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1. Introduction 

Markov Decision Processes (MDPs) have been a popular paradigm for sequential decision 
making under uncertainty. The traditional approach has been to write down the dynamic 
programming equations appropriate for the problem at hand. Their solution yields the 
so-called value function for the problem. The optimal policy as a function of the state is 
then prescribed as the minimizer of a certain 'Hamiltonian' defined in terms of the value 
function. This, in fact, gives a complete characterization of optimal (stationary) policies. 
Since everything hinges on computation of the value function, several iterative algorithms 
have been proposed for the same. These fall broadly into two classes : value iteration and 
policy iteration. An extensive account of these and related developments can be found in 
Puterman (1994). 

When applied to real problems, however, this scheme often runs into difficulties. The 
most notorious, of course, is the curse of dimensionality, caused by the typically very large 
size of the state space. An equally (if not more) difficult issue stems from the fact that the 
theoretical analysis of MDPs presupposes exact knowledge of underlying stochastic dy- 
namics. Translated into real terms, this calls for accurate model selection and identification 
of the relevant parameters. Though this can in principle be a separate, off-line statistical 
exercise, the computational overheads can be considerable. 

This problem has been brought to the fore forcefully by some emerging applications 
in artificial intelligence, e.g., in game playing machines and robotics (Barto et al 1995; 
Keerthi & Ravindran 1994). Here complexity of exact modeling and analysis is very high, 
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but, mercifully, that of simulation is often not so. To press this point further, consider a 
large interconnected system like a communication network. The dynamics evolves as per 
simple local update rules operating at individual constituent units and therefore is quite 
amenable to simulation on a parallel machine. But the overall dynamics can be extremely 
hard to analyse. This has prompted simulation-based algorithms which are akin to the 
traditional algorithms for computing the value function, but with one crucial difference: 
one replaces a computation using an exactly known transition probability function by an 
actual simulated transition as per the random mechanism that determines it. The algorithm 
is expected to 'see' the actual transition mechanism through an averaging affect. Mathe- 
matically speaking, these involve a marriage between the traditional algorithms for MDPs 
and stochastic approximation, a procedure in statistics with a long and illustrious history 
(see Benveniste et al 1990, for a comprehensive account of the latter). 

These algorithms again fall into two broad classes. The first is the Q-learning algorithm 
of Watkins (1989) which has been extensively analysed (Watkins & Dayan 1992; Jaakola 
et al 1994; Tsitsiklis 1994). This can be viewed as a stochastic approximation version of 
the value iteration. The other strand consists of the actor-critic algorithm of Barto et al 

(1983) and its variants which may be viewed as stochastic approximation counterpart 
of policy iteration. Though some mathematical analysis is available in this case as well 
(Williams & Baird 1990), the situation is a little harder than Q-learning because of a 
certain inherent problem in policy iteration. In policy iteration, each update requires the 
computation of 'cost to go' function or 'value' function for a fixed policy. This in itself 
requires a 'value iteration' sandwiched between two policy updates, albeit a linear one 
(because the policy is fixed). One may view this as an algorithm with two loops, the inner 
one performing the linear value iteration for a fixed policy and the outer one updating the 
policy at the end of it. In practice, of course, the update of the outer loop cannot be kept 
waiting forever while the inner loop algorithm converges asymptotically to the desired 
cost to go function. Various ad hoc schemes have been proposed to ensure reasonable 
behaviour (Barto et al 1995). Our aim here is to propose a variant of the actor--critic 
algorithm based on some recent results on stochastic approximation with two time scales 
(Borkar 1996). The idea here is to operate the inner and outer loops with different step- 
size schedules, so that the inner loop moves on a faster effective time scale than the 
outer loop. This ensures that while the inner loop sees the current policy in the outer 
loop as quasi-static, the outer loop sees the value iteration of the inner loop as essentially 
equilibrated. This provides an actor-critic scheme that is asymptotically exact, at least in 
principle. 

Having said all this, we should hasten to add that the simulation-based algorithms are 
not without problems. The first major problem is that many of these simulations call 
for a parallel, distributed implementation of the algorithm. This throws up issues like 
asynchronism and interprocessor communication delays. It is well-known that even simple, 
innocuous iterations that perform ideally in a centralised implementation can go hay- 
wire in a parallel, distributed environment (Chazan & Miranker 1969). Fortunately, a 
considerable body of work is now available on conditions under which one may still get 
the desired convergence (Bertsekas & Tsitsiklis 1989; Borkar 1994). We apply these ideas 
to the present algorithm to underscore conditions under which the desired convergence is 
preserved in a parallel distributed set-up. 
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The second problem is the familiar 'curse of dimensionality' which looms much larger 
in simulation-based algorithms. This is because they involve iteration of vectors indexed 
by state and action, not state alone, which increases the dimensionality many-fold (not 
to mention that the algorithm perforce is restricted to finite state and action space case). 
Thus usually the algorithm must be accompanied by an approximation scheme to make it 
tractable. The traditional approach would be state aggregation whereby one clubs parts of 
state space into single meta-states. An alternative approach gaining currency is to approxi- 
mate the value function directly (Schweitzer & Seidman 1985; Tsitsiklis & Van Roy 1996). 
This is appealing in view of the recently established function approximation properties of 
neural networks and good algorithms for neural network training that can be exploited here. 
Nevertheless, certain counterexamples in literature (Tsitsiklis & Van Roy 1996) suggest 
that the approach is not without its problems. We shall discuss these issues later in this 
paper. 

The paper is organised as follows. The next section briefly reviews the MDP paradigm for 
discounted cost problem and describes our variant of actor-critic algorithm associated with 
it. Section 3 recalls some key results concerning stochastic approximation, from Borkar 
(1996) and Borkar (1994) respectively. These are used in § 4 for the convergence analysis of 
the algorithm and its asynchronous version. Section 5 describes an approximation scheme 
based on state aggregation. Section 6 presents a simulation example. Section 7 concludes 
with a brief discussion of further research issues. 

This paper derives much from Borkar (1994; 1996) in terms of technique. Because of 
this, we have opted in favour of giving sketches of proofs instead of complete details. 
Giving the latter would require reproducing the aforementioned references in totality, a 
considerable overhead in terms of length and mathematical abstraction. Needless to say, 
we have pointed out the minor variations as and when needed. Complete mathematical 
details can be found in Rao (1996). 

2. MDPs and the actor-critic algorithm 

We begin by recapitulating some well-known facts about MDPs. Puterman (1994) is a 
good general reference for the material. 

Let S = {I, 2 . . . . .  s}, A = {a0, al . . . . .  ar} be prescribed finite sets and p : S x S x 
A -+ [0, 1] a map satisfying 

p( i , j ,a )  6[O, 1], Z p ( i , k , a ) = l  ¥ i , j ,a .  
k 

An MDP (equivalently, a controlled Markov Chain) on state space S, with action space 
A and transition probability function p(. , . ,  .), is an S-valued random process Xn, n _> 0, 
satisfying 

P(Xn+I = j / X k ,  Zk, k <_n)= p(Xn, j, Zn) Vn >_O, 

where {Zn} is an A-valued 'control' process. If {Zn} is of the form Zn = v(Xn), n >_ 0, 
for some map v : S --~ A, we call {Zn}, or, by abuse of terminology, the map v it- 
self, a stationary policy. More generally, if for each n, Zn is conditionally independent 
of Xm, Zm, m < n, given Xn, we call it a stationary randomised policy and identify 
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it with the map qg:S --+ 79(A) (79( .. . ) = t h e  space of probability vectors on ' . . . ' )  
which gives the conditional law of Zn given Xn. For i c S, a 6 A, let rr(i, a) de- 
note the ath component of qg(i). Under a stationary policy v (resp., a stationary ran- 
domised policy ~0), {Xn } is a time-homogeneous Markov chain with transition probabilities 
[[p(i, j ,  v(i))]] (resp., [[q(i, j ,  qg(i))]] where q(i, j, qg(i)) = ~ a E A  p(i, j, a)rr(i, a)). By 
a further abuse of terminology, we identify the stationary randomised policy ~0 with 
the vector Jr = [rr(i, a)], where the elements are ordered lexicographically. Note also 
that the class of stationary randomised policies contains the class of stationary policies, 
since the latter correspond to the case when each ~0(i) is concentrated at a single point 
in A. 

We shall consider the infinite horizon discounted cost control problem. In this a discount 
factor ot E(0,1) and a running cost function k : S × A --+ R are prescribed and the aim is 
to minimize over all admissible { Zn } the quantity 

E 1 E ~ otnk(Xn, Zn) • 
n=0 

Define the 'value function' V : S --+ R by: For i E S, 

g(i) = min E o~nk(Xn, Zn)/Xo = i , 
n=O 

the minimum being over all admissible {Zn }. It is known that V is the unique solution to 
the dynamic programming equations 

V ( i ) = m i n [ k ( i ' a ) + ° l Z P ( i ' j ' a ) V ( J )  1 J i E S .  

Furthermore, any v : S --~ R satisfying: v(i) attains the minimum in the rhs of the above, 
yields an optimal stationary policy, optimal for all initial conditions. In fact, { Zn } is optimal 
if and only if with probability one, 

Zn e argmin(k(Xn, .) + ot ~ p(Xn, j, .)V(j)). 
J 

The key to the control problem therefore lies in finding V(.). Two standard approaches 
for this are value iteration and policy iteration. (A third approach to MDPs reduces them to 
linear programming problems. We do not consider this approach here.) The value iteration 
starts with an initial guess V0 and iterates as per 

Vn+l(i) = min ~k(i, a) +~ y~p(i ,  j, a)Vn(j) , i S, 
a 

L J 

for n >_ 0. Using Banach contraction mapping theorem, it is easy to show that Vn --+ V at 
an exponential rate. 

The policy iteration scheme, on the other hand, starts with an initial guess v : S ~ A 
for an optimal policy and improves upon it iteratively as follows: At nth iteration 
Step 1: Compute Vn : S --+ R defined by 
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V n( i )=E  amk(Xm, Z m ) / X o = i  , i ES,  
m = O  

the expectation being under the stationary policy Zm = vn(Xm), m > O. This is done by 
solving the linear equations 

Vn(i) = k(i, Vn(i)) + ~ ~ p(i, j, Vn(i))Vn(j), i ~ S. 
J 

Step 2: Find Vn+l " S --~ R by 

Vn+l(i) E a r g m i n [ k ( i , . ) + o t E p ( i , j , . ) V n ( j ) l ,  i j  E S .  

One can show that the cost strictly decreases at each iterate as long as Vn is suboptimal, 
ensuring convergence of Vn ('), Vn (') to the optimal pair. 

We now derive the appropriate 'simulation-based' version of this. There are some key 
differences between them which need to be underscored. The first, of course, is that we 
replace each summation involving p(i,. ,  a) by a simulated transition as per that prob- 
ability vector. In order for this to work, the algorithm should do some averaging. This 
is ensured by using an incremental version which makes only a small chatage in current 
iterates at each step, weighted by a stochastic approximation - like decreasing step-size. 
Secondly, we operate with stationary randomised policies rather than stationary policies 
so that simple update equations for the probability vectors therein can be written. Finally, 
the linear system of step 1 is replaced by an iterative scheme for its solution before incor- 
porating it into the simulation based scheme. This scheme is a 'stationary value iteration' 
given by 

vm+l(i) = k(i, Vn(i)) + e t Z p ( i ,  j, Vm)vm(i), i E S, 
J 

for m >_ 0. This forms the 'inner loop' of the algorithm, wherein m is being updated for 
each fixed n. The equilibrium value Vn (') to which {V m (.)} will converge is then passed 
on to the outer loop for updating the policy. The crux of the algorithm we propose is to 
achieve this two-tier structure by using two different time scales. 

The 'centralized' version of our variant of the actor-critic algorithm is as follows. Let 
{a(n)}, {b(n)} be decreasing sequences in (0,1) satisfying 

Z a ( n )  = Z b ( n ) = ~  , Z a ( n )  2 , Z b ( n )  2 < co, a(n)=o(b(n)).  
?1 n rl n 

Fix a0 6 A and let P denote the projection of an r-vector onto the simplex D = 
{[Xl . . . . .  Xr] [ xi >_ O, ¥i, Y~i xi <_ 1}.Leti'r(i)denotether-vector[Jr(i, al) . . . . .  re(i, at)]. 
Let ea denote the r-vector whose components are indexed by elements of A \ {a0}, with its 
component indexed a as 1 and all other components equal to 0. The algorithm starts with 
an initial pair V0(-) 6 R s and rr0(i, a), i 6 S, a 6 A \ {a0}, and iterates according to 

Vn+l(i) = (1 - b(n)) V,(i) + b(n)[[c(i, ~on(i)) + otVn(~n(i))], 
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i 6 S ,  and for each i E S, a ~ A \ { a 0 } ,  

~rn+l(i)=P(Trn(i)+a(n)(a,6a\{ao}E (Vn( i ) - k ( i , a ' )  

-otVn(~ln(i,a')))zrn(i,a')ea'+qY(n))) 

Srn+l(i, ao) = 1 - ~ rrn+l(i, a), 
a #ao 

for n > 0, with ~o(i) ~ Zrn(i, .) E P(A) and [~(i, ~o) = ~ a  7~(i, a)k(i, a) for q9 6 P(A). 
Furthermore, ~n = [~n(1) . . . . .  ~n(S)], On = [[0n(i, a)]] are resp. S s, ss×r-valued ran- 
dom variables conditionally independent of each other given ~i, Oi, i < n, with the 
corresponding conditional distributions equal to 

s 

I-I q(J' "' ~on(j)) and 1-I H P(J' .,a) 
j = l  j 6 S a E A  

respectively. The reader may verify that this is in confirmation with our verbal description 
earlier. A small modification, however, is warranted. If any Zrn (i, .) is on a face of the 
simplex P(A), it will remain there thereafter. To avert this, a small diminishing noise 
¢'(n), with a Lebesgue continuous law, is added to push it away from the stable manifold 
of the unstable equilibrium points on the face of the simplex. 

The distributed, asynchronous version is more complicated and needs additional notation 
and assumptions. To start with, let I1, 12 be sets of subsets of S, S x A \ {ao} resp. that 
together cover resp. S, S x A \ {ao}. Let {Yn}, {Zn} be resp. I i - ,  12- valued processes 
with the interpretation: Yn is the set of i- E S such that Vn (i) gets updated at time n and Zn 
is the set of (i, a) 6 S × A \ {ao} such that :rn(i, a) gets updated at time n.We impose on 
these processes the condition: There exists a deterministic A > 0 such that with probability 
one, 

1 n-1 
l i m i n f -  y ~  l { i ~ Ym} >- A, i E S, 
n--~ oo FI 

m=O 

1 n-1 
l i m i n f -  E I{(i,a) E Zm} > A, i  E S,a E A. 
n--+ex~ rt m = 0  

This ensures that the distributed asynchronous version updates all components comparably 
often in a precise sense. (See Borkar 1994 for a graph theoretic sufficient condition for the 
above to hold.) 

Secondly, we introduce delays rn(i, j),  fn(i, a, j),  f(i, a) taking values in [0, 1 . . . . .  
min(n, N)], N ___ 0, with the assumption: rn(i, i) = 0 Vi, n. The idea is: Each component 
of the iteration is updated by a fixed processor, which receives the updates from other 
processors with random but bounded interprocessor communication delays. Thus the pro- 
cessor updating Vn(i) receives at time n, Vn-rn(i,j)(j) and not Vn(j). Similarly, the pro- 
cessor updating :rn(i, a) receives at time n, Vn_fn(i,a,j)(j) and not Vn(j). Finally, the 
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processor updating Vn (i) at time n receives 7rn_fn(i,a ) (i, a) and not Zrn (i, a). Assume that 
{rn(i, j), ~n(i, a, j), fn(i, a)} are independent of ~m, r/,n m < n for each n. The latter 
are defined as before, except that the conditional law of ~n given ~m, r/m, m < n gets 
replaced by []j e s q (J, ", ~On (j))  where 

qgn(i) = 7rn_f ( i , . ) ( i ,  "), i • S. 

(It should be remarked that the boundedness condition on delays can be replaced by a mild 
conditional moment bound as in Borkar 1994 at the expense of additional technicalities.) 

Finally, introduce for n > 0, 
n 

vl(i, n )= E l{i • Ym}, i • S, 
m = 0  

n 

v2(i,a, n ) =  E I{(i, a) • Zm}, i • S, a • A. 
m=O 

Note that the processor updating Vn (i) (resp. rrn (i, a)) knows vl (i, n) (resp. v2(i, a, n)) at 
time n (that being the number of updates he has performed till then), even when he does 
not know n, i.e., the 'global clock'. 

The distributed, asynchronous version of the algorithm then is: for i • S, a • A \ {a0}, 

Vn+l(i) = Vn(i) + b(vl(i, n))[/~(i, ~on(i)) 

+otVn_rn(i,~n(i))(~n(i))- Vn(i)]I{i • Yn}, 
/ 

frn+l(i)=P tTrn(i)+ Z a(v2( i ,a ,n ) ) ( (Vn( i ) -k ( i ,a )  
\ a'eA\{ao} 

--  ol Vn_~(i ,a .qn( i ,a))(r /n( i ,  a) ) )zrn(i, a) 

+ qS(n))I{(i, a) E Zn}ea, ~ 
l 

7rn+l(i, a0) = 1 - ~ ~rn+l(i, a), 
a ~ ao 

n > 0 and {~b(n)} is a random sequence converging to zero. The role of this sequence is 
same as that of 4~ (n) in synchronous algorithm. For this algorithm, we shall impose the 
following additional restrictions on {a(n)}, {b(n)}: Let {c(n)} denote {a(n)} or {b(n)}. 
Then 

(1) There exists r E (0, 1) such that ~n  c(n) l+r < oo. 

(2) For x • (0, 1), SUpn c([xn])/c(n) < cx~, where [. . .] stands for 'the integer part of 

(3) Forx • (0, 1) and A(n) = ~n  c(m), A([yn])/A(n) ~ 1 uniformly in y • Ix, 1]. m = 0  

Examples of {c(n)} satisfying the above are: 1/n, 1/n In(n), ln(n)/n etc., with modifi- 
cation for n = 0, 1 where needed. 

We shall analyse these algorithms in § 4 after a brief review of some relevant topics in 
stochastic approximation in the next section. 
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3. Stochastic approximation 

This section briefly recalls some recent results in stochastic approximation algorithms 
needed for our work. The stochastic approximation algorithm in its simplest form is the 
d-dimensional iteration 

X(n + 1) = X(n) + a(n)(h(X(n))  + M(n)), n > O, (1) 

where {a(n)} is as before and {M(n)} is a sequence of integrable random variables 
satisfying 

E[M(n) /X(m) ,  m < n, M(m), m < n] = 0, n > 0. (2) 

The convergence of this algorithm to a desired limit is usually established by first estab- 
lishing separately that with probability one, 

sup I X(n) 1< c~, y ~ a ( n ) M ( n )  < e~. (3) 
n n 

Given these, one way to analyse its asymptotic behaviour is by showing that it asymptoti- 
cally tracks the ordinary differential equation (ODE) given by 

it(t) = h(x(t)).  

Assume h to be Lipschitz with linear growth, ensuring that this ODE has a unique solution 
for any initial condition, defined for all t > 0.Suppose this ODE has a globally asymp- 
totically stable attractor J. Then by converse Liapunov theorem (see, e.g., Yoshizawa 
1966) there exists a continuously differentiable V : R d --+ R + satisfying V(x) --+ oo 
as Ilxll --+ e~ and VV(x) • h(x) < 0 for x ¢( J. Now, given T, 8 > 0, call a bounded 
measurable function y(.)" R + ~ R d a (T, 8)-perturbation of this ODE if there exist 
0 = To < TI < T2 < . . .  Ti ~ oo, such that Tj+I > Tj + T and there exist solutions x J(.) 
of the ODE on each interval [Tj', Tj+1 ] such that 

sup ]lxJ(t) - y(t)ll < 8. 
t E [ T j , T j + I ]  

Then one has: 

Lemma 1 (Hirsch 1989). For every E > 0, T > O, there exists a 8o > 0 such that for any 
S E (0, 8o), every (T,8)-perturbation of the ODE converges to the E-neighbourhood of J. 

The idea of the proof is" The Liapunov function V must decrease by a minimum positive 
quantity along every, xJ (.) that does not intersect the E-neighbourhood of J and therefore 
along the corresponding patch of y (.). This can happen for at most finitely many consecutive 
j 's,  so y (-) must eventually intersect this neighbourhood. Analogous considerations show 
that it cannot move away too much once it has done so. (See the appendix of Borkar 1996 
for details.) 

The convergence analysis of the stochastic approximation algorithm now hinges on the 
following 'time-scaling' argument: Let t(0) = 0, t(n) = ~nm-=loa(m ), and pick m(n) 
according to: m(0) --- 0, m(n) = min{t(k) I t(k) > t(m(n)) + T}. Set Tj = t (m( j ) ) ,  
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j > 0. Define y(t), t > 0, by: y(t(m)) = X(m), m > 0, with linear interpolation 
on [t(m), t(m + 1)], m > 0. Let x J(.) be the solution of the ODE on [Tj, Tj+I] with 
x J (Tj) = y (Tj), j >_ 0. Then y (.) on [ Tj, Tj + 1 ] may be viewed as an Euler approximation 
of the ODE with a nonuniform but decreasing (with j )  step-size, modulo an error term due 
to {M(n)} that also becomes asymptotically negligible thanks to (3). The above lemma 
then applies 'eventually' (i.e., for sufficiently large j )  for each E > 0, ensuring X (n) --+ J 
with probability one. 

Now consider a 'two time-scale' variant of the basic algorithm: 

X(n + 1) = X(n) + a(n)(F(X(n),  Y(n)) + M(n + 1)), 

Y(n + 1) -- Y(n) + b(n)(G(X(n),  Y(n)) + M'(n + 1)), 

where F, G are Lipschitz with linear growth and M(n), M/(n) are integrable random 
variables uncorrelated with the past (i.e., satisfying (2)) and a(n) = o(b(n)). Suppose 
with probability one, the following hold: 

sup l X(n) ]< oo, ~-~a(n)M(n) < oe, 
n 

n 

sup[ Y(n) I< cx~, y~a(n)Mt(n)  < cx~. 
n 

n 

Also suppose that for each x, the ODE, 

p(t) = G(x, y(t)), (4) 

has a unique globally asymptotically stable equilibrium point )~(x) where )~(-) is Lipschitz 
continuous and the ODE, 

Jc(t) = F(x(t) ,  )~(x(t))), (5) 

has a unique globally asymptotically stable attractor J. 

Theorem 1. Withprobabili~ one, (X(n), Y(n)) ~ {(x, L(x)) Ix  ~ J}. 

The proof can be found in Borkar (1996) for the case when J is a singleton and extends 
easily to the more general case. The idea is to mimic the above time scaling argument first 
with b(n) (i.e., t (n) = ~n  b(i)), so that the interpolated trajectories track the ODE i = 0  

~(t) = 0, y(t) = G(x(t), y(t)), 

and then again with a(n) (i.e., t(n) n i = ~i=0  a ( ) ) ,  so that the interpolated {X(n)} tracks 
(5). Lemma 1 is used in each case in the obvious manner. Thus the fast component {Y(n)} 
sees the slow component {X(n)} as quasi-static, while the slow component sees the fast 
component as 'essentially equilibrated'. 

The distributed, asynchronous version of the algorithm (1) is as follows: If Xi (n) is the 
ith component of the vector X (n), it is updated as per 

Xi(n -q- 1) = Xi(n) + a(v(i, n))(h(Xl(n - rn(i, 1)) . . . . .  Xcl(n - rn(i, d))) 

÷ m(n))I{ i  c Yn} 

where {Yn}, {rn(i, j)}, {m(n)} are as before. 
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For this case, the rather intricate analysis of Borkar (1994) shows that a suitably inter- 
polated version of {X (n)}, if bounded, tracks the ODE 

1 
Jc(t) = -dh(x(t)). 

The scalar 1/d up front amounts to linear time scaling that does not alter the qualitative 
behaviour. Thus X(n) ~ J with probability one as before. (It should be remarked that 
the algorithm considered in Borkar 1994 is slightly more restrictive than (1) or (5), but the 
same arguments go through nevertheless.) 

4. Convergence analysis 

In this section we shall adapt the ideas of the preceding section for the convergence analysis 
of the actor--critic algorithm proposed in § 2. As already mentioned earlier, only a sketch 
of the proofs will be given. 

Define the map F : P ( A )  s × R s ~ R s by F(. ,-)  = [El(-, .) . . . . .  Fs(., .)IT where 
Fi(z, x) = ~ a  z(i, a)k(i, a) + ot ~ j  ~ a  z(i, a)p(i,  j ,  a)xj for x ---- [Xl . . . . .  Xs] r and 
z = [[z(i, a)]], i E S, a ~ A with z(i, .) ~ 7:'(A) Vi. Also define the following norms on 
R s 

1 

Ilxllp = Ix I p , p E (1, oo), 
i = 1  

Ilxllo~ =m.ax I xi I- 
I 

Then it is easily verified that for each fixed z, the following contraction condition holds: 

liE(z, x) - E(z, Y)II~ --- o~llx - YlI~, x, y ~ R s. 

The first iteration of the centralised algorithm can now be written as 

Vn+l = Vn + b(n)(E(zrn, Vn) - Vn) + b(n)M(n), n > 0 (6) 

for suitably defined M(n) which will satisfy (2) (with X(m) ~= Vm). 

Lemma 2. With probability one, the iterates of  the centralized or asynchronous algorithm 
remain bounded. 

Proof We consider the asynchronous case, as the centralized case is a special case thereof. 
The iterates of {rrn} are bounded anyway because of the projection P onto a bounded set. 
That Vn remain bounded with probability one follows exactly as in theorem 1, pp. 190-191, 
of Tsitsiklis (1994). (In Tsitsiklis 1994, the algorithm slightly differs from (6) insofar as 
E(rrn, Vn) would be replaced by F(Vn) for some P satisfying (say) l iE(x)  - P ( y ) I I ~  --- 
or IIx - y I1~. Nevertheless, exactly the same proof applies.) [] 

In turn, this implies that {M(n)}, which is defined in terms of Vn, remains bounded with 
probability one. A direct calculation shows that in addition 

~(n) ~= E[M(n)2/Vm, rim, rm(i, j ) ,  rm(i, a, j ) ,  ~m(i, a), Ym, Zm, 

m < n , i ,  j E S ,  a E A ]  
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remain bounded with probability one. Since ~ n  b(n) 2 < oo, we then have ~ n  b(n)2~P (n) 2 
< oo with probability one. The property (2) renders the process 

n 

y ~  b ( i ) M ( i ) , n  > O, 
i=0 

a martingale and the foregoing then ensures that its quadratic variation process (see Neveu 
1975, for a definition) is convergent with probability one. Proposition VII-3-(c), pp. 149- 
150 of Neveu (1975) then ensures that 

OO 

Z b( i )M(i )  
i=0 

is convergent, and hence finite with probability one. This, in conjunction with lemma 2 
above, completes our verification of (3) for iteration (6). 

These considerations will enable us to use the results of the preceding section. Prior 
to doing so, we look at the expected ODE limits. The first one to be considered is the 
counterpart of (4) in our set-up, which is 

~(t) = F(:r, x(t))  - x( t)  (7) 

for F as above and a fixed rr c 79(A) s. 

Lemma 3. Equation (7) has a unique globally asymptotically stable equilibrium point ~"rr 
given by 

~"zr(i) = E olmk(Xm, Zm) /  X 0 = i , 
L m=O 

the expectation being with respect to the stationary randomised policy Jr. 

Proof. Standard contraction mapping arguments show that F(Tr, .) has a unique fixed point 
and usual dynamic programming type arguments show that Vrr defined above must be it. 
Now for p ~ (1, cx~), explicit differentiation leads to 

d 
~t  [ l x ( t ) -  ~"rrl[p = I [ x ( t ) -  ~"7rlllp-p(-llx(t) - Qn lip 

1 s 
+ - ~--~.(xi(t) - Vrr(i))P-l(Fi(rr, x( t))  - Fi(:rr, f/rt)) 

S ~--1-- 

_< -IIx(t)  - f',~ lip + IIf(rr, x( t))  - F(Jr, V,~)llp 

where the inequality follows from an application of Htlder's inequality. Let p ~ oo. 
Using continuity of p ~ IIx lip on [1, oo] and the contraction property of F(rr,-) under 
the II • lion-norm, we have 

d 
d--~-IIx(t) - f',~ Iloo _< - (1  - ~)llx(t) - f',~ IIo~, 

which implies the claim by standard arguments. [] 
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Note that since f'Jr is characterized by the linear system of equations F(re, 17'rr) = Vrr, 
it depends smoothly on the coefficients thereof, hence on re. In particular, the map is 
Lipschitz on T'( A ) s. 

Define a vector field G(.) on 7:'(A) s by:G(.) = [[Gia(')]] for i 6 S, a 6 A, where 

Gia(re ) = zr(i' a) ( Vjr(i) - k(i 'a) - et ff-~P(i' j '  a) Vjr(J) ) 

The second ODE (the counterpart of (5)) that we consider is 

it(t) = G(re(t)). (8) 

It is easy to verify that this ODE will always remain in 7:'(A) s if rr(0) is. Furthermore, 
it will converge to equilibrium points, the latter being the set of those re ~ 7'(A) s that 
satisfy: for each (i, a), either re(i, a) = 0 or k(i, a) + ot ~ j  p(i, j, a)V~r(j) = VTr(i). A 
little thought shows that the stable equilibrium points are those for which, for each (i, a), 
either re(i, a) = 0 or 

V~r(i) = min (k( i ,a)  + ot y~p ( i ,  j ,a)V~r(j))  J 

Since not all re(i, a) can be zero for a given i, the above equality holds for all/ .Hence the 
only stable equilibrium points are the re for which Vrr equals V. These are precisely the 
optimal stationary randomised policies. 

Consider the centralized algorithm. 

Theorem 2. With probability one, the centralized algorithm converges to {(V, re) I re is 
an optimal stationary randomised policy}. 

Proof We can adopt the 'two-time' scale results of the preceding section with one differ- 
ence. The difference here is the presence of the projection operator P in the algorithm. 
This, however, is a standard feature of many stochastic approximation algorithms and the 
theory thereof is well-understood; see, e.g., Kushner & Clark (1978). As in the theorem 
5.3.1, p. 191, of Kushner & Clark, we can conclude that the limiting ODE tracked by a 
suitably interpolated version of {ren } (and hence by {ren } itself) is given by the R s × (r- 1)_ 
dimensional ODE 

it(t) = P(G(re(t))), 

where Gia(re) = Gia([yr[1, .]il - ~b#a0 re(i, b)izr(2, a)i l  --~b:/:ao re(2, b ) ! . . ,  ire(s, a)! 

1 - ~b¢a0 re(s, b)]), j 6 S, and/5(h(.)),  for a vector field h(-) on T'(A) s is defined by 

#(h(y))  = lim P(y + h(y)6) - P(y) 
0<8~0 3 

If the limit is non-unique, one considers the set of all limit points and treats the above as 
a differential inclusion rather than an ODE. Fortunately for us, /5(~(re))  is well-defined 
and in fact equals G(re), as can be easily verified. Thus the limiting ODE is 
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fr = G(Jr(t)). 

Wenow augment 7r (t) by adjoining s additional components zr(i, a0) = 1 - ~ a  rr(i, a), i 
S. Denote the enlarged vector by 7r(t) again by abuse of notation. It is easy to verify that. 
thus redefined, 7r(.) satisfies (8). The convergence for the two time scale stochastic algo- 
rithms can now be invoked to claim that with probability one, {Zrn } converges to the set of 
equilibrium points of (8). The final step is to show that it will in fact converge to the set of 
stable equilibrium points of (8) with probability one (Pemantle (1990), see also Brandibre 
& Duflo (1996)). To show this, all we need is that the set of points that get attracted to an 
unstable equilibrium point have zero probability. It is easy to see that Lebesgue measure of 
the stable manifold of an unstable equilibrium point is zero. Thus it is enough if the noise 
~b (n) has positive density with respect to Lebesgue measure in a shrinking neighbourhood 
of the origin. The claim follows. [] 

Theorem 3. The claims of theorem 2 also hold for the decentralized algorithm under 
additional hypotheses stipulated in § 3. 

This follows simply by combining the foregoing with the scheme of Borkar (1994). This 
completes our convergence analysis of the algorithm. 

5. Approximation issues 

As mentioned in the introduction, in many applications the 'curse of dimensionality' forces 
one to interface the above and other simulation-based algorithms with an approximation 
scheme. Here we sketch a scheme based on state aggregation, adapted from Tsitsiklis 
& Van Roy (1994) where it is proposed as a 'look-up table scheme' in the context of 
Q-learning. 

The idea is to partition the state space S into disjoint nonempty subsets Sl, $2 . . . . .  Sm, 
each identified as an aggregated state. For each j ,  let ¢~j(.) be a probability vector on Sj 
with jrj(i) > O, Vi E Sj. The centralized version of the algorithm runs as follows: At 

n each n, generate tor each j ,  1 < j < m, random variables (X~, ~ ,  Oja,  a ~ A)  with law 

P(X~ = ij,~; =kj ,  O)na = Xaj, a C A, j = 1,2 . . . . .  m) 

m 

= H flj(ij)q(ij, kj, ~On(j)) 1-I p(ij, Xaj, a) 
j=l acA 

independently of the past, where ~On (j)  = :rn ( j , . ) .  Define 0)ha 6 {1, 2 . . . . .  m} by fTja = k 
if ~/j?a 6 Sk. The iteration at time n is:/or each j ,  1 _< j < m, 

Vn+] ( j)  = (1 - b(n) ) Vn(j) + b(n )(~:( X~, qgn(j) ) + ~ Vn(~j ) ), 

~n+l (J )=P( f rn ( j )+a(n) (  Z Vn(j)-[~(X~,a) 
\a~A\{ao} 

-otVn(~ja))Trn(j,a)eo+dP(n))), 
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7rn+l (j ,  a0) = 1 - ~ 21"n+ 1 (j, a), 
a #ao 

where P is the projection onto the appropriate r-dimensional simplex. 
An analysis similar to the foregoing shows that with probability one, these iterates 

converge to (V*(.), ~r*(-, .)), where f o r j  ~ {1, 2 . . . . .  m}, 

I m 1 V * ( j ) = r n j n  ~-~ j6j(i)[k(i,a) + ot y~ V(l) y~ p(i,l,a)] 
icSj l=1 xESI 

and support (rr*(j, .)) C arg min of the rhs above. For error estimates for such schemes, 
see Tsitsiklis & Van Roy (1994) 

A distributed version of this approximate scheme along the lines of the foregoing can 
also be analysed accordingly. 

6. Simulation experiments 

To demonstrate the convergence of the proposed algorithm we took two examples. The 
MDPs of these two examples are similar to those used to model admission control into 
an M/M/1 queue and routing to parallel M/M/1 queues respectively (Walrand 1988). In 
both these examples, in any iteration, only one component of V and one component of 
Jr are updated. The probability of update of a component in an iteration is equal for all 
components and is independent of everything else. Since Jrn (i, a) cannot change once it 
becomes zero, a small noise is added whenever it is sufficiently close to zero. The determin- 
istic value iteration was used to find out optimal value function and policy. The algorithm 
was started with value function being identical to zero, and with all the randomised policy 
probabilities equal. The examples are described below.The notation used here is the one 
introduced in § 2. Interprocessor communication is assumed to be instantaneous (i.e., no 
delays). 

6.1 Example 1 

S = {0, 1 . . . . .  N}, 

A = {0, 1}, 

p(i,j ,a) = o r j  = i  anda = 1, 

k, i f j  = m a x ( / -  1,0), 

k(i, a) = I i' 
i f a  0, 

i+c,  i f a = l .  

For the purpose of simulation we took: 
2 

N 10, a(n) ({ n = = Li-ff6J + 1}In)7 
k = 0.65, 
c = 10, b(n) = {[1--~J + t}/n, 

= 0.99. 

i f j < m a x ( j - l , 0 )  o r j  > i + l ,  
if j = min(i + 1, N) and a = 0, 
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The optimal value function and policy were: 

V=[669.0261 679.4227 694.0252 711.0231 730.3492 751.9383 

775.7268 801.6532 820.9869 831.7235 836.4438], 

7r(., 0) --- [1 1 0 0 0 0 0 0 1 1 1], 

zr(i, 1) = 1 - re(i, 0) i E S .  

After 2 × 10 6 iterations the result of our algorithm was 

V=[663 .2563  673.3967 687.6990 708.0571 725.9087 748.0945 

775.7268 796.7382 820.2483 830.5291 835.0053], 

~(. ,  0) --- [1 0.9986 0 0 0 0 0 0 0.9871 1 0.9955], 

~r(i, 1)---1 -£ r ( i ,O) i  ~ S. 

6.2 Example 2 

S = {(i, j ) ,  

A =  {0, 1}, 

0 < i < N ,  O < j < N } ,  

p((i, j) ,  (k, 1), a) =- 

#1, 

1 - - Z - - l Z l ,  
O, 

i fk  = min(i + 1, N) and j = l 
and a = 0 

or k = i and l  = min( j  + 1, N) 
and a = 1, 

if k = max(i - 1, 0) and I = j ,  
i fk  = i and l  = max( j  - 1,0), 
otherwise, 

k((i, j) ,  a) = Cl i + c2j. 

For the purpose of simulation we took: 

2 
N----- 10, a(n) ({ n = L]-~J + 1]/n)7 
Z=0.65,  b(n) 0.1({ n = L ~ J  + 1}/n) 

Cl= 10, c2 = 15, 
c~= 0.99, ~ = 0.5, 

# l  =0 .3 ,  #2 = 0.2. 

The optimal value function and policy were: 

[[V(i, j ) ] l  = 103 x 

-3.3602 3.4448 3.5978 3.8137 4.0899 
3.4281 3.5179 3.6710 3.8863 4.1618 
3.5277 3.6183 3.7696 3.9833 4.2578 
3.6380 3.7171 3.8643 4.0761 4.3496 
3.7172 3.7922 3.9370 4.1474 4.4201 
3.7590 3.8328 3.9766 4.1864 4.4588 

4.2539- 
4.3018 
4.3875 
4.4937 
4.6036 
4.7032 
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[[yr((i, j ) ,  0)]] = 

"1.0000 1.0000 1.0000 
0 1.0000 1.0000 
0 1.0000 1.0000 

0 to  1 1.0000 1.0000 
1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 

After 10 7 iterations the result of our algorithm was 

[[V(i, j)]] = 10 3 x 

[[~((i, j ) ,  0)]1 = 

-3.3715 3.4610 3.6047 
3.4399 3.5317 3.6813 
3.5316 3.6327 3.7757 
3.6365 3.7207 3.8772 
3.7219 3.8000 3.9480 
3.7650 3.8431 3.9849 

-1.0000 0.9861 1.0000 
0.0000 1.0000 0.9900 
0.0000 0.9997 0.9910 
0.0000 1.0000 1.0000 
0.9975 0.9998 0.9884 
1.0000 1.0000 1.0000 

Note that the convergence is slow, the price we pay for not 
the transition mechanism as well as for asynchronism. 

1.0000 1.0000 0 
1.0000 1.0000 0 
1.0000 1.0000 0 
1.0000 1.0000 0 
1.0000 1.0000 0 
1.0000 1.0000 0 to  1 

3.8221 4.1100 4.26847 
3.9045 4.1760 4.3166 
3.9971 4.2682 4.3978 
4.0869 4.3490 4.4987 
4.1499 4.4253 4.6193 
4.1919 4.4675 4.7109 

1.0000 0.9900 0.0000- 
1.0000 0.9844 0.0000 
0.9977 0.9994 0.0000 
1.0000 0.9977 0.0000 
0.9999 0.9999 0.0000 
0.9998 1.0000 0.0000 

using prior information about 

7.  F u r t h e r  d i r e c t i o n s  

We conclude by listing some promising research directions. 

Average cost control: In many problems such as control of communication networks 
where quasi-equilibrium behaviour is desired, long-run average cost is preferred to dis- 
counted cost. It would be useful to extend the algorithm to the average cost setup, possibly 
using the techniques developed in Abounadi et al (1996a,b) for Q-learning. 

Approximation based on compact representations: In addition to the approximation 
scheme proposed in § 5 above, Tsitsiklis & Van Roy (1996) also consider another scheme 
based on compact representations in the context of Q-learning. The idea is to directly ap- 
proximate V(.) by a function belonging to a prescribed parameterized family and update 
the parameter in question rather than updating V(.) directly. In the actor-critic scheme, 
however, there is an additional iteration for Zrn (., .). One can conceivably write a function 
approximation scheme for 7r (., .) using a parameterized family (such as a neural network 
- see, e.g., Santharam & Sastry 1997) and update the probabilities recursively. These 
possibilities need to be explored. 
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Feedback implementations: The algorithm we consider above is 'off-line', i.e., is based 
on a simulation run rather than an actual system being controlled in real time. One can 
convert it into an on-line (or feedback) adaptive control algorithm for a controlled Markov 
chain Xn, n > O, by setting Yn = {Xn} Yn and letting rcn(Xn, ") be the actual randomised 
control law being implemented. A natural question then is whether the scheme is asymptot- 
ically optimal. (For the appropriate concept of 'asymptotically optimal' in the discounted 
framework, see Sch~il 1987). Recall that the convergence of the algorithm to desired limits 
requires that all state-action pairs be tried sufficiently often. For states, this may happen 
automatically if suitable irreducibility conditions are met, even in the feedback case. But 
if the Zrn (., -) converge rapidly (to the desired limit or otherwise) all the state-action pairs 
may not get updated frequently enough. A simple way out of this conflict is to modify the 
feedback law to a convex combination of ~0n (') and the uniform distribution on A so as to 
ensure a minimum probability e > 0 of each a 6 A being picked. For E > 0 sufficiently 
small, the scheme will be nearly optimal within a/prescribed tolerance. However, too small 
an E may slow down convergence. Thus there is a trade-off involved. A potentially promis- 
ing scheme is to start with a large e 6 (0, 1/r] (to ensure all state-action pairs being tried 
frequently) and then reduce it 'slowly' enough to ensure optimality. (Recall the simulated 
annealing algorithm for global optimization.) It is, however, a nontrivial task to capture 
the optimal rate of decrease of E in a precise manner. These issues need further study. One 
should also add that presence of interprocessor communication delays causes nontrivial 
complications in the feedback case. 

Rate of convergence: We have not provided any theoretical analysis of convergence 
rate. Since a stochastic approximation algorithm eventually tracks the associated ODE 
in a precise sense outlined in § 3, the convergence of its interpolated version to a given 
neighbourhood of the asymptotically stable limit of the ODE (assuming one exists) will 
closely mimic that of the ODE itself. The rate of the latter could be gauged from the 
Liapunov function approach. One must, however, invert the time-scaling n ~ t (n) to get 
the convergence behaviour of the original algorithm. 

Even this may be worthless if 'eventually' is in too distant a future. There are other 
problems too: The ODE captures the averaging effect of the algorithm akin to the law of 
large numbers. But there can be fluctuations around the average behaviour of the 'central 
limit theorem' variety. For a two time scale algorithm, the time scales should be sepa- 
rated enough so that the slow one does not get swamped by the fluctuations of the fast 
one. 

A related issue is the generally high variance of the stochastic approximation algorithms. 
An additional averaging can reduce this, see, e.g., Polyak (1990). This and other issues 
pertaining to improving the performance of the algorithm need careful study. To cut a long 
story short, the newly opened field of simulation-based algorithms for control offers many 

challenges both in theory and practice. 

The work of the first author was supported by a Homi Bhabha Fellowship. 
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