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INTRODUCTION

In fluid mechanics, added mass or virtual mass, is the added 
inertia to the system, owing to that the Increase or decrease in 
the body acceleration should cause the Fluid to move around the 
body in such a way that the object can move through it, because 
the body and the fluid cannot simultaneously occupy this 
physical space. For simplicity this can be modeled in such a way 
that the Volume of fluid moves along the object, While in fact 
all parts of the fluid move with varying degrees. Added mass 
coefficient matrix usually is expressed as a dimensionless value 
which is equal to added mass coefficient divided by the Mass of 
displaced fluid. For example the body density can be considered 
in the body volume. In general, the added mass coefficient is 
a second order tensor that depends on the fluid acceleration 
vector in order to obtain force vector on the body.

The added mass was considered as the first time in 1776 by 
Dubua who did laboratory studies on spherical pendulum in 
low swings. [2] Precise mathematical equations for the added 
mass of sphere, was obtained by Green (1833) and Stokes 
(1843) respectively. Stokes, also studied on the sphere motions 
in a finite volume of fluid. Later, following the efforts of many 
researchers, the concept of added mass was generalized for 
moving a desired object in different flow regimes. [3]
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THE ADDED MASS COEFFICIENT 
RELATIONS

The hydrodynamic forces and moments are determined by 
fluid inertia and viscous properties according to the motion of 
a body in real incompressible fluid. Definitely, the other forces 
and moments can be calculated by obtaining one of the inertia 
or viscous terms. Since the fluid can be assumed as an ideal 
one (Inviscid). Therefore the inertia forces and moments can 
be calculated with this estimate. The forces and moments of 
inertia can be introduced as the body added mass terms, using 
this method.

Assume that the body with surface S is moving in an infinite 
homogeneous ideal Fluid. Consider two systems of coordinates: 
the stationary one (We denote it by XYZ) and the coordinate 
system moving together with the body (We denote it by Oxyz). 
The vortex-free condition implies the existence of a potential 
φ(X, Y, Z, t), assuming that the moment of these two systems 
of coordinate are specified. So the components of the fluid 
velocity are defined as follows:

(1)
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Using the continuity and incompressibility of fluid and due 
to the vortex-free condition as mentioned above the Laplace 
equation is implied as follows:

(2)

The boundary conditions for Eq. (2) look as follows:

1. The watertight condition, valid on the surface S:

(3)

Where ( ) is a projection of fluid velocity on the 

(external) direction n, which is normal to surface S; un is the 
velocity projection of a point of the body, normal to surface n.

2. Stationary condition at infinity:

(4)

Where r2 = X2 + Y2 + Z2 (r is the distance from the origin to 
a fluid point). The function φ vanishes at infinity as 1/r2, whereas 
its first-order coordinate derivatives vanish as 1/r3 [4, 5]

From the formulation of the problem (1-4) it is seen that 
the function φ depends on time t via the boundary condition 
of right-hand side equation (3), so the boundary condition is 
investigated specifically. The origin O is chosen to coincide 
with an arbitrary point of the body

The velocity of the point O is Denoted by  (components 
u0x, u0y, u0z are projections of the vector u0 on coordinate axes 
attached to the body).

The angular velocity of the body with respect to the point O 
is also donated by  (components of  in the same coordinate 
system are denoted by ωx, ωy, ωz). Thus, the velocity of an 
arbitrary point of the body, including any point of its surface 
S, is determined by the following equation:

(5)

Where  is the vector, determining the position of the point. 
The components of Eq. (5) look as follows:

(6)

On the surface S we have:

(7)

Writing: α ≡ cos(n, x); β ≡ cos(n, y); γ ≡ cos(n, z) and 
substituting (6) into (7), the following form of the boundary 
condition is obtained (3):

(8)

In the formula (8) the variables α, β, γ, yγ – zβ, zα – xγ, 
xβ – yα are determined only based on the shape of the body 
surface. The body motion and the dynamics of the flow 
are determined by the functions u0x, u0y, u0z, ωx, ωy, ωz. The 
potential φ is represented as follows, due to the Linearity of 
the problem.

(9)

In the above equation fi, i = 1, 2, 3 are the flow potentials 
corresponding to the body moving along the axes x, y, z at unit 
linear velocities, respectively. On the other hand φi, i = 4, 5, 6 
are potentials, corresponding to rotation of the body around the 
same axes at unit angular velocities respectively. It is seen that 
the body motion in an ideal infinite fluid causes to solve six 
problems. The first problem can be formulated as follows: the 
solution of the Laplace equation Δφ1 = 0 will be found, using 
the following boundary conditions: 

(10)

(11)

The function  is given on the surface S and The last

(sixth) problem, taking (8) into account. To solve the problem, 
considering the Laplace equation Δφ6 = 0 using the following 

boundary conditions:  which is given at the 
surface S, so:

It can be seen that the function φi, i = 1, 2,... 6 does not 
depend on u0 and ω0. These functions are determined only by 
the shape of the surface S of the body and Choice of coordinate 
system Oxyz attached to the body.

KINETIC ENERGY OF THE FLUID

In order to to obtain fluid kinetic energy, considering the 
surface S and the sphere Σ of radius a including the body with 
surrounding Fluid, the following integral is defined.

(12)

Where ρ, is the fluid Density
Using Green’s transformation for two functions (φ1, φ2):

(13)

And considering φ1 = φ2 = φ, Δφ = 0 and putting words in 
the above equation the following expression is gotten:

(14)

The Second term in the right hand side of Eq. (14) tends 
to zero as α → ∞ according to the asymptotic behavior of φ 
and its first derivatives while r → ∞. Therefore, the following 
formula is obtained for the total kinetic energy of the fluid 
around the surface S:

(15)
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Substituting the expression (9) in to (15) and writing:

The expression (16) is finally obtained:

(16)

Where λik is:

(17)

λik is called the added mass of the body.

According to Eq. (17) it is found that the added mass, do 
not depend on the body velocity and Kinematics of the motion 
but is only a function of the body surface geometry.

Applying Green’s formula to functions φi and φk in the 
volume V between the surfaces Σ and S then:

(18)

Since Δφi = Δφk = 0, so that the left-hand side of the equation 
equals zero, and the first term of the right-hand side of the 
equation tends to zero at α → ∞. Therefore, the condition for 
the infinite fluid surrounding the body is as follows:

(19)

Since λik = λki. Therefore, only 21 values out of 36 λik (i, k =
= 1, 2… 6) are independent.

This part, in fact proved that the added mass matrix is 
symmetric.

To obtain the added mass coefficient matrix using force 
view, ultimately the same formula is achieved. [6]

CALCULATING THE ADDED MASS 
COEFFICIENT USING THE BOUNDARY 

ELEMENT METHOD

Boundary element method is based on the Green’s theory. 
Based on the theory solving the fluid flow around the body can 
be transferred from the volume solving domain around the body 
to the body boundary that is performed on the produced surface 
elements in three-dimensional modes. The boundary element 
method is used to obtain all six unit potentials corresponding to 
the six free degrees. The added mass tensor can be computed, 
obtaining the unit potential. The forces and momentum also 
can be achieved, having the added mass. [7]

(20)

THE BOUNDARY ELEMENT METHOD 
TO COMPUTE THE ADDED MASS 

COEFFICIENT 

Consider the Closed area Ω, the boundary S and unit vector 
 normal to S (Fig. 1). The boundary S is composed of the 

body wetted surface SB, the wake surface SW and the external 
control surface S∞ including surface area SB, SW.

The Ω encountered the Uniform inflow velocity , 
assuming the flow is Incompressible, Inviscid and Irrotational 
in the domain Ω, in the upstream flow.

Fig. 1. Application of Green theory for hydrofoils

With these assumptions, the flow field around the body can 
be identified using Perturbation Velocity potential φ, which 
satisfies the Laplace equation:

∇2φ = 0                                    (21)

To solving the problem, the boundary conditions are 
considered as follows:

Kinematic Boundary Condition

Based on the Kinematic boundary condition, the Flow 
velocity normal to the body surface must be zero.

(22)

Where , is the unit vector normal to outside of the boundary 
[8] and is changed as follows, considering the unit potential 
Kinematic of Boundary Condition:

(23)

Where, r is a vertical distance from a fixed origin point 
[12].

Kinematic And Dynamic Conditions In Wake

Based on this condition, there is no velocity jump of flow 
on the wake vortex, however there is velocity jump of potential 
on the surface which is equal to circulation Г around the fin. 
The mathematical relations of flow velocity and potential are 
expressed as follows:

(24)

Where B and F showing back and face sides of the propeller 
[8].

KUTTA CONDITION IN THE TRAILING 
EDGE

Hess and Smith have shown that the flow passing along 
a thin and non lifting body can be described by the distribution 
singularities of source. But to describe the flow passing along 
lifting bodies, modeled by the circulation distribution on the 
surface, a boundary condition for the Trailing Edge of the body 
must be satisfied, expressing that the velocity at the trailing 
edge should be limited and unique. [9, 10]

 
|∇φ|TE < 0                               (25)
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Surface At Infinity 

At the boundary surface at infinity S∞, the perturbation 
velocity due to the body surface must tend to zero.

∇φ → 0 as S∞ → 0                         (26)

Using Green’s theory, general answers of the Laplace 
equation for each point P can be expressed as the following 
integral equation:

(27)

In the above equation ∂φ/∂n is determined, using the 
boundary condition of Eq (23). 1/R(p, q), is the distance 
between p and q, so that the only remaining unknown for 
solving Eq (27) is φ. [8]

EQUATIONS DISCRETIZATION

In order to solve Eq (27), the equation form must be discrete 
and the body boundary surface shall be made of tetragonal 
elements.

Fractional equations lead to linear algebraic equation system 
for φ and i as follows:

(28)

Where Dij, Sij, and Wijl are Dipole coefficients and source 
for j element that acts on the arithmetic point i. The coefficients 
are defined as follows:

(29)

To obtain these coefficients the numerical solution of the 
integrals is used. Calculating these coefficients, the following 
matrix equation is formed 

Solving the equations using the Gauss - Sydl method is done 
as a repetitive solving, so that φj are obtained. [11]

[D][φ] = [S] + [W][Δφ]                (30)

Where:
[D] = dipole Potential effects of induction coefficient matrix
[S] = source Potential effects of induction coefficient matrix
[W] = dipole Potential effects of induction coefficient matrix

For lifting and non-lifting bodies, the above computational 
method can be used, but the difference is in the use of Kutta 
boundary condition which there is no need to consider it in 
non-lifting bodies, so that the results are obtained directly 
regarding the kinematic boundary condition.

Although the Kutta condition is considered to analyze 
the propeller and the hydrofoil, the obtaining results have no 
significant difference with the ones which are obtained without 
considering the Kutta condition. So, regarding this issue it can 
be expressed that only the D and S out of the D, S and W are 
important for calculating the added mass matrix.

(31)

Which in Reference 12, the integrals are expressed as 
follows that in fact are the same general term in Eq (27) and with 
extracting the D and S, the formulas in Eq (31) is obtained.

(32)

The Flowchart Of The Added Mass Matrix Extraction 
Using The Boundary Element Method
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If the above integrals are formulated based on matrix 
equations, the following relation is obtained:

[AiK][φK] = [Bi]                          (33)

So that i = K and AiK = 2π.
The added mass matrix values with solving matrix equations 

for all six potential unit functions can be defined as follows:

(34)

If the above equation is written in the matrix form, which 
is the general form of added mass matrix. [12]:

RESULTS 
Computing The Added Mass Coefficient 

Of Sphere
The added mass coefficient for a sphere of radius 0.25 m 

has been investigated in this part. However, according to the 

analytical relations in the mass matrix of sphere, only a11, a22 and 
a33 have values and the others are zero. The three coefficients 
are equal with each other and should be equal to half of the 
sphere mass. In order to evaluate the Mesh independency, the 
added mass matrix were investigated for three cases of surface 
element (2400, 3360 and 4800 elements), using the boundary 
element numerical code and the obtained results and errors 
were checked.

The obtained values for the added mass of the sphere using 
numerical analysis of the boundary element are as follows:

For a sphere with radius of 0.25 m, the analytical values of 
a11, a22, a33 are equal to 0.0327245

As it was mentioned, only a11, a22, a33 have non-zero 
value, which is equal to half of the sphere mass and the 
other elements of the added mass matrix are zero. So it can 
be seen that the obtained values of the numerical boundary 
element method have a high conformity with the analytical 
data and the error rate, according to the table (3) is the 10E-2 
order. [6]

Tab. 1. Geometric and flow data to calculate the added mass coefficient of sphere

Tab. 2. Showing the produced geometry with surface elements to check the mesh independency condition

Tab. 3. The compared Results of the added mass numerical and analytical data of the sphere and the Error percentage Due to the elements numbers

Number of 
Element

Numerical result for 
a11 (code result)

Analytical 
value of a11

Difference between
Numerical and Analytical result

% Error

2400 0.032814 0.032725 8.95E-05 0.272749
3360 0.032771 0.032725 4.65E-05 0.141894
4800 0.032752 0.032725 2.75E-05 0.083964
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Computing The Added Mass Of Ellipsoid

Continue the contex, the coefficient of added mass for an 
ellipsoid has been investigated.

Since the added mass coefficients of ellipsoid as well as 
the sphere are available in references, so that to validate the 
computing results of the boundary element code, this analysis 
is given. The numerical analysis with the mesh independency 
condition was investigated and the results of the surface element 
with the number of 4600 had very little error in comparison 
with the existing data.

The added mass matrix obtained by numerical analysis for 
an ellipsoid with the above specification is as follows:

Considering that the numerical analysis results of the added 
mass were dimensional and the results in the references were 
dimensionless, then to validate the results, the data obtained 
from the numerical analysis were transformed to dimensionless 
one and compared with the available data in those references. 
To make the added mass matrix of ellipsoid dimensionless a11, 
a22 and a33 shall be divided on (4π/3)ab2 and also a44, a55 and a66 
must be divided on (4π/15)ab2 (a2 + b2). 

Due to the symmetry of the ellipsoid, then a22 = a33, a55 = a66 
and a44 = 0.

According to data obtained from the Diagram and making 
them dimensional, then:

It is found from comparing the boundary element numerical 
analysis results with the data available in references for added 
mass coefficients of ellipsoid that there is a good conformity 
between the numerical data and the ones in the references 
[6, 12].

Tab. 4. Geometric and flow data of computing the added mass coefficient ellipsoid

Tab. 5. The added mass coefficient Diagram of an ellipsoid [6]
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Computing The Added Mass Matrix For A Sample Propeller
According to the data and results obtained for the added mass matrix of the sphere and ellipsoid it can be found that there 

is a very good accuracy between the data obtained from the analytical and the numerical solution, suggestive of the validity of 
the boundary element method code in calculating the added mass matrix.The following text is about computing the added mass 
matrix for a sample propeller which its experimental and geometrical data is on hand and the results have been validated with 
the experimental data.The added mass matrix, considering what was mentioned in the text do not depends on the body velocity 
and is only a function of the body geometry.

First of all, the existing Geometric data of the propeller was considered based on the standards and the propeller geometry 
modeled with a very high accuracy. Then the propeller surface and the hub were analyzed according to the flow conditions. The 
propeller analysis was performed in several different modes of surface element numbers so that the most appropriate numbers 
of the elements is achieved in a way that the obtained answers do not depend on the element numbers [14].

Tab. 6. the compared Results of the added mass numerical and analytical data of the ellipsoid and the Error percentage Due to the elements numbers

Matrix 
array

Numerical result 
(code result)

Analytical 
result

Difference between
Numerical and Analytical result

% Error

A11 0.009025 0.00902094 4.06E-06 0.044986
A22 0.143401 0.14306174 0.000339 0.236581
A55 0.030467 0.03120399 -0.00074 -2.41898

Tab. 7. Geometric and flow data related to the propeller and the produced geometry for boundary element numerical analysis [13]

Dimensional Added Mass Matrix Obtained For The Propeller

Added Mass Matrix =

2.176192 -0.240440 -0.686280 -0.670630 0.015638 -0.196440
-0.240440 0.042111 0.080637 0.006256 0.000156 0.018995
-0.686280 0.080637 0.251128 0.019366 -0.005240 0.059255
-0.058640 0.006256 0.019366 0.001617 -0.000450 0.005282
0.015638 0.000156 -0.005240 -0.000450 0.000505 -0.001630
-0.196440 0.018995 0.059255 0.005282 -0.001630 0.018315
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Investigating The Mesh Independency

To investigate that the obtained data for the propeller is independent of the produced surface elements of the propeller and the 
hub surface, the added mass matrix was obtained in seven different numbers of surface elements and the results were checked, 
as it is identified from the diagram (figure 2) the results do not have any significant change after 3960 elements.

Fig. 2. Changes in the mass added coefficient based on the element numbers at the propeller surface

Comparing The Added Mass Matrix Of The Propeller With The Obtained Data From Other 
Numerical And Experimental Methods

Tab. 9. Comparing the data, obtained from the numerical solution, experimental and formulated data

Estimation Method Added Mass
(kg)

Diff
[%]

Experiment 0.6860000 0.0

AddedProp (Present method) 0.6706359 -2.24%

Prodas 0.6690000 -2.5%

Schwanecke 0.8240000 +20.1%

Shuster 0.9660000 +40.8%

Tab. 8. Compared results of the added mass numerical and analytical data of the propeller and the Error percentage Due to the element numbers

Number of 
Element

Numerical result 
Matrix Array A13 
(Addedprop code)

Exprimental 
Result

Diffrence between
Numerical and Exprimental 

result

% Error

1800 0.6242060 0.6860000 -0.0617940 -9.0078717

2520 0.6382161 0.6860000 -0.0477839 -6.9655831

3240 0.6451033 0.6860000 -0.0408967 -5.9616181

3960 0.6510313 0.6860000 -0.0349687 -5.0974781

4320 0.6631462 0.6860000 -0.0228538 -3.3314577

5040 0.6691640 0.6860000 -0.0168360 -2.4542274

5760 0.6706359 0.6860000 -0.0153641 -2.2396647
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Computing The Added Mass Matrix Of The Hydrofoil (NACA0012 Section)

Tab. 10. Geometrical data and the element numbers of calculating the added mass coefficient of hydrofoil

Gradual Increase In The Span Length To Validate The Results

To calculate the added mass matrix of the hydrofoil with NACA0012 section, first of all the mesh independency was 
investigated in which the obtained data from 2632 elements had very good accuracy, then to validate the obtained data, the span 
length was increased gradually from 0.2 to 1 and thus the added mass matrix was computed. Afterward the added mass matrix 
element changes were plotted based on the span length increase. All of the coefficients are increased with linear and non-linear 
curves of the 2 and 3 order, which is completely ascending. In fact, by increasing the Span length, all coefficients were reasonably 
increased as expected. Of course, investigating each of the diagrams whether they should be linear or nonlinear, of the 2 orders 
or 3 orders are denied due to that they are Proportional to Dynamic and Simulation topics.

Fig. 3. The added mass coefficient changes of hydrofoil based on the gradually increase along the Span length

The Added Mass Matrix Of Hydrofoil

The added mass matrix of hydrofoil with NACA0012 section for the Span length of 1 m and Chord length of 9/0 m is as 
follows:

Added Mass Matrix =

159.3152 31.63824 0 -13.5806 89.37951 58.75352
31.63824 122.4136 0 -63.4481 11.35911 44.82613

0 0 0 0 0 0
-13.5806 -63.4481 0 40.92427 -7.51047 -23.5442
89.37951 11.35911 0 -7.51047 56.3155 21.46682
58.75352 44.82613 0 -23.5442 21.46682 22.75078
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CONCLUSION

• The added mass coefficient is one of the most important 
dynamic coefficients in solving dynamic equations and 
simulating the vessels. Calculating the Add mass coefficient 
especially the bodies whose shapes are not simple is 
difficult. Added mass coefficient is extractable using 
empirical formulas, the simple analytical relations and 
numerical methods such as Strip theory and lab tests.

• But each of these methods can be used in a limited range. 
For example, the analysis relations can be used only for 
simple geometries and lab tests to extract the added mass 
are costly and obtaining all matrix coefficients is very 
difficult. Moreover, the numerical methods cannot model 
the full three-dimensional body and have a lot of errors 
that ultimately causing a large deviation in calculating 
the coefficients. Meanwhile since the boundary element 
method solves the problem on surface boundary elements 
of the body, it needs less elements and time to solve and 
can obtain the added mass coefficients owing to modeling 
the full three-dimensional body and also extracting the 
potential values with high accuracy.

• As mentioned in the article to investigate the mesh 
independency, the added mass matrix of an ellipsoid and 
a sphere of specific geometry were extracted, using the 
boundary element method and the results were validated 
with the analytical data. 

• Afterward the added mass matrix for a certain propeller was 
computed which its results had a very good conformity with 
the experimental ones. However due to lack of access to 
distribution Cord of the propeller, the standard distribution 
of Series B for a propeller with specific section (NACAa66) 
was used, considering that the volume of the produced 
propeller geometry was checked with the volume of the 
examined propeller in a way that the geometry would have 
a high conformity with the existing data so that if the exact 
geometry is on hand, the error rate with be lower than 10E-2 
order.

• To put it in a nut shell, extracting a complete and dimensional 
add mass matrix with any desired geometry and the accuracy 
of obtained data is the difference between this method and 
boundary element code with other numerical methods.
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