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ABSTRACT

For slow processes in a collisionless two-component plasma

which conserve the adiabatic invariant of the electrons, the

equation of motion for electrons is derived. The conservation laws

for the whole system are discussed in relation to the equation of

state and a .consistent distribution function for the electrons.
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I.  INTRODUCTION

When slow oscillations in a one dimensional, two component

plasma are investigated, one often describes the electrons collec-

tively by an equation of state rather than by a more detailed

equation of motion.  Thus for example, BERNSTEIN AND TREHAN (1960)

assume thermal equilibrium for the electrons, such that

ne = no[exp(ep/Ge) -11  ,                              (1)

where ne and n  are the disturbed and undisturbed electron density,

cp(x, t) the potential, Ae the electron temperature and -e the electron

charge.  Eq. (1) is assumed to be satisfied at any instance.

MONTGOMERY  (1967 ) assumes  that the electron distribution function

f remains proportional to

exp[-(  m v2 - ecp)/Bel   '                                           (2)

which is even a more stringent condition than Eq. (1) and reduces

to it after integration over velocity space.
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In the numerical simulation of plasmas the question of the

validity of an equation of state for electrons becomes particularly

important (e.g. MASON 1969).  When we follow ion and electron tra-

j ectories  on a computer,   the  time  step  must be adjusted  in  such  a

way that a plasma oscillation can still be represented. This means

however, that we spend most of our camputing effort on the time

scale of the electrons. Following the evolution of an ion accoustic

wave, for example, becomes either extremely time conhuming or

practically impossible. It is customary to represent the electrons

by an equation of state (Campare ARMSTRONG et al.).  Then the time

step can be adjusted to the slow ion motion and the electron motion

is taken care of by the equation of state. Usually the latter is

introduced without much justification and the question arises, how

good this approximation really is. HARDING (1968) has investigated

this problem numerically for certain special cases. The physical

basis of Eq. (1) and (2) seems to be that a Maxwellian distribution

is always maintained,   e. g. by electron collisions. This means that

v   T << 1 where v is the electron electron collision rate and T
ee ee

is the characteristic time scale of the process in question.

When the electron gas is collision free, Eq. (1) and (2)

become questionable. However, we know [see e.g. FUES (1927)] that

for a spacially periodic geometry the adiabatic invariant of elec-

trons is conserved, if the potential change (like in ion waves) is

slow in a certain sense.
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In the following we trace some consequences of the assumption

of adiabaticity for the equation of motion and an assumed equation

of state for a one dimensional electron plasma.
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II. THE ADIABATIC ELECTRON DISTRIBUTION

We consider processes in a plasma whose time scale is much

slower than the time scale of the electron motion. An example is

ion waves.  We can then describe the electron distribution as being

quasistatic. A static electron distribution depends on the total

energy W

1    2
W  =  - m  v     -   ecp(x,   t)                                                                                      (3 )2

only, so we may write fe = fe (W, t).  Under these conditions the

adiabatic invariant

F 12
J=    f      .vdx    =    9   '   m-[W    +    e cp(x,      t)]     dx                                                                                         (4)

is conserved. The integral has to be taken from turning point to

turning point for trapped particles and over a periodicity interval

for free particles. The adiabaticity assumption can be expressed as

a
-- f (J, t) =0  .                                   (5)at   e

(We omit the dichotomic variable 0=1 1 representing velocity

dj.recti.on for f:ree parti.cles :ind ,justi.fy thi.s :in Sec. III. )
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In order to estimate its validity we consider ion waves whose fre-

quency is roughly given by:  wi = ( ee/M) 1/2k where M is,the ion

mass and k the wave number of the wave. For trapped particles, the

bounce frequency % is of order (ecp/m)1/2k so that

Ul>/wi = [ (ecp/Ge) (M/m) ll/2 .                        (6)

If the potential of the wave is large, say
1/10 of Ae or more,

ul)/wi » 1, which means that the adiabaticity assumption is satisfied

for most of the trapped particles. If ecp/Ae is very small, so that

%/wi    is of order   one,    the adi abaticity assumption   does   not   hold.

However, in this case the number of trapped particles is negligible.

For free particles, the bounce frequency is of the order

k(  e/m)1/2 and the ratio becomes

u /wi  =  (M/m)1/2  » 1   .                                                           (7)

Thus, for most electrons the adiabaticity assumption is

satisfied, except for those which are almost untrapped or almost

trapped. The number of these particles however, should generally

be small.

We want to describe now the electron distribution in terms

of the energy  W   and   time,    fe   =   fe (W, t) . Along   two traj ectories,

1 and 2, of particles with slightly different energies (see Fig. 1)
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the distribution function is constant.  When the potential changes

in time, curves 1 and 2 are mapped into l' and 2', the area between

the curves remaining invariant because J is invariant. Thus, the

number of particles between the two curves remains invariant, but

their energy has changed. We can therefore write

f(W  +  aW,   t  +  St)   =  f(W,   t)     ,

or in differential form

af(W, t) - 2  af(w, t)  .                         (8)at           at      aw

AW represents the energy a particle has gained in the time St where

At    comprises many bounce periods.       So,    if we introduc e

  = 2.
dt    At

for the energy change of a particle along its trajectory, we can

integrate Eq. (8):

fe = fe[w - w (t) + w (O)] ,                           (9)
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where, since J is a constant along a trajectory, W(t) is given by

9  /5(0)     1 9 rp( 7., 4 ) '17 = 6 /FT(t) + erp(x,    t)    dx . (10)

The meaning of Eq. (9) is the following: In order to calculate the

value of fe at time t for a certain W, we choose W(t) = W and evaluate

the corresponding W(0) from Eq. (10).  f(W(0)) is then the desired

value.  Eqs. (9) and. (10) constitute the equation of motion for an

adiabatic electron gas. This solves the problem of the integration of

the motion of the electrons on the slow time scale. The electron

density, which is required for Poisson's equation to make the

electron-ion system self consistent, is obtained by another inte-

gration.  A computer solution of Eqs. (9) and (10) is still quite

involved.  It is time consuming because for every time step, Eq. (10)

and the density have to be evaluated. In the appendix , an analytical

solution of Eqs. (9) and (10) is given for a special case.

As is evident from Eq. (9) the density will in general always

depend explicitly on the time:

ne(x, t) = ne[F(x, t), t]. (11)
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More precisely, because W(t) is a functional of 9(x, t), we can

write alternatively

ne(x,t) = neIR(x,t), 1((P)] , (12)

where the functional X of 9 depends on time.

We continue and discuss the conservation laws for the whole

ion-electron system in relation to the equation of state and a

consistent distribution function for the electrons.
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III. EQUATION OF STATE

When most electrons are untrapped, one might try to expand

Eq. (10) in powers of ecp/W and use the result in Eq. (9). To lowest

significant order we obtain

ii(t) - 9(0) = it· 02/L -   "2(x, 0) dx - .1.0 'tf(x, t) dx
W(O) 1;(t)

Thus Eq. (9) yields to first order in eg/W

f(W, t) = f(W, 0). (13)

For a Maxwellian, we obtain the result quoted in Eq. (2), which,

therefore, represents an adiabatic distribution function up to

first order in eq)/W.  We then would have

ne(x, t) = ne[q)(x, t)] . (14)

Such an equation of state does in general not even conserve the

total number of electrons correctly. In order to conserve particles

for periodic boundary conditions, Eq. (14) may be used only in its

linearized form:
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ne(x, t) = no(1 + Becp(x, t)) . (15)

We return to the·more general equation of state (11) and ask if the

integral conservation theorems of the ion-electron system impose

any restrictions on the form of the equation of state.  We show

that except for particle conservation this is not the case.

The number of electrons is evidently always conserved if we

write

ne(x, t) = g(9(x, t),t)/<g(9(x, t),t)> , (16)

where < > denotes the spatial average (we always assume periodic

boundary conditions), and g(cp, t) is an arbitrary function of cp

and t.

Next we consider momentum and energy conservation. Using

the ion Vlasov equation, Poisson's equation, and an arbitrary

electron density  ne (x, t),   one can easily   show that momentum  and

energy conservation can be written in the form

i (J- + Je) = 0dt   i

.i   (W-    4  W     +  1   <E2>)   =  O · (17 )
dt 1 e  8TT
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The quantities (d/dt)Ji and (d/dt)Wi are calculated from the ion

Vlasov equation and are

   Ji  =  3111  mi   <fl  vfi  dv>  =  e   (Eni>

(18)
Bn.

A  w       =1      1    <  r       v2f.     dv>=-e<(p   _1 >
dt i dt 2 0-00 1 at

Consequently, the time derivatives of the electron momentum and

energy must be defined as

d
-J    =  -  e <En > (19 a)
dt  e          e

                                                  an
d

- W     =  e<9 -e> ( 19  b)
dt e at

Since this holds for any electron density ne(x, t), momentum and

energy conservation are then satisfied for any equation of state

of type (16) if we use Eqs. (19) as definitions for momentum and

energy.

In order to obtain an equation of state which is.not com-

pletely arbitrary, we therefore have to resort to a microscopic

model. The electron distribution function has to be specified

such that Eqs. (19 a, b) are satisfied, where momentum, energy,

and equation of state are calculated from the distribution function.
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For example, one can easily show explicitly that no distribution

function of the type

fe(W) = h((p) f[2l mev2 - erp(x,t)]

satisfies Eq. (19 b) although, with

h(F) = I <. a,a  2 dv>]-1  ,

particles are conserved.  We obtain

   We    =   21    <            8e<P  >      +    <.11     mev2   f   dv>    ·     -i   h    (9)-e at  -"           dt

which is in general different from Eg. (19 b).  A trivial example

is a Maxwell-Boltzman distribution with constant temperature for

which the kinetic energy is constant in time.

The simplest example of a distribution function which

satisfies Eq. (19 b) is a Maxwell-Boltzman distribution with time

dependent temperature:

1

fe = no(2TTA /me)-2 exp[-(2l mev2 - ecp(x, t))/0]/<exp(ecp/A) >  .

The equation of state

ne = no exp  (e(p/0)/<exp(ecp/0) >
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is the form of Eq. (16); the total energy is given by 1 0 n  and
2     0

obeys according  to  Eq.   (19  b)

8n

i n  -dA=  e <op -Wt-e-  , (20)2  0 dt

This shows that the temperature is a functional of the potential
-

and the density is of the form of Eq. (12). On account of this

example, it is evident that Eq. (12) is more than a minor

modification of Eq. (14), at least in those cases in which the

energy exchange of the electrons with the ions and the electric

field plays a significant role. If we consider the linear case

eg/0 <<' 1, we of course recover Eq. (15)·  B = 1/A is a constant

as it should be, since the time derivative of 0 is of second order

in em/0, which is seen fram Eq. (20).

Another distribution function consistent with Eq. (19 a) is

the adiabatic electron distribution of Sec. II, because the energy

change of each electron is treated correctly in the limit that its

adiabatic invariant is a constant.

Let  us now consider the momentum equation   (19  a).     For  a

spatially periodic system without charge accumulation at 1 CO, we
41-r

have <E·> = 0. Because of Maxwell's equation (d/dt)E = - 7(ji +
je)'

ion and electron momenta are then related by

1 J. =1 J   .
mi  i  m   ee
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Together  with   Eq.     ( 17),   we   see   that both momenta are constant   in

time. This is in accordance with the definition of the electron

momentum  Eq.   (19 b) , since   <En  )  =  0  for any equation of state  if

<E) = 0.  Thus, we may choose Je = 0; however, the dichotamic

variable a= +1 mentioned in Sec. II can, in general, give rise

to a time dependent electron momentum. Therefore, this variable

can be omitted for a choice of a distribution function which is

consistent with an equation of state and momentum conservation.
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APPENDIX

As an example, we consider an adiabatic distribution for

a single wave with wave number k and time dependent amplitude

90(t):

ep(x, t) = 90(t) cos k x.

Numerical experiments indicate that this is a good approximation

for certain cases.  The invariant Eq. (4) can be calculated

explicitly and leads to complete elliptic integrals of first kind,

K(x) , and of second kind, E(x) . The result can be written for

free particles as

1/2 „, ,
J = (2/k) [W + 90(t)] 1(14) 1

and for trapped particles as

J = (2/k) [W + To(t)] A[E(]./a) + (1/*2  - 1) K(1/x)] ,
1/2

where
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   =  290(t)[W  +  cpo(t)]-1=  290(t)[21  'v2  +  90(t)(1  -  cos  kx) ]-1.

According to Eq. (5) the distribution function can be

written as

f = f[290(t) E2(,t)/'t2] , a2 < 1 for free particles

and

f = f{290(t)[E(1/K) + (1/K2  - 1) K(1/K)]2], X2 > 1 for
trapped particles.

2Note that for K -4 1 the arguments become the same for both cases

and f is a continuous function of x and v.

In the limit *24 0 we obtain f = f(W) as in Eq.  (12)  and

2                                               (W  +   9 0(t) 1in the limit x = cowe find f = fl
 .W+ cpo(t) is thei 490(t,

appropriately normalized energy;JAQ(t)
is proportional to the

bounce frequency of a particle.  Thus, the argument of f is pro-

portional to the invariant of an harmonic oscillator, as it

should be.

Integrating the distribution function over velocity space,· we

obtain for the density
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n  = neEFO(t), cp(x, t)/90(t)]  ,e

which we can write as n = n E9(x, t), t]  in accordance withe

Eq. (11). In this particular case we can also write it as

ne  = neIcpo(t),   cos  kx].
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FIGURE CAPTION

Figure 1. Trajectories of trapped and untrapped electrons in phase

space. Trajectories  1  and  2 are mapped into curves  1'

and 2' at a later time due to variation of the electro-

)
static potential. The area between curves 1 and 2 is

equal to the area between l' and 2'.
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