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The adhesion G protein-coupled receptor GPR56
is a cell-autonomous regulator of oligodendrocyte
development
Stefanie Giera1,*, Yiyu Deng1,*,w, Rong Luo1,*, Sarah D. Ackerman2, Amit Mogha2, Kelly R. Monk2,3,

Yanqin Ying1, Sung-Jin Jeong1,w, Manabu Makinodan4,5, Allison R. Bialas4,5, Bernard S. Chang6,

Beth Stevens4,5, Gabriel Corfas4,5,w & Xianhua Piao1

Mutations in GPR56, a member of the adhesion G protein-coupled receptor family, cause a

human brain malformation called bilateral frontoparietal polymicrogyria (BFPP). Magnetic

resonance imaging (MRI) of BFPP brains reveals myelination defects in addition to brain

malformation. However, the cellular role of GPR56 in oligodendrocyte development remains

unknown. Here, we demonstrate that loss of Gpr56 leads to hypomyelination of the central

nervous system in mice. GPR56 levels are abundant throughout early stages of

oligodendrocyte development, but are downregulated in myelinating oligodendrocytes.

Gpr56-knockout mice manifest with decreased oligodendrocyte precursor cell (OPC)

proliferation and diminished levels of active RhoA, leading to fewer mature oligodendrocytes

and a reduced number of myelinated axons in the corpus callosum and optic nerves.

Conditional ablation of Gpr56 in OPCs leads to a reduced number of mature oligodendrocytes

as seen in constitutive knockout of Gpr56. Together, our data define GPR56 as a

cell-autonomous regulator of oligodendrocyte development.
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M
yelin, the multilayered glial membrane surrounding
axons, is paramount to axon conductivity and health in
the vertebrate nervous system. In the central nervous

system (CNS), myelin is formed by specialized glial cells called
oligodendrocytes (OLs)1,2. The molecular mechanisms that
govern OL development are only beginning to be elucidated,
yet several studies have implicated extracellular matrix (ECM)
proteins and their receptors as important extrinsic regulators of
these processes3–6. The family of adhesion G protein-coupled
receptors (aGPCRs) is a major class of ECM receptors that
mediates cell–matrix interactions, and recent reports implicate
aGPCRs as important regulators of myelination7–11. Thus, we
hypothesize that these receptors could play a major role during
OL development and myelination.

Mutations in GPR56, a member of the aGPCR family, cause a
devastating human brain malformation called bilateral fronto-
parietal polymicrogyria (BFPP), in which the normal convoluted
brain surface is replaced by numerous small gyri12,13. In addition
to this cortical defect, BFPP brains also show signs of myelination
abnormalities, namely reduced white matter volume and signal
changes on MRIs12,13, suggesting that GPR56 is important for
myelination. However, it is not clear whether this myelination
abnormality results from abnormal neuronal development, an
intrinsic defect in OLs, or both.

Previous biochemical studies demonstrate that BFPP-
associated mutations result in loss of GPR56 function attributable
to aberrant processing/trafficking of the protein or loss of its
ligand binding ability14–18. Consistent with these findings, Gpr56-
knockout mice exhibit forebrain and cerebellar defects similar to
those seen in BFPP19,20. However, the cellular roles of GPR56 in
CNS myelination remain unclear. A recent study shows that
GPR56 regulates neural stem cell proliferation21, but its role in
OL development remains unknown.

In light of the severe CNS myelination abnormalities seen
in BFPP patients, we studied the cerebral white matter of
Gpr56-knockout mice. We used histological, cellular and
molecular approaches to characterize the defects caused by loss
of GPR56. Here, we show that GPR56 levels are the highest in OL
precursor cells (OPCs), and that GPR56 levels decline as OLs
develop. We demonstrate that GPR56 is required for proper CNS
myelination by controlling OPC proliferation, and that this is
likely mediated by RhoA activation. Finally, we demonstrate that
the defects caused by loss of GPR56 arise from a cell-autonomous
defect in OL-lineage cells. Together, these studies define GPR56
as a novel regulator of OL development.

Results
Loss of GPR56 results in CNS myelination defects. CNS white
matter abnormalities, manifesting as bilateral foci of T2 signal
intensity change within the cerebral white matter on brain MRIs
(Supplementary Fig. 1, right panel), is one of the hallmarks of
BFPP brains12,13,22,23. To begin to investigate the role of GPR56 in
CNS myelination, we examined the myelination status of Gpr56-
knockout mouse brains20,24. We have previously shown that there
is no brain phenotype associated with GPR56 heterozygous status
in both humans and mice12,13,19,20. Furthermore, we observed the
same number of EGFPþ OLs in the CC of Gpr56þ /þ and
Gpr56þ /� mice at P28 (Supplementary Fig. 2), confirming that
loss of one allele of Gpr56 causes no OL phenotype. Thus, we used
Gpr56þ /� mice as littermate controls whenever possible to
conserve animals. Staining for FluoroMyelin, a stain for compact
myelin, was significantly decreased in the CC of Gpr56� /� mice,
compared with controls (Fig. 1a,b), suggestive of hypomyelination.
Similarly, immunohistochemistry (IHC) and western blot analysis
of myelin basic protein (MBP) and proteolipid protein (PLP), two

markers for mature OLs and CNS myelin, showed significant
reductions of the two proteins in Gpr56� /� mice compared with
controls (Fig. 1c–e and Supplementary Fig. 3).

Gpr56 mutants possess fewer myelinated axons. To further
assess CNS myelination phenotype in Gpr56-knockout mice, we
performed transmission electron microscopy (TEM) analysis on
cross-sections of the CC and the optic nerves of P28 Gpr56þ /�

and Gpr56� /� mice (Fig. 2a,b). Strikingly, there were
significantly fewer myelinated axons in both the CC and optic
nerves of Gpr56� /� mice compared with the controls (Fig. 2c,d).
To evaluate whether axons of a certain caliber were more severely
affected in the absence of GPR56, we quantified the relative fre-
quency of myelinated axons with respect to their corresponding
diameters. We detected no statistical difference between the two
groups (Fig. 2e,f), although we observed a shift towards a higher
caliber of axons being myelinated in the CC of Gpr56� /�

mutants (Fig. 2e). Despite the significant reduction in the per-
centage of myelinated axons in Gpr56� /� mutants, g-ratio
analysis revealed no difference in myelin sheath thickness
between the two groups (Supplementary Fig. 4a,b). We also
observed no difference in axon diameter and the total number of
axons (myelinated and unmyelinated) in the CC and optic nerves
between the two groups of animals (Supplementary Fig. 4c–f).
Interestingly, we observed normal levels of myelination at
6 months of age in the optic nerve (Fig. 2g,h), indicating the
myelination defect was gradually corrected by ongoing OL
production. Together, these data demonstrate that Gpr56 mutants
are hypomyelinated at early stages and that this phenotype is not
due to gross axon defects.

GPR56 is expressed in the OL lineage. The observation that
Gpr56 mutation causes a reduction in the percentage of myeli-
nated axons but not in the total number of axons suggests that
GPR56 could regulate OL development. To test this hypothesis,
we performed GPR56 expression profiling in the OL lineage by a
series of both in vivo and in vitro immunostaining for GPR56 and
markers of various stages of OL differentiation. Sox2 was used for
a glial progenitor cell marker25, Olig2 for the OL lineage26–28,
PDGFRa and NG2 for OPCs29, O4 antigen for immature OLs30

and MBP31 for mature myelinating OLs. In the CC of wild-type
(wt) postnatal day (P) 5 mouse, GPR56 was detected in
Sox2þ , Olig2þ , NG2þ and O4þ cells (Fig. 3a–d,f–i). By P10,
the cells had matured into myelinating MBPþ OLs, GPR56 could
no longer be detected (Fig. 3e,j). To further verify this temporal
expression profile and to perform quantitative evaluation of
GPR56 expression at various stages of OL differentiation, we
performed double immunostaining on wt OPCs, immature and
mature OLs (Fig. 3k–v and Supplementary Fig. 5). GPR56 was
detected in B80% of Olig2þ and B90% PDGFRaþ cells
(Fig. 3k–p,w). The percentage of GPR56þ cells steadily decreased
in O4þ immature and MBPþ mature OLs (Fig. 3q–w). Taken
together, our results indicate that GPR56 is expressed in glial
progenitors and most OPCs and that this expression is
downregulated in mature myelinating OLs, consistent with
recent RNA-sequencing transcriptome data32. These results
further support the notion that GPR56 could regulate OL
development. Furthermore, our data showed B10% PDGFRaþ

OPCs do not express GPR56, suggesting a heterogeneous nature
of OPC population. This expression profile also explains the
correction of myelination defects in mutants at 6 months of age
(Fig. 2g,h).

Loss of Gpr56 results in fewer mature OLs in the CC. To test
the hypothesis that GPR56 regulates OL development, we
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performed quantitative analysis of mature OLs in Gpr56-knock-
outs. We crossed Plp:eGFP transgenic reporter mice33

with Gpr56� /� mice to generate Plp:eGFP /Gpr56þ /� .
Subsequent crossing with the F1 mice generated Plp:eGFP /
Gpr56þ /þ , Plp:eGFP/Gpr56þ /� and Plp:eGFP /Gpr56� /�

mice. In these mice, enhanced green fluorescent protein, driven
by the Plp promoter, mostly labels mature OLs34. At P7, we did
not observe any difference between the number of EGFPþ OLs in
the CC of mice of Plp:eGFP /Gpr56þ /� and Plp:eGFP /Gpr56� /

� . In contrast, we observed significantly fewer EGFPþ OLs in
the CC of Gpr56� /� mice, compared with the controls, starting
at P14 and continuing to P56 (Fig. 4a,b). Next, we quantified the
total number of OPCs by performing Pdgfra in situ hybridization
(ISH) on P7 and P14 Gpr56� /� mice and their littermate
controls. We observed a significant reduction in the number of
Pdgfra þ cells in the CC of Gpr56� /� mice compared with the
controls at both developmental stages analysed (Fig. 4c,d).
To evaluate the status of immature OLs in the CC of Gpr56-
knockout mice, we measured levels of 20,30-cyclic nucleotide
30-phosphodihydrolase (CNP), a marker for immature OLs1,26.
We observed reduced CNP protein levels in the CC of Gpr56� /�

mice, compared with their littermate controls (Supplementary
Fig. 6), indicative of fewer CNPþ immature OLs. Together, these
data demonstrate that GPR56 is required for the proper
development of OLs.

GPR56 is required for OPC proliferation. GPR56 was recently
shown to regulate neural stem cell proliferation in the developing
neocortex21. To test whether the reduced number of OPCs and
mature OLs observed in Gpr56 knockouts is due to decreased
OPC proliferation, we performed double immunostaining of NG2
and Ki67, markers for OPCs and proliferating cells, respectively,
on postnatal brains of Gpr56� /� and their littermate controls.
We chose to examine P14 brains based on our observation that
fewer mature OLs were first observed at this stage (Fig. 4).
A significantly reduced number of dual-positive cells was detected
in Gpr56� /� brains, compared with the controls (Fig. 5a,b),
suggesting that GPR56 has a role in regulating OPC proliferation,
either directly or indirectly.

Next, we carried out cell proliferation assays in vitro using
OPCs isolated from P5 brains of Gpr56� /� mice and their
littermate controls by immunopanning35–37. After culturing for
4 days in the presence of PDGF-AA, a major OPC mitogen, we
found that the percentage of dividing OPCs, represented by
Ki67þ in total PDGFRaþ population, was significantly reduced
in OPCs derived from Gpr56� /� mouse brains compared with
controls (Fig. 5c,d).

In light of the expression pattern of GPR56 in OL development
and the reduced OPC proliferation in the absence of GPR56, we
hypothesized that GPR56 is required for OPCs to remain in cell
cycle. To test this hypothesis, we performed cell cycle exit assay

P14a

c

b

d

e

G
p
r5

6
+

/–
G

p
r5

6
–
/–

kDa

Gpr56+/–

Gpr56 –/–

Gpr56+/–

PLP

β-Actin

MBP

P14

%
 A

re
a

 m
y
e

lin
a

te
d

R
e

la
ti
v
e

 M
B

P
/β

-a
c
ti
n

R
e

la
ti
v
e

 P
L

P
/β

-a
c
ti
n PLP

P7

P7 P14 P21 P28 P7 P14 P21 P28

40
50

20

30

15

20

MBP

P28

100

*

*

**
*

******
***

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

P28

P28P21P14

P7 P28P21P14

Gpr56 –/–
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by pulsing Gpr56� /� pups and their wt littermate controls with
BrdU on P13, 24 h before brain harvesting, followed by double
IHC of BrdU and Ki67. BrdU and Ki67 dual-positive cells
represent those cells that remain in the cell cycle, whereas
BrdUþ ;Ki67� cells represent those that have already exited the
cell cycle at the time of analysis. We found significantly fewer
BrdUþ ;Ki67þ double-positive cells (Fig. 5e,f) as well as a lower
percentage of Ki67þ cells relative to the total BrdUþ population
(Fig. 5g) in the CC of Gpr56� /� mice in contrast to their
littermate controls. Cyclin-dependent kinase 2 (CDK2) controls
OPC cell cycle progression38,39. To further demonstrate that
GPR56 keeps OPCs in cell cycle, we performed western blot
analysis of CDK2 in acutely isolated OPCs from P6 Gpr56� /�

mice and their littermate controls by immunopanning. We
observed a significant reduction of CDK2 protein in the OPCs
isolated from Gpr56� /� mice compared with their littermate

controls (Fig. 5h,i), supporting that OPCs prematurely exit the
cell cycle in the absence of GPR56.

GPR56 promotes OPC proliferation via the RhoA pathway.
Two signalling pathways have been reported to be downstream of
GPR56 activation, depending on the cell type. In neural pro-
genitor cells, GPR56 signals via the RhoA pathway40, whereas it
activates protein kinase Ca (PKCa) in melanoma cells41. To
investigate the signalling mechanism of GPR56 in the developing
white matter, we performed active RhoA pull down assays and
PKCa western blot analyses, using P7 optic nerves of Gpr56� /�

mice and their littermate controls. Whereas the level of PKCa was
not affected by deleting Gpr56 (Supplementary Fig. 7a,b), we
observed significantly lower levels of active RhoA in the optic
nerves of Gpr56� /� mice compared with their littermate
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controls (Fig. 5j,k). These data suggest that GPR56 signals
through RhoA to regulate OPC proliferation.

GPR56 has no effect on OPC survival and maturation. Another
potential cause for reduced mature OLs in Gpr56 mutants is
increased OPC cell death in the absence of Gpr56. Cell death
assays revealed comparable numbers of TUNEL-positive
apoptotic cells in the subventricular zone and corpus callosum
(CC) in both control and Gpr56� /� brains at P14 (Fig. 6a,b).
Furthermore, judging by the similar distribution pattern of
Pdgfraþ cells at P14 (Fig. 4c) as well as EGFPþ cells from P7 to
P56 (Fig. 4a), in the CC of Gpr56þ /� and Gpr56� /� mice,
GPR56 likely has no influence on OPC migration.

In addition, we suspected that GPR56 does not affect the
elaboration of branched processes of OLs based on the fact that
GPR56 is downregulated in terminally differentiated MBPþ OLs
(Fig. 3) and that deleting Gpr56 has no effect on the myelin
thickness (Supplementary Fig. 4a,b). To confirm this notion, we
cultured OPCs isolated from Gpr56� /� and their littermate
controls on either poly-D-lysine (PDL) or laminin-coated
coverslips for 7 days in the presence of thyroid hormone to
induce terminal differentiation. Indeed, we did not observe any

difference in the myelin sheath area between Gpr56þ /� and
Gpr56� /� OLs cultured on laminin or PDL (Fig. 6c,d). More-
over, deleting Gpr56 has no effect on the ability of OPCs to
terminally differentiate (Fig. 6e,f).

GPR56 functions autonomously in the OL lineage. To define
the cell autonomy of GPR56 during OL development, we
generated a new targeted allele of Gpr56 containing loxP sites
flanking exons 4–6, hereafter referred to as the floxed (fl) allele of
Gpr56 (Fig. 7a,b). On crossing with tissue-specific Cre
transgenic mice, exons 4–6 are deleted, causing a frameshift
leading to a deletion of all splicing variants of Gpr56. We first
crossed Gpr56fl/fl mice with EIIA-Cre mice, a universal Cre-line42,
to create a constitutive knockout mouse line. Western blot
analysis failed to detect any GPR56 protein in the brains
of Gpr56fl/fl;EIIA-creþ /� mice (Fig. 7c), confirming the efficacy
of our targeting strategy. We began our analysis using
Pdgfra-CreERT transgenic mice43,44 to excise Gpr56 in OPCs by
daily administration of tamoxifen from P10 to P14. We
chose P10-14 based on the observations that oligodendrogenesis
starts perinatally and peaks at P14 (refs 45–48). We performed
Plp ISH on P21 CC of Gpr56fl/fl;Pdgfra-creþ /� and their
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littermate controls (Fig. 7d). A significantly fewer number
of Plpþ mature OLs was found in the CC of Gpr56fl/fl;
Pdgfra-creþ /� , compared with the controls (Fig. 7e),
demonstrating that GPR56 regulates OL development in a
cell-autonomous manner.

Discussion
Whereas a clear role has been established for GPR56 in cerebral
cortical development12,19,40,49,50, nothing was known about its
function in CNS myelination. We demonstrate here that GPR56
is a novel regulator of OL development. Consistent with a
previous report that GPR56 promotes neural stem cell
proliferation in the developing neocortex21, we show that
developing OPCs require GPR56 to remain in a proliferating
state by demonstrating that (1) GRP56 is expressed robustly in
Sox2þ , NG2þ and PDGFRaþ cells, diminished in O4þ cells
and strongly downregulated in MBPþ OLs. (2) There are
significantly fewer NG2þ ;Ki67þ double-positive cells in the CC
of Gpr56 knockouts. (3) Fewer PDGFRaþ OPCs derived from
Gpr56 knockouts proliferate following 4 days of culture in vitro.
(4) Loss of GPR56 causes OPCs to exit cell cycle prematurely.
(5) Conditionally ablating Gpr56 in OPCs results in a significantly
reduced number of mature OLs. The fact that deleting Gpr56 has
no effect on axon diameter or the total number of axons further

supports that GPR56 has an autonomous function in OPC
development.

ECM and ECM receptor loss-of-function studies in mice have
demonstrated that cell–matrix interactions are important for
gliogenesis and myelination3. For example, many studies have
shown that laminin–integrin interactions regulate OL process
dynamics3 and dy/dy mutants (a2 laminin hypomorphs) have
regional defects in CNS myelination as well as delayed OL
maturation4,5. These published studies are consistent with the
phenotypes that we observed in Gpr56� /� mutants. Moreover,
aGPCRs often bind ECM proteins and we hypothesize that
GPR56–ECM interactions regulate OL development. It is unclear
which ECM ligand activates GPR56 in the developing white
matter. Collagen III is the ligand of GPR56 in the developing
cerebral cortex. However, collagen III is mainly expressed in the
meninges and blood vessels40, making it an unlikely ligand of
GPR56 during OPC development.

GPR56 has a very long and poorly characterized N-terminal
fragment, allowing for the possibility of multiple binding partners.
Indeed, GPR56 also binds to tissue transglutaminase (TG2) in
melanoma cells51. TG2 is an inducible transamidating
acyltransferase that has several distinct biochemical functions52–54.
Interestingly, the enzymatic activity of TG2 is low in the early
embryonic mouse brain but increases through development,
peaks on the day of birth (P0) and is maintained at high levels
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up to P56 (ref. 55), consistent with a potential role in OL
development and myelination. TG2 activity has recently been
implicated in CNS remyelination, as Tg2� /� mice remyelinate
more slowly than wt animals in cuprizone models56. Moreover,
OPC differentiation is inhibited in vitro on addition of TG2
inhibitors56. Therefore, it is possible that TG2 functions as the
ligand of GPR56 during white matter development. Future studies
are needed to test this hypothesis.

Further elucidation of GPR56 signalling in OPCs depends on
the identification of its ligand. Ga12/13 and RhoA are the
downstream effectors of GPR56 in neural progenitor cells and
cultured cell lines40,57,58. On the basis of the fact that inactivation
of RhoA is required for the terminal differentiation of OLs59–62

and that GPR56 ceases to be expressed in mature myelinating
OLs, RhoA could signal downstream of GPR56 in the developing
OPCs. Indeed, we detected significantly reduced level of active

RhoA in the optic nerves of Gpr56� /� mice compared with their
littermate controls.

In summary, we reveal a novel GPCR that regulates proper
levels of CNS myelination by autonomously promoting OPC
proliferation via the RhoA pathway (Fig. 8). Identification and
characterization of signalling molecules involved in OL develop-
ment may provide potential therapeutic targets for enhancing
remyelination. Given the fact that GPCRs are the major targets
for drug discovery63, the present study presents a potential new
target for therapeutics to promote myelin repair in individuals
afflicted with demyelination or dysmyelination.

Methods
Mice. All animals were treated according to the guidelines of the Animal Care and
Use Committee at Boston Children’s Hospital. The Gpr56-knockout mice were
obtained from Genentech/Lexicon Genetics. The mutant mice were originally
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created in a 129/BL6 background, but were derived into the FvB strain and
bred into BALB/c strain resulting in a mixed genetic background of the mutant
mice of 129/BL6/FvB/BALB/c19. Genotyping was performed by PCR using the
following primers: A (50-CGAGAAGACTTCCGCTTCTG-30), B (50-AAAGTAG
CTAAGATGCTCTCC-30) and Neo (50-GCAGCGCATCGCCTTCTATC-30).
Plp:eGFP transgenic mice33 were bred into the Gpr56 line to create Plp:eGFP/
Gpr56þ /þ , Plp:eGFP/Gpr56þ /� and Plp:eGFP/Gpr56� /� mice.

Gpr56fl/þ mice were generated at the Mouse Gene Manipulation Core at
Boston Children’s Hospital. The targeting vector (Fig. 7a) was introduced into
C57BL/6 ES cells to generate targeted ES clones. Chimeric mice derived from
targeted ES cell clone were crossed with C57BL/6 mice to obtain Gpr56fl/þ mice.
We used the following primers to detect the presence of the floxed allele: primer 1:
50-tggtagctaacctactccaggagc-30, primer 2: 50-ggtgactttggtgttctgcacgac-30 and primer
3: 50-cacgagactagtgagacgtgctac-30 .

Pdgfra-Cre/ERT mice in a C57BL/6 background were purchased from Jackson
Laboratories (Cat# 018280) and were crossed with Gpr56fl/fl mice to generate
Gpr56fl/fl;Pdgfra-Creþ /� mice and their littermate controls. EIIA-Cre mice in a
C57BL/6 background were purchased from Jackson Laboratories (Cat# 003724)
and were crossed with Gpr56fl/fl mice to generate Gpr56fl/fl;EIIA-Creþ /� mice and
controls. Only male mice were used for time points of P28 and later to avoid cyclic
oestrogen effect on myelination, whereas both male and female mice were used for
earlier time points.

Antibodies. The following primary antibodies were used for IHC or western blot
analyses: mouse anti-GPR56 (H11) (1:200)40 and rabbit anti-GPR56 (199)
(1:200)19, rabbit anti-MBP (Millipore; Cat #AB980, 1:200), rat anti-MBP (Abcam,
Cat# ab7349), mouse anti-O4 (Millipore; Cat #MAB345, 1:400), rabbit anti-NG2
(Millipore; Cat #AB5320, 1:200), goat anti-Sox2 (Santa Cruz; Cat #sc-17320, 1:400),
rabbit anti-Olig2 (kind gift from Charles Stiles, 1:10,000), rat anti-PDGFRa (BD
Bioscience; Cat #558774, 1:500), rabbit anti-PDGFRa (Cell Signaling Technologies;
Cat #3164S, 1:500) and rat anti-Ki67 (Affymetrix eBioscience; Cat #14-5698-80,
1:100), rat anti-BrdU (Accurate Chemical and Scientific Corporation; Cat
#OBT0030S, 1:100), rabbit anit-PLP (Abcam, Cat #ab28486, 1:1,000), mouse anti-
RhoA (Cytoskeleton, Cat# ARH03-A, 1:500), mouse anti-CDK2 (Santa Cruz; Cat
#sc-6248, 1:1,000), mouse anti-b-actin (Sigma, Cat #A5044, 1:5,000) and mouse
anti-Ki67 (BD Bioscience; Cat #550609, 1:100). Secondary antibodies were goat
anti-mouse or anti-rat conjugated with either Alexa 488 (Life Technologies,

1:1,000) or Alexa 546 (Life Technologies, 1:1,000) and goat anti-rabbit conjugated
with Alexa 546 or 555 (Life Technologies, 1:1,000), goat anti mouse or rabbit IgG-
HRP (Sigma, Cat# A4416 or A6154, 1:3,000).

Histology analyses. Mouse brains were harvested after perfusion, fixed with 4%
PFA, cryoprotected with 30% sucrose and embedded in OCT. IHC was carried
out as previous described64. In brief, after antigen retrieval in Retrievagen A
Solution (BD Pharmingen), brain sections were washed with PBS, blocked with
10% goat serum, 1% bovine serum albumin (BSA) and 0.1% Triton X-100 in PBS
for 1 h at room temperature before incubating with the primary antibody overnight
at 4 �C. Primary antibodies were visualized by incubating the sections with the
appropriate fluorophore-conjugated secondary antibody for 1 h at room
temperature followed by staining of the nuclei with Hoechst 33342 (1:2,000, Life
Technologies).

TUNEL assays (Millipore) were performed on 12 mm-thick brain sections of
P14 mouse brains post-fixed for 35min in ethanol and acetic acid, according to the
manufacturer’s protocol.

OPCs and OLs were fixed in 2% PFA, followed by subsequent double
immunostaining as previously described64. All images were captured using a
confocal LSM 510 NLO system or a Nikon Eclipse Ti inverted microscope (Nikon).
Representative photographs were obtained with the same exposure setting for
control and mutant.

In situ hybridization was performed on 12 mm-thick brain sections as
previously described65,66 . Probes targeting Plp (Addgene, Cat #22651) and
Pdgfra (kind gift from Charles Stiles) were generated by digesting the plasmids with
EcoRI and HindIII, respectively. DIG-labelled RNA probes were generated using
Sp6 and T7 polymerase in vitro transcription (Roche Applied Science; DIG RNA
labelling kit) as per manufacturer’s instructions. Hybridization occurred at 68 �C
and washes at 65 �C. To detect the DIG-labelled probes, the TSA-Plus Cyanine 3
labelling system (Perkin Elmer) was used according to the manufacturer’s
instructions.

FluoroMyelin Fluorescent Myelin Stains (Life Technologies) were performed on
12 mm-thick brain sections of P14 and P28 Gpr56� /� pups and Gpr56þ /�

littermate controls according to the manufacturer’s protocol. Percentage area
myelinated was quantified by outlining the CC and determining the number of
pixels brighter than þ 10 a.u. (0–255) above background per total number of pixels
as previously described65.
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Tamoxifen treatment and cell cycle exit assay. A solution of 10mgml� 1

tamoxifen (Sigma; T5648) was prepared in corn oil. Male and female pups were
injected intraperitoneally once daily for five consecutive days at 50mg kg� 1 body
weight from P10 to P14. Mouse brains were harvested on P21, 7 days after the last
tamoxifen injection.

Cell cycle exit assays were performed as previously described67. In brief,
proliferating cells were labelled with BrdU (50mg kg� 1) by intraperitoneal
injection of male and female P13 Gpr56� /� pups and their littermate controls.
After 24 h, mouse brains were harvested after perfusion, fixed with 4% PFA,
cryoprotected with 30% sucrose and embedded in OCT. Brain sections were
processed for IHC with anti-BrdU and anti-Ki67 antibodies.

Western blot and GTP-Rho pull-down assay. The CCs were dissected under a
Leica stereo microscope (MZ 6; Leica Pte), followed by washes in PBS and lysis in
ice-cold RIPA buffer (1% Nonidet P-40, 50mM Tris pH 7.6, 120mM NaCl, 1mM
EDTA) containing protease inhibitor cocktail set 1 (Calbiochem). The lysates were
cleared of insoluble materials by centrifugation at 16,000 g for 10min at 4 �C.
Protein concentration was determined by a Bio-Rad protein assay method (Bio-
Rad) according to the manufacturer’s protocol, and equal amount of proteins were
used for SDS–PAGE and western blot analysis. The GTP-Rho pull-down assay was
performed as previously described40, using mouse optic nerves of male and female
P7 Gpr56� /� pups and their littermate controls. In brief, P7 mouse optic nerves
were pooled according to their genotype into heterozygous and knockout groups.
Tissues were grinded as a powder on liquid nitrogen and lysed in 300 ml of ice cold
RIPA buffer containing protease inhibitors with a cell disruptor for 10min and
homogenization with syringe needle 26G. An equal amount of total protein was
incubated with 60 mg GST-RBD beads (Cytoskeleton) at 4 �C for 90min. The beads
were washed twice with lysis buffer and once with TBS buffer. Bound Rho proteins
were eluted by Laemmli sample buffer and detected by western blotting using a
mouse monoclonal anti-RhoA antibody (Cytoskeleton).

Transmission electron microscopy. Postnatal male brains were fixed by
immersion in mixture of 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M

sodium cacodylate buffer, pH 7.4. After overnight fixation, tissues were postfixed in
1% osmium tetroxide, then dehydrated and embedded in Epon-Araldite. Ultrathin
sections were cut and stained with uranyl acetate and lead citrate. The samples
were observed and photographed using the transmission electron microscope
(Tecnai G2 Spirit BioTWIN) at the Harvard Medical School EM Facility. Optic
nerves were processed and imaged as described9. The photographs were analysed
using Image J Software (http://rsb.info.nih.gov/ij/) to calculate g-ratio and axon
diameter. G-ratio was calculated as previously described68.

OPC cultures. McCarthy-deVellis cultures were used for terminal differentiation
experiments (Fig. 6e,f). OPCs were isolated from the forebrains of male and female
P1 Gpr56� /� pups and their littermate controls after genotyping, as previously
described69. In brief, dissociated cells from the forebrains of P1 pups were cultured
for 10 days at 37 �C and 8.5% CO2 before shaking at 45 r.p.m. and 37 �C for 1 h to
remove microglia cells. Media was replaced with fresh DMEM/FBS, and the culture
was again shaken at 250 r.p.m. and 37 �C for 18–20 h to harvest OPCs, followed by
incubating on 10 cm Petri dish for 60min at 37 �C to remove contaminating
astrocytes and microglia. Purified OPCs were thoroughly dissociated, plated onto
poly-D-lysine-coated coverslips and cultured for 7 days in thyroid hormone
containing differentiation medium for terminal differentiation.

O4 panning cultures were performed for proliferation and process elaboration
assays. OPCs were isolated from male and female P5-6 Gpr56þ /þ or Gpr56� /�

mouse forebrains, as previously described36,37. Immunopanning was carried out
using mouse anti-Thy1.2 (Serotec, Cat #MCA02R) and mouse anti-GalC
(Millipore, Cat #MAB342) for negative selection, followed by mouse anti-O4 AB
(O4 hybridoma supernatant) for positive selection. OPCs were released from the
O4 plate by trypsinization and resuspended in media as previously described35.
Purified OPCs were plated on PDL- or laminin-coated coverslips and cultured in
proliferating media containing PDGF-AA and NT-3 (PreproTech) for 4 days or in
differentiating medium containing thyroid hormone and B27 for 7 days. Cells were
then fixed with 2% PFA and stained for PDGFRa and Ki67 or for MBP. The area of
the myelin sheath of oligodendrocytes was measured using NIS-Elements 3.1
Advanced Research (Nikon) software as previously described59 by outlining the
myelin sheath area (as indicated in Fig. 6c).

Statistical analysis. For all studies, images were scored blinded to genotype before
quantifications. Data are represented as mean±s.e.m. GRAPHPAD Prism Soft-
ware (GraphPad Software) was used to determine statistical significance between
genotypes using unpaired t-tests or paired t-tests, two-tailed and unequal variance
depending on animals either being paired before data collection or not. For in vitro
culture, animals were paired before isolation of OPCs. Statistical significance
between genotypes was determined using paired t-tests, two-tailed and unequal
variance. Sample size was not pre-determined by statistical methods, but was based
on similar studies in the field.
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