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Abstract

Running is a complex dynamic task which places strict requirements on both the physical components and software
control systems of a robot. This report explores some of those requirements and in particular explores how a variable
compliance actuation system can satisfy many of them. We present the mechanical design and software control of
such an actuator system. We analyze its performance through simulation and benchtop experimental validation of a
prototype version. In conclusion we demonstrate, through simulation, the application of our prototype actuator to the
problem of biped running.
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Figure 1: An Actuator with Mechanically Adjustable Series Compliance (AMASC)

1 Introduction

A robot designed specifically for autonomous legged locomotion should be capable of highly dynamic running, jump-
ing, and stumble recovery, and should achieve these capabilities while being energetically efficient. In order to ac-
complish these goals, we believe a leg spring of sufficient capacity to store the energy of a running gait is virtually a
necessity. Furthermore, we believe variable leg spring stiffness provides an important means for effective gait control.

One could conceive of two extremes of actuator design that would allow the desired capabilities. The first extreme
utilizes high-bandwidth actuators, with all dynamic properties described by software control policies. The second
extreme uses a carefully designed mechanical system with tuned natural dynamics that require no software control.
The first method is flexible, although actuators with sufficiently high bandwidth and power capacity may not exist
for the locomotion task, limiting behavior to low-frequency situations. The second method is quite inflexible, and
requires extensive knowledge of the desired behavior before construction. However, there are no bandwidth limits
preventing the mechanism from behaving as intended at high frequencies. In addition, this method is potentially very
energy-efficient, as it takes full advantage of natural dynamics in achieving its goal. This method is task-specific, with
natural dynamics that are applicable in only a small number of situations. Resulting designs are unlikely to be able to
perform the breadth of tasks required for running.

Our design, shown in Figures 1 and 5, represents a carefully chosen balance between the two design extremes.
The natural dynamics of the system are engineered and utilized to where possible, while the software control system
adds energy that is lost in the mechanism, and creates behaviors that are not inherent in the natural dynamics. This
Actuator with Mechanically Adjustable Series Compliance (AMASC) exhibits natural dynamics that are similar to
those of animals, and is a mechanical instantiation of a previously developed mathematical model of running, shown
in Figure 2, the spring loaded inverted pendulum (SLIP) [1, 2, 3].

2 Background

Most research papers that analyze the mechanics of running base this analysis on some form of the SLIP model,
shown in Figure 2. This model can be used to generate the motion of the center of mass of a running animal [4, 5]
or a running robot. The basic definition of running [6] is linked to the SLIP idea – energy is transferred from kinetic
and gravitational energy in the flight phase to spring energy in the stance phase, and vice versa. The natural physical
instantiation of the SLIP model utilizes passive leg springs for this energy storage.
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Figure 2: The Spring Loaded Inverted Pendulum Model can control a running gait by manipulation of three variables:
a spring constantK, spring rest lengthx, and touchdown angleθ. Properties of the ground also affect the dynamics of
the SLIP model.

2.1 Compliance and Running

Physical series compliance is virtually necessary to achieve a successful running gait. Simulating compliance using
a rigid actuator such as an electric gearmotor is not feasible for three reasons: bandwidth limitations, power output
limitations, and energetic efficiency. The bandwidth limitation of an electric motor is due, in large part, to the high
reflected inertia linked rigidly to the robot leg. Electric motors must be significantly geared to provide useful torque
for robotics applications, and the reflected inertia of the rotor is amplified by the square of the gear reduction. The
reflected inertia can be larger than the inertia of the entire robot, making a correct dynamic response to impacts
impossible. Even with instantaneous sensing and computation, the torque required to accelerate the motor instantly to
match the ground speed during an unexpected impact is far greater than can be achieved with an electric motor.

Passive series springs can alleviate many of the problems inherent in gearmotors. They can be used for energy stor-
age, power transmission, or a combination of the two, as illustrated in Figure 3. The power density of a physical spring
is arbitrarily high, depending on its stiffness. Motors and batteries have relatively low power density in comparison,
but have a much higher work capacity per unit mass, making a compelling argument for combining the two systems
in a series combination. The spring can absorb and output large amounts of energy in short bursts and at high power,
while the motor can add and remove energy as needed, without handling all of the power transferred in a running gait.

Springs are particularly useful in rhythmic systems, because energy can be stored and released much more ef-
ficiently through a spring than if it were passed through the motor, transmission, and power electronics with each
transfer. Not only do physical springs reduce wasted energy with each stride, but they also significantly reduce the
necessary size and weight of many of the motor and transmission components. Minimizing weight reduces the total
amount of energy that needs to be transferred with each stride. Animals store mechanical spring energy during a
running gait, most likely for these reasons and more [7, 8, 9, 10].

2.2 Physically Variable Compliance as a Method of Control

While physical compliance is virtually a necessity for successful running, varying the compliance provides a useful
tool for gait control. Animals have physically variable leg compliance (tunable natural dynamics), and vary it to
control running and hopping in certain situations [3, 4, 11, 12, 13, 14, 15, 16].

Leg stiffness is one of three terms available to the SLIP model for control of a running gait, along with hip
angle and spring set point. The normal steady-state motion of a SLIP-based running gait can be described by three
parameters, which will be influenced by the leg stiffness. For the mathematical analysis performed by Schwind and
Koditschek [1], leg length and angular velocity at bottom of stance along with the leg stiffness were chosen as the
three parameters. Control of forward speed, stance duration, and flight duration was demonstrated experimentally
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Figure 3: Most of the energy of a running gait can be stored and returned with each stride, with a properly sized and
tuned mechanical spring.

in [17]. Another choice might be leg stiffness, hopping height, and stride length; there are many possible 3-variable
parameterizations that could be considered. Because the SLIP model has only three terms available to control the three
parameters of a running gait, the absence of one term may limit the control choices, and certain disturbances to the
SLIP model running gait may not be controllable. For example, if a SLIP runs over terrain that varies in stiffness, the
leg stiffness must change or the running gait will be altered.

Global vertical stiffness (GVS) is a useful concept when discussing a running gait, and is calculated by considering
only the vertical excursion of the center of mass. The GVS is influenced by changes in leg stiffness[12], touchdown
angle, ground stiffness, and the number of legs on the ground at once. In observations of animal running, the GVS
increases with the square of the running speed [16, 3], implying that the GVS is a direct method of control for forward
running speed. Most research suggests that animals prefer to maintain leg stiffness over a range of running speeds
[3, 13, 18, 19], using other methods to change global vertical stiffness; however, they do change leg stiffness when
other methods are not available. For example, hopping or running on a surface of changing stiffness [4, 11, 13],
hopping in place with varying frequency [4, 11], or running at different speeds with constant stride length [18].

Previous successful running robots have physical compliance tuned for a hard laboratory floor, but do not attempt
to run on terrains of varying stiffness. Therefore, they do not require the ability to vary their leg stiffness to maintain a
tuned SLIP-model running gait. If one of these running robots unexpectedly began running on a soft ground surface,
the gait would be changed in a manner that the controller would be unable to rectify. This gait change may or may
not cause the robot to fall, depending on the severity of the change; but it would slow down or speed up the forward
speed, or change the hopping height, or change the stride length. For future robots intended to run over various ground
surfaces, stiffness variation will be a useful control parameter.

2.3 Actuator Design

Methods of actuation other than gearmotors have been used for legged locomotion. Hydraulic actuators have many
of the same limitations of gearmotors, and most arguments regarding gearmotors can also be applied to hydraulic
actuators. Pneumatic actuators are inherently springy, which has led to their successful use on several running and
hopping robots. However, pneumatic actuators are also inherently difficult to control, energetically lossy, and difficult
to power without an external compressor. Electrical actuation allows for much more precise control, and allows for
easier tether-free operation. For these reasons, we chose to use electric actuation, although the ideas presented in this
paper could be implemented with some other form of actuation.

Researchers at MIT developed a Series Elastic Actuator (SEA) that used both electric and hydraulic actuation[20].
The primary differences between the SEA and the AMASC are that the mechanical springs are dramatically different
in size, and the AMASC can vary its stiffness while the SEA cannot. The SEA was developed as a force actuator for
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robot arms, and the design was later refined and used on several walking robots [21, 22, 23, 24].

2.4 Manipulation

Although the AMASC is being developed for legged locomotion, the mechanism is also applicable to manipulation
tasks. For example, variable stiffness is useful for relatively high-performance, safe robot-human interaction[25].
While the robot is moving slowly, the arm can have very stiff joints for improved positional accuracy, and a collision
will result in a relatively low impact force. When the arm moves faster, the stiffness of the transmission must decrease,
so the inertia of the motor is disconnected from the arm, and an arm impact will still result in a relatively low impact
force.

Mechanically adjustable series compliance may also be useful for control stability. Several researchers have shown
that certain types of physical compliance is important for force control [26, 27, 28]; it is intuitive that a very low-
stiffness joint is more capable of applying a constant force in the face of position disturbances than a rigid joint. For
different force control tasks, different joint stiffnesses may be desirable. Humans utilize variable joint stiffness for
reaching motions[29]. When holding the hand at a particular position, humans exhibit less tremor with low joint stiff-
ness, indicating better control stability; however, an outside force disturbance is more likely to displace the hand[30].
Thus, joint stiffness can be varied in a trade-off between disturbance rejection and control stability.

3 The AMASC Design

The natural dynamics of a system are an inseparable part of its behavior. The mechanical design, which determines the
natural dynamics of a system, is thus an essential part of the overall control system design. The actuator presented here
is an integrated mechanism and software controller, with mechanical design choices made to closely match a simple
mechanical model. The software controller is based on the same simple mechanical model, safely ignoring most of
the complexities of the actual mechanism. This model is illustrated in Figure 4, in two different forms: one rotational,
one linear.

The rotational model is physically similar to the prototype AMASC, while the linear model is a simpler form
that still captures the important properties of the system. In both models, the dynamics of the system controlling the
pretension,x3, are ignored. The pretension is entirely unrepresented in the linear model, and the spring stiffness,Keff ,
is assumed to simply be a programmable value. Throughout the remainder of this paper we will use the notational
conventions of Table 1.

The AMASC is essentially a single compliant joint, most closely resembling a knee, endowed with engineered
natural dynamics. There are two degrees of freedom, and two corresponding motors. One motor controls the spring
pretension. As shown in Figure 4(a), there are two identical opposing springs, much like antagonistic muscles in
animals. The pretension,x3, stretches both springs, which is analogous to muscle co-contraction in animals. The
knee joint does not move, but its rotational stiffness increases with the pretension, allowing the actuator to tune the
stiffness aspect of its natural dynamics. The other motor controls the spring rest position (θ1 in Figure 4(a) andx1

in Figure 4(b)), which is used as the primary energy source and controls any motions not described by the system’s
natural dynamics. These two motor-controlled parameters, along with the leg angle at touchdown, are the parameters
necessary to control SLIP model running.

3.1 Mechanical Design

Many of the mechanism design challenges are common ones; for example, minimizing friction, backlash, mass, and
inertia. Several specific choices were made that influence each of these attributes, such as the location and type
of speed reduction, choice of materials, and type of motor. Minimizing mass was a concern throughout the design
process, because the AMASC is intended as a prototype leg for a bipedal robot with approximately 1 meter leg length
and 30kg total mass. Of this 30kg, 20kg are reserved for motors, batteries, and computing. This allotment leaves only
10kg for the entire framework and mechanism, including springs and power transmission. To minimize weight, all
joints contain thin-section bearings, which are very light for a given load rating. All parts are machined aluminum,
with the main structural members (analogous to the femur) made of thin-wall aluminum tube. The mass of this actuator
prototype is approximately 4kg, and it is nearly 50% oversized.
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Figure 4: Mechanical models of the physical actuator

variable description

θ1 Motor position
θ2 leg position
x1 θ1 · r1, Motor position in cable length
x2 θ2 · r2, Leg position in cable length
J1 motor inertia
J2 leg inertia
x3 pretension

∆x linear leg deflection,θ2r2 − θ1r1

z deflection of the cable after the pulley function:
(x3 + ∆x) or (x3 −∆x)

Feff (x3, ∆x) knee force,τeff /r2

G(z) spiral pulleys; spring position as a function ofz
y deflection of the spring, before the pulleys

Fy(y) force function of the spring
Fz(z) force on the cable after the pulley function

Table 1: Definitions of symbols describing the AMASC.
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Figure 5: Cable routing diagram of the AMASC.J1 andJ2 are pinned in place but can rotate freely; the spiral pulleys
are also pinned in place but free to rotate. The remaining four pulleys are floating, and can move sideways as well as
rotate. Refer to Table 1 for notation descriptions.

In order to create a low-friction, zero-backlash system, the AMASC utilizes a high-speed cable drive [31]. There
is some stretch in the cable transmission, which adds series compliance to the system, and is incorporated into the
effective spring constant of our model. The cables may flex in two planes and can easily be routed around joints,
allowing the motors to be located remotely. They are not constrained to a single degree of freedom, like standard belts
or gears. Figure 5 shows the cable routing, illustrating the role of each motor in the tension of the two springs. Also
shown is the fact that a displacement of the leg (θ2 or x2) results in displacement of the motor (θ1 or x1), displacement
of the springs, or some combination of the two. There is a speed reduction between the first and second pulleys not
shown on the diagram; it is implemented using a combination of a block-and-tackle pulley mechanism and a difference
in radii betweenr1 andr2. The speed reduction is physically located near the knee joint, but diagrammatically located
near the motor,θ1. In all of our representations, the speed reduction is shown solely as a difference betweenr1 andr2.
All friction related to the speed reduction is applied toθ1 and corresponds toB1. The inertia of the speed reduction is
added to the inertia of the motor, and corresponds toJ1.

A speed reducer amplifies the motor inertia by the square of the speed reduction; this amplification appears in
the relatively large values ofM1. The transmission betweenθ2 and the springs has very low friction, and no speed
reduction. Because the high-frequency behavior of the system is generally handled by the springs, low friction and
inertia are most important in this part of the AMASC. The low-frequency behaviors of the system are handled by the
motor, and thus friction and inertia can be overcome by relatively low-bandwidth software compensation.

Perhaps the most important aspect of the AMASC is the physically variable series compliance. As stated in
Section 2, physical compliance is crucial for a running gait, while varying the compliance is a useful control strategy.
Our physical compliance resides in unidirectional fiberglass plates, which have a relatively high work capacity on the
order of 1000 J/kg. Varying the compliance of the AMASC is achieved in much the same way as in animals, with
co-contraction of opposing nonlinear springs.

In the case of animals, the nonlinear spring is the muscle/tendon combination; in the case of the AMASC, the
nonlinear spring is formed by a fiberglass plate in series with a set of spiral pulleys. The reduction ratio of the pulleys
varies proportionally with the fiberglass spring deflection, to create some output spring function, such asFz(z) = Kz2.
Placing two such spring functions in direct opposition results in a single effective spring force function,Feff . The
resulting effective spring force is calculated by substituting(x3 + ∆x) and(x3 −∆x) for z, wherex3 represents the
pretension on the two nonlinear springs and∆x represents the deflection from their rest position (x2−x1). Combining
the two forces results in

Feff (x3, ∆x) = Fz(x3 + ∆x)− Fz(x3 −∆x). (1)
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variable value description

C 0.1m center distance between axles
r 0.05m radius of the round pulley
k 0.2446489 affects the “steepness” of the spiral
A 0.017696 scales the overall size of the spiral
φ0 −10.2078 position of pulley whenz = 0

Table 2: Measurements of the logarithmic spiral pulleys.

For the example quadratic springs,Fz(z) = Kz2:

Feff = K(x3 + (x2 − x1))2 −K(x3 − (x2 − x1))2

Feff = K(x2
3 − 2x3x1 + 2x3x2 + x2

1 − 2x1x2 + x2
2)−

K(x2
3 + 2x3x1 − 2x3x2 + x2

1 − 2x1x2 + x2
2)

Feff = 4Kx3(x2 − x1)

In this manner, the stiffness of the resulting system can be changed by adjusting the pretension,x3. Notice that the
pretension affects the force as much as the displacement(x2−x1). The effective spring forceFeff is linear with respect
to displacement (in this specific case), but its stiffness is now adjustable. In practice, the rate at which this parameter
can be varied depends on the actuator and transmission used. Our prototype is intended for relatively slow changes at
low force, such as during the flight phase of a running gait.

The pulley function,G(z), is a design freedom and can be changed to impart a nearly arbitrary function to the
spring/pulley system,Fz(z). Logarithmic spiral pulleys were initially chosen because the spring function of the bend-
ing fiberglass plates was unknown, because the desired spring function was unknown, and because two logarithmic
spirals mesh correctly and provide a stiffening function [32]. Our logarithmic spiral pulleys are described by the
following equations:

R1 = Aekφ

R2 = C −Aekφ

Whereφ is the angle of rotation of the pulley,

φ(z) =
z

r
. (2)

These pulleys exhibit the velocity transfer function

dy

dz
=

dG

dz
(z) =

Aek z
r

C −Aek z
r
, (3)

and exhibit the position function

y = G(z) = r(φ0 − 1
k

ln (C −Aek z
r )). (4)

The choice of a logarithmic spiral was somewhat arbitrary. Before new pulleys can be designed, however, two
functions must be considered: the desired output force function,Fz(z), and the measured fiberglass spring force
functionFy(y). The desired spring force functionFz(z) can be described in terms of the pulley transmission function
y = G(z), wherez is the extension of the cable out of the pulley. We calculateFz(z) by computing the virtual work:

Fz(z)dz = Fy(y)dy

y = G(z), dy =
dG

dz
(z)dz

Fz(z)dz = Fy(G(z))
dG

dz
(z)dz

Fz(z) = Fy (G(z))
dG

dz
(z). (5)
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Figure 6: The logarithmic spiral pulleys used on the prototype AMASC

Given the desiredFz and the spring functionFy, we can solve Equation 5 for the pulley functionG(z). With this
pulley function, the relationship between angular velocities of two members,dG

dz (z), can be determined. Given the
center distanceC between the pulleys, the polar equations describing the spiral shape of both pulleys are:

R1 =
C dG

dz (z)
1 + dG

dz (z)
R2 = C −R1.

Even if the fiberglass springs have some unusual stiffness functionFy(y), the spiral pulley functionGz(z) can
account for it, and can create any odd output functionFeff . The following derivation shows thatFeff must be an odd
function for any arbitraryFz.

Let Fz(z) described by a Taylor series:

Fz(z) = a0 + a1z + a2z
2 + a3z

3 . . .

We can substitutex3 + ∆x in for z

Fz(x3 + ∆x) = a0 + a1(x3 + ∆x) + a2(x3 + ∆x)2 + a3(x3 + ∆x)3

This will give us a polynomial function in terms ofx3 and∆x:

Fz(x3 + ∆x) = F ′(x3, ∆x)

We can break this function,F ′, into the even and odd powers of∆x, F ′even andF ′odd :

F ′(x3, ∆x) = F ′even(x3, ∆x) + F ′odd(x3, ∆x)

Therefore, the spring force at the knee becomes

Feff = (F ′even(x3, ∆x) + F ′odd(x3,∆x))− (F ′even(x3,−∆x) + F ′odd(x3,−∆x)).
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Figure 7: The ideal case of the AMASC, with three parameters: spring rest length,x∗2, spring stiffness,K∗, and knee
joint damping,B∗.

And because

F ′even(x3,−∆x) = F ′even(x3,∆x)

F ′odd(x3,−∆x) = −F ′odd(x3, ∆x),

we can substitute forFz in Equation 1 and obtain the result:

Feff = F ′even(x3,∆x) + F ′odd(x3, ∆x)− F ′even(x3,∆x) + F ′odd(x3, ∆x)

Feff = 2F ′odd(x3, ∆x)

The fact thatFeff is necessarily odd indicates that the spring function is rotationally symmetric about the origin.
In other words, when deflecting the joint in one direction, the resulting force will be exactly opposite to the force
that results from deflecting the joint the same amount in the other direction. This result may not be interesting in the
context of legged locomotion, since most locomotion tasks will apply force in one direction only.

3.2 Control System Design

The control system is designed for the mechanical model shown in Figure 4, and is intended to accomplish two basic
tasks. The first task is to adjust the mechanism configuration so its physical properties match the commanded spring
stiffness. This adjustment is accomplished with a PID position controller and a spring-cancellation feed-forward torque
on the pretension motor. Because the specific position of this motor,x3, corresponds to a specific effective stiffness
Keff (x3), no further control is currently required.

The second task is to actively control the motor position,x1, so that the force applied by the leg spring,Fz(z),
matches the spring force that would be created by the ideal, correctly tuned system. This ideally tuned system is
shown in Figure 7, with desired leg stiffness,K∗, and desired set pointx∗2. When the physical stiffnessKeff matches
the desired stiffnessK∗, then the motor positionx1 will be commanded to match the ideal system’s desired set point
x∗2. WhenKeff does not matchK∗, thenx1 must move in some additional corrective trajectory.

The desired motor positionx1 is calculated by setting the force of the actual springs to match the spring force of
the ideal system:

Feff (∆x, x3)r2 +
B2

r2
ẋ2 = (x2 − x∗2)K

∗r2 +
B∗

2

r2
ẋ2. (6)

Assuming the dependence ofFeff on ∆x is linear (Feff = Keff (x3)∆x), we can solve this equation forx1 to
calculate the desired position,x∗1, and its derivative,̇x1
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x∗1 =
K∗

Keff
(x∗2 − x2)− B∗

2 −B2

Keff r2
2

ẋ2 + x2 (7)

ẋ∗1 = − K∗

Keff
ẋ2 − K∗

K2
eff

K̇eff (x∗2 − x2)− B∗ −B2

Keff r2
2

ẍ2

+
B∗ −B2

K2
eff r2

2

K̇eff ẋ2 + ẋ2 (8)

Note that when the mechanism matches the desired system (i.e.K∗ = Keff andB∗ = B2), the above equations
reduce tox∗1 = x∗2 andẋ∗1 = 0.

We then apply a PD controller onx1 to move it to the desired position, along with a feed-forward spring cancella-
tion force to hold it against the force applied by the springs:

Fcom = KP (x∗1 − x1) + KD(ẋ∗1 − ẋ1)− Feff (x3, ∆x). (9)

With the spring cancellation force, the PD control can adjustx1 as if it were an independent mass, without the at-
tached spring and associated dynamics. There are two limitations in this approach that introduce error. First, because
Feff is a function composed of the logarithmic spiral pulleys and the unknown fiberglass spring function, it is neces-
sarily an approximation. We used a linear approximation of the knee spring,Feff = Keff (x3)∆x, introducing error
between the calculated force and the applied force, most pronounced at the extremes of deflection and pretension. In
addition, when simulating a spring stiffness that is outside the physical range of the AMASC, the calculated location
x∗1 will only be correct to the accuracy of the approximation.

The second source of error comes from the bandwidth limitation onx1. When trying to simulate a stiffness at high
frequency, the inertia ofM1 will limit the acceleration ofx1, and the system will revert to the behavior of its natural
dynamics, instead of the desired behavior. However, because the stiffness of the AMASC is adjustable, this error can
only happen when the desired stiffness is outside the range of the mechanism, or when the mechanism is in the process
of adjusting to the correct stiffness.

4 Simulation, Results and Comparison

This section describes the methods and approaches used the characterize the physical properties of the AMASC and
to build an accurate simulation. After illustrating the similarity of the simulation to the real actuator, we demonstrate
a simulated running robot, and compare its performance using both ideal actuation, and our simulated AMASC.

4.1 Static Compliance Characterization

An accurate representation of the fiberglass springs and their interaction at the knee was required for correct simulation
and control. To gather data onFeff (shown in Figure 8), we applied a series of spring set point and pretension values,
and recorded the motor and leg positions and the force applied by the leg. We then applied several different curve-
fitting methods, to create a representation of the data in which applied force is a function of spring pretension and
spring set point.

As can be seen in Figure 10, the AMASC spring function becomes stiffer at increasing levels of pretension. The
spring function is not exactly linear in deflection, although this can be remedied through pulley design as discussed
in section Section 3.1. It is also apparent in Figure 10 that there is some hysteresis due to mechanical friction. This
friction increases with increasing tension (and higher bearing forces) in the system, as seen in Figure 11.

There are numerous methods that could be used to fit the available data, each with benefits and drawbacks. One of
the most basic methods is a Taylor polynomial. Although the deflection curve is clearly not linear, it is a relatively flat
curve; so we applied a fit that is linear in deflection and quadratic in pretension, resulting in a 3 term polynomial:

Feff (x3,∆x) = a0∆x + a1x3∆x + a2x
2
3∆x.

This fit allows us to easily calculate the pretension position for a desired stiffness, and as it is linear in deflection, we
can use the control equations described in Section 3.2, which assume a linear dependence ofFeff on ∆x. It provides
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Figure 8: 3D plot of spring function data
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Figure 9: Surface plot of one spring function curve fit, with data points shown as white dots
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Figure 11: Hysteresis in the knee due to friction, shown
as a function of pretension.

a reasonable fit of the data, although not as good as some other possible approaches. Figure 12(a) shows the absolute
error between this approximation and the actual data.

A large (14-term) polynomial in both deflection and pretension yielded a much better fit than the 3-term polyno-
mial, with lower error, as shown in Figure 12(b). Unfortunately, this function cannot be inverted in closed form to
solve forx3, and it is not linear in deflection for use in the control system equations.

One drawback to using the polynomial fit to characterizeKeff is that we are ignoring the fact that the pulleys are
a logarithmic spiral. This is a known function, and we are basically attempting to fit a polynomial to this known
function, which will introduce a certain amount of unnecessary error. In addition, we would like to know the spring
function of the physical springs,Fy(y), before the force is modified by the logarithmic pulleys. Knowing the spring
function of the physical springs will allow future pulley designs to compensate for undesirable properties ofFy and
create the desired spring functionFz. By mathematically separating the springs from the logarithmic spirals and then
applying a curve fit solely to the physical springs, our error is reduced, the polynomial is simplified, and we find that
the physical springs are very nearly linear.

The force data collected from the actuator measures knee stiffness,Feff , which is created by the two opposing
springs as described in Equation 1. The pulley functions are known, described in Equations 3 and 4.
SubstitutingdG(z)

dz into the equation forFz (Equation 5) results in

Fz(z) =
Aek z

r

C −Aek z
r
Fy(y).

If Fy(y) is represented as a Taylor series,

Fz(z) =
Aek z

r

C −Aek z
r

[
a0 + a1y + a2y

2 + a3y
3 . . .

]
,

andG(z) is substituted fory,

Fz(z) =

Aek z
r

C −Aek z
r

[
a0 + a1r(φ0 − 1

k
ln (C −Aek z

r )) + a2

(
r(φ0 − 1

k
ln (C −Aek z

r ))
)2

+ a3

(
r(φ0 − 1

k
ln (C −Aek z

r ))
)3

. . .

]
(10)

We now have an equation forFz in terms of a polynomial fit ofFy. We can substitute this result into Equation 1
to acquire an equation forFeff . To simplify this equation, we construct the following definitions:

H =
Aek

x3+∆x

r1

C −Aek
x3+∆x

r1
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(a) 3-term polynomial, linear in deflection

0

0.02

0.04

0.06

0.2

0.25

0.3
0

5

10

15

20

Spring Deflection (m)Pretension (m)

F
or

ce
 E

rr
or

 (
N

)

(b) Many-term polynomial
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(c) linearFy(y) passed through pulleys
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Figure 12: Plots of absolute error between data points and curve fits
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I = r1(φ0 − 1
k

ln (C −Aek
x3+∆x

r1 ))

J =
Aek

x3−∆x

r2

C −Aek
x3−∆x

r2

L = r2(φ0 − 1
k

ln (C −Aek
x3−∆x

r2 ))

By substituting these variables and Equation 10 into Equation 1, we arrive at the equation forFeff ,

Feff (x3, ∆x) = H(a0 + a1I + a2I
2 + a3I

3 + . . .)− J(a0 + a1L + a2L
2 + a3L

3 + . . .),

which can be factored into

Feff (x3, ∆x) = a0(H − J) + a1(HI − JL) + a2(HI2 − JL2) + . . . (11)

This form is very useful for fitting a curve to the data. It allows us to calculatea0 . . . an, which correspond to the
physical spring force polynomial before it is passed through the pulleys. We found that using a simple linear fit of the
physical spring resulted in a good approximation, as shown in Figure 12(c). This fit was used to generate the surface
in Figure 9 and the dotted curves in Figure 10. Not only is this curve fitting method more accurate than any of the
polynomial fits, it also has the advantage that it can be used to calculate spring cancellation forces for both the control
onx1 andx3. A standard polynomial curve fit ofFeff can only calculate a spring cancellation force forx1. In addition,
because this method describes how the physical spring (before the pulley function) behaves, pulleys can be designed
to provide the desiredFz(z). Unfortunately, this fit cannot be easily inverted to solve for the desired positions ofx1

or x3. In our controller, the linear polynomial curve fit is used to calculate the desired values ofx1 andx3, while
Equation 11 is used for spring cancellation forces and other calculations that do not require inversion.

4.2 Dynamic Actuator Simulation

Dynamic simulation of the AMASC mechanism was done using SD/FAST1, based on the model shown in Figure 4(a).
The springs are approximated as linear springs passed through the logarithmic spiral pulleys (i.e. the fit shown in
Figure 12(c) and described by Equation 11). The dynamics of the pretension motor are conservatively approximated
by a constant-velocity trajectory to the desired setting. Physical parameters such as link length and inertia were
measured from the SolidWorks model and from the AMASC prototype. The values are these parameters are given in
Table 3.

variable value variable value

J1 0.00134 kg·m2 M1 = J2
r2
2

59.6 kg

J2 0.085 kg·m2 M2 = J1
r2
1

8.5 kg

B1 0.0517 N·m·s/rad r1 0.00474 m
B2 0.38 N·m·s/rad r2 0.1 m

Table 3: Physical properties used for simulation

The prototype AMASC was initially compared to its simulation by applying a step position input to the set-point
of both systems. Figure 13(a) shows that the responses are very similar. One difference is that the oscillations of the
prototype AMASC are damped once the amplitude of the oscillations becomes small. We hypothesize that this is due
to frictional effects that are not accurately modeled by the viscous damping included in the model.

For a more comprehensive comparison, the prototype and simulated AMASC were tested across a range of fre-
quencies and stiffness values. Figure 13(b) shows the similar responses of the prototype and simulation as the motor
is commanded a sine wave position function through a range of frequencies at a series of ascending pretension values.

1SD/FAST is a trademark of Symbolic Dynamics, Inc. and Parametric Technology Corporation

14



−1 −0.5 0 0.5 1 1.5
−5

0

5

10

15
M

ot
or

 P
os

iti
on

 (
ra

d)

θ
1
 (data)

θ
1
 (simulation)

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

Time (s)

Le
g 

P
os

iti
on

 (
ra

d)

θ
2
 (data)

θ
2
 (simulation)

(a) Motor and leg response to a step input

10
0

−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Frequency plots of physical and simulated actuator

K
eff

=3000 N/m
K

eff
=4000 N/m

K
eff

=5000 N/m

(b) Ratio of leg position to motor position, showing similar behavior at a range of frequencies and stiffnesses.
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We hypothesize again that differences in the simulation and prototype are mostly caused by unmodeled frictional ef-
fects, such as stiction on the fiberglass springs. Part of the error may also be caused by our spring fit; it has some error,
and is not an exact representation of the physical system.

These tests do not demonstrate the performance of the AMASC system, they merely show that the physical
AMASC and simulated AMASC behave similarly at a range of frequencies. To measure the performance of any
actuator, experiments should test how well it demonstrates desired dynamics under various conditions. For the spe-
cific case of SLIP model running, the AMASC should behave like a spring with a certain stiffness. In order to deal
with frequent ground impacts during a running gait, the AMASC should exhibit this behavior to an arbitrarily high
frequency, which is not possible for a standard gearmotor system.

A Bode test demonstrated the bandwidth limitations of the simulated AMASC. The input to the Bode plot was the
leg position, which followed a sine wave. The output of the system is spring force. The three different Bode plots
shown in Figure 14 represent three different commanded stiffness valuesK∗, with a constant physical stiffness,Keff .
These plots show the frequency limit of the AMASC when attempting to simulate a system softer or stiffer than its
mechanical adjustment, and also demonstrate the lack of a bandwidth limit when the AMASC is tuned properly.

4.3 Running Simulation

We implemented a simulated running robot in SD/FAST based on the SLIP model. Raibert-style controllers were
implemented as described in “Legged Robots that Balance”[33], with slight modifications. Raibert-style hopping
height controllers insert a fixed amount of energy by changing the set-point during stance, causing the hopping height
to converge to some value. Our modification calculates exactly how much energy must be added for the desired
hopping height and speed, and adjusts the set-point to add the appropriate amount of energy.

The running simulation was first created with an ideal actuator placed at each joint, such that we could apply any
stiffness and set-point instantly. We then converted the actuator in this running simulation to the simulation of the
AMASC (see Figure 15) as described in Section 4.2. Because the prototype AMASC currently has very soft springs
for bench testing, we adjusted the simulation so that the simulated fiberglass springs were ten times stiffer than the
prototype’s springs, which is more appropriate for a running gait. With the stiffer simulated fiberglass springs, we
could reach the commanded stiffness without being outside the range of the experimental curve fits.

The simulated robot continued running with the AMASC, with no changes to the running controller from the
simulation with the ideal knee spring. The resulting difference in the behavior of the running robot is shown in
Figure 16. Note that the hopping height and stride length decrease slightly. This change is due to the fact that the
set-point of the AMASC cannot change instantly, and thus slightly less energy is inserted into the running gait than
with an ideal knee spring.

5 Discussion

5.1 SEA comparison

Although the AMASC is designed to match the desired natural dynamics for a particular SLIP-model running gait, it
can be operated in the same manner as the MIT Series Elastic Actuator by disabling the variable stiffness and imple-
menting an appropriate software controller. With this modification, the AMASC has the exact same mechanical model
as the SEA, but with much lower physical stiffness and about half the dynamic mass. The performance characteristics
should be comparable to the SEA, and be dissimilar in a predictable fashion.

Bandwidth tests of the SEA were implemented by clamping the output shaft and measuring the applied force,
while commanding a sine wave force input of increasing frequency. The motor must move some amount to preload the
springs, so the desired force will be applied to the output shaft. The inertia of the motor and the software proportional
gain, along with any torque limitations, will determine the upper frequency limit that is achievable by the actuator.
Because of the spring cancellation force term in the software controller, the system can be estimated as a damped
mass-spring system, with damping and stiffness determined by the P and D software gains. Therefore, physical spring
stiffness changes should not affect the performance of the system. However, stiffer springs perform better when torque
limits of the motor are reached.

The AMASC has higher damping than the SEA, because a lower commanded damping ratio resulted in very large
oscillations at the natural frequency, interfering with our tests. The consequence of this higher damping is a lower
peak on the resulting Bode plot. The results of a physical test and a software simulation are shown in Figure 17(b),
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and can be compared to a frequency plot of the SEA in Figure 17(a) from David Robinson’s Ph.D. Thesis [20]. The
structure of each graph, whether from simulation or from data, is the same. The data for the AMASC shows different
peak values for different amplitudes of input excitation, which should not occur for a linear system. It is most likely
due to the nonlinearity of the knee spring; while it is nearly linear, that is only an approximation of the real system.
The different peak value for the AMASC and the SEA may be attributed to different motor mass and different software
proportional gains.

5.2 The AMASC as a Manipulator

A number of researchers have built mechanisms with variable compliance[34, 35, 36] for manipulation tasks. Most of
these mechanisms use antagonistic motor pairs, which must exert forces both to precompress the springs and to move
the joint. The required motor size and mass for such an antagonistic system is much larger than the AMASC, which
uses one small motor with an electric brake to change the precompression (or pretension) of the springs. Any forces
applied by the set-point motor are transmitted directly to knee torque, and do not need to overcome the opposing force
of an antagonistic motor.

The stiffness function of other variable compliance mechanisms can be measured, but not chosen; the opposing
springs tend to be a discrete component such as a coil spring or an air cylinder. The spring function is not a design
freedom of the mechanism, as it is with the AMASC. In addition, the motors for all of these mechanisms must be
placed at the actuated joint. This creates difficulty for a multi-jointed arm, where the base joint must lift all of the
other joint motors as well as any payload. In contrast, the AMASC allows remote placement of the electric motor,
while the structure and springs that are placed at the joint have low mass.

One difference between variable compliance designs for manipulation and designs for legged locomotion are the
energy storage requirements. For locomotion, it is important to have springs that are large enough to store the energy
of a running gait. For manipulation tasks, little or no energy is stored - the physical compliance is mainly important
for safety or control system stability.

6 Conclusions

Physical compliance and mechanical energy storage are crucial for a successful running gait, while variable compli-
ance is a useful control parameter for SLIP model running. The AMASC has mechanical energy storage, tunable
compliance, low friction, and zero backlash. Within its range of mechanical compliance adjustment, the AMASC has
virtually no bandwidth limitations and is similar to an ideal SLIP. Based on the results presented, the concepts embod-
ied in the AMASC prototype could result in an effective actuation method for highly dynamic legged locomotion.

6.1 Future Work

There are still unanswered questions for further investigation. For example, we would like to determine what stiff-
ness range is required for robust running on various surfaces, the necessary rate of stiffness adjustment, and the desired
spring function. There may be benefits associated with mechanical damping that we have yet to explore. The morphol-
ogy of the leg may have importance, with reasons for choosing certain link lengths between the joints of an articulated
leg, or reasons to choose a purely prismatic leg.

There are also various improvements in the mechanical design that would result in a closer match to the mechanical
model or reduce weight and complexity. The opposing block-and-tackle mechanism currently used as the power
transmission involves many pulleys, which introduce significant friction. While the transmission friction does not
affect the high-frequency response of the system, and can be overpowered by the software control system so it does
not affect low-frequency behavior, it does demand a larger power drain than is strictly necessary. The spring set-point
adjustment currently must apply force to stretch and release the spring as it adjusts; an additional spring can be placed
in series that will assist the motor in making adjustments, and reduce its size and power requirements. Finally, further
development could potentially reduce the overall complexity of the AMASC, without changing the behavior.

The computer simulation of the AMASC is relatively simple and accurate. Simulation of the running robot,
however, is significantly more complex, but does not yet explore the desired range of behaviors and control. The
ground surface should be modeled to more accurately represent real world surfaces. A more convenient control
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interface and graphical representation would make analysis much easier. We hope to use a more recent, refined
simulator in future work.

The running controllers used in our simulation were attained almost directly from Marc Raibert’s book[33]. There
is further literature in both robotics and biomechanics that addresses the issue of efficient SLIP model running, and
more complex controllers may allow better control of running. Our future work will focus on researching and creating
controllers that utilize the benefits of the AMASC for SLIP model running.
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