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Abstract. An intelligent method is presented for locating a

microseismic source based on the particle swarm optimiza-

tion (PSO) concept. It eliminates microseismic source locat-

ing errors caused by the inaccurate velocity model of the

earth medium. The method uses, as the target of PSO, a

global minimum of the sum of squared discrepancies be-

tween differences of modeled arrival times and differences of

measured arrival times. The discrepancies are calculated for

all pairs of detectors of a seismic monitoring system. Then,

the adaptive PSO algorithm is applied to locate the micro-

seismic source and obtain optimal value of the P-wave ve-

locity. The PSO algorithm adjusts inertia weight, accelerat-

ing constants, the maximum flight velocity of particles, and

other parameters to avoid the PSO algorithm trapping by lo-

cal optima during the solution process. The origin time of

the microseismic event is estimated by minimizing the sum

of squared discrepancies between the modeled arrival times

and the measured arrival times. This sum is calculated us-

ing the obtained estimates of the microseismic source coor-

dinates and P-wave velocity. The effectiveness of the PSO al-

gorithm was verified through inversion of a theoretical model

and two analyses of actual data from mine blasts in different

locations. Compared with the classic least squares method

(LSM), the PSO algorithm displays faster convergence and

higher accuracy of microseismic source location. Moreover,

there is no need to measure the microseismic wave velocity

in advance: the PSO algorithm eliminates the adverse effects

caused by error in the P-wave velocity when locating a mi-

croseismic source using traditional methods.

1 Introduction

Microseismic monitoring technology can be used for effec-

tively locating rock ruptures caused by rock burst, coal and

gas outbursts, water inrush, and other coal mine disasters. In

recent years it was also used in early warning systems (Li

et al., 2016; Pastén et al., 2015; Jia et al., 2015). The spa-

tial coordinates of monitoring stations and the arrival times

of the first seismic wave are used to determine the coordi-

nates of the microseismic source, origin time, and other at-

tributes. The accuracy of microseismic source location has

been an important research topic in microseismic monitoring

technology for a long time.

Current microseismic source location methods mostly

come from seismology. Now they are widely used in mi-

croseismic monitoring (Sun et al., 2016; Xue et al., 2015;

Anikiev et al., 2014; Dong and Li, 2013). The earthquake

source location method, based on time-difference princi-

ples, was proposed (Geiger, 1912). Based on this work,

Lienert et al. (1986) developed an improved algorithm called

HYPOCENTER. Since then, Nelson and Vidale (1990) pre-

sented the Quake3D method for 3-D velocity modeling. Lo-

max et al. (2000, 2001) worked out a nonlinear mode for

locating global earthquakes in 3-D media and developed

NonLinLoc software. Waldhauser and Ellsworth (2000) pre-

sented an earthquake location algorithm based on a double

difference and developed HypoDD software. After occur-

rence of characteristics of the coal mine overburden, namely

layers and abscission zones, Gong et al. (2012) proposed

a microseismic detecting algorithm for the isotropic veloc-

ity model along the mine length; the algorithm decreases

source location errors. Dong et al. (2017) proposed math-
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ematical algorithms of microseismic source location where

there is no need to predict velocity in advance. The algo-

rithms overcome location errors caused by errors of velocity

measurement inherent in traditional location methods. Lin

et al. (2010) analyzed the characteristics of the linear loca-

tion method and Geiger method and proposed a joint method

to address the problem of low precision in estimation of

source coordinates inherent in the linear location method.

Feng et al. (2015) proposed stratified methods for microseis-

mic source location based on particle swarm optimization to

obtain correlations among the source position, origin time,

and microseismic propagation speed for a non-unique solu-

tion.

In conclusion we note that the microseismic source loca-

tion accuracy is influenced by many factors, such as the lo-

cation method, the layout of the microseismic network, the

velocity model, and the accuracy of the arrival-time mea-

surement (Dong and Li, 2013). Among these, the key factor

influencing the stability of the location algorithm and the lo-

cation accuracy is precision of the velocity model (Prange et

al., 2015; Li et al., 2014; Usher et al., 2013). In this paper, an

adaptive particle swarm optimization algorithm is proposed

for microseismic source location, which is based on average

flying velocity of the particles. It uses, as the particle swarm

optimization (PSO) target function, the least squares sum of

measured arrival-time differences for all pairs of seismic sen-

sors and uses the PSO algorithm to identify the source co-

ordinates and microseismic wave velocity. Then, the origin

time of the microseismic event is calculated according to the

source location just determined and the wave velocity. Pa-

rameters of the PSO algorithm, such as the inertia weight,

the acceleration constants, and the flight velocities of parti-

cles, are adaptively adjusted to avoid the algorithm failure

caused by the improper selection of these parameters. Care-

ful dynamic adjusting of the PSO parameters improves the

robustness of the PSO algorithm, reduces the number of iter-

ations, and improves estimation of the microseismic source

coordinates and the seismic wave velocity.

2 Microseismic source location principle

Suppose that there are n geophones in the microseismic mon-

itoring system. Set the microseismic source location point to

r0 = (x0,y0,z0), the coordinates of each geophone to ri =

(xi,yi,zi) and (i = 1, . . .,n), the time of P-wave arrival to

the ith geophone of the microseismic monitoring system to ti ,

and the origin time of the microseismic event to t0. Assuming

that the rock layers between the microseismic sources and

the geophone are uniform (i.e., uniform velocity model), the

equivalent average propagation velocity of the P wave in the

medium is V . Then, the theoretical (regression) arrival-time

differences for i and j geophones are

1ti,j = ti − tj =
li − lj

V
,i,j = (1, . . .,n) , (1)

where






li =

√

(xi − x0)
2 + (yi − y0)

2 + (zi − z0)
2

lj =

√

(

xj − x0

)2
+
(

yj − y0

)2
+
(

zj − z0

)2
.

The differences between the difference of regression arrival

times 1ti,j (r0) and the difference of the measured arrival

times 1t ′i,j are analogous to the double-difference concept

introduced by Waldhauser and Ellsworth (2000). The sum

of their squares reflect the degree of discrepancies between

regression and observed arrival times. The equation for esti-

mation of the microseismic source position has the form

Q(r0,V ) =

n
∑

i,j=1

(

1t ′i,j −
li (r0) − lj (r0)

V

)2

= min
r0,V

. (2)

The estimates of microseismic source coordinates r̂0 =
(

x̂0, ŷ0, ẑ0

)

and equivalent P-wave velocity in the medium

V̂ correspond to those values of r0 = (x0,y0,z0) and V in

Eq. (1) and Eq. (2), for which the function Q(r0,V ) reaches

a global minimum in the ranges of possible values of the mi-

croseismic source coordinates and medium equivalent veloc-

ity.

According to time-difference location principles, the equa-

tion for calculation of the source origin time t0 has the fol-

lowing form:

min
t0

F (t0) = min
t0

n
∑

i=1

(

t ′i − t0 −
li
(

r̂0

)

V̂

)2

. (3)

In the equation, t ′i denotes the measured travel times; for a

case where signal-to-noise ratios in observed signals from

microseismic source are sufficiently high and the earth

medium between the source and geophones is homogeneous

to min
r0

F (t0) ≈ 0, the estimate of the microseism origin time

can be calculated as

t̂0 ≈
1

n

n
∑

i=1

(

t ′i −
li
(

r̂0

)

V̂

)

. (4)

In solving for the seismic source location and origin time,

the estimates of source coordinates r̂0 =
(

x̂0, ŷ0, ẑ0

)

and the

equivalent wave velocity V̂ are obtained first, according to

Eq. (2). Then, the estimate of the origin time is determined

by substituting the estimated values r̂0 and V̂ into Eq. (3) (or

in Eq. 4 for the case where min
r0

F (t0) ≈ 0). Because Eq. (2)

is a nonnegative function of (x0, y0, z0) and V , a minimum

min
r0,V

Q(r0,V ) always exists and can be found by the nonlin-

ear fitting methods. The classic method is the minimum least

squares solution. However, in this solution the source loca-

tion estimate r̂0 correlates with the origin-time estimate t̂0,

and the algorithm has a slow convergence for the velocity

V . It is also easy to get a non-unique solution (Chen et al.,
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2009). To overcome these problems, this paper introduces an

adaptive PSO algorithm to optimize the solution process.

Source location based on the time-difference principle

is a multi-extremum nonlinear problem. The most popular

method is the classical method proposed by Geiger (1912)

and various improvements thereafter. This kind of method is

a solution method in the linear category. According to Tay-

lor’s formula, the nonlinear problem is transformed into a lin-

ear problem, and then different strategies are adopted to solve

the linear equation system. In many cases, such as those of

a second order or more, this will appear. Problems such as

in appropriate omitting of terms, unreasonable selection of

initial values, and trapping solutions into local minima will

occur (Lee and Stewart, 1981). The particle swarm optimiza-

tion (PSO) method is simple to operate and easy to use, and it

is easy to get the global optimal solution for multi-extremum

nonlinear problems. Therefore, the improved PSO method is

introduced to solve the above problems.

3 Adaptive PSO algorithm for solving location

parameters

3.1 PSO principle

The PSO is an evolutionary computation technique devel-

oped by Eberhart and Kennedy (1995). It is an evolutionary

algorithm similar to a simulated annealing optimization algo-

rithm for a problem of iterative improvement of a candidate

for the solution with regards to a given measure of quality.

PSO is an intelligent computational algorithm for analyzing

the dynamic behavior of a swarm of particles. In comparison

with other similar algorithms, PSO has such advantages as

simple implementation, high accuracy, and fast convergence.

It has been successfully applied in the field of optimization

in recent years (Fong et al., 2016; Renaudineau et al., 2015;

Sudheeret al., 2014). The basic PSO principles are as fol-

lows: PSO randomly initializes a set of particles in the so-

lution space. Each particle flies through the solution space

with a certain speed by following the current optimum parti-

cle, and the optimal solution is found through the search in

successive generations. In each generation, the particles up-

date themselves by tracking two types of extreme values: lo-

cal optimums and global optimums. The first extreme values

are the optimal values for every particle itself in a set of po-

sitions of this particle in the sequence of generations that al-

ready exist. They are denoted as pBest. The second optimum

is the optimal value found in the all existing generations of

the whole swarm of particles. It is denoted as gBest. After the

two sorts of the optimal values are found, the particles update

their speed and positions according to Eq. (5):

{

v
(k+1)
i,d = w(k)v

(k)
i,d + c

(k)
1 r1

(

p
(k)
i,d − x

(k)
i,d

)

+ c
(k)
2 r2

(

p
(k)
g,d − x

(k)
i,d

)

x
(k+1)
i,d = x

(k)
i,d + v

(k+1)
i,d , i = (1, . . .,n) ,d = (1, . . .,m)

, (5)

where m is the dimension of the particle space, n is a number

of particles in the swarm, k is a number of the current evolu-

tionary particle generation, r1 and r2 are independent random

values within [0, 1], w(k) is the inertia weight at the kth parti-

cle generation, c
(k)
1 and c

(k)
2 are acceleration constants at the

kth particle generation, v
(k)
i,d is the current flight speed for the

dth component of the ith particle at the kth generation, x
(k)
i,d

is the dth component of the ith particle’s current location at

the kth generation, p
(k)
i,d is the dth coordinate of the current

optimal value for the ith particle itself at the kth generation,

and p
(k)
g,d is the dth component of the current optimal value

for the total particle population up to the kth generation.

3.2 The algorithm for solving source location

parameters

Equation (2) concerns a nonlinear optimization problem with

multiple local extrema. The PSO algorithm was developed

for solving such problems and can be applied to search for

the optimal value in four-dimensional solution space com-

posed of (x, y, z, and v), that is, to solve for the source lo-

cation and the equivalent seismic velocity. x, y, z, and v are

the first, second, third, and fourth component of particles, re-

spectively. The flow chart for the PSO algorithm is shown in

Fig. 1.

The procedure for the source location parameter evalua-

tion based on the PSO algorithm is described as follows.

Step 1. Initialize the model parameters for microseismic

source location and the PSO parameters. Randomly initial-

ize the source position and wave velocity of the PSO algo-

rithm. Initialization of the PSO parameters mainly includes

the population size m, acceleration constants c1 and c2, in-

ertia weight w, computational accuracy ε, largest number of

evolutionary generations Tmax, initial velocity and positions

of the particles, and maximum particle flight speed vmax.

Then, initialize the iterative counter k.

Step 2. Calculate the particle (microseismic source coor-

dinate and velocity model) fitness value by using Eq. (2).

The calculated values here are the source’s 3-D coordinates
(

x
(k)
0 ,y

(k)
0 ,z

(k)
0

)

and equivalent velocity V (k), where k is the

evolutionary generation number.

Step 3. Judge whether the current parameters of the par-

ticles meet the presupposed flight times and positioning ac-

curacy or not. If they do, then go to Step 5; otherwise, go to

Step 4.

Step 4. Update the flight velocity and particle positions ac-

cording to Eq. (5), and then go back to Step 2.

Step 5. Output the estimated source’s 3-D coordinates
(

x̂0, ŷ0, ẑ0

)

and equivalent wave velocity V̂ .

Step 6. Calculate and output the origin-time estimate t̂0
by substituting estimated values of the source coordinates
(

x̂0, ŷ0, ẑ0

)

and equivalent velocity V̂ into Eq. (4). When the

solution for the source coordinates and the origin time are

obtained, the algorithm is over.
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Figure 1. Flow chart for the microseismic source location algorithm based on adaptive particle swarm optimization.

3.3 Discussion of PSO algorithm parameters

The parameter values for the PSO algorithm are the keys to

influencing the algorithm performance and efficiency. This

paper proposes guiding principles for adjusting parameters of

the PSO algorithm based on the practical approach for solv-

ing for the seismic source parameters.

3.3.1 Inertia weight w(k)

Generally, optimization problems are divided into local and

global problems. The former consists of looking for the min-

imum in a finite area of function value space; the latter is

for finding the minimum in the whole area of function value

space. As early as 1998, Shi and Eberhart (1998) found that

when the value of inertia weight w is relatively large, the

global optimization ability of the PSO algorithm is strong,

while the local optimization ability is weak. On the other

hand, when the value of inertia weight w is relatively small,

the local optimization ability of the PSO algorithm is strong,

while the global optimization ability is weak. To avoid par-

ticles being stuck in a local optimum at the wrong time or

missing the global optimal solution, this study uses the strat-

egy of self-adaptive inertia weight to determine the proper

value of w (Zhang and Liao, 2009). The strategy is the fol-

lowing.

In order to enhance the exploring competence of the PSO

algorithm, the population average velocity should be main-

tained to be rather high at the initial stages of evolution, while

in the late stage of evolution a smaller population average ve-

locity should be maintained in order to strengthen the devel-

opment capabilities of the algorithm. We assume that evo-

lution of the average particle flying velocity with changing

number of generations k should be close to the function de-

fined by Eq. (6):

v(k)
avg = v(k)

e = v0e
−

(

2k
Tmax−T1

)2

, (6)

where v0 represents the initial average velocity of population,

Tmax is the largest number of evolutionary generations, and

T1 is the number of evolved generations.

We will call v
(k)
e the expected value of the average flying

velocity for a particle population at the kth generation. The

actual average velocity of the particle swarm at the kth gen-

eration is given by Eq. (7):

v(k)
avg =

1

m

m
∑

i=1

√

√

√

√

4
∑

d=1

(

v
(k)
i,d

)2
, (7)

where v
(k)
i,d represents the velocity of the dth component of

the ith particle at the kth generation.

Set the initial inertia weight to w. Designate w(k) inertia

weight for the kth particle generation. Then the inertia weight
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w(k+1) for the (k+l)th generation is determined by Eq. (8):



























if v
(k)
avg > v

(k)
e then w(k + 1) = w(k)/p

if v
(k)
avg < v

(k)
e then w(k + 1) = w(k) · p

if v
(k)
avg = v

(k)
e then w(k + 1) = w(k)

if w(k + 1) > wmax then w(k + 1) = wmax

if w(k + 1) < wmin then w(k + 1) = wmin

, (8)

where p is a some constant. Practice has proved that the best

value of p is 1.05 (Zhang and Liao, 2009).

Substitution of w(k) given by Eq. (8) into Eq. (5) ensures

that average velocity v
(k)
avg will reduce to zero in the process

of population evolution.

3.3.2 Acceleration constants c
(k)

1
and c

(k)

2

Gao and Liao noted that the position x
(k)
i,d of each

particle in the population eventually converges to
(

c1pi,d + c2pg,d

)

/(c1 + c2) (Gao and Liao, 2012). This

means that the position of the particles for a large k will

stay close to the lines that connect the global optimum

point with the local optimum point. Therefore, in the first

stage of particle swarm optimization, the optimum value of

the particle itself is an important parameter for making all

particles converge to global optimum.

However, if c
(k)
1 would be high for all k values, then the

optimum position of the particle swarm would, generally, not

coincide with the global optimum of the target function (2).

Therefore, at the first stage of PSO, c
(k)
1 should take a larger

value, while c
(k)
2 should take a smaller value to promote the

local optimization speed. When particle swarm optimization

is near its end, the role of the global optimal value should be

highlighted. At this stage, c
(k)
1 should take a smaller value,

while c
(k)
2 should take a larger value to help the particle

swarm converge to the global optimum. Therefore, the ac-

celeration constants c
(k)
1 and c

(k)
2 should be designed based

on the average velocity of the particle swarm:

c
(k)
1 = C

v
(k)
avg

vmax
,c

(k)
2 = C

(

1 −
v

(k)
avg

vmax

)

. (9)

C is a positive integer, usually in the range [2, 5].

3.3.3 The maximum flight velocity of particles vmax

The selection and analysis of the maximum flight velocity

of particles should proceed as follows: if vmax is too small,

then the particle movement will be restricted. In this situa-

tion, the algorithm cannot converge fast enough and may not

even be able to achieve the optimal solution. On the other

hand, if vmax is too large, then the optimal solution may be

missed (Eslami et al., 2014; Abido, 2002). Therefore, it is

very important to dynamically adjust the vmax value. To en-

sure uniform velocity through all dimensions, the maximum

Table 1. Coordinates of sensors and microseismic sources.

Geophone Microseismic

coordinates (m) source coordinates (m)

A (0, 0, 0) O (400, 400, 400)

B (800, 0, 0) P (300, 600, 700)

C (800, 800, 0) Q (300, 200, 300)

D (0, 800, 0) R (500, 600, 1200)

E (0, 0, 800)

F (800, 0, 800)

G (800, 800, 800)

H (0, 800, 800)

Figure 2. The locations of geophones and microseismic sources.

velocity in the dth dimension is proposed as

vmax,d =
xmax,d − xmin,d

N
, (10)

where xmax,d and xmin,d , respectively, stand for the largest

and smallest values in the dth dimension of the possible par-

ticle positions, and N is a chosen number of intervals (Abido,

2002), usually in the range [1, 10].

4 Simulation and case study

4.1 Simulation analysis and discussion

For the simulation, eight sensors comprising a microseismic

localization system are located on the eight vertices of a cube.

Four microseismic sources, O, P , and Q, are located inside

the cube, and R is located outside of the cube. The coor-

dinates of the geophones and the microseismic sources are

shown in Table 1, and the relative locations of the geophones

and microseismic sources are shown in Fig. 2.

It is assumed that the velocity of wave propagation (v)

in the medium is unknown. According to the coordinates of

geophones and microseismic sources shown in Table 1, first,

the synthetic travel is computed. Then, the differences be-

tween the arrival times of all the pairs of the station are re-

trieved according to Eqs. (2), (3), and (4), and inversion is

www.nonlin-processes-geophys.net/26/163/2019/ Nonlin. Processes Geophys., 26, 163–173, 2019
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Table 2. Travel time of a microseismic wave.

Geophones Travel time (ms)

O P Q R

A 123.72 173.13 83.76 255.68

B 123.72 187.29 110.08 245.50

C 123.72 157.71 149.40 223.75

D 123.72 140.61 131.22 234.87

E 123.72 121.11 110.08 156.70

F 123.72 140.61 131.22 139.47

G 123.72 97.81 165.60 96.16

H 123.72 66.82 149.40 119.79

carried out by the least squares method (LSM; Dong et al.,

2013) and the PSO proposed in this paper. The microseismic

source location, equivalent wave velocity, and origin time are

obtained. Then, the results calculated using the two different

methods are compared using error analysis, the algorithm ex-

ecution time, and the number of iterations.

Suppose a microseismic velocity of v = 5.60 m ms−1. Ac-

cording to the coordinate information in Table 1, the trigger

time of the microseismic waves recorded by the geophones

triggered can be calculated, as shown in Table 2. The method

in this paper is PSO. The computational accuracy of the LSM

algorithm is ε = 1.0×10−10. The parameters for the PSO al-

gorithm are as follows: population size is m = 50, w0 = 1,

and Tmax = 3000. The inertia weight w, acceleration con-

stants c1 and c2, and maximum flight velocity of particles

vavg are determined by Eqs. (6)–(10). MATLAB program-

ming was used to implement the LSM and PSO algorithms

to obtain solutions at four points, O, P , Q, and R. The calcu-

lated results are shown in Table 3. The results of convergence

are different when different initial values are selected for the

LSM. When the initial value is far from the true value, the

LSM satisfies the end condition, but it does not get the true

value of the microseismic source. By repeatedly adjusting

the initial value, the algorithm converges to the correct re-

sult. The corresponding initial values of the LSM in Table 3

are obtained after several adjustments. The PSO method can

converge to the true value only by randomly selecting a set

of initial values within a specified range.

Based on the results shown in Table 3, the LSM algorithm

has different convergent results for different initial values.

When the initial value is far from the true value, the required

calculation accuracy ε can be met, but the result does not ap-

proach the true value. In some cases, there are multi-group

results, so the initial values need to be repeatedly adjusted in

order to make the LSM algorithm approach the true value.

For the PSO algorithm, a wide range of initial values was

used for the microseismic source location parameters. The

only variables that need to be solved for are the 3-D co-

ordinates of the arbitrary point inside the space surrounded

by the seismic detection equipment. Thus, the calculated re-

sults can better approach the true value, and the solution is

unique. This occurs because by improving the parameter se-

lection rules, the condition where particles are trapped in lo-

cal optima or fly over the global optimum during the process

of searching is avoided; thus, the optimization ability of the

PSO algorithm is improved.

Comparisons of the errors in the microseismic source loca-

tion parameters obtained using the LSM and PSO algorithms

are shown in Fig. 3, and the comparison of iterations between

the two algorithms is shown in Fig. 4.

The selection of initial values for parameters in the LSM

algorithm is comparatively complex, so the basic principle of

parameter selection is to approach the desired value as near

as possible. The selection of different initial values for pa-

rameters in the LSM algorithm has a greater influence on the

accuracy of the solution location compared to PSO and re-

sults in a large difference in the number of iterations between

the two methods. The improved PSO algorithm only needs

to provide a value range for the initial parameters. Then, it

automatically selects parameter values to iterate, and the al-

gorithm runs for a maximum number of 3000 iterations. As

is shown in Table 3, Fig. 3, and Fig. 4, compared with the

LSM algorithm, the PSO algorithm not only improves the

computational accuracy of the desired value of microseismic

source parameters but also increases the computational ef-

ficiency and determines the microseismic source’s real time

location.

The following is a discussion of some special conditions.

(1) Since source O is located at the cube’s center of gravity,

the distance between O and each geophone is the same. As

a result, both the LSM and PSO algorithms can converge to

the true value when solving for the seismic source coordi-

nates (x0, y0, z0) but cannot solve the origin time t0 because

regardless of which value of wave velocity v is selected, the

value of Q in Eq. (2) tends to be zero. Because of the random-

ness of the wave velocity, the origin time t0 cannot be solved

according to Eq. (3). (2) Since source R is located outside

of the cube, the average distance from this point to each sen-

sor is larger than that from other points in the cube, such as

P and Q points, to each sensor. The error in the equivalent

wave velocity, which is solved by iteration, causes greater

location error for R than for other points in the cube, so the

layout of the seismic detection equipment should ensure that

the microseismic source is within the detection array.

4.2 Case study

Because rock bursts occur frequently at a mine in central

China, a Paladin 24-bit, multi-channel microseismic moni-

toring system of ESG Solutions in Canada was installed. In

total, 18 seismic detection devices were installed in different

positions at the mine: 9 seismic detection devices were in-

stalled at the −520 level, and 9 were installed at the −840

level. A blasting operation with a known position was con-

ducted in order to verify the validity of the PSO algorithm.
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Table 3. Comparison of the LSM and PSO algorithms.

Algorithm Microseismic source O

x (m) y (m) z (m) t0 (ms) v (m ms−1)

LSM
Initial value 350.00 350.00 350.00 0.00 1.00

Calculated value 400.00 400.00 400.00 – –

PSO
Initial value 0–800 0–800 0–800 0–10

Calculated value 400.00 400.00 400.00 – –

True value 400.00 400.00 400.00 0.00 5.60

Algorithm Microseismic source P

x (m) y (m) z (m) t0 (ms) v (m ms−1)

LSM
Initial value 100.00 400.00 500.00 0.00 1.00

Calculated value 304.37 295.22 703.63 6.27 5.85

PSO
Initial value 0–800 0–800 0–800 0–10

Calculated value 301.23 298.95 701.02 1.81 5.67

True value 300.00 300.00 700.00 0.00 5.60

Algorithm Microseismic source Q

x (m) y (m) z (m) t0 (ms) v (m ms−1)

LSM
Initial value 100.00 100.00 100.00 0.00 1.00

Calculated value 263.98 206.33 304.59 2.92 5.81

PSO
Initial value 0–800 0–800 0–800 0–10

Calculated value 258.84 201.35 298.01 1.11 5.68

True value 260.00 200.00 300.00 0.00 5.60

Algorithm Microseismic source R

x (m) y (m) z (m) t0 (ms) v (m ms−1)

LSM
Initial value 300.00 400.00 1000.00 0.00 1.00

Calculated value 491.28 590.68 1208.32 13.82 5.92

PSO
Initial value 0–800 0–800 0–800 0–10

Calculated value 504.21 605.23 1195.25 4.48 5.70

True value 500.00 600.00 1200.00 0.00 5.60

Note: “–” means that the value cannot be obtained directly. The calculated value from the PSO is the average

value obtained after running the PSO algorithm 20 times.

Ten seismic detection devices detected microseismic signals

during the blasting operation. Pretreatments of the data, such

as denoising and filtering, were performed on the detected

signals in order to obtain a high SNR. Then, two blast points

that showed an obvious rising waveform trend, making it

easy to capture the trigger time, were selected and analyzed.

The position coordinates of the two points are A (1495.60,

998.50, −685.10) and B (1298.70, 855.30, −576.20). The

coordinates of the 10 seismic detection devices and the trig-

ger times detected are shown in Table 4. The relative posi-

tion of the 10 geophones and the two burst points is shown in

Fig. 5. The seismic waveform data received by the geophone

are shown in Fig. 6.

The experiment was carried out on the advanced roadway

of the coal mine working face. The diameter of the borehole

is 42 mm, the depth of the borehole is 1.2 m, and the length

of the filled explosive is one-fourth of the borehole depth.

We approximate the blasting point to a spherical blasting

point without considering the error caused by the assump-

tion. Based on the data presented in Table 4, the PSO algo-

rithm and LSM algorithm were used to solve for the seismic

source location parameters and origin time. A comparison of

the error is shown in Table 5.

According to Table 5, the accuracy of the LSM algorithm

is relatively poor. Its average deviation in the X, Y , and Z

directions is 8.97, 10.81, and 12.90 m, respectively. The re-
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Figure 3. Comparisons of the errors in the source location parameters between the LSM and PSO algorithms. (a) Comparisons of the x-axis

locating error. (b) Comparisons of the y-axis locating error. (c) Comparisons of the z-axis locating error. (d) Comparisons of the errors in the

origin-time estimation.

Figure 4. (a) Comparison of the number of iterations between the LSM and PSO algorithms, where the max and min markers highlight

the maximum and minimum number of iterations for each algorithm. (b) Comparison of the computing time between the LSM and PSO

algorithms, where the max and min markers highlight the maximum and minimum amount of computing time for each algorithm.

sults were obtained after repeated adjustment of the initial

location parameters for the seismic source and the wave ve-

locity. The PSO algorithm can automatically approach the

true values according to the given initial parameter range. Its

average deviation in the X, Y , and Z directions is 6.37, 5.78,

and 9.03 m, respectively, with errors that are less than 5 %.

Therefore, the PSO can achieve high positioning accuracy in

the geophone range.

The simulation example and blasting experiment dis-

cussed above clearly demonstrate that the PSO optimization

algorithm is better than the LSM when solving for the micro-

seismic positioning parameters and the seismic origin time.

The algorithm has high positioning accuracy and fast conver-

gence speed, and it is easy to set the initial parameters. This

is because the adaptive PSO algorithm is more accurate in fit-

ting the relationship between each coordinate for the seismic

detection equipment and the time difference. It can dynami-

cally adjust the velocity value in an iterative process until the

value approximates the optimal average velocity, which can

account for the nonlinear relationship between each coordi-

nate of the seismic detection equipment and the time differ-

ence and can greatly reduce the impact of the velocity error

on the positioning precision.

4.3 Discussion

In order to further verify the effectiveness of the proposed

method, the experiments in Sect. 4.1 are compared and ana-

lyzed under different wave velocities. The comparative anal-

ysis steps are as follows. (1) Use the PSO method and the

LSM to locate the microseismic source when using real ve-

locity (i.e., error floating at 0 %). (2) Because it is difficult

to measure real wave velocity in practical engineering, small

errors of 1 %, 3 %, and 5 % are given to the PSO method and
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Table 4. Geophone coordinates and travel time from the burst point.

Geophone no. Geophone coordinates (m) Travel time (ms)

x y z Burst point A Burst point B

No. 2 751.26 549.55 −520.51 157.39 112.01

No. 3 755.40 1302.64 −523.35 146.02 146.02

No. 4 1752.37 700.70 −519.43 76.08 86.03

No. 6 2005.65 1298.72 −521.35 109.69 149.34

No. 9 1512.59 1149.63 −519.15 39.98 65.41

No. 12 995.87 1305.66 −820.20 107.27 106.07

No. 13 1248.20 1597.85 −821.95 118.96 140.72

No. 15 1500.46 550.75 −819.87 82.76 77.72

No. 16 2254.38 1303.22 −818.35 146.92 192.00

No. 17 1750.34 998.48 −822.73 52.20 96.23

Table 5. Error comparison for the LSM algorithm and PSO algorithm.

Xerr (m) Yerr (m) Zerr (m) Terr (ms)

Burst point A
LSM 9.65 10.39 13.05 18.63

PSO 6.78 5.27 9.79 10.33

Burst point B
LSM 8.28 11.22 12.74 27.24

PSO 5.96 6.29 8.26 15.95

Error
LSM 8.97 10.81 12.90 22.94

PSO 6.37 5.78 9.03 13.14

Figure 5. Schematic diagram of the relative position of the 10 geo-

phones and the two burst points.

LSM; in other words, when the wave velocity is 5.544, 5.432,

and 5.320 m ms−1, two methods are used to locate the micro-

seismic source. (3) Step 1 and Step 2 are used to locate the

microseismic source, and the absolute distance error is calcu-

lated by comparing the locating results with the real values.

Figure 6. (a) Seismic waveform of burst point A received by geo-

phone no. 2. (b) Seismic waveform of burst point B received by

geophone no. 2.

The absolute distance errors calculated by the PSO method

and the LSM at different wave velocities are plotted in Fig. 7.

As we can be seen from Fig. 7, the LSM will cause large

errors in the location system under the disturbance of differ-

ent wave velocities. The maximum error is up to 25 m (except

for the seismic source R), while the PSO method is more sta-

ble. The reason is that the PSO method can accurately fit

the relationship between the coordinates of each sensor and

the time difference because it does not depend on the veloc-
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Figure 7. Comparison of locating errors between PSO method and

LSM at different wave velocities.

ity value when solving the seismic location parameters. The

LSM needs accurate velocity to solve the seismic location

parameters, and the disturbance of velocity has a great influ-

ence on the results. That is to say, in the case of wave velocity

disturbance, even if there is a small error in the value of wave

velocity, there will be a large error in the location result of the

LSM. Because of the complexity of rock media, the average

velocity of each region is not necessarily the same, and due to

the influence of construction technology, it is very difficult to

determine the velocity of anisotropic media; this is the main

reason for the low positioning accuracy of the LSM. In ad-

dition, when the source is outside of the sensor array (such

as seismic source R), the errors of the two methods are very

large, but the LSM has greater locating errors than the PSO

method, which shows that the sensor arrangement should en-

sure that the seismic source is within the array as far as pos-

sible.

5 Conclusions

1. An adaptive PSO optimization method is proposed

based on the average population velocity in order to

solve for location parameters of the seismic source in a

location model. This method takes the minimum resid-

ual sum of squares between the time-difference regres-

sion values and the time-difference measured values for

two seismic detection devices, and the PSO algorithm

is designed to solve for the seismic source coordinates

and the equivalent wave velocity and then solve for the

seismic source origin time.

2. Combined with the actual need to solve for seismic

source parameters, the model constraints of inertia

weight, accelerating constants, the maximum flight ve-

locity of particles, and other parameters are discussed in

order to improve the optimization capacity of the PSO

algorithm and avoid being trapped in a local optimum.

3. Comparative analysis shows that when solving for the

seismic source location parameters, compared with the

classic least squares method, the adaptive PSO algo-

rithm has high positioning accuracy and fast conver-

gence, and it is easy to set the initial parameter values.
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