) = e−λt and r(t) = e2nλt but ‖dt(·, t)‖L∞(Γ1)

grows expo-
nentially at the growth rate λ and satisfies (49). This relaxes the
limitation of dt in large extent. However, it should be noticed
that (49) is only true for n ≥ 2. For the case of n = 1, since the
disturbance d(x, t) = d(t) is independent of x, we need only
one test function (29). We give a sketch for this special case
and details are left as an exercise for reader. Let U(x∗, δ0) be
the ball centered at x∗ with radius δ0 > 0 where x∗ ∈ Γ1 and
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δ0 = (1/2) infy∈Γ0
|y − x∗| > 0, we construct g ∈ C∞(Ω) as

an mollifier given by ([1, p. 36])

g(x) =

{
exp(−1/

(
1− |x− x∗|2

)
, |x− x∗| < δ0,

0, |x− x∗| ≥ δ0.
(50)

Then

g|Γ0
= 0, g|Γ1

≥ 0,

∫
Γ1

g(x)dx > 0. (51)

Let f be a solution of the following elliptic boundary problem:{
Δf = 0, x ∈ Ω,
f |Γ0

= 0, ∂f
∂ν |Γ1

= kg|Γ1
.

Then, by the embedding theorem (see, e.g., [21]), there exists a
constant C > 0 such that

‖f‖H2(Ω) ≤ C‖g‖
H

1
2 (Γ1)

≤ C‖g‖H1(Γ1).

Substitute (f, g) ∈ D(A∗) into (21) to obtain

d

dt

∫
Ω

[∇w(x, t)∇f(x) + wt(x, t)g(x)] dx

= −
∫
Ω

∇w(x, t)∇g(x)dx+

∫
Γ1

[u(x, t) + d(x, t)] g(x)dx

= −
∫
Ω

∇w(x, t)∇g(x)dx+

∫
Γ1

u(x, t)g(x)dx

+ d(t)

∫
Γ1

g(x)dx.(52)

Set

y(t) =

∫
Ω

[∇w(x, t)∇f(x) + wt(x, t)g(x)] dx,

y0(t) = −
∫
Ω

∇w(x, t)∇g(x)dx. (53)

Then, (52) shows that

ẏ(t) = y0(t) +

∫
Γ1

u(x, t)g(x)dx+ d(t)

∫
Γ1

g(x)dx. (54)

It is seen that (54) is an ordinary differential equation where
the disturbance d(x, t) = d(t) appears on the right side. It
is the counterpart of (36) for the spatial variable dependent
disturbance, similar to one-dimensional PDEs in [10]–[12].

Along the same way, we can show that dt can be relaxed to be
growing exponentially at any growth rate which almost removes
limitation for the boundedness of dt for one-dimensional PDEs
in [10]–[12].

III. PROOF OF THE MAIN RESULTS

Proof of Lemma 2.1: Since Ω ⊂ R
n is an open bounded

set and its boundary parts Γ0 and Γ1 are of C2-class, for
any x0 = (x1, x2, . . . , xn) ∈ Γ, there exists a C2-function
ψ and a neighborhood Ux0 ⊂ Γ of x0 such that xn =
ψ(x1, x2, . . . , xn−1) holds in Ux0 (see, e.g., [6, p. 626]). Since
Γ1 is compact in R

n−1, by finite covering theorem, we may
assume without loss of generality that Γ1 can be described by
xn = ψ(x1, x2, . . . , xn−1) ∈ C2(Ωn−1) for some hypercube
Ωn−1 ⊂ R

n−1.
Let Ωc be an (n− 1)-hypercube in R

n−1 space. Suppose
that each side of Ωc parallels the corresponding orthogonal
coordinate axis of Rn−1 so that Ωn−1 ⊂ Ωc. Let

C2(Γ1) =

∥∥∥∥√1 + ψ2
x1

+ ψ2
x2

+ . . .+ ψxn−1

2
∥∥∥∥
C(Ωn−1)

,

δ1(t) =
δ(t)

C2(Γ1)
. (55)

We suppose that Ωc = ∪k0
j=1Urect(y

(j)
0 , δ1(0)/2

√
n− 1) and

Urect(y
(p)
0 , δ1(0)/2

√
n− 1)∩Urect(y

(q)
0 , δ1(0)/2

√
n− 1) = ∅

for 1 ≤ p �= q ≤ k0 ≥ 1, where Urect(y
∗, r) ={y ∈

R
n−1| |yi − y∗i | < r, i = 1, 2, . . . , n− 1} denotes a hypercube

of Rn−1 where yi is the i-th component of y and so is y∗i for y∗.
Before processing the covers, we state a simple fact on

geometry of Rn−1 space. Let ρ > 0 and S = {zh = (ρi1, . . . ,
ρin−1)|ij ∈ Z, j = 1, 2 . . . , n− 1}. Let {Urect(zh, ρ)|zh ∈ S}
be a set of hypercubes of Rn−1. Then the length of boundary of
Urect(zh, ρ) along any axis of the coordinate of Rn−1 is just 2ρ.
Let F be the set of points in R

n−1 that starts from any zh ∈ S
pointing to one direction of a fixed axis of R

n−1. Then it is
seen that any point in F belongs to at most two hypercubes
of {Urect(zh, ρ)}. Since R

n−1 has n− 1 number of axes, any
point of Rn−1 belongs to at most 2n−1 number of hypercubes
of {Urect(zh, ρ)}.

Let X (0)={y(j)0 |Urect(y
(j)
0 , δ1(0)/2

√
n−1) ∩ Ωn−1 �= ∅}.

Obviously, {Urect(y
(j)
0 , δ1(0)/

√
n− 1)|y(j)0 ∈ X (0)} is a

cover of Ωn−1. Taking ρ = δ1(0)/
√
n− 1 as that in above

paragraph, we see that there are at most 2n−1 number of such
hypercubes such that

y∈
2n−1⋂
j=1

Urect

(
y
(j)
0 ,

δ1(0)√
n− 1

)
, y

(j)
0 ∈X (0), ∀ y∈Ωn−1 (56)

and hence

N(0)∑
j=1

meas

(
Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ1(0)√
n− 1

))
≤ 2n−1 meas (Ωn−1) (57)

where N(0) = #X (0). By the continuity and non-increasing
property of δ1, for all sufficiently small t > 0

N(0)∑
j=1

meas

(
Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ1(t)√
n− 1

))
≤ 2n−1 meas (Ωn−1).
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Since limt→∞ δ(t) = 0, there exists a t∗ > 0 such that for all

t > t∗, {Ωn−1 ∩ Urect(y
(j)
0 , δ1(t)/

√
n− 1)}

N(0)

j=1 cannot cover
Ωn−1. Let

t1 = inf

{
t > 0

∣∣∣∣{Ωn−1 ∩ Urect

(
y
(j)
0 ,

δ1(t)√
n− 1

)}N(0)

j=1

cannot cover Ωn−1

}
.

Note that the boundary of each Urect(y
(j)
0 , δ1(t1)/

√
n− 1)

(0 ≤ j ≤ N(0)) consists of 2(n− 1) number of boundary hy-

percubes {U j,k
rect}

2(n−1)

k=1 ⊂ R
n−2. Along any oriented coordi-

nate axis direction of Rn−2, the length of each hypercube U j,k
rect

is 2δ1(t1)/
√
n− 1. We partition symmetrically each hypercube

U j,k
rect into 2n−2 number of hypercubes {U j,k,l

rect }
2n−2

l=1 ⊂ R
n−2

so that the boundary length of each U j,k,l
rect along any oriented

coordinate axis direction of R
n−2 is just δ1(t1)/

√
n− 1. Let

{y(j)1 }
N(t1)

j=N(0)+1 be all vertices of all U j,k,l
rect for 0 ≤ j ≤ N(0),

1 ≤ k ≤ 2(n− 2), 1 ≤ l ≤ 2n−2. There vertices are consid-
ered as points of Rn−1.

In this way, we have

Γ1 ⊂
{
Urect

(
y
(j)
1 ,

δ1(t1)√
n− 1

)}N(t1)

j=N(0)+1⋃{
Urect

(
y
(j)
0 ,

δ1(t1)√
n− 1

)}N(0)

j=1

. (58)

For notation simplicity, we still denote by {y(j)}N(t1)

j=1 =

{y(j)0 }
N(0)

j=1 ∪ {y(j)1 }
N(t1)

j=N(0)+1. Same as (56) and (57), we have

y ∈
2n−1⋂
j=1

Urect

(
y(j),

δ1(t1)√
n− 1

)
, y(j) ∈ X (t1),

∀ y ∈ Ωn−1 (59)

and

N(t1)∑
j=1

meas

(
Ωn−1 ∩ Urect

(
y(j),

δ1(t1)√
n− 1

))
≤ 2n−1 meas (Ωn−1) (60)

where X (t1) = X (0) ∪ {y(j)}N(t1)
j=N(0)+1, N(t1) = #X (t1). By

induction, there exist {ti}∞i=2 and {y(j)}N(ti)

j=1 such that

y∈
2n−1⋂
j=1

Urect

(
y(j),

δ1(ti)√
n− 1

)
, y(j)∈X (ti), ∀ y∈Ωn−1 (61)

and

N(ti)∑
j=1

meas

(
Ωn−1 ∩ Urect

(
y(j),

δ1(ti)√
n− 1

))
≤ 2n−1 meas (Ωn−1) (62)

where X (ti) is defined iteratively by

X (ti+1)=X (ti)∪
{
y(j)
}N(ti+1)

j=N(ti)+1
, t0=0, i=0, 1, 2, · · · . (63)

By this construction, we see that the bounded measure cover

N(ti)⋃
j=1

(
Ωn−1 ∩ Urect

(
y(j),

δ1(ti)√
n− 1

))
= Ωn−1 (64)

is a discrete series of cover which is independent of time t. Now,
we relate this cover with time t by setting

X (t) := X (ti), t ∈ [ti, ti+1), N(t) = #X (t),
lim
t→∞

N(t) = ∞, i = 0, 1, 2, · · · . (65)

Then, we obtain from (62) that for all t ≥ 0

N(t)⋃
j=1

(
Ωn−1 ∩ Urect

(
y(j),

δ1(t)√
n− 1

))
= Ωn−1 (66)

and

N(t)∑
j=1

meas

(
Ωn−1 ∩ Urect

(
y(j),

δ1(t)√
n− 1

))
≤ 2n−1 meas (Ωn−1). (67)

Let x(i) = (y(i), ψ(y(i))) ∈ Γ1 for i = 1, 2, . . .. Then,

x ∈
N(t)⋃
i=1

U
(
x(i), δ(t)

)
, ∀x ∈ Γ1, t ≥ 0 (68)

and by (67)

N(t)∑
i=1

meas
(
Γ1 ∩ U

(
x(i), δ(t)

))
=

N(t)∑
i=1

∫
Ωn−1∩U((y(i),0),δ(t))√

1 + ψ2
x1

+ ψ2
x2

+ . . .+ ψ2
xn−1

dx1dx2 . . . dxn−1

≤
N(t)∑
i=1

∫
Ωn−1∩Urect(y(i),δ(t))√

1 + ψ2
x1

+ ψ2
x2

+ . . .+ ψ2
xn−1

dx1dx2 . . . dxn−1

≤
N(t)∑
i=1

C2(Γ1)meas
(
Ωn−1 ∩ Urect

(
y(i), δ(t)

))
≤

N(t)∑
i=1

Cn
2 (Γ1)(n− 1)

n−1
2

×meas

(
Ωn−1 ∩ Urect

(
y(i),

δ1(t)√
n− 1

))
≤ Cn

2 (Γ1)(n− 1)
n−1
2 2n−1 meas (Ωn−1)

≤ Cn
2 (Γ1)(n− 1)

n−1
2 2n−1

×
∫
Ωn−1

√
1+ψ2

x1
+ψ2

x2
+. . .+ψ2

xn−1
dx1dx2 . . . dxn−1

= C0(Γ1)(n− 1)
n−1
2 2n−1 meas (Γ1), ∀ t ≥ 0 (69)

where

C0(Γ1) =Cn
2 (Γ1)

=
∥∥∥√1 + ψ2

x1
+ ψ2

x2
+ . . .+ ψ2

xn−1

∥∥∥n
C(Ωn−1)

.
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In the derivation of (69), we used a trivial fact in the space Rn−1

that

meas
(
Urect

(
y(i), δ(t)

))
= Cn−1

2 (Γ1)(n− 1)
n−1
2 meas

(
Urect

(
y(i),

δ1(t)√
n− 1

))
and hence

meas
(
Ωn−1 ∩ Urect

(
y(i), δ(t)

))
≤ Cn−1

2 (Γ)(n−1)
n−1
2 meas

(
Ωn−1 ∩ Urect

(
y(i),

δ1(t)√
n− 1

))
since Ωn−1 is supposed to be a hypercube of R

n−1. An-
other fact that we used in the derivation of (69) is that
for a (n− 1)-dimensional surface S = ψ(U), U ⊂ R

n−1,
ψ(x) = (x′, ψ0(x′)), x′ = (x1, x2, . . . , xn−1) ∈ R

n−1, ψ0 ∈
C1(Rn−1),

meas (S) =

∫
U

√
1 + |Dψ0|2dx1dx2 . . . dxn−1

where Dψ0 = (ψ0
x1
, ψ0

x2
, . . . , ψ0

xn−1
) ([16, p. 101–102]). Com-

bining (68) and (69) gives the required result. �
Proof of Lemma 2.2: Let

ỹi(t) = r(t) [ŷi(t)− yi(t)] ,

d̃i(t) = d̂i(t)− d (ξi(t), t) , i = 1, 2, . . . (70)

be the errors. Then, by (36) and (37), (ỹ, d̃) satisfies

d

dt

(
ỹi(t)

d̃i(t)
∫
Γ1

gti(x)dx

)

= r(t)

(
−1 1
−1 0

)( ỹi(t)
d̃i(t)

∫
Γ1

gti(x)dx

)

+

⎛⎜⎝
r′(t)
r(t) ỹi(t)

− d
dt

(
d (ξi(t), t)

∫
Γ1

gti(x)dx

) ⎞⎟⎠ , i = 1, 2, . . . .

(71)

We denote by

(Vi(t) :=

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠

× P

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠

, i = 1, 2, . . . (72)

where {ỹi, d̃i} is the solution of (71) and the positive definite
matrix P is the solution of the following Lyapunov equation:

FP + PF = −I2×2, F =

(
−1 1
−1 0

)
.

It is easy to verify that

λmin(P ) ‖(y1, y2)‖2 ≤ V (y1, y2) = (y1, y2)P (y1, y2)


≤ λmax(P ) ‖(y1, y2)‖2 , ∀ (y1, y2) ∈ R
2 (73)

where λmin(P ) and λmax(P ) are the minimal and maximal
eigenvalues of P , respectively. Finding the derivative of Vi

along the solution of (71) to yield

V̇i(t)=

⎛⎝ ˙̃yi(t),
˙̃
di(t)

∫
Γ1

gti(x)dx

⎞⎠
× P

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠

+

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠
× P

⎛⎝ ˙̃yi(t),
˙̃
di(t)

∫
Γ1

gti(x)dx

⎞⎠

=r(t)

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠
× [PF + FP ]

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠

+

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠
× P

⎛⎝ ṙ(t)

r(t)
ỹi(t),−

d

dt

⎛⎝d (ξi(t), t)

∫
Γ1

gti(x)dx

⎞⎠⎞⎠

+

⎛⎝ ṙ(t)

r(t)
ỹi(t),−

d

dt

⎛⎝d (ξi(t), t)

∫
Γ1

gti(x)dx

⎞⎠⎞⎠
× P

⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠

≤ −r(t)

∥∥∥∥∥∥
⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠∥∥∥∥∥∥
2

+N1

∥∥∥∥∥∥
⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠∥∥∥∥∥∥
2

+N2

∥∥∥∥∥∥
⎛⎝ỹi(t), d̃i(t)

∫
Γ1

gti(x)dx

⎞⎠∥∥∥∥∥∥ (74)

where N1 and N2 are two positive constants. In the last step of
(74), (34) was used. This together with (73) gives

dVi(t)

dt
≤ − r(t)

λmax(P )
Vi(t) +

N1

λmin(P )
Vi(t)

+
N2√

λmin(P )

√
Vi(t). (75)
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Since limt→∞ r(t) = +∞, there exists t0 > 0 such that r(t) >
(2λmax(P )/λmin(P ))N1 for all t ≥ t0. This together with (75)
shows that

d
√

Vi(t)

dt
≤ − 1

4λmax(P )
r(t)

√
Vi(t)

+
N2

2
√
λmin(P )

, ∀ t ≥ t0 (76)

and hence yields

0 ≤ lim
t→∞

√
Vi(t)

≤ lim
t→∞

⎛⎜⎜⎜⎜⎜⎜⎝e

−
t∫

t0

1
4λmax(P )

r(σ)dσ√
Vi(t0)

+
N2

2
√

λmin(P )

t∫
t0

e

s∫
t0

1
4λmax(P )

r(σ)dσ

ds

e

t∫
t0

1
4λmax(P )

r(σ)dσ

⎞⎟⎟⎟⎟⎟⎟⎠

= lim
t→∞

2N2λmax(P )√
λmin(P )

e

t∫
t0

1
4λmax(P )

r(σ)dσ

r(t)e

t∫
t0

1
4λmax(P )

r(σ)dσ

= 0. (77)

In the last step of (77), the L’Hospital rule and assumption (26)
were used. Furthermore, by (33), (35), and the fact‖∇fti ‖L2(Ω)≤
C‖f‖H2(Ω) ≤ C‖gti‖H1/2(Γ1)

≤ C‖gti‖H1(Γ1)
≤ Cδn−2(t) ≤

Cδn−2(0) by the construction (29) ([21]) for some constant
C > 0, we may suppose |

√
Vi(t0)| ≤ C for all i ≥ 1 for some

constant C > 0 that is independent of i. Then, we obtain

lim
t→∞

Vi(t) = 0 (78)

uniformly for i = 1, 2, · · ·. This together with (73), (70), (72),
and the assumption (26) leads to the second limit in (38).
Furthermore, using (73) once again, one obtains∣∣∣∣∣∣d̃i(t)

∫
Γ1

gti(x)dx

∣∣∣∣∣∣ ≤
√
Vi(t)√

λmin(P )

≤ C√
λmin(P )e

∫ t

t0

1
4λmax(P )

r(σ)dσ

+
N2

λmin(P )

∫ t

t0
e

∫ s

t0

1
4λmax(P )

r(σ)dσ
ds

e

∫ t

t0

1
4λmax(P )

r(σ)dσ
, ∀ t ≥ t0,

i = 1, 2, . . . . (79)

Since

1

2n−1C1(Γ1)
Πn−1δ

n−1(t) ≤
∫
Γ1

gti(x)dx

≤ C1(Γ1)Πn−1δ
n−1(t) (80)

where Πn−1 is the unit volume of Rn−1 and C1(Γ1) is a positive
constant which depends on Γ1 only, we have, for all t ≥ t0 and
i = 1, 2, . . ., that

∣∣∣d̃i(t)∣∣∣≤2n−1C1(Γ1)

⎛⎜⎝ C√
λmin(P )δn−1(t)e

∫ t

t0

1
4λmax(P )

r(σ)dσ

+
N2

λmin(P )

∫ t

t0
e

∫ s

t0

1
4λmax(P )

r(σ)dσ
ds

δn−1(t)e

∫ t

t0

1
4λmax(P )

r(σ)dσ

⎞⎟⎠. (81)

We claim that d̃i(t) → 0 as t → ∞. To this purpose, it suffices
to show the convergence of the second term of the right-hand
side of (81) since the first term is less than the second term up to
a constant as t → ∞. Using the L’Hospital rule and assumption
(25), we have

lim t→∞

∫ t

t0
e

∫ s

t0

1
4λmax(P )

r(σ)dσ
ds

δn−1(t)e

∫ t

t0

1
4λmax(P )

r(σ)dσ

= lim
t→∞

e

∫ t

t0

1
4λmax(P )

r(σ)dσ(
r(t)δn−1(t)
4λmax(P ) + (n− 1)δn−2δ̇(t)

)
e

∫ t

t0

1
4λmax(P )

r(σ)dσ

= lim
t→∞

1
r(t)δn−1(t)
4λmax(P ) + (n− 1)δn−2δ̇(t)

= 0.

This together with (81) proves the first limit of (38). The proof
is complete. �

Proof of Lemma 2.3: Define

d̃(x, t) = d̂(x, t)− d(x, t), ∀x ∈ Γ1, t ≥ 0. (82)

Since d(·, t) is Hölder continuous with index α ∈ (0, 1]
and satisfies |d(x′, t)− d(x′′, t)| ≤ K(t)|x′ − x′′|α. For the
given ε(t) > 0, since δ(t) = (ε(t)/K(t))1/α > 0, we have
|d(x′, t)− d(x′′, t)| ≤ 2αε(t) as long as |x′ − x′′| ≤ 2δ(t).
Moreover, since ξi : [0,∞) → Γ1 ∩ U(x(i), δ(t)) which is de-
fined in (33), we have

‖d (ξi(t), t)− d(·, t)‖L2(Γ1∩U(xi,δ(t)))

≤ meas
(
Γ1 ∩ U

(
x(i), δ(t)

))
2αε(t), ∀ t ≥ 0. (83)

This together with (81) yields∥∥∥d̃(·, t)∥∥∥
L2(Γ1)

≤
N(t)∑
i=1

[ ∥∥∥d̂(·, t)− d (ξi(t), t)
∥∥∥
L2(Γ1∩U(x(i),δ(t)))

+ ‖d (ξi(t), t)− d(·, t)‖L2(Γ1∩U(x(i),δ(t)))

]
≤ meas(Γ1)2

n−1C1(Γ1)

×

⎛⎜⎝ C√
λmin(P )δn−1(t)e

∫ t

t0

1
4λmax(P )

r(σ)dσ

+
N2

λmin(P )

∫ t

t0
e

∫ s

t0

1
4λmax(P )

r(σ)dσ
ds

δn−1(t)e

∫ t

t0

1
4λmax(P )

r(σ)dσ

⎞⎟⎠
+ C0(Γ1)(n− 1)

n−1
2 2n−1 meas (Γ1)2

αε(t), ∀ t ≥ t0 (84)
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where we used (69) and (81). Since limt→∞ ε(t) = 0, applying
the L’Hospital rule and assumption (25) to (84), we obtain

lim
t→∞

∥∥∥d̃(·, t)∥∥∥
L2(Γ1)

= 0. (85)

This is just (40) by (82). The proof is complete. �
Proof of Theorem 2.1: Using the error variables (ỹi, d̃i)

defined in (70), we can write the equivalent system of (42) as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t)−Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0,
∂w
∂ν (x, t)|Γ1

= −kwt(x, t)− d̂(x, t) + d(x, t), t ≥ 0
˙̃yi(t) = −r(t)ỹi(t) + r(t)d̃i(t)

∫
Γ1

gi(x)dx+ ṙ(t)
r(t) ỹi(t),

d
dt

(
d̃i(t)

∫
Γ1

gi(x)dx
)
= −r(t)ỹi(t)

− d
dt

(
d (ξi(t), t)

∫
Γ1

gi(x)dx
)
, i = 1, 2, . . . .

(86)

The “ODE part” in (86) has been shown in (38) and (40)through
(70) to tend to zero as t → ∞. Now we only need to consider
the “w part” of system (86) which is rewritten as⎧⎨⎩

wtt(x, t)−Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0, t ≥ 0,
∂w
∂ν (x, t)|Γ1

= −kwt(x, t)− d̃(x, t), t ≥ 0.
(87)

Exactly to (15), we write (87) as

ẅ = −Ãw − kBB∗ẇ −Bd̃ in
[
D(A

1
2 )
]′
. (88)

Owing to (40), for any given σ > 0, we may suppose that
‖d̃(·, t)‖L2(Γ1) ≤ σ for all t > t0 for some t0 > 0. Now, we
write the solution of (88) as(

w(·, t)
wt(·, t)

)

= eAt
(

w(·, 0)
wt(·, 0)

)
+

t∫
0

eA(t−s)
Bd̃(s)ds

= eAt
(

w(·, 0)
wt(·, 0)

)
+ eA(t−t0)

t0∫
0

eA(t0−s)
Bd̃(s)ds

+

t∫
t0

eA(t−s)
Bd̃(s)ds (89)

where A and B are defined in (17). The admissibility of B

proved in Proposition 1.1 implies that∥∥∥∥∥∥
t∫

0

eA(t−s)
Bd̃(s)ds

∥∥∥∥∥∥
2

H

≤ Ct‖d̃‖2L2(0,t;L2(Γ1))

≤ Ctt
2‖d̃‖2L∞(0,∞;L2(Γ1))

, ∀ t > 0

for some constant Ct that is independent of d̃. On the other
hand, under the assumption of the theorem which is (4), it

is known that eAt is exponentially stable ([20, p. 668]). By
Remark 2.6 of [28], we have∥∥∥∥∥∥

t∫
t0

eA(t−s)
Bd̃(s)ds

∥∥∥∥∥∥
H

≤

∥∥∥∥∥∥
t∫

t0

eA(t−s)
B(0 �

t0
d̃)(s)ds

∥∥∥∥∥∥
H

≤ L‖d̃‖L∞(t0,∞;L2(Γ1)) ≤ Lσ

where L is a constant that is independent of d̃, and

(u �
τ
v)(t) =

{
u(t), 0 ≤ t ≤ τ ,
v(t), t > τ .

Suppose that ‖eAt‖ ≤ L0e
−ωt for some L0, ω > 0, we have∥∥∥∥(w(·, t)

wt(·, t)

)∥∥∥∥
H
≤ L0e

−ωt

∥∥∥∥(w(·, 0)
wt(·, 0)

)∥∥∥∥
H

+ L0Ct0t
2
0e

−ω(t−t0)‖d̃‖L∞(0,t0;L2(Γ1)) + Lσ. (90)

Passing to the limit as t → ∞, we finally obtain

lim
t→∞

∥∥∥∥(w(·, t)
wt(·, t)

)∥∥∥∥
H
≤ Lσ. (91)

This proves that the solution of (87) satisfies

lim
t→∞

∥∥∥∥(w(·, t)
wt(·, t)

)∥∥∥∥
H

= lim
t→∞

∫
Ω

[
|∇w(x, t)|2 + |wt(x, t)|2

]
dx = 0. (92)

Finally, it follows from (70) that

ŷi(t)=
ỹi(t)

r(t)
+ yi(t),

yi(t)=

∫
Ω

[
∇w(x, t)∇f t

i (x)+wt(x, t)g
t
i(x)

]
dx, i=1, 2, · · · .

(93)

Since ỹi(t)/r(t) → 0 as t → ∞ by (26), (38), and (70), it
suffices to show the convergence of yi in (93). This follows
from: ∣∣∣∣∣∣

∫
Ω

wt(x, t)g
t
i(x)dx

∣∣∣∣∣∣ ≤
∫
Ω

|wt(x, t)| dx

≤ ‖wt(·, t)‖L2(Ω) (meas (Ω))
1
2 → 0 as t → ∞

by |gti | ≤ 1 from (29) and (92), and∣∣∣∣∣∣
∫
Ω

∇w(x, t)∇f t
i (x)

∣∣∣∣∣∣
≤ ‖∇w(·, t)‖L2(Ω)

∥∥∇f t
i (x)

∥∥
L2(Ω)

→ 0 as t → ∞
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from (92) and the fact ‖∇f t
i ‖L2(Ω) ≤ C‖f‖H2(Ω) ≤

C‖gti‖H1/2(Γ1)
≤ C‖gti‖H1(Γ1)

≤ Cδn−2(t) ≤ Cδn−2(0) by
the construction (29) ([21]) for some constant C > 0. Therefore

lim
t→∞

ŷi(t) = 0 (94)

uniformly for i. Combining (40), (92), and (94), we get (43).
The proof is thus complete. �

Proof of Remark 2.1: We only give a sketch of the proof.
From the proof of Theorem 2.1, we see that to arrive (45), it
suffices to show that

lim
t→∞

sup
∣∣∣d̃i(t)∣∣∣ ≤ C̃κ (95)

where d̃i is defined by (70) and C̃ is a constant independent
of i. Similar to equations from (74) to (81), one can obtain
the following estimation that is subtler than estimations (74)
and (81):∣∣∣d̃i(t)∣∣∣
≤ 2n−1C1(Γ1)

Πn−1

(
C√

λmin(P )δn−1(t)e
t−t0

4λmax(P )κ

+
N2

λmin(P )

∫ t

t0

∣∣∣ d
ds

(
d (ξi(s), s)

∫
Γ1
gsi (x)dx

)∣∣∣ e s−t0
4λmax(P )κ ds

δn−1(t)e
t−t0

4λmax(P )κ

⎞⎟⎠.

(96)

By condition (24), we can choose δ(t) = 1/(1 + t). Since

(1 + t)n−1e−
t−t0

4λmax(P )κ ≤ C1κ, ∀ t ≥ t0 (97)

for some constant C1 > 0 independent of κ, it follows from (2),
(29), and (33) that

lim
t→∞

sup

∫ t

t0

∣∣∣ d
ds

(
d (ξi(s), s)

∫
Γ1

gsi (x)dx
)∣∣∣ e s−t0

4λmax(P )κ ds

δn−1(t)e
t−t0

4λmax(P )κ

= lim
t→∞

sup

∣∣∣ d
ds

(
d (ξi(s), s)

∫
Γ1

gsi (x)dx
)∣∣∣

(n− 1)δn−2(t)δ̇(t) + δn−1(t)
4λmax(P )κ

≤ C2 max
{
‖d‖L∞(0,∞;C(Γ1)), ‖dt‖L∞(0,∞;C(Γ1))

}

× lim
t→∞

sup
δn−1 +

∣∣∣δ̇(t)∣∣∣ δn−2(t)

(n− 1)δn−2(t)δ̇(t) + δn−1(t)
4λmax(P )κ

= C2 max
{
‖d‖L∞(0,∞;C(Γ1)), ‖dt‖L∞(0,∞;C(Γ1))

}

× lim
t→∞

sup
1 +

|δ̇(t)|
δ(t)

(n− 1) δ̇(t)δ(t) +
1

4λmax(P )κ

≤ C2 max
{
‖d‖L∞(0,∞;C(Γ1)), ‖dt‖L∞(0,∞;C(Γ1))

}
κ (98)

where C2 > 0 is independent of κ and d. Combining (96), (97),
and (98) gives

lim
t→∞

sup
∣∣∣d̃i(t)∣∣∣

≤ Cmax
{
‖d‖L∞(0,∞;C(Γ1)), ‖dt‖L∞(0,∞;C(Γ1))

}
κ. (99)

This gives (95). �

IV. NUMERICAL SIMULATION

In this section, we present some numerical simulations for
Example 1.1 for illustration. The purpose is twofold. The first
is to verify the theoretical results and the second is to look at
the peaking value reduction by the time varying gain approach.
For simplicity, we just take dimension n = 2. The system is
described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t)−Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t)|Γ0

= 0,
∂w
∂ν (x, t)|Γ1

= −kwt(x, t)− d̂(x, t) + d(x, t),
˙̂yi(t) = y2i(t)− k

∫
Γ1

wt(x, t)g
t
i(x)dx

− r(t) [ŷi(t)− yi(t)] ,

d
dt

(
d̂i(t)

∫
Γ1

gti(x)dx

)
= −r2(t) [ŷi(t)− yi(t)] ,

i = 1, 2, . . .

(100)

where same to Example 1.1, Ω = {(x1, x2) ∈ R
2|1 < x2

1 +
x2
2 < 4}, Γ0 = {(x1, x2) ∈ R

2|x2
1 + x2

2 = 1}, Γ1 = Γ \ Γ0, gti
is defined by (29), yi and y2i are defined by (35), ξi is defined
by (33), and d̂ is defined by (39), r is the time varying gain
in (26). For numerical computations, we take parameter k = 3,
disturbance d(x, t) = sin(x1t), and the following initial values:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(x1, x2, 0)=
(
x2
1+x2

2−1
)2

×
(

4x3
1

(x2
1+x

2
2)

1.5 − 3x1√
x2
1+x

2
2

)
, 1≤x2

1+x2
2≤4,

wt(x1, x2, 0)=9 sin
(
2
√
x2
1+x2

2−2
)

×
(

3x2√
x2
1+x

2
2

− 4x3
2

(x2
1+x

2
2)

1.5

)
, 1≤x2

1+x2
2≤4,

ŷi(0)=yi(0)+2, d̂i(0)=di(0)+1.5, i=1, 2, . . . .

(101)

Since the spatial domain consists of a two-dimensional an-
nulus, we can more easily solve (100) in the polar coordinate
(γ, θ) and then convert back to the original coordinate for some
figures if necessary. Under the polar coordinate, system (100)
can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2w(γ,θ,t)
∂t2 − ∂2w(γ,θ,t)

∂γ2 − 1
γ

∂w(γ,θ,t)
∂γ

− 1
γ2

∂2w(γ,θ,t)
∂θ2 =0, 1<γ<2, 0<θ<2π, t>0,

w(1, θ, t)=0, 0≤θ≤2π, t≥0,
∂w(2,θ,t)

∂γ =−k ∂w(2,θ,t)
∂t −d̂ (2 cos(θ), 2 sin(θ), t)

+ d (2 cos(θ), 2 sin(θ), t) , 0<θ<2π, t>0,
˙̃yi(t)=−r(t)ỹi(t)+r(t)d̃i(t)

∫
Γ1
gti(x)dx+

ṙ(t)
r(t) ỹi(t),

d
dt

(
d̃i(t)

∫
Γ1

gti(x)dx
)
=−r(t)ỹi(t)

− d
dt

(
d (ξi(t), t)

∫
Γ1

gti(x)dx
)
, i=1, 2, . . .

(102)
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Fig. 1. (a) Displacement w at initial time t = 0 and time t = 15. (b) Velocity wt at initial time t = 0 and final time t = 15. The initial state and state at t = 15
of system (100) with d(t) = sin(x1t) (for interpretation of the references to color of the figure’s legend in this section, we refer to the PDF version of this article).

Fig. 2. The evolution of w(γ, (4/5)π, t) under the polar coordinate with both time varying gain and constant gain (for interpretation of the references to color
of the figure’s legend in this section, we refer to the PDF version of this article). (a) The displacement w(γ, (4/5)π, t) with the time varying gain. (b) The
displacement w(γ, (4/5)π, t) with the constant gain.

where we still use w to denote the state under the polar coordi-
nate for notation simplicity, which is clear from the context, and
ỹi and d̃i are defined by (70). The corresponding initial value
(101) is transformed into⎧⎨⎩w(γ, θ, 0)=(γ2 − 1)

2
cos(3θ), 1≤γ≤2, 0≤θ≤2π,

wt(γ, θ, 0)=9 sin(2γ−2) sin(3θ), 1≤γ≤2, 0≤θ≤2π,
ỹi(0)=2r(0), d̃i(0)=1.5, i=1, 2, . . . .

(103)

The backward Euler method in time and the Chebvshev spectral
method for polar variables are used to discretize system (102).
Here, we take the grid size rN = 30 for γ, the grid size θN = 50
for θ, and the time step dt = 5× 10∼−4. The time varying gain
function r is taken as (see Remark 2.1)

r(t) =

{
e5t, t ≤ log(30)

5 ,

30, t > log(30)
5 .

(104)

It is seen that r grows slowly from the small value in the
beginning to its maximum value r = 30 which is used as the
constant gain in our numerical simulations. The numerical
algorithm is programmed by Matlab ([26]) and the numerical
results are plotted in Figs. 2–5.

Fig. 1(a) and (b) display the displacement w and the velocity
wt at the initial time t = 0 and the time t = 15, respectively.
It is seen that the convergence for both w and wt is very
satisfactory.

To compare the effects of the time varying gain (104)
and the constant gain r = 30, we plot w(γ, (4/5)π, t) and
wt(γ, (4/5)π, t) ((4/5)π has no speciality. It can be any angle)
in the polar coordinate for system (102) in Figs. 2 and 3,
respectively, with both the time varying gain (Figs. 2(a) and
3(a)) and the constant gain (Figs. 2(b) and 3(b)). It is clearly
seen that in both cases, the convergence is fast and satisfactory.
The price is that the convergence with the time varying gain
is slightly slower than the convergence with the constant gain.
This is also observed in the succeeding Figs. 4 and 5 for the
disturbance tracking.

Fig. 4 plots the tracking errors for the disturbance where
Fig. 4(a) is with the time varying gain (104) and Fig. 4(b) is
with the constant gain r = 30. It is clearly seen from these
figures that the peaking value from Fig. 4(b) is dramatically
reduced by the time varying gain in Fig. 4(a). This is the biggest
advantage of the application of the time varying gain compared
with the constant gain in existing literature [10]–[12]. This
is also a remarkable property of the ADRC in dealing with
the disturbance. We actually do not need much high gain for
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Fig. 3. The evolution of wt(γ, (4/5)π, t) under the polar coordinate with both time varying gain and constant gain (for interpretation of the references to
color of the figure’s legend in this section, we refer to the PDF version of this article). (a) The velocity wt(γ, 4/5π, t) with time varying gain. (b) The velocity
wt(γ, 4/5π, t) with constant gain.

Fig. 4. (a) The error d̂− d under the time varying high gain. (b) The error d̂− d under the constant high gain (for interpretation of the references to color of the
figure’s legend in this section, we refer to the PDF version of this article).

Fig. 5. The tracking effects of the disturbance in the radial direction of θ = (4/5)π with both time varying gain (a) and constant gain (b) (for interpretation of
the references to color of the figure’s legend in this section, we refer to the PDF version of this article). (a) d (green), d̂ (red), d̂− d (blue); (b) d(green), d̂ (red),
d̂− d (blue).

the convergence due to the nature of estimation/cancellation in
ADRC although it is difficult to prove this fact theoretically.
The convergence and peaking reduction are also clearly ob-

served from the specific direction θ = 4π/5 under the polar
coordinate in Fig. 5 where Fig. 5(a) is with the time varying
gain and Fig. 5(b) is with the constant gain.
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V. CONCLUSION

In this paper, we present the active disturbance rejection
control approach to boundary state feedback stabilization for a
multi-dimensional wave equation with the disturbance suffered
from the boundary. The time varying gain is first applied to
the disturbance rejection control by the ADRC to PDEs which
is contrast to the constant high gain in existing literature for
one-dimensional ones. It is shown that for a quite general
boundary disturbance with time dependent or both time and
spatial dependent, the extended state observer can estimate
effectively the disturbance. Having recovered the disturbance
from the extended state observer, the disturbance is canceled
in the feedback loop. The collocated feedback control is then
applied to stabilize the overall system. The advantages of
complete disturbance rejection are presented both theoretically
and numerically. In particular, the numerical experiments show
that the peaking value problem caused by the constant high
gain in the extended state observer can be dramatically reduced
through time varying gain which grows slowly to its constant
maximum value by paying the price that it takes a little bit
longer time to track the true values for both the state of the
system and the disturbance compared with the constant gain.
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