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ABSTRACT—A poorly controlled acute inflammatory response can lead to organ dysfunction and death. Severe systemic

inflammation can be induced and perpetuated by diverse insults such as the administration of toxic bacterial products (e.g.,

endotoxin), traumatic injury, and hemorrhage. Here, we probe whether these varied shock states can be explained by

a universal inflammatory system that is initiated through different means and, once initiated, follows a course specified by

the cellular and molecular mechanisms of the immune and endocrine systems. To examine this question, we developed

a mathematical model incorporating major elements of the acute inflammatory response in C57Bl/6 mice, using input from

experimental data. We found that a single model with different initiators including the autonomic system could describe the

response to various insults. This model was able to predict a dose range of endotoxin at which mice would die despite

having been calibrated only in nonlethal inflammatory paradigms. These results show that the complex biology of

inflammation can be modeled and supports the hypothesis that shock states induced by a range of physiologic challenges

could arise from a universal response that is differently initiated and modulated.

KEYWORDS—Mathematical modeling, inflammation, shock, organ dysfunction, hemorrhage

INTRODUCTION

Acute systemic inflammation is triggered by both infection

and trauma. This response involves a cascade of events medi-

ated by a network of cells and molecules. The process localizes

and identifies an insult, strives to eliminate offending agents,

and initiates a repair process. If the system functions properly,

inflammation eventually abates, and the body returns to equi-

librium. However, the inflammatory response can also compro-

mise healthy tissue, further exacerbating inflammation (1, 2)

and possibly culminating in organ failure or death (3).

Shock and organ dysfunction are major healthcare problems

that afflict victims of both trauma and sepsis. In 1999, a quarter

of a million deaths were associated with sepsis in the United

States alone (4, 5).

The initial progression of systemic inflammation can have

different manifestations depending on how it is triggered, i.e.,

infection or trauma. However, as it progresses, the resulting shock

states and organ dysfunction converge. Thus, in developing

treatments and predicting outcome, it is important to ascertain

which elements of inflammation are universal and which are

specific to the initial insult.

Much has been learned regarding the cellular and molecular

mechanisms of the acute inflammatory response. However,

except for recombinant human activated protein C (Drotrecogin

Alfa [activated]) (6) and low-dose corticosteroids in patients

with relative adrenal insufficiency (7), this knowledge has not

led to effective therapies for inflammation-induced shock. Many

attempted antiinflammatory strategies have failed to improve

outcome in large, randomized trials, despite showing promise

in animal and early-phase human studies (8).

One reason for this failure may be that inflammation-induced

shock is a complex process. The full consequences of modu-

lating single pathways or mediators are difficult to predict from

the knowledge of those pathways or mediators in isolation.

Additionally, the correct therapy may depend on the exact stage

and trajectory of the disease. We suggest that the complexity

and diversity of shock states arises from the time-dependent

interactions of a unified inflammatory response that is highly

sensitive to specific modes of initiation and modulation. We

further propose that this complexity might be effectively captured

in a mathematical model that incorporates the dynamic inter-

actions of a few key elements of the acute inflammatory

response. A mathematical model might likewise provide new

insights into the global consequences of manipulating indi-

vidual components of inflammation. Mathematical modeling is

increasingly being used to address biological complexity, in

some cases leading to novel predictions (9–13).

We have previously described two mathematical models of

inflammation of increasing complexity. The simpler model,

consisting solely of a pathogen, a single population of inflam-

matory cells, and a measure of global tissue damage/dysfunction,

could describe both recoverable infection and septic shock (14).
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Amore complex model was used to create simulated populations

of septic patients and to simulate a clinical trial of anti-TNF

therapy (15). In this paper, we report a further enhancement to

our mathematical model of acute inflammation and shock,

based on some known underlying cellular and molecular mecha-

nisms of inflammation. Our model represents the simultaneous

interactions of several different pathways. Specifically, we show

that it can account for the temporal changes in the concen-

trations of three selected cytokines and nitric oxide by-products

in mice, for disparate initial insults involving bacterial lipo-

polysaccharide (LPS, endotoxin), surgical trauma, and

hemorrhage.

MATERIALS AND METHODS

Experimental procedures
Mice—All animal experiments were approved by the Institutional Animal Care

and Use Committee of the University of Pittsburgh. The experiments were

performed in adherence to the National Institutes of Health Guidelines on the Use of

Laboratory Animals. All studies were carried out in C57Bl/6 mice (6–10 weeks old;

Charles River Laboratories, Charles River, ME).

Endotoxemia protocol—Mice received either LPS (from E. coliO111:B4, 3, 6, or

12 mg/kg intraperitoneally; Sigma Chemical Co., St. Louis, MO) or saline control.

At various time points following this injection, the mice (four to eight separate mice

per time point) were euthanized, and their sera were obtained for measurement of

various analytes (see below). All of the mice survived this high dose of LPS until the

final time point (24 h following injection of LPS).

Surgical trauma and hemorrhagic shock protocols—For surgical trauma and

hemorrhagic shock treatment, mice were anesthetized, and both femoral arteries

were surgically prepared and cannulated. For hemorrhagic shock, the mice were then

subjected to withdrawal of blood with a mean arterial pressure (MAP) maintained at

25 mmHg for 2.5 h with continuous monitoring of blood pressure as described

previously (16). The normal MAP in mice is approximately 100 mmHg. In the

resuscitated hemorrhage groups, the mice were resuscitated over 10 min with their

remaining shed blood plus two times the maximal shed blood amount in lactated

Ringer solution via the arterial catheter. For trauma, only the surgical preparation

was conducted. In some cases, LPS was administered intraperitoneally to mice

undergoing hemorrhagic shock. Animals were euthanized by exsanguination, and

their serum analyzed as described below.

Analysis of cytokines and NO2
2
/NO3

2
—The following cytokines were measured

using commercially available ELISA kits (R&D Systems, Minneapolis, MN): TNF,

IL-10, and IL-6. Nitric oxide was measured as NO2
2/NO3

2 by the nitrate reductase

method using a commercially available kit (Cayman Chemical, Ann Arbor, MI) (17).

Aspartate aminotransferase (AST) was measured using a commercially available kit

(Vitros Chemistry�; Ortho-Clinical Diagnostics, Raritan, NJ) according to manu-

facturer’s instructions.

Mathematical model of acute inflammation
We constructed a mathematical model of acute inflammation that incorporates

key cellular and molecular components of the acute inflammatory response (see

Results, Table 1, and Appendix). The mathematical model consists of a system of 15

ordinary differential equations that describe the time course of these components.

Included in the model equations are two systemic variables that represent mean

arterial blood pressure and global tissue dysfunction and damage. ‘‘Global tissue

damage/dysfunction’’ describes the overall health of the organism because the hall-

mark of the pathology accompanying sepsis and hemorrhagic shock is the eventual,

sequential failure of multiple organs. Given the complexity of simulating individual

organs, we approximated this process by treating it as a gradual, ongoing process

occurring in the whole body and driven by inflammation. Thus, unrecoverable tissue

damage/dysfunction served as a surrogate for death, whereas damage/dysfunction

that tended to return to baseline over a several-day period was a proxy for survival. In

the model, pathogen-derived products, trauma, and hemorrhage are initiators of

inflammation. (We note that hemorrhage is caused by injury that disrupts the

integrity of blood vessels, and thus the two processes must be included in an accurate

simulation).

Each equation was constructed from known interactions among model compo-

nents as documented in the existing scientific literature. In deriving the mathe-

matical model, we balanced biological realism with simplicity. Our goal was to find

a fixed set of parameters that would qualitatively reproduce many known scenarios

of inflammation found in the literature, correctly describe our data, and serve as a

platform for eventually testing novel predictions experimentally.

The model and parameters were specified in three stages. In the preliminary

stage, the model was constructed so it could reproduce qualitatively several different

scenarios reported in the literature. In this stage, direct values of parameters such as

cytokine half-lives were used when available. In the second stage, the model was

matched to our experimental data by adjusting some of the parameters using our

knowledge of the biological mechanisms together with the dynamics of the model to

attain desired time course shapes. In the third stage, the parameters were optimized

using a stochastic gradient descent algorithm that was implemented in software of

Immunetrics, Inc. (Pittsburgh, PA).

The units of all the quantities in the model were specified so that for the

experimental protocols tested they ranged from zero to one. This was done for

computational convenience and has no implications for the underlying biology.

TABLE 1. Dynamic variables of the mathematical model

Model component Comment

Lipopolysaccharide

(endotoxin, LPS)

Immunostimulant derived from gram-negative bacteria or administered exogenously

Resting neutrophils (NR) Renewable pool of local and circulating neutrophils susceptible to activation

Activated neutrophils (NA) Pool of local and circulating activated triggered by LPS, TNF, IL-6, and tissue dysfunction

Resting macrophage (MR) Circulating monocyte or local macrophages that act as a cellular pool for activated macrophages. The total

count of resting monocyte/macrophages can increase in proportion to the total inflammatory activity

Activated macrophages (MA) Activation triggered by LPS, TNF, IL-6, tissue trauma, and tissue dysfunction. Activation is down-regulated

by antiinflammatory cytokines

Constitutive nitric oxide

synthase (eNOS)

Normally participates in blood pressure homeostasis. Activity is increased by antiinflammatory cytokines

and decreased by LPS, TNF, and trauma

Inducible nitric oxide

synthase (iNOSd, iNOS )

Increased by LPS and TNF in activated neutrophils and macrophages. Decreased by antiinflammatory

cytokines (iNOSd is a precursor to iNOS)

NO2
2/NO3

2 (NO3) Stable reaction products of nitric oxide; related to the intensity of the local production of nitric oxide by iNOS

and eNOS

TNF A major early proinflammatory cytokine secreted mainly by activated macrophages but also by activated

neutrophils

IL-10 An early antiinflammatory cytokine whose synthesis is triggered by proinflammatory stimuli, antagonizes

TNF and iNOS via TNF-dependent and TNF-independent pathways

IL-6 A proinflammatory cytokine with additional antiinflammatory effects

Adrenergic inhibitory

activity (CA)

Represents inhibitory activity of the adrenergic system on the production of TNF and IL-6

IL-12 Secreted by activated macrophages in the presence of TNF or IL-6, this cytokine limits the activity of IL-10

Blood pressure (BP) Homeostasis depends on iNOS and eNOS activity. Blood pressure can be artificially manipulated

Tissue damage (D) Can be caused by direct trauma, hypotension, or the action of proinflammatory cytokines. Nitric oxide is

tissue-protective
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However, to compare with experimental data, it was necessary to rescale the model

outputs to experimental units by selecting optimal rescaling factors when comparing

to data. These factors are specified for only the four quantities for which exper-

imental data were available and convert the arbitrary units into true units. The final

parameter set in the Appendix is expressed in arbitrary units for the concentrations

and in hours for time.

Comparison to experimental data
The model was calibrated to experimental data sets from five scenarios of inflam-

mation: LPS intraperitoneal injection at 3 mg/kg, 6 mg/kg, and 12 mg/kg; surgical

trauma consisting of the insertion of cannulae without further intervention; surgical

trauma plus hemorrhage, with procedures as described above. Four analytes—TNF,

IL-10, IL-6, and stable reaction products of NO (NO2
2/NO3

2)—were measured in

all scenarios. These analytes were chosen because they represent a diverse selection

of the main responders of the early inflammatory response and are produced on

a rapid (TNF, IL-10), intermediate (IL-6), and slow (NO2
2/NO3

2) time scale. As we

will show, even with this limited data set, the relevant biological mechanisms and the

mathematical model are constrained (18, 19). The statistical analysis was performed

with the S-Plus statistical and programming package (Statistical Sciences, Inc.,

Seattle, WA).

Model prediction
We wished to evaluate whether the model could predict a behavior not contained

in the training data. We therefore assessed the prediction to a range of endotoxin

boluses up to 30 mg/kg, which, from existing literature data, should be lethal (18, 20,

21).

RESULTS

Differences in the kinetics of cytokine and NO production

in mouse endotoxemia, trauma, and hemorrhage

Trauma and hemorrhagic shock cause many of the

same qualitative inflammatory consequences as endotoxemia,

though with different kinetics and magnitude (22). Normal,

non-manipulated mice had low levels of cytokines in their serum

(data not shown). Surgical trauma alone resulted in elevated

circulating levels of the measured cytokines (Fig. 1). In trauma

(Fig. 1D), hemorrhagic shock (Fig. 2D), and endotoxemia

(Figs. 3D, 4D, and 5D), NO2
2/NO3

2 levels first decrease and

then rise (though the levels of NO2
2/NO3

2 rise to a much

higher peak in endotoxemia). We also note that there is a delay

of approximately 2 h before the cytokines respond. The

absolute and relative peak levels differ significantly between

trauma (Fig. 1) and endotoxemia. Compared with endotoxemia

at 3 mg/kg, TNF peak level in trauma is approximately 20 to 40

times lower, IL-6 is approximately 7 times lower, and IL-10

levels are slightly higher. TNF also has a secondary peak at 24 h

in trauma. When surgery is followed by hemorrhage, animals

had higher peak levels of TNF (Fig. 4A) and IL-6 (Fig. 4C), but

similar or slightly higher levels of IL-10 (Fig. 4B) as compared

with trauma alone. NO2
2/NO3

2 has approximately the same

form (Fig. 4D). We note that the experimental spread in the

data is very large near the peaks. Although the data exhibit

large variability at these points, the timing of these peaks is

quite predictable.

Generation of a mathematical model of acute inflammation

The dynamics of the measured analytes for these three

experimental paradigms exhibit significant differences, although

they also share qualitative similarity (2). We propose that the

observed differences in the inflammatory responses are caused

by differences in the initiating insult: pathogen-derived products

versus tissue trauma and/or blood loss. We further propose that,

once set in motion, the inflammatory response will follow

a path determined by universal physiological mechanisms. For

example, it has been recently appreciated that ‘‘alarm/danger’’

molecules such as HMGB1 or HSP-70, thought initially to

participate only in the response to pathogens (23), are also

important in the process of inflammation induced by sterile

means (e.g., trauma) (24). This new paradigm suggests that the

host is more concerned with damage or change in the status quo

than with ‘‘foreignness.’’ This response also appears to share

receptors: recent articles have implicated TLR4 in the response

to sterile inflammation induced by endogenous ligands presum-

ably released from damaged/dysfunctional tissue (for example,

in the setting of ischemia/reperfusion injury) (25).

To support our hypotheses, we constructed a mathematical

model that incorporates known physiological interactions between

the various elements of the immune system. Themodel structure

and parameters are given in the Appendix, and the output of this

model in the settings of endotoxemia and trauma/hemorrhage

are depicted as solid lines overlying the actual data in the figures.

We discuss the statistical analysis of how well the model

accounts for the data in the following section.

In the model, neutrophils and macrophages are activated

directly by bacterial LPS or indirectly by various stimuli elicited

systemically on trauma and hemorrhage. Although not included

explicitly in our model, early effects such as mast cell degran-

ulation and complement activation (1) are incorporated

FIG. 1. Experimental data and model predictions for surgery-induced inflammation. Mice (3–6 separate mice per time point) were subjected to surgical

trauma alone. Animals were euthanized by exsanguination 0, 1.5, or 4 h after surgery. At various time points following this treatment, the mice (3–6 separate mice

per time point) were euthanized, and their plasma obtained for analysis of cytokines: TNF (A), IL-10 (B), IL-6 (C), and NO2
2/NO3

2 (D). Symbols represent values

from individual mice; solid lines represent model predictions.
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implicitly in the dynamics of our LPS and cytokine variables.

These stimuli, including LPS, enter the systemic circulation

quickly and activate circulating monocytes and neutrophils (18).

Activated neutrophils also reach compromised tissue by

migrating along a chemoattractant gradient (26).

Once activated, macrophages and neutrophils produce and

secrete effectors that activate these same cells and also other

cells, such as endothelial cells. Proinflammatory cytokines—

tumor necrosis factor (TNF), interleukin (IL)-6, and IL-12 in

our mathematical model—promote immune cell activation and

proinflammatory cytokine production (27). The concurrent

production of antiinflammatory cytokines counterbalances the

actions of proinflammatory cytokines. In an ideal situation,

these antiinflammatory agents serve to restore homeostasis.

However, when overproduced, they may lead to detrimental

immunosuppression (28–30).

Our model includes a fast-acting antiinflammatory cytokine,

IL-10, and a slower-acting antiinflammatory activity encom-

passing active transforming growth factor-b1 (TGF-b1), soluble

receptors for proinflammatory cytokines, and cortisol. We note

that although activated TGF-b1 has a lifetime of only a few

minutes, latent TGF-b1 is ubiquitous (31) and can be activated

either directly or indirectly by other slower agents such as IL-6

or NO (32–34).

Proinflammatory cytokines also induce macrophages and

neutrophils to produce free radicals. In our model, inducible

NO synthase (iNOS)-derived NO is directly toxic to bacteria

and indirectly to host tissue (35–37). Although the actions of

superoxide (O2
2) and other oxidative mechanisms (37) do not

appear explicitly in the model, their activity is accounted for

implicitly through the proinflammatory agents. In the model,

the actions of these products that can cause direct tissue dysfunc-

tion or damage are subsumed by the action of each cytokine

directly. The induced damage can incite more inflammation by

activating macrophages and neutrophils (38). However, NO can

also protect tissue from damage induced by shock (39–41) even

though overproduction of this free radical causes hypotension

(36). Proinflammatory cytokines also reduce the expression of

endothelial nitric oxide synthase (eNOS), thereby increasing

tissue dysfunction (42).

In endotoxemia, the model assumes that LPS enters the

bloodstream and incites a system-wide response (43). Lipo-

polysaccharide is cleared in approximately 1 h (44, 45).

Circulating neutrophils are activated directly and produce TNF

(46) and IL-10 (47–49). The newly produced TNF combines

with LPS to activate macrophages that then secrete TNF, IL-6,

IL-12, and IL-10 (50). Activated neutrophils, macrophages, and

endothelial cells produce NO through iNOS (51). The model

assumes that locally produced NO is eventually detected as the

measured serum end products NO2
2/NO3

2, and this process

depends on the differential induction of eNOS and iNOS in

various organs over time (52, 53). In order for TNF to rise and

FIG.2. Experimental data andmodel predictions for surgery/hemorrhage-induced inflammation. Mice (3–6 separate mice per time point) were subjected

to combined surgical trauma and hemorrhagic shock. Animals were euthanized by exsanguination 0, 1.5, or 4 h after resuscitation. All analytes were measured as

described in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.

FIG. 3. Experimental data and model predictions for endotoxemia (3 mg/kg LPS)-induced inflammation. Mice received either 3 mg/kg LPS or saline

control. At various time points following this injection, all analytes were measured as described in Figure 1. Symbols represent values from individual mice; solid

lines represent model predictions.
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fall within a few hours as it does in Figure 1, the model required

an inhibitory agent to suppress TNF production; this was

accounted for by IL-10 (54, 55) and other slow antiinflamma-

tory cytokines including IL-6 (56). Previous work has indicated

that IL-6 may exert both pro- and antiinflammatory properties

(57). We believe this antiinflammatory action could be mediated

by inducing or activating TGF-b1 (32) on the surface of

neutrophils and macrophages, as has been shown for cytokines

such as interferon-g (58). To account for the saturation of IL-6

for LPS levels beyond 6 mg/kg (Fig. 2; see also Fig. 5) in the

model, we suggest that IL-6 also can act as an antiinflammatory

cytokine and inhibit production of itself (59). IL-10 is inhibited

by IL-12 (55) and stimulated by TGF-b1 (60), which can come

from various sources.

The response to trauma (Fig. 1) exhibits a different time

course from endotoxemia (Figs. 3, 4, and 5). To account for

these differences in the model, we assume that localized trauma

first induces platelets to release TGF-b1 (31), which then

chemoattracts circulating neutrophils to the site of injury

(61–63). Simultaneously, elements associated with trauma and

dysfunctional and/or damaged tissue, possibly HMG-B1 (64),

are released and activate the neutrophils when they arrive. The

trauma-induced products combine with TNF to activate local

macrophages to produce IL-6 and IL-10. To achieve the

massive release of IL-10 in comparison to IL-6 and TNF in the

model, we assume that catecholamine release by the autonomic

nervous system (65) induces production of IL-10 by macro-

phages (66, 67). Catecholamines also down-regulate produc-

tion of TNF and IL-6 (68, 69). We also assumed that trauma

causes a severe drop in eNOS (or eNOS-derived NO, e.g., by

the rapid reduction in availability of l-arginine) (70) to account

for the dip in NO2
2/NO3

2; it is known that trauma patients

exhibit reduced systemic NO2
2/NO3

2 as compared with unin-

jured controls (71, 72). A similar drop in eNOS activity or

expression also occurs in endotoxemia (73–76).

The model assumes that blood loss in hemorrhage causes

some tissue damage as well as directly contributing to neutrophil

and macrophage activation (22). This causes a greater release

of TNF, which in turn induces higher IL-10 and IL-6 release.

The model output suggests that an increase in TNF and IL-6

will be accompanied by an increase in IL-10, though the spread

in the data is too large to corroborate this prediction.

Statistical assessment of the model in comparison

to the data

Across all scenarios, using all the data points, we obtain a

correlation coefficient of 0.81 between the data and the model.

Because the scatter of the data is large, trimming outliers seems

reasonable. Eliminating 1% of outliers raises the correlation

coefficient to 0.86, and a correlation coefficient of 0.90 is

obtained by trimming 3% of the outliers. A formal test that the

correlation coefficient is zero, versus the alternative that it is

FIG. 4. Experimental data and model predictions for endotoxemia (6 mg/kg LPS)-induced inflammation. Mice received either 6 mg/kg LPS or saline

control. At various time points following this injection, the mice (3–8 separate mice per time point) were euthanized, and their plasma obtained for analysis of

cytokines as in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.

FIG. 5. Experimental data and model predictions for endotoxemia (12 mg/kg LPS)-induced inflammation. Mice received either 6 mg/kg LPS or saline

control. At various time points following this injection, the mice (3–8 separate mice per time point) were euthanized, and their plasma obtained for analysis of

cytokines as in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.
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greater that zero, yields a P value <0.0001, with an associated

z-value of 38.1, indicating a strong positive dependence between

the data and the model.

The correlation coefficients for the four separate data curves

in the five scenarios as shown in Figures 1–5 are presented in

the Appendix. This analysis indicates that although the model

seems to capture the entire data set well, it does not capture the

behavior of individual analytes uniformly well in all five scenarios.

Qualitative assessment of the model

We sought to examine the qualitative behavior of our model,

in reference to published studies of inflammation in the setting

of endotoxemia and/or trauma. We used this process as a form

of quality control in the quantitative fitting process of a given

iteration of the model, requiring that a given iteration of the

model exhibit qualitatively correct behavior across all the

scenarios depicted in Table 2. We chose these scenarios as

the qualitative test set because those published studies contained

information of relevance to the analytes whose time courses are

the core of our model.

Prediction of lethal endotoxemia

When subjected to simulated endotoxin loads exceeding

9 mg/kg, the model predicts persistent high levels of IL-6 and

high levels of damage (Fig. 6). In fact, the model predicts that

cumulative damage will grow rapidly and fail to resolve within

the first 24 h with doses exceeding 12 mg/kg. It appears that

predicted cytokine levels have reached a plateau at about that

dose, with limited increment with higher doses. The small

differences in peak cytokine levels we observed between 6mg/kg

and 12 mg/kg support this observation (saturation at or around

15 mg/kg was not built in the model). We would therefore

predict that levels as low as 9 mg/kg could be lethal in many

animals if not euthanized at 24 h. Indeed, several animals are

quite sick at the time of euthanasia. This concurs with the report

by Wakatana of an LD10 of 10 mg/kg and LD90 of 30 mg/kg at

24 h (20). Of note, others reported significantly lower LD100

doses in C57/BL6 mice (21). Our own data yielded a LD80 of

17 mg/kg (unpublished results).

DISCUSSION

The acute inflammatory response to infection and trauma is

highly complex, with many levels of feedback. As a result, the

manipulation of a single pathway may lead to unpredictable

results.We suggest it is necessary to examine the global response

of all the participating cytokines and immune cells simulta-

neously over several hours or days. Only then can successful

therapies be developed systematically (11, 77–80).

Mathematical modeling can provide such a global frame-

work (1, 77, 79, 81). Our model is based on differential equa-

tions that represent the dynamics of the mean value of

cytokines and cell levels along with variables for blood pres-

sure and global tissue damage/dysfunction. The equations are

derivable from physiological interactions using standard prin-

ciples of mass-action kinetics (82), and the simulated levels can

be compared directly to data. This contrasts with our prior

work, which presented simpler models of the innate response to

an infectious agent without calibration to prospective data (14,

15). The present manuscript describes a continuation of this

effort, with the attempt to calibrate the model to actual data; we

hope in the future to integrate several more components of the

inflammation response. The current model is a very incomplete

representation of all the processes of inflammation. However,

we believe that it captures many of the main features of acute

inflammation and can give new insights into the complex

interactions of the process. Moreover, we note that although we

used very different modeling strategies and underlying assump-

tions and elements as compared with other investigators who

are simulating acute inflammation (83, 84), our models have

often concurred (79).

Though a single mathematical model was able to encompass

the dynamics of acute inflammation induced by diverse insults

(represented as different starting conditions for our simula-

tions), we found several inconsistencies between the output of

the model and our experimental data. For example, we were

unable to satisfactorily account for the rise in TNF at 24 h in

our model in surgical trauma. Interestingly, we do not see a rise

in TNF at 24 h in the trauma/hemorrhage data as we did in

trauma alone. This discrepancy probably signifies that the

model fails to account for a biological mechanism that is of

particular relevance in the interaction of shock and hemorrhage.

For example, a possible explanation for this observed discrep-

ancy is that the increase in TNF and IL-6 induces a larger,

delayed antiinflammatory response that suppresses TNF later.

Therefore, such discrepancies stimulate additional data acqui-

sition to support the existence of mechanisms, either by refining

the search for existing data or by guiding the collection of new

data. Integration of these mechanisms, in turn, will lead to more

accurate models. The process of modeling complex systems,

where not all fundamental behaviors and interactions are well

understood, is therefore inherently iterative.

TABLE 2. Qualitative scenarios used in calibration of the mathematical model of inflammation

Animal Model Expected results References

Mice Intraperitoneal endotoxin challenge Increased levels of TNF, IL-6, NO, cardiovascular collapse (91)

Rats Intraperitoneal endotoxin challenge (5-100 ug/kg) Circulatory endotoxin within 15 minutes, 30-90 minutes to IL-6 (92)

Mice Endotoxin challenge in TNF deficiency Resistance to endotoxin induced inflammation, increase levels of IL-6. (93–97)

Mice Endotoxin challenge in IL-6 deficiency TNF-a expression is much higher than in wild type animals.

In localized tissue damage TGF-b1 and IL-10 are increased.

(98–106)

Mice Endotoxin challenge and hemorrhagic shock in

Nitric Oxide Synthase deficiency.

Decreased hypotension initially, more organ dysfunction,

no change in prognosis with endotoxin, decrease cellular recruitment.

Lower inflammation in hemorrhagic shock.

(16,107–115)
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We note that agent-based models of systemic inflammation

have also been developed (79, 83). In these methods, discrete

‘‘agents’’ representing cells and cytokines interact through a set

of fixed rules on a spatial grid, with various probabilities of a

given interaction taking place. These methods are useful when

the participating elements have large amounts of heterogeneity

and when they have many internal states that affect their

interactions with other elements. Equation-based models like

the one we have created are more applicable in settings where

the overall behavior of a given variable is sought (i.e., the

concentration of a given cytokine in the blood, or the cumu-

lative behavior of neutrophils). We feel that both approaches

have merits, and methods incorporating both approaches may

be useful in the future (79).

We hypothesize that the acute inflammatory response to

diverse insults such as endotoxemia, trauma, and hemorrhagic

shock are different manifestations of a universal system. We

have attempted to demonstrate this possibility with mathemat-

ical modeling. Additionally, our hypothesis is supported by

large epidemiologic studies, which indicate that physiological

changes, organ failure rates, and survival are similar among

patients with infectious and noninfectious causes of acute inflam-

mation (85, 86).

Our model is a biologically based, dynamical simulation. As

such, it differs from statistical models based on studies in large

patient populations, which seek correlations among various

factors (e.g., vital signs and laboratory values) and outcomes

(87). Statistical models have demonstrated conclusively that

circulating levels of cytokines such as IL-6 correlate with

outcome in septic patients (88) and have been successful in

understanding average population outcomes. However, these

statistical models are mostly descriptive, making limited use of

biological mechanisms. Consequently they are unable to provide

causal inference and are unreliable to predict outcome of

individuals (89).

In conclusion, we have developed this mathematical model

with a goal of assisting the rational design of therapies directed

against the inflammatory consequences of infection and trauma,

the current treatment of which is largely supportive (antibiotics,

vasopressors, or mechanical ventilation) (90). Despite suffering

from several limitations (a limited subset of inflammatory

interactions, the use of mass action kinetics, calibration to circu-

lating but not local levels of cytokines, limited data, and lack of

serial measurements in single animals), the model can simulate

certain disease scenarios qualitatively as well as simulating the

time course of cytokine levels in three distinct paradigms of

inflammation in mice. We are in the process of addressing these

limitations in various ways. For example, though we did not

measure Po2 and lactate in the studies described in this manu-

script, we have an initiated animal studies and inflammation-

modeling efforts in the setting of irreversible hemorrhagic

shock. In the course of those studies, we are obtaining Po2,

Pco2, and other measurements and attempting to incorporate

these measurements into our damage/dysfunction equation.

Extending this mathematical model, with validation in humans,

may lead to the in silico development of novel therapeutic

approaches and real-time diagnostics.
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APPENDIX

Below are the ordinary differential equations of the model.

The equations represent the dynamics of circulating or systemic

levels of immune cells, cytokines, and molecules. Equations

were derived from ‘‘influence diagrams’’ constructed from

literature reports. We provide an example of such a diagram in

Figure A1. Every arrow is linked to specific literature refer-

ences hosted in a citation manager supporting the existence and

occasionally providing quantitative information regarding the
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process represented by this particular arrow. In addition, are

two systemic variables representing blood pressure and tissue

damage/dysfunction. The effect of trauma is expressed as an

exponential decay of influence after an initial insult. It repre-

sents possible released cellular material that can trigger inflam-

mation. The function fB(B) is phenomenological and represents

the stimulatory effect of a decrease in blood pressure on trig-

gering a stress response. This occurs in a variety of ways, and

we are currently examining how to model it more exactly as

part of ongoing projects in larger animals. Small deviations

from normality probably are of little consequence, whereas

larger deviations are proportionally more harmful (and rapidly

so) as the ability of the organism to compensate decreases. This

is what explains the phenomenological fourth-power exponent.

For numerical ease, the variables of the equations are defined in

abstract units of concentration. The actual units are restored

with a linear scaling factor when compared to experimental

data. The time unit is fixed at hours. The differential equations

were solved numerically using the XPPAUT freeware written

by Dr. G. B. Ermentrout (University of Pittsburgh, Department

of Mathematics; www.math.pitt.edu/~phase) as well as propri-

etary software of Immunetrics, Inc. The fitting process included

quantitative data, but the overall behavior of the model had also

to be compatible with various qualitative scenarios extracted

from the literature. These scenarios are listed in Table 2. Failure

to comply with any of those qualitative behaviors resulted in

discarding a given model.
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FIG. A1. A simplified version of macrophage

dynamics. In the model used herein, resting macro-

phages (MR) are activated by a number of physiologic

processes, including endotoxin (PE), damage/dys-

function, trauma and hypotension (blood pressure

[BP] drop). This recruitment process can be up-

regulated (green lines) in the presence of tumor

necrosis factor TNF and interleukin (IL)-6, whereas IL-

10 and other antiinflammatory (CA) molecules down-

regulate (red line) these activating influences. Both

resting and activated macrophages (MA) ‘‘die’’ at their

respective rates (gray dotted line). Each process is

supported by a literature search.
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Model Parameters

Model parameters are divided into several categories: initial

conditions, source terms, rate constants, and saturation constants

(Table A1). The initial conditions determine different experimen-

tal paradigms. For endotoxemia: LPS(0) = 3, 6, or 12, TRON = 0,

AON(0)= 0, B(0) = 1; for trauma: LPS(0) = 0, TRON= 1, AON= 1,

B(0) = 1; for hemorrhage: LPS(0) = 0, TRON = 1, AON = 1,

B(0) = 0.25.

Units

The time unit is fixed at hours. The variables are all in

relative units. To match the data we use conversion factors of

35,000, 17,000, 8,000, and 1,000, respectively, to convert the

arbitrary units of TNF, IL-6, IL-10, and NO3 into true

concentrations (pg/L). The variable A is a simple representa-

tion of autonomic outflow. Epinephrine and other biogenic

amines released at the time of acute stressor such as hemor-

rhage are well known to briefly stimulate IL-10 and to a lesser

degree IL-6, IL-12, and other modulators of immunity (67,

116–119). The exponential decay was inserted to mimic the

empirical observation of a similar decay in circulating cate-

cholamines and to reflect the brevity of their biological action

on immune cells.

Statistical Complement

Examination of the data shows high heteroskedasticity for

observations obtained in different animals. A closer study of

the scatter shows a power law relationship between the standard

deviation and the mean of the analyte response, closely approx-

imating s = 1.57m0.76, where s is the standard deviation and

m is the mean. A consequence of this relationship is that, in

addition to assessing the model by using the individual data

points directly, we can also compare the model to the mean

responses, keeping in mind the fact that the observed error in

response is proportional to the mean response itself to a power

of approximately three-quarters.

A detailed analysis of fit yields the following correlation

coefficients (four analytes—IL-10, IL-6, NO, and TNF—in

four scenarios—LPS doses at 3 mg/kg, 6 mg/kg, and 12 mg/kg,

shock, and surgical trauma): IL10, 0.69 0.57 0.85 0.58 0.48;

IL6, 0.78 0.98 0.82 0.54 0.72; NO, 0.70 0.84 0.71 0.35 0.17;

TNF, 0.38 0.87 0.34 0.48 0.49. Therefore, although the fit

overall is good, P < 0.0001, some curves are not described as

well by the model.

TABLE A1. Model parameters

Initial conditions and source terms

SM = 1.0 tHRES = 2.5 MR(0) = 1 iNOS(0) = 0 TNF(0) = 0 B0 = 1.0

SN = 1.0 tTR = 1.86 MA(0) = 0 iNOS3(0) = 0 IL6(0)=0.001 IL12(0) = 0

S6 = 0.001 xTR = 0.6785 NR(0) = 1 eNOS(0) = .05 IL10(0)=0.01 xA = 1.1636

S10 = 0.01 tA = 2.0138 NA(0) = 0 NO3(0) = 0 CA(0) = 0 D(0) = 0

Rate constants

kLPS = 1.0 kNTNF = 0.2 kINOSN = 1.5 kNO3 = 0.46 K6 = 0.7 kCA = 0.1

kMLPS = 1.01 kN6 = 0.557 kINOSM = 0.1 kNOMA = 2.0 k6N = 0.2 kCATR = 0.16

kMTR = 0.04 kNB = 0.1 kINOSEC = 0.1 kTNFN = 2.97 k10MA = 0.1 k12M = 0.303

kM6 = 0.1 kND = 0.05 kINOS6 = 2.0 kTNFM = 0.1 k10N = 0.1 k12 = 0.05

kMB = 0.0495 kNTR = 0.02 kINOSd = 0.05 kTNF = 1.4 k10A = 62.87 kB = 4

kMR = 0.05 kNTGF = 0.1 kINOS = 0.101 k6M = 3.03 k10TNF = 1.485 kBNO = 0.2

kMA = 0.2 kNR = 0.05 kENOS = 4.0 k6TNF = 1.0 k106 = 0.051 kDB = 0.02

kMANO = 0.2 kNNO = 0.4 kENOSEC = 0.05 k62 = 3.4 k10 = 0.35 kD6 = 0.3

kNLPS = 0.15 kNA = 0.5 kN = 0.5 k6NO = 2.97 k10R = 0.1 kD = 0.05

kDTR = 0.05

Saturation constants

xMLPS = 10 xNLPS = 15.0 xINOS10 = 0.1 xENOSTR = 0.1 x6NO = 0.4 x1210 = 0.2525

xMD = 1.0 xNTNF = 2.0 xINOSTNF = 0.05 xTNF6 = 0.059 x10TNF = 0.05 xBNO = 0.05

xMTNF = 0.4 xN6 = 1.0 xINOS6 = 0.1 xTNF10 = 0.079 x1012 = 0.049 xD6 = 0.25

xM6 = 1.0 xND = 0.4 xINOSNO = 0.3 x610 = 0.1782 x106 = 0.08 xDNO = 0.4

xM10 = 0.297 xN10 = 0.2 xENOSTNF = 0.4 x6TNF = 0.1 x12TNF = 0.2

xMCA = 0.9 xNNO = 0.5 xENOSLPS = 1.015 x66 = 0.2277 x126 = 0.2
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