
Sgulhand, Vol. 22, Part 4, August 1997, pp. 525-543. © Printed in India.

The actor-critic algorithm as multi-time-scale stochastic
approximation

VIVEK S BORKAR* and VIJAYMOHAN R KONDA

Department of Computer Science and Automation, Indian Institute of Science,
Bangalore 560 012, India

Abstract. The actor-critic algorithm of Barto and others for simulation-based
optimization of Markov decision processes is cast as a two time scale stochastic
approximation. Convergence analysis, approximation issues and an example are
studied.

Keywords. Actor-critic algorithm; stochastic approximation; Markov deci-
sion processes; simulation-based algorithms; policy iteration.

1. Introduction

Markov Decision Processes (MDPs) have been a popular paradigm for sequential decision
making under uncertainty. The traditional approach has been to write down the dynamic
programming equations appropriate for the problem at hand. Their solution yields the
so-called value function for the problem. The optimal policy as a function of the state is
then prescribed as the minimizer of a certain 'Hamiltonian' defined in terms of the value
function. This, in fact, gives a complete characterization of optimal (stationary) policies.
Since everything hinges on computation of the value function, several iterative algorithms
have been proposed for the same. These fall broadly into two classes : value iteration and
policy iteration. An extensive account of these and related developments can be found in
Puterman (1994).

When applied to real problems, however, this scheme often runs into difficulties. The
most notorious, of course, is the curse of dimensionality, caused by the typically very large
size of the state space. An equally (if not more) difficult issue stems from the fact that the
theoretical analysis of MDPs presupposes exact knowledge of underlying stochastic dy-
namics. Translated into real terms, this calls for accurate model selection and identification
of the relevant parameters. Though this can in principle be a separate, off-line statistical
exercise, the computational overheads can be considerable.

This problem has been brought to the fore forcefully by some emerging applications
in artificial intelligence, e.g., in game playing machines and robotics (Barto et al 1995;
Keerthi & Ravindran 1994). Here complexity of exact modeling and analysis is very high,

* Author for correspondence

525

526 V S Borkar and V R Konda

but, mercifully, that of simulation is often not so. To press this point further, consider a
large interconnected system like a communication network. The dynamics evolves as per
simple local update rules operating at individual constituent units and therefore is quite
amenable to simulation on a parallel machine. But the overall dynamics can be extremely
hard to analyse. This has prompted simulation-based algorithms which are akin to the
traditional algorithms for computing the value function, but with one crucial difference:
one replaces a computation using an exactly known transition probability function by an
actual simulated transition as per the random mechanism that determines it. The algorithm
is expected to 'see' the actual transition mechanism through an averaging affect. Mathe-
matically speaking, these involve a marriage between the traditional algorithms for MDPs
and stochastic approximation, a procedure in statistics with a long and illustrious history
(see Benveniste et al 1990, for a comprehensive account of the latter).

These algorithms again fall into two broad classes. The first is the Q-learning algorithm
of Watkins (1989) which has been extensively analysed (Watkins & Dayan 1992; Jaakola
et al 1994; Tsitsiklis 1994). This can be viewed as a stochastic approximation version of
the value iteration. The other strand consists of the actor-critic algorithm of Barto et al

(1983) and its variants which may be viewed as stochastic approximation counterpart
of policy iteration. Though some mathematical analysis is available in this case as well
(Williams & Baird 1990), the situation is a little harder than Q-learning because of a
certain inherent problem in policy iteration. In policy iteration, each update requires the
computation of 'cost to go' function or 'value' function for a fixed policy. This in itself
requires a 'value iteration' sandwiched between two policy updates, albeit a linear one
(because the policy is fixed). One may view this as an algorithm with two loops, the inner
one performing the linear value iteration for a fixed policy and the outer one updating the
policy at the end of it. In practice, of course, the update of the outer loop cannot be kept
waiting forever while the inner loop algorithm converges asymptotically to the desired
cost to go function. Various ad hoc schemes have been proposed to ensure reasonable
behaviour (Barto et al 1995). Our aim here is to propose a variant of the actor--critic
algorithm based on some recent results on stochastic approximation with two time scales
(Borkar 1996). The idea here is to operate the inner and outer loops with different step-
size schedules, so that the inner loop moves on a faster effective time scale than the
outer loop. This ensures that while the inner loop sees the current policy in the outer
loop as quasi-static, the outer loop sees the value iteration of the inner loop as essentially
equilibrated. This provides an actor-critic scheme that is asymptotically exact, at least in
principle.

Having said all this, we should hasten to add that the simulation-based algorithms are
not without problems. The first major problem is that many of these simulations call
for a parallel, distributed implementation of the algorithm. This throws up issues like
asynchronism and interprocessor communication delays. It is well-known that even simple,
innocuous iterations that perform ideally in a centralised implementation can go hay-
wire in a parallel, distributed environment (Chazan & Miranker 1969). Fortunately, a
considerable body of work is now available on conditions under which one may still get
the desired convergence (Bertsekas & Tsitsiklis 1989; Borkar 1994). We apply these ideas
to the present algorithm to underscore conditions under which the desired convergence is
preserved in a parallel distributed set-up.

Actor-critic algorithm as a stochastic approximation 527

The second problem is the familiar 'curse of dimensionality' which looms much larger
in simulation-based algorithms. This is because they involve iteration of vectors indexed
by state and action, not state alone, which increases the dimensionality many-fold (not
to mention that the algorithm perforce is restricted to finite state and action space case).
Thus usually the algorithm must be accompanied by an approximation scheme to make it
tractable. The traditional approach would be state aggregation whereby one clubs parts of
state space into single meta-states. An alternative approach gaining currency is to approxi-
mate the value function directly (Schweitzer & Seidman 1985; Tsitsiklis & Van Roy 1996).
This is appealing in view of the recently established function approximation properties of
neural networks and good algorithms for neural network training that can be exploited here.
Nevertheless, certain counterexamples in literature (Tsitsiklis & Van Roy 1996) suggest
that the approach is not without its problems. We shall discuss these issues later in this
paper.

The paper is organised as follows. The next section briefly reviews the MDP paradigm for
discounted cost problem and describes our variant of actor-critic algorithm associated with
it. Section 3 recalls some key results concerning stochastic approximation, from Borkar
(1996) and Borkar (1994) respectively. These are used in § 4 for the convergence analysis of
the algorithm and its asynchronous version. Section 5 describes an approximation scheme
based on state aggregation. Section 6 presents a simulation example. Section 7 concludes
with a brief discussion of further research issues.

This paper derives much from Borkar (1994; 1996) in terms of technique. Because of
this, we have opted in favour of giving sketches of proofs instead of complete details.
Giving the latter would require reproducing the aforementioned references in totality, a
considerable overhead in terms of length and mathematical abstraction. Needless to say,
we have pointed out the minor variations as and when needed. Complete mathematical
details can be found in Rao (1996).

2. MDPs and the actor-critic algorithm

We begin by recapitulating some well-known facts about MDPs. Puterman (1994) is a
good general reference for the material.

Let S = {I, 2 s}, A = {a0, al ar} be prescribed finite sets and p : S x S x
A -+ [0, 1] a map satisfying

p(i , j ,a) 6[O, 1], Z p (i , k , a) = l ¥ i , j ,a .
k

An MDP (equivalently, a controlled Markov Chain) on state space S, with action space
A and transition probability function p(. , . , .), is an S-valued random process Xn, n _> 0,
satisfying

P(Xn+I = j / X k , Zk, k <_n)= p(Xn, j, Zn) Vn >_O,

where {Zn} is an A-valued 'control' process. If {Zn} is of the form Zn = v(Xn), n >_ 0,
for some map v : S --~ A, we call {Zn}, or, by abuse of terminology, the map v it-
self, a stationary policy. More generally, if for each n, Zn is conditionally independent
of Xm, Zm, m < n, given Xn, we call it a stationary randomised policy and identify

528 V S Borkar and V R Konda

it with the map qg:S --+ 79(A) (79(.. .) = t h e space of probability vectors on ' . . . ')
which gives the conditional law of Zn given Xn. For i c S, a 6 A, let rr(i, a) de-
note the ath component of qg(i). Under a stationary policy v (resp., a stationary ran-
domised policy ~0), {Xn } is a time-homogeneous Markov chain with transition probabilities
[[p(i, j , v(i))]] (resp., [[q(i, j , qg(i))]] where q(i, j, qg(i)) = ~ a E A p(i, j, a)rr(i, a)). By
a further abuse of terminology, we identify the stationary randomised policy ~0 with
the vector Jr = [rr(i, a)], where the elements are ordered lexicographically. Note also
that the class of stationary randomised policies contains the class of stationary policies,
since the latter correspond to the case when each ~0(i) is concentrated at a single point
in A.

We shall consider the infinite horizon discounted cost control problem. In this a discount
factor ot E(0,1) and a running cost function k : S × A --+ R are prescribed and the aim is
to minimize over all admissible { Zn } the quantity

E 1 E ~ otnk(Xn, Zn) •
n=0

Define the 'value function' V : S --+ R by: For i E S,

g(i) = min E o~nk(Xn, Zn)/Xo = i ,
n=O

the minimum being over all admissible {Zn }. It is known that V is the unique solution to
the dynamic programming equations

V (i) = m i n [k (i ' a) + ° l Z P (i ' j ' a) V (J) 1 J i E S .

Furthermore, any v : S --~ R satisfying: v(i) attains the minimum in the rhs of the above,
yields an optimal stationary policy, optimal for all initial conditions. In fact, { Zn } is optimal
if and only if with probability one,

Zn e argmin(k(Xn, .) + ot ~ p(Xn, j, .)V(j)).
J

The key to the control problem therefore lies in finding V(.). Two standard approaches
for this are value iteration and policy iteration. (A third approach to MDPs reduces them to
linear programming problems. We do not consider this approach here.) The value iteration
starts with an initial guess V0 and iterates as per

Vn+l(i) = min ~k(i, a) +~ y~p(i , j, a)Vn(j) , i S,
a

L J

for n >_ 0. Using Banach contraction mapping theorem, it is easy to show that Vn --+ V at
an exponential rate.

The policy iteration scheme, on the other hand, starts with an initial guess v : S ~ A
for an optimal policy and improves upon it iteratively as follows: At nth iteration
Step 1: Compute Vn : S --+ R defined by

Actor-critic algorithm as a stochastic approximation 529

V n(i)=E amk(Xm, Z m) / X o = i , i ES,
m = O

the expectation being under the stationary policy Zm = vn(Xm), m > O. This is done by
solving the linear equations

Vn(i) = k(i, Vn(i)) + ~ ~ p(i, j, Vn(i))Vn(j), i ~ S.
J

Step 2: Find Vn+l " S --~ R by

Vn+l(i) E a r g m i n [k (i , .) + o t E p (i , j , .) V n (j) l , i j E S .

One can show that the cost strictly decreases at each iterate as long as Vn is suboptimal,
ensuring convergence of Vn ('), Vn (') to the optimal pair.

We now derive the appropriate 'simulation-based' version of this. There are some key
differences between them which need to be underscored. The first, of course, is that we
replace each summation involving p(i,. , a) by a simulated transition as per that prob-
ability vector. In order for this to work, the algorithm should do some averaging. This
is ensured by using an incremental version which makes only a small chatage in current
iterates at each step, weighted by a stochastic approximation - like decreasing step-size.
Secondly, we operate with stationary randomised policies rather than stationary policies
so that simple update equations for the probability vectors therein can be written. Finally,
the linear system of step 1 is replaced by an iterative scheme for its solution before incor-
porating it into the simulation based scheme. This scheme is a 'stationary value iteration'
given by

vm+l(i) = k(i, Vn(i)) + e t Z p (i , j, Vm)vm(i), i E S,
J

for m >_ 0. This forms the 'inner loop' of the algorithm, wherein m is being updated for
each fixed n. The equilibrium value Vn (') to which {V m (.)} will converge is then passed
on to the outer loop for updating the policy. The crux of the algorithm we propose is to
achieve this two-tier structure by using two different time scales.

The 'centralized' version of our variant of the actor-critic algorithm is as follows. Let
{a(n)}, {b(n)} be decreasing sequences in (0,1) satisfying

Z a (n) = Z b (n) = ~ , Z a (n) 2 , Z b (n) 2 < co, a(n)=o(b(n)).
?1 n rl n

Fix a0 6 A and let P denote the projection of an r-vector onto the simplex D =
{[Xl Xr] [xi >_ O, ¥i, Y~i xi <_ 1}.Leti'r(i)denotether-vector[Jr(i, al) re(i, at)].
Let ea denote the r-vector whose components are indexed by elements of A \ {a0}, with its
component indexed a as 1 and all other components equal to 0. The algorithm starts with
an initial pair V0(-) 6 R s and rr0(i, a), i 6 S, a 6 A \ {a0}, and iterates according to

Vn+l(i) = (1 - b(n)) V,(i) + b(n)[[c(i, ~on(i)) + otVn(~n(i))],

530 V S Borkar and V R Konda

i 6 S , and for each i E S, a ~ A \ { a 0 } ,

~rn+l(i)=P(Trn(i)+a(n)(a,6a\{ao}E (Vn(i) - k (i , a ')

-otVn(~ln(i,a')))zrn(i,a')ea'+qY(n)))

Srn+l(i, ao) = 1 - ~ rrn+l(i, a),
a #ao

for n > 0, with ~o(i) ~ Zrn(i, .) E P(A) and [~(i, ~o) = ~ a 7~(i, a)k(i, a) for q9 6 P(A).
Furthermore, ~n = [~n(1) ~n(S)], On = [[0n(i, a)]] are resp. S s, ss×r-valued ran-
dom variables conditionally independent of each other given ~i, Oi, i < n, with the
corresponding conditional distributions equal to

s

I-I q(J' "' ~on(j)) and 1-I H P(J' .,a)
j = l j 6 S a E A

respectively. The reader may verify that this is in confirmation with our verbal description
earlier. A small modification, however, is warranted. If any Zrn (i, .) is on a face of the
simplex P(A), it will remain there thereafter. To avert this, a small diminishing noise
¢'(n), with a Lebesgue continuous law, is added to push it away from the stable manifold
of the unstable equilibrium points on the face of the simplex.

The distributed, asynchronous version is more complicated and needs additional notation
and assumptions. To start with, let I1, 12 be sets of subsets of S, S x A \ {ao} resp. that
together cover resp. S, S x A \ {ao}. Let {Yn}, {Zn} be resp. I i - , 12- valued processes
with the interpretation: Yn is the set of i- E S such that Vn (i) gets updated at time n and Zn
is the set of (i, a) 6 S × A \ {ao} such that :rn(i, a) gets updated at time n.We impose on
these processes the condition: There exists a deterministic A > 0 such that with probability
one,

1 n-1
l i m i n f - y ~ l { i ~ Ym} >- A, i E S,
n--~ oo FI

m=O

1 n-1
l i m i n f - E I{(i,a) E Zm} > A, i E S,a E A.
n--+ex~ rt m = 0

This ensures that the distributed asynchronous version updates all components comparably
often in a precise sense. (See Borkar 1994 for a graph theoretic sufficient condition for the
above to hold.)

Secondly, we introduce delays rn(i, j), fn(i, a, j), f(i, a) taking values in [0, 1
min(n, N)], N ___ 0, with the assumption: rn(i, i) = 0 Vi, n. The idea is: Each component
of the iteration is updated by a fixed processor, which receives the updates from other
processors with random but bounded interprocessor communication delays. Thus the pro-
cessor updating Vn(i) receives at time n, Vn-rn(i,j)(j) and not Vn(j). Similarly, the pro-
cessor updating :rn(i, a) receives at time n, Vn_fn(i,a,j)(j) and not Vn(j). Finally, the

Actor-critic algorithm as a stochastic approximation 531

processor updating Vn (i) at time n receives 7rn_fn(i,a) (i, a) and not Zrn (i, a). Assume that
{rn(i, j), ~n(i, a, j), fn(i, a)} are independent of ~m, r/,n m < n for each n. The latter
are defined as before, except that the conditional law of ~n given ~m, r/m, m < n gets
replaced by []j e s q (J, ", ~On (j)) where

qgn(i) = 7rn_f (i , .) (i , "), i • S.

(It should be remarked that the boundedness condition on delays can be replaced by a mild
conditional moment bound as in Borkar 1994 at the expense of additional technicalities.)

Finally, introduce for n > 0,
n

vl(i, n)= E l{i • Ym}, i • S,
m = 0

n

v2(i,a, n) = E I{(i, a) • Zm}, i • S, a • A.
m=O

Note that the processor updating Vn (i) (resp. rrn (i, a)) knows vl (i, n) (resp. v2(i, a, n)) at
time n (that being the number of updates he has performed till then), even when he does
not know n, i.e., the 'global clock'.

The distributed, asynchronous version of the algorithm then is: for i • S, a • A \ {a0},

Vn+l(i) = Vn(i) + b(vl(i, n))[/~(i, ~on(i))

+otVn_rn(i,~n(i))(~n(i))- Vn(i)]I{i • Yn},
/

frn+l(i)=P tTrn(i)+ Z a(v2(i ,a ,n)) ((Vn(i) -k (i ,a)
\ a'eA\{ao}

-- ol Vn_~(i ,a .qn(i ,a))(r /n(i , a)))zrn(i, a)

+ qS(n))I{(i, a) E Zn}ea, ~
l

7rn+l(i, a0) = 1 - ~ ~rn+l(i, a),
a ~ ao

n > 0 and {~b(n)} is a random sequence converging to zero. The role of this sequence is
same as that of 4~ (n) in synchronous algorithm. For this algorithm, we shall impose the
following additional restrictions on {a(n)}, {b(n)}: Let {c(n)} denote {a(n)} or {b(n)}.
Then

(1) There exists r E (0, 1) such that ~n c(n) l+r < oo.

(2) For x • (0, 1), SUpn c([xn])/c(n) < cx~, where [. . .] stands for 'the integer part of

(3) Forx • (0, 1) and A(n) = ~n c(m), A([yn])/A(n) ~ 1 uniformly in y • Ix, 1]. m = 0

Examples of {c(n)} satisfying the above are: 1/n, 1/n In(n), ln(n)/n etc., with modifi-
cation for n = 0, 1 where needed.

We shall analyse these algorithms in § 4 after a brief review of some relevant topics in
stochastic approximation in the next section.

532 V S Borkar and V R Konda

3. Stochastic approximation

This section briefly recalls some recent results in stochastic approximation algorithms
needed for our work. The stochastic approximation algorithm in its simplest form is the
d-dimensional iteration

X(n + 1) = X(n) + a(n)(h(X(n)) + M(n)), n > O, (1)

where {a(n)} is as before and {M(n)} is a sequence of integrable random variables
satisfying

E[M(n) /X(m) , m < n, M(m), m < n] = 0, n > 0. (2)

The convergence of this algorithm to a desired limit is usually established by first estab-
lishing separately that with probability one,

sup I X(n) 1< c~, y ~ a (n) M (n) < e~. (3)
n n

Given these, one way to analyse its asymptotic behaviour is by showing that it asymptoti-
cally tracks the ordinary differential equation (ODE) given by

it(t) = h(x(t)).

Assume h to be Lipschitz with linear growth, ensuring that this ODE has a unique solution
for any initial condition, defined for all t > 0.Suppose this ODE has a globally asymp-
totically stable attractor J. Then by converse Liapunov theorem (see, e.g., Yoshizawa
1966) there exists a continuously differentiable V : R d --+ R + satisfying V(x) --+ oo
as Ilxll --+ e~ and VV(x) • h(x) < 0 for x ¢(J. Now, given T, 8 > 0, call a bounded
measurable function y(.)" R + ~ R d a (T, 8)-perturbation of this ODE if there exist
0 = To < TI < T2 < . . . Ti ~ oo, such that Tj+I > Tj + T and there exist solutions x J(.)
of the ODE on each interval [Tj', Tj+1] such that

sup]lxJ(t) - y(t)ll < 8.
t E [T j , T j + I]

Then one has:

Lemma 1 (Hirsch 1989). For every E > 0, T > O, there exists a 8o > 0 such that for any
S E (0, 8o), every (T,8)-perturbation of the ODE converges to the E-neighbourhood of J.

The idea of the proof is" The Liapunov function V must decrease by a minimum positive
quantity along every, xJ (.) that does not intersect the E-neighbourhood of J and therefore
along the corresponding patch of y (.). This can happen for at most finitely many consecutive
j 's, so y (-) must eventually intersect this neighbourhood. Analogous considerations show
that it cannot move away too much once it has done so. (See the appendix of Borkar 1996
for details.)

The convergence analysis of the stochastic approximation algorithm now hinges on the
following 'time-scaling' argument: Let t(0) = 0, t(n) = ~nm-=loa(m), and pick m(n)
according to: m(0) --- 0, m(n) = min{t(k) I t(k) > t(m(n)) + T}. Set Tj = t (m(j)) ,

Actor-critic algorithm as a stochastic approximation 533

j > 0. Define y(t), t > 0, by: y(t(m)) = X(m), m > 0, with linear interpolation
on [t(m), t(m + 1)], m > 0. Let x J(.) be the solution of the ODE on [Tj, Tj+I] with
x J (Tj) = y (Tj), j >_ 0. Then y (.) on [Tj, Tj + 1] may be viewed as an Euler approximation
of the ODE with a nonuniform but decreasing (with j) step-size, modulo an error term due
to {M(n)} that also becomes asymptotically negligible thanks to (3). The above lemma
then applies 'eventually' (i.e., for sufficiently large j) for each E > 0, ensuring X (n) --+ J
with probability one.

Now consider a 'two time-scale' variant of the basic algorithm:

X(n + 1) = X(n) + a(n)(F(X(n), Y(n)) + M(n + 1)),

Y(n + 1) -- Y(n) + b(n)(G(X(n), Y(n)) + M'(n + 1)),

where F, G are Lipschitz with linear growth and M(n), M/(n) are integrable random
variables uncorrelated with the past (i.e., satisfying (2)) and a(n) = o(b(n)). Suppose
with probability one, the following hold:

sup l X(n)]< oo, ~-~a(n)M(n) < oe,
n

n

sup[Y(n) I< cx~, y~a(n)Mt(n) < cx~.
n

n

Also suppose that for each x, the ODE,

p(t) = G(x, y(t)), (4)

has a unique globally asymptotically stable equilibrium point)~(x) where)~(-) is Lipschitz
continuous and the ODE,

Jc(t) = F(x(t) ,)~(x(t))), (5)

has a unique globally asymptotically stable attractor J.

Theorem 1. Withprobabili~ one, (X(n), Y(n)) ~ {(x, L(x)) Ix ~ J}.

The proof can be found in Borkar (1996) for the case when J is a singleton and extends
easily to the more general case. The idea is to mimic the above time scaling argument first
with b(n) (i.e., t (n) = ~n b(i)), so that the interpolated trajectories track the ODE i = 0

~(t) = 0, y(t) = G(x(t), y(t)),

and then again with a(n) (i.e., t(n) n i = ~i=0 a ()) , so that the interpolated {X(n)} tracks
(5). Lemma 1 is used in each case in the obvious manner. Thus the fast component {Y(n)}
sees the slow component {X(n)} as quasi-static, while the slow component sees the fast
component as 'essentially equilibrated'.

The distributed, asynchronous version of the algorithm (1) is as follows: If Xi (n) is the
ith component of the vector X (n), it is updated as per

Xi(n -q- 1) = Xi(n) + a(v(i, n))(h(Xl(n - rn(i, 1)) Xcl(n - rn(i, d)))

÷ m(n))I{ i c Yn}

where {Yn}, {rn(i, j)}, {m(n)} are as before.

534 V S Borkar and V R Konda

For this case, the rather intricate analysis of Borkar (1994) shows that a suitably inter-
polated version of {X (n)}, if bounded, tracks the ODE

1
Jc(t) = -dh(x(t)).

The scalar 1/d up front amounts to linear time scaling that does not alter the qualitative
behaviour. Thus X(n) ~ J with probability one as before. (It should be remarked that
the algorithm considered in Borkar 1994 is slightly more restrictive than (1) or (5), but the
same arguments go through nevertheless.)

4. Convergence analysis

In this section we shall adapt the ideas of the preceding section for the convergence analysis
of the actor--critic algorithm proposed in § 2. As already mentioned earlier, only a sketch
of the proofs will be given.

Define the map F : P (A) s × R s ~ R s by F(. ,-) = [El(-, .) Fs(., .)IT where
Fi(z, x) = ~ a z(i, a)k(i, a) + ot ~ j ~ a z(i, a)p(i, j , a)xj for x ---- [Xl Xs] r and
z = [[z(i, a)]], i E S, a ~ A with z(i, .) ~ 7:'(A) Vi. Also define the following norms on
R s

1

Ilxllp = Ix I p , p E (1, oo),
i = 1

Ilxllo~ =m.ax I xi I-
I

Then it is easily verified that for each fixed z, the following contraction condition holds:

liE(z, x) - E(z, Y)II~ --- o~llx - YlI~, x, y ~ R s.

The first iteration of the centralised algorithm can now be written as

Vn+l = Vn + b(n)(E(zrn, Vn) - Vn) + b(n)M(n), n > 0 (6)

for suitably defined M(n) which will satisfy (2) (with X(m) ~= Vm).

Lemma 2. With probability one, the iterates of the centralized or asynchronous algorithm
remain bounded.

Proof We consider the asynchronous case, as the centralized case is a special case thereof.
The iterates of {rrn} are bounded anyway because of the projection P onto a bounded set.
That Vn remain bounded with probability one follows exactly as in theorem 1, pp. 190-191,
of Tsitsiklis (1994). (In Tsitsiklis 1994, the algorithm slightly differs from (6) insofar as
E(rrn, Vn) would be replaced by F(Vn) for some P satisfying (say) l iE(x) - P (y) I I ~ ---
or IIx - y I1~. Nevertheless, exactly the same proof applies.) []

In turn, this implies that {M(n)}, which is defined in terms of Vn, remains bounded with
probability one. A direct calculation shows that in addition

~(n) ~= E[M(n)2/Vm, rim, rm(i, j) , rm(i, a, j) , ~m(i, a), Ym, Zm,

m < n , i , j E S , a E A]

Actor-critic algorithm as a stochastic approximation 535

remain bounded with probability one. Since ~ n b(n) 2 < oo, we then have ~ n b(n)2~P (n) 2
< oo with probability one. The property (2) renders the process

n

y ~ b (i) M (i) , n > O,
i=0

a martingale and the foregoing then ensures that its quadratic variation process (see Neveu
1975, for a definition) is convergent with probability one. Proposition VII-3-(c), pp. 149-
150 of Neveu (1975) then ensures that

OO

Z b(i)M(i)
i=0

is convergent, and hence finite with probability one. This, in conjunction with lemma 2
above, completes our verification of (3) for iteration (6).

These considerations will enable us to use the results of the preceding section. Prior
to doing so, we look at the expected ODE limits. The first one to be considered is the
counterpart of (4) in our set-up, which is

~(t) = F(:r, x(t)) - x(t) (7)

for F as above and a fixed rr c 79(A) s.

Lemma 3. Equation (7) has a unique globally asymptotically stable equilibrium point ~"rr
given by

~"zr(i) = E olmk(Xm, Zm) / X 0 = i ,
L m=O

the expectation being with respect to the stationary randomised policy Jr.

Proof. Standard contraction mapping arguments show that F(Tr, .) has a unique fixed point
and usual dynamic programming type arguments show that Vrr defined above must be it.
Now for p ~ (1, cx~), explicit differentiation leads to

d
~t [l x (t) - ~"rrl[p = I [x (t) - ~"7rlllp-p(-llx(t) - Qn lip

1 s
+ - ~--~.(xi(t) - Vrr(i))P-l(Fi(rr, x(t)) - Fi(:rr, f/rt))

S ~--1--

_< -IIx(t) - f',~ lip + IIf(rr, x(t)) - F(Jr, V,~)llp

where the inequality follows from an application of Htlder's inequality. Let p ~ oo.
Using continuity of p ~ IIx lip on [1, oo] and the contraction property of F(rr,-) under
the II • lion-norm, we have

d
d--~-IIx(t) - f',~ Iloo _< - (1 - ~)llx(t) - f',~ IIo~,

which implies the claim by standard arguments. []

536 V S Borkar and V R Konda

Note that since f'Jr is characterized by the linear system of equations F(re, 17'rr) = Vrr,
it depends smoothly on the coefficients thereof, hence on re. In particular, the map is
Lipschitz on T'(A) s.

Define a vector field G(.) on 7:'(A) s by:G(.) = [[Gia(')]] for i 6 S, a 6 A, where

Gia(re) = zr(i' a) (Vjr(i) - k(i 'a) - et ff-~P(i' j ' a) Vjr(J))

The second ODE (the counterpart of (5)) that we consider is

it(t) = G(re(t)). (8)

It is easy to verify that this ODE will always remain in 7:'(A) s if rr(0) is. Furthermore,
it will converge to equilibrium points, the latter being the set of those re ~ 7'(A) s that
satisfy: for each (i, a), either re(i, a) = 0 or k(i, a) + ot ~ j p(i, j, a)V~r(j) = VTr(i). A
little thought shows that the stable equilibrium points are those for which, for each (i, a),
either re(i, a) = 0 or

V~r(i) = min (k(i ,a) + ot y~p (i , j ,a)V~r(j)) J

Since not all re(i, a) can be zero for a given i, the above equality holds for all/ .Hence the
only stable equilibrium points are the re for which Vrr equals V. These are precisely the
optimal stationary randomised policies.

Consider the centralized algorithm.

Theorem 2. With probability one, the centralized algorithm converges to {(V, re) I re is
an optimal stationary randomised policy}.

Proof We can adopt the 'two-time' scale results of the preceding section with one differ-
ence. The difference here is the presence of the projection operator P in the algorithm.
This, however, is a standard feature of many stochastic approximation algorithms and the
theory thereof is well-understood; see, e.g., Kushner & Clark (1978). As in the theorem
5.3.1, p. 191, of Kushner & Clark, we can conclude that the limiting ODE tracked by a
suitably interpolated version of {ren } (and hence by {ren } itself) is given by the R s × (r- 1)_
dimensional ODE

it(t) = P(G(re(t))),

where Gia(re) = Gia([yr[1, .]il - ~b#a0 re(i, b)izr(2, a)i l --~b:/:ao re(2, b) ! . . , ire(s, a)!

1 - ~b¢a0 re(s, b)]), j 6 S, and/5(h(.)), for a vector field h(-) on T'(A) s is defined by

#(h(y)) = lim P(y + h(y)6) - P(y)
0<8~0 3

If the limit is non-unique, one considers the set of all limit points and treats the above as
a differential inclusion rather than an ODE. Fortunately for us, /5(~(re)) is well-defined
and in fact equals G(re), as can be easily verified. Thus the limiting ODE is

Actor-critic algorithm as a stochastic approximation 537

fr = G(Jr(t)).

Wenow augment 7r (t) by adjoining s additional components zr(i, a0) = 1 - ~ a rr(i, a), i
S. Denote the enlarged vector by 7r(t) again by abuse of notation. It is easy to verify that.
thus redefined, 7r(.) satisfies (8). The convergence for the two time scale stochastic algo-
rithms can now be invoked to claim that with probability one, {Zrn } converges to the set of
equilibrium points of (8). The final step is to show that it will in fact converge to the set of
stable equilibrium points of (8) with probability one (Pemantle (1990), see also Brandibre
& Duflo (1996)). To show this, all we need is that the set of points that get attracted to an
unstable equilibrium point have zero probability. It is easy to see that Lebesgue measure of
the stable manifold of an unstable equilibrium point is zero. Thus it is enough if the noise
~b (n) has positive density with respect to Lebesgue measure in a shrinking neighbourhood
of the origin. The claim follows. []

Theorem 3. The claims of theorem 2 also hold for the decentralized algorithm under
additional hypotheses stipulated in § 3.

This follows simply by combining the foregoing with the scheme of Borkar (1994). This
completes our convergence analysis of the algorithm.

5. Approximation issues

As mentioned in the introduction, in many applications the 'curse of dimensionality' forces
one to interface the above and other simulation-based algorithms with an approximation
scheme. Here we sketch a scheme based on state aggregation, adapted from Tsitsiklis
& Van Roy (1994) where it is proposed as a 'look-up table scheme' in the context of
Q-learning.

The idea is to partition the state space S into disjoint nonempty subsets Sl, $2 Sm,
each identified as an aggregated state. For each j , let ¢~j(.) be a probability vector on Sj
with jrj(i) > O, Vi E Sj. The centralized version of the algorithm runs as follows: At

n each n, generate tor each j , 1 < j < m, random variables (X~, ~ , Oja, a ~ A) with law

P(X~ = ij,~; =kj , O)na = Xaj, a C A, j = 1,2 m)

m

= H flj(ij)q(ij, kj, ~On(j)) 1-I p(ij, Xaj, a)
j=l acA

independently of the past, where ~On (j) = :rn (j , .) . Define 0)ha 6 {1, 2 m} by fTja = k
if ~/j?a 6 Sk. The iteration at time n is:/or each j , 1 _< j < m,

Vn+] (j) = (1 - b(n)) Vn(j) + b(n)(~:(X~, qgn(j)) + ~ Vn(~j)),

~n+l (J)=P(f rn (j)+a(n) (Z Vn(j)-[~(X~,a)
\a~A\{ao}

-otVn(~ja))Trn(j,a)eo+dP(n))),

538 V S Borkar and V R Konda

7rn+l (j , a0) = 1 - ~ 21"n+ 1 (j, a),
a #ao

where P is the projection onto the appropriate r-dimensional simplex.
An analysis similar to the foregoing shows that with probability one, these iterates

converge to (V*(.), ~r*(-, .)), where f o r j ~ {1, 2 m},

I m 1 V * (j) = r n j n ~-~ j6j(i)[k(i,a) + ot y~ V(l) y~ p(i,l,a)]
icSj l=1 xESI

and support (rr*(j, .)) C arg min of the rhs above. For error estimates for such schemes,
see Tsitsiklis & Van Roy (1994)

A distributed version of this approximate scheme along the lines of the foregoing can
also be analysed accordingly.

6. Simulation experiments

To demonstrate the convergence of the proposed algorithm we took two examples. The
MDPs of these two examples are similar to those used to model admission control into
an M/M/1 queue and routing to parallel M/M/1 queues respectively (Walrand 1988). In
both these examples, in any iteration, only one component of V and one component of
Jr are updated. The probability of update of a component in an iteration is equal for all
components and is independent of everything else. Since Jrn (i, a) cannot change once it
becomes zero, a small noise is added whenever it is sufficiently close to zero. The determin-
istic value iteration was used to find out optimal value function and policy. The algorithm
was started with value function being identical to zero, and with all the randomised policy
probabilities equal. The examples are described below.The notation used here is the one
introduced in § 2. Interprocessor communication is assumed to be instantaneous (i.e., no
delays).

6.1 Example 1

S = {0, 1 N},

A = {0, 1},

p(i,j ,a) = o r j = i anda = 1,

k, i f j = m a x (/ - 1,0),

k(i, a) = I i'
i f a 0,

i+c, i f a = l .

For the purpose of simulation we took:
2

N 10, a(n) ({ n = = Li-ff6J + 1}In)7
k = 0.65,
c = 10, b(n) = {[1--~J + t}/n,

= 0.99.

i f j < m a x (j - l , 0) o r j > i + l ,
if j = min(i + 1, N) and a = 0,

Actor-critic algorithm as a stochastic approximation 539

The optimal value function and policy were:

V=[669.0261 679.4227 694.0252 711.0231 730.3492 751.9383

775.7268 801.6532 820.9869 831.7235 836.4438],

7r(., 0) --- [1 1 0 0 0 0 0 0 1 1 1],

zr(i, 1) = 1 - re(i, 0) i E S .

After 2 × 10 6 iterations the result of our algorithm was

V=[663 .2563 673.3967 687.6990 708.0571 725.9087 748.0945

775.7268 796.7382 820.2483 830.5291 835.0053],

~(. , 0) --- [1 0.9986 0 0 0 0 0 0 0.9871 1 0.9955],

~r(i, 1)---1 -£ r (i ,O) i ~ S.

6.2 Example 2

S = {(i, j) ,

A = {0, 1},

0 < i < N , O < j < N } ,

p((i, j) , (k, 1), a) =-

#1,

1 - - Z - - l Z l ,
O,

i fk = min(i + 1, N) and j = l
and a = 0

or k = i and l = min(j + 1, N)
and a = 1,

if k = max(i - 1, 0) and I = j ,
i fk = i and l = max(j - 1,0),
otherwise,

k((i, j) , a) = Cl i + c2j.

For the purpose of simulation we took:

2
N----- 10, a(n) ({ n = L]-~J + 1]/n)7
Z=0.65, b(n) 0.1({ n = L ~ J + 1}/n)

Cl= 10, c2 = 15,
c~= 0.99, ~ = 0.5,

l =0 .3 , #2 = 0.2.

The optimal value function and policy were:

[[V(i, j)] l = 103 x

-3.3602 3.4448 3.5978 3.8137 4.0899
3.4281 3.5179 3.6710 3.8863 4.1618
3.5277 3.6183 3.7696 3.9833 4.2578
3.6380 3.7171 3.8643 4.0761 4.3496
3.7172 3.7922 3.9370 4.1474 4.4201
3.7590 3.8328 3.9766 4.1864 4.4588

4.2539-
4.3018
4.3875
4.4937
4.6036
4.7032

540 V S Borkar and V R Konda

[[yr((i, j) , 0)]] =

"1.0000 1.0000 1.0000
0 1.0000 1.0000
0 1.0000 1.0000

0 to 1 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

After 10 7 iterations the result of our algorithm was

[[V(i, j)]] = 10 3 x

[[~((i, j) , 0)]1 =

-3.3715 3.4610 3.6047
3.4399 3.5317 3.6813
3.5316 3.6327 3.7757
3.6365 3.7207 3.8772
3.7219 3.8000 3.9480
3.7650 3.8431 3.9849

-1.0000 0.9861 1.0000
0.0000 1.0000 0.9900
0.0000 0.9997 0.9910
0.0000 1.0000 1.0000
0.9975 0.9998 0.9884
1.0000 1.0000 1.0000

Note that the convergence is slow, the price we pay for not
the transition mechanism as well as for asynchronism.

1.0000 1.0000 0
1.0000 1.0000 0
1.0000 1.0000 0
1.0000 1.0000 0
1.0000 1.0000 0
1.0000 1.0000 0 to 1

3.8221 4.1100 4.26847
3.9045 4.1760 4.3166
3.9971 4.2682 4.3978
4.0869 4.3490 4.4987
4.1499 4.4253 4.6193
4.1919 4.4675 4.7109

1.0000 0.9900 0.0000-
1.0000 0.9844 0.0000
0.9977 0.9994 0.0000
1.0000 0.9977 0.0000
0.9999 0.9999 0.0000
0.9998 1.0000 0.0000

using prior information about

7. F u r t h e r d i r e c t i o n s

We conclude by listing some promising research directions.

Average cost control: In many problems such as control of communication networks
where quasi-equilibrium behaviour is desired, long-run average cost is preferred to dis-
counted cost. It would be useful to extend the algorithm to the average cost setup, possibly
using the techniques developed in Abounadi et al (1996a,b) for Q-learning.

Approximation based on compact representations: In addition to the approximation
scheme proposed in § 5 above, Tsitsiklis & Van Roy (1996) also consider another scheme
based on compact representations in the context of Q-learning. The idea is to directly ap-
proximate V(.) by a function belonging to a prescribed parameterized family and update
the parameter in question rather than updating V(.) directly. In the actor-critic scheme,
however, there is an additional iteration for Zrn (., .). One can conceivably write a function
approximation scheme for 7r (., .) using a parameterized family (such as a neural network
- see, e.g., Santharam & Sastry 1997) and update the probabilities recursively. These
possibilities need to be explored.

Actor-critic algorithm as a stochastic approximation 541

Feedback implementations: The algorithm we consider above is 'off-line', i.e., is based
on a simulation run rather than an actual system being controlled in real time. One can
convert it into an on-line (or feedback) adaptive control algorithm for a controlled Markov
chain Xn, n > O, by setting Yn = {Xn} Yn and letting rcn(Xn, ") be the actual randomised
control law being implemented. A natural question then is whether the scheme is asymptot-
ically optimal. (For the appropriate concept of 'asymptotically optimal' in the discounted
framework, see Sch~il 1987). Recall that the convergence of the algorithm to desired limits
requires that all state-action pairs be tried sufficiently often. For states, this may happen
automatically if suitable irreducibility conditions are met, even in the feedback case. But
if the Zrn (., -) converge rapidly (to the desired limit or otherwise) all the state-action pairs
may not get updated frequently enough. A simple way out of this conflict is to modify the
feedback law to a convex combination of ~0n (') and the uniform distribution on A so as to
ensure a minimum probability e > 0 of each a 6 A being picked. For E > 0 sufficiently
small, the scheme will be nearly optimal within a/prescribed tolerance. However, too small
an E may slow down convergence. Thus there is a trade-off involved. A potentially promis-
ing scheme is to start with a large e 6 (0, 1/r] (to ensure all state-action pairs being tried
frequently) and then reduce it 'slowly' enough to ensure optimality. (Recall the simulated
annealing algorithm for global optimization.) It is, however, a nontrivial task to capture
the optimal rate of decrease of E in a precise manner. These issues need further study. One
should also add that presence of interprocessor communication delays causes nontrivial
complications in the feedback case.

Rate of convergence: We have not provided any theoretical analysis of convergence
rate. Since a stochastic approximation algorithm eventually tracks the associated ODE
in a precise sense outlined in § 3, the convergence of its interpolated version to a given
neighbourhood of the asymptotically stable limit of the ODE (assuming one exists) will
closely mimic that of the ODE itself. The rate of the latter could be gauged from the
Liapunov function approach. One must, however, invert the time-scaling n ~ t (n) to get
the convergence behaviour of the original algorithm.

Even this may be worthless if 'eventually' is in too distant a future. There are other
problems too: The ODE captures the averaging effect of the algorithm akin to the law of
large numbers. But there can be fluctuations around the average behaviour of the 'central
limit theorem' variety. For a two time scale algorithm, the time scales should be sepa-
rated enough so that the slow one does not get swamped by the fluctuations of the fast
one.

A related issue is the generally high variance of the stochastic approximation algorithms.
An additional averaging can reduce this, see, e.g., Polyak (1990). This and other issues
pertaining to improving the performance of the algorithm need careful study. To cut a long
story short, the newly opened field of simulation-based algorithms for control offers many

challenges both in theory and practice.

The work of the first author was supported by a Homi Bhabha Fellowship.

542 V S Borkar and V R Konda

References

Abounadi J, Bertsekas D, Borkar V 1996a ODE analysis of stochastic algorithms involving sup-
norm non-expansive maps (preprint)

Abounadi J, Bertsekas D, Borkar V 1996b Q-learning algorithms for average cost problems
(preprint)

Barto A, Sutton R, Anderson C 1983 Neuron-like elements that can solve difficult learning control
problems. IEEE Trans. Syst. Man Cybern. 13:835-846

Barto A, Bradtke S, Singh S 1995 Learning to act using real-time dynamic programming. Art/f.
Intell. (Special Issue on Computational Theories of lnteraction and Agency) 72:81-138

Benveniste A, Metivier M, Priouret P 1990 Adaptive algorithms and stochastic approximations
(Berlin-Heidelberg: Springer-Verlag)

Bertsekas D, Tsitsiklis J 1989 Parallel and distributed computation: Numerical methods (Engle-
wood Cliffs, NJ: Prentice Hall)

Borkar V 1994 Asynchronous stochastic approximation. SIAM J. Control Optimization
(to appear)

Borkar V 1996 Stochastic approximation with two time scales. Syst. Control Lett. 29:291-294
Brandibre O, Duflo M 1996 Les algorithmes stochastiques contournent-ils les pibges? Ann. Inst.

Henri Poincark 32:395427
Chazan D, Miranker W 1969 Chaotic oscillations Linear Algebra Appl. 2:199-222
Hirsch M 1989 Convergent activation dynamics in continuous time networks. Neural Networks

2:331-349
Keerthi S S, Ravindran B 1994 A tutorial survey of reinforcement learning. Sddhana 19:

851-889
Konda V 1996 Learning algorithms for Markov decision processes. Master's thesis, Dept. of

Computer Science and Automation, Indian Institute of Science, Bangalore
Kushner H, Clark D 1978 Stochastic approximation for constrained and unconstrained systems

(New York: Springer-Verlag)
Neveu J 1975 Discrete parameter martingales (Amsterdam: North Holland)
Pemantle R 1990 Non-convergence to unstable points in urn models and stochastic approxima-

tions. Ann. Probab. 18:698-712
Polyak B 1990 New method of stochastic approximation type. Autom. Remote Control 51:

937-946
Puterman M 1994 Markov decision processes (New York: John Wiley)
Santharam G, Sastry P S 1997 A reinforcement learning neural network for adaptive control of

Markov chains. IEEE Trans. Syst. Man Cybern. 27:588~500
Sch~il M 1987 Estimation and control of discounted dynamic programming. Stochastics 20:

51-71
Schweitzer P, Seidman A 1985 Generalized polynomial approximations in Markovian decision

processes. J. Math. Anal Appl. 110:568-582
Tsitsiklis J 1994 Asynchronous stochastic approximation and Q-learning. Mach. Learning 16:

185-202
Tsitsiklis J, Van Roy B 1996 Feature-based methods for large scale dynamic programming. Mach.

Learning 22:59-94
Walrand J 1988 Introduction to queueing networks (Englewood Cliffs, NJ: Prentice Hall)
Watkins C 1989 Learning from delayed rewards. Ph D thesis, Cambridge University, Cambridge,

England
Watkins C, Dayan P 1992 Q-learning. Mach. Learning 8:279-292

Actor-critic algorithm as a stochastic approximation 543

Williams R, Baird L III 1990 A mathematical analysis of actor-critic architectures lor learning
optimal controls through incremental dynamic programming. In Proc. Sixth Yale Workshop on
Adaptive and Learning Systems, New Haven, CT, pp 96-101

Yoshizawa T 1966 Stabili~ theol, by Liapunov's second method (Tokyo: Mathematical Society
of Japan)

