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AppiTioONAL RESULTS FOR PorLoipaL FIELDS
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SUMMARY

In a previous paper it has been shown that a particular poloidal magnetic
field configuration, with closed magnetic field lines inside a star, is unstable
and that the instabilities grow in a short time compared with time scales
important in stellar evolution. In that paper it was suggested that the results
obtained depended only on the field topology and not on its precise structure.
In the present paper three further types of poloidal field configuration are
studied and they are all shown to be unstable. It thus appears very probable
that all poloidal configurations with closed field lines are unstable.

I. INTRODUCTION

In a previous paper (Markey & Tayler 1973, Paper 1I), we have shown that, if
a star contains a purely poloidal magnetic field with closed field lines, it is likely to
suffer from hydromagnetic instabilities in the region of the closed field lines. A
similar result has been obtained by Wright (1973). In both of these papers the
explicit demonstration of instability has been restricted to the case in which the
closed field lines are concentric circles and in which the magnetic field configuration
has a centre of symmetry, which is also the centre of the star. It was conjectured
both by Markey & Tayler and by Wright that the results obtained in their papers
could be generalized to other configurations with the same magnetic field topology
but this was not demonstrated. The purpose of this paper is to describe briefly
some additional results which we have obtained which tend to confirm the con-
jectures of Wright and ourselves.

We have studied the stability of three additional types of poloidal field structure.
In each case, as in Paper II, we have not produced a consistent model of a star
containing a magnetic field. As the instabilities studied depend only on the shape
of the magnetic field and not on its strength, we have supposed that the field is
sufficiently weak that the star can be assumed spherical, so that the pressure, P,
and the density p are functions of radius alone. In addition, as our aim is merely
to demonstrate that instability occurs rather than to show that the worst instability
has been found, we once again consider only the sub-class of perturbations that are
incompressible and are parallel to surfaces of constant gravitational potential. The
first assumption is made mainly for mathematical convenience but the second
recognizes that instabilities involving changes in the gravitational energy of the
star are unlikely to occur if the magnetic energy density is very much less than the
gravitational energy density.
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The three configurations that we have studied are discussed briefly in the
following three sections. In Section 2 we study a configuration in which the field
lines are still circular about the magnetic axis* but in which the circles form a
coaxial set instead of being concentric. With such field lines it is possible to define a
magnetic field which is well behaved throughout the volume of the star. In Section 3
the configuration has field lines which are concentric ellipses in the neighbourhood
of the magnetic axis. Finally in Section 4 the magnetic field configuration is
identical with that studied in Paper II but the centre of symmetry of the magnetic
field is no longer the centre of the star.

In the first two cases it is easy to demonstrate that the system is unstable. In
the case of the off-centred field, the system is no longer axially symmetric and it
has not proved possible to obtain an expression for an unstable perturbation in a
closed form. As a result it is given by an infinite series and a rigorous proof of
instability would require a proof of the convergence of the expression for the change
of potential energy. The occurrence of instability, although not rigorously proved,
has been made extremely plausible.

As a result of the calculations which will be described in the next three sections
of this paper, we are confirmed in our view that instabilities will occur whenever the
topology of the field is such that it is purely poloidal and possesses closed field lines.
We have not, of course, shown that there will be no instabilities, if all of the field
lines are open. It now seems likely that nothing is to be gained by trying to study
even more general poloidal field configurations including those in which the field is
no longer axially symmetric. It is much more important to attempt to study the
stability of stars in which there is linked poloidal and toroidal flux, to investigate the
effect of rotation on the instabilities and to discuss their large scale development.

In this paper the existence of convection zones in stars has been neglected. The
results obtained should apply to stars containing poloidal magnetic fields with
closed field lines in a radiative zone.

2, CONFIGURATIONS WITH MAGNETIC SURFACES WHICH ARE
COAXIAL TORUSES

We suppose that a star contains a poloidal magnetic field such that the field
lines in a meridional plane form a system of coaxial circles, as shown in Fig. 1. The
advantage of this configuration over that studied in Paper II is that a field can be
defined which is well behaved throughout the star. However, the field lines which
pass near to the axis of symmetry will certainly close outside the star and the
considerations of this paper may not be immediately applicable to these field lines.

An orthogonal curvilinear coordinate system (toroidal coordinates) exists in
which the toruses are the surfaces o = constant, ¢ is the azimuthal angle about the
axis of symmetry and the surfaces ¥ = constant are spheres orthogonal to the
toruses. The relation of the toroidal coordinates to Cartesian coordinates is

x = R sinh o cos ¢/(cosh o — cos y),
¥ = Rsinh o sin ¢/(cosh o — cos y), (2.1)
% = R sin x/(cosh o—cos y),

* The magnetic axis is the curve (a circle in all cases considered in this paper) on which
the poloidal field vanishes.
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F1G. 1. Sketch of configuration in which magnetic surfaces are coaxial toruses. Cylindrical
polar coordinates @, ¢, z and toroidal coordinates o, , x are marked, as is the surface of
the star. The magnetic axis passes through AA’, C is the centre of the star and the distance
CA is R. If the last unstable torus passes through P, CP is we.

where R is the distance from the magnetic axis to the centre of the star and the
magnetic axis is o = 00. The coordinate system has line element

R2 R2sinh2 ¢
2 — 24 dy2
ds (do®+dx") + (cosh o —cos y)2

g2, (2.2)

The magnetic field has only a y component and application of the condition
div B = o which reduces to

(cosh o— cos y)2

K { sinh o } 0o (2.3)
ox \(cosh o —cos x)2 %] — 3
and the requirement of axial symmetry shows that
B, = Byf(o)(cosh o—cos y)2. (2.4)
We consider cases in which
a1 sinh? o+ a3 cosh?
flo) = Tt (25)

cosh’o

Using expressions (2.4), (2.5) for B, it is possible to calculate the current density
required to produce the field. The current density is finite everywhere provided
that

r>3+max (p, q). (2.6)

We shall assume that this is so.

The change in potential energy of such a system consequent upon a perturbation
€ which satisfies

divE = o (2.7)

£.g =o, (2.8)

and
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where g is the equilibrium gravitational field, has been calculated. As in Paper 11,
§ can be Fourier analysed in the form

E = 3 & exp imp 2.9

and the different 7 modes can be considered separately. Instability is most likely
for m — co. As before a separate stability criterion can be obtained on each surface
o = constant. A particular choice of § has been taken in which

&, = constant x sin y(cosh o— cos x)/B, sinh o. (2.10)

This is closely analogous to the perturbation considered in Paper II.

For the field configuration (2.4), (2.5) and the trial perturbation (2.10), it is
found that instability always occurs close to the magnetic axis, in agreement with
the expectation expressed in Paper II. In general, field lines which pass close to the
axis of symmetry of the star are not unstable to perturbation (2.10), but this does
not prove that instability cannot occur for more general perturbations.

Numerical results have been obtained for three particular cases:

(i) @1 = o, ag # o, various values of r—g,
(if) a1 # o, az = o, various values of p, 7,
(i) p = ¢ = 2, various values of 7, aj/as.

In the first case the magnitude of the magnetic field increases from zero on the
magnetic axis to a maximum value on the axis of symmetry. In the second case the
field vanishes both on the magnetic axis and on the axis of symmetry. In the third
case it is finite on the axis of symmetry but the maximum value of the field is at an
intermediate point. Table I shows, for a number of examples of each case, which is
the last magnetic surface for which instability exists; the quantity w¢ tabulated is
the distance from the centre of the star in the equatorial plane to the last unstable
magnetic surface.
In case (i) the value of o on the critical surface (o¢) is given by

sinh? g¢ = 1/2(r—g—2) (2.11)

TaABLE 1

Distance, w, to last unstable magnetic surface from centre of star
(a) Case (1)
r—q 3 4 5 6 5 0
we/R 0-318 0236 0°:196 0°172 0°154 0000
(b) Case (ii) wc/R is shown as a function of #—p and p

r—=p 3 4 5 6 7 0
P
o 0-318 0236 o-196 0172 9°154 0'000
2 0°'551 0447 0-388 0°348 0-318 0000
4 0:634  ©0°535 ©0°475  0°432  0°399  0°000
(c) Case (iii) w¢/R is shown as a function of » and a1/a2
r 5 6 7 10 13 00
ai/az
o5 0°395 0280 0224 0°153 0123 0000
20 0485 03064 0°294 0-189 0144 0°000
10°0 ©°'535 0427 0364 0263 0°210 0000
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and
we/R = sinh o¢/(cosh o¢+ 1). (2.12)

From the table it can be seen that the maximum value of w, is 0-318 R and that,
as r—qg— oo all magnetic surfaces become unstable to the type of perturbation
being considered. This corresponds to a field which decreases very rapidly away
from the axis of the star. As mentioned earlier, the results for those field lines which
pass near to the centre of the star and close outside the star really need further
investigation in case the assumption of infinite electrical conductivity breaks
down in these outer regions.
In case (ii) we have, instead of (2.11),

sinh? o¢ = (2p+1)/2(r—p—2). (2.13)

If p = o, the results are the same in case (i) with p replacing ¢. For p # o, the region
of instability for given 7—p is less but instability occurs for all magnetic surfaces
for 7/p - oo. In case (iil) results have been obtained for a variety of values of
ai/as. For each value instability is more likely for a large value of r; for given r
greater instability occurs for small values of a1/as.

We have demonstrated that instability is common for field configurations of the
type discussed in this section. Two further points can be made. The first is to
repeat that we have not tried to discover the most unstable perturbation. The
second is to remark that, provided the magnetic axis is placed near enough to the
centre of the star, it is possible for the majority of the magnetic flux to be buried
within the star. Thus in case (iii) with a1/ag = 1,7 = 5 and R equal to 7g/10, where
7 is the stellar radius, more than g7 per cent of the flux does not cross the surface.
We have not, of course, produced a self-consistent model of a star with such a large
trapped flux. Models of rotating magnetic stars with strong poloidal fields have,
however, been obtained by Wright (1969).

3. CONFIGURATIONS WITH MAGNETIC SURFACES WHICH ARE
CONCENTRIC ELLIPTICAL TORUSES

In this section the field configuration of Paper II is replaced by one in which the
field lines are elliptical instead of circular; the ellipses are concentric with the same
eccentricity. The configuration is shown in Fig. 2. Although we have no reason for
believing that it will not be unstable, we study it because the orthogonal trajectories
of the magnetic surfaces have a singular behaviour near to the magnetic axis and it
seems desirable to check that the circular field lines are not a singular case as far
as stability properties are concerned.

We once again name our coordinate system o, ¢, y, although ¢ and y must not
be confused with those of Section 2. o is constant on an ellipse of equation

ANR—w)2+2% = o2, (3.1)

where w, ¢, z are cylindrical polar coordinates. If the major axis of the ellipse is
parallel to the axis of symmetry, as shown in the figure,

A= 1/(1-¢?), (3.2)
where e is the eccentricity. If the major axis is perpendicular to the axis of sym-
metry,

A=1-¢ (3.3)
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F1c. 2. Sketch of configuration in which magnetic surfaces arve elliptical torvuses. The
elliptical coordinate system o, ¢, x is marked and other details are as in Fig. 1.

q;v

The coordinate y is defined by
x = (@w—R)[z* (3-4)

The line element of the coordinate system is

2 22242

2 — d 2
D ¥ oy I KL ey

dy®+w? d?. (3-5)

The condition div B = o combined with axial symmetry then gives
B, = Bof(0)[A¥(w — R)? + 2]1/2]w, (3.6)

where f(o) is an arbitrary function of o. In order that this field reduces to the one
studied in Paper II if the field lines are circular, we must put f(¢) = 1 and we
study this case. As before the stability of the system is studied with respect to
perturbations which are incompressible and parallel to surfaces of constant gravita-
tional potential. The form chosen for £, is

¢, < AR~ w)+w]/owB, 3-7)

which reduces to the form used in Paper IT when A = 1.

The change of potential energy has been calculated for such a perturbation
and it has been found to be negative for sufficiently small elliptical surfaces what-
ever their eccentricity and regardless of whether the major axis is parallel to or
perpendicular to the axis of symmetry. The numerical results are given in Table II,
which shows in terms of R both the major axis, ac, of the last unstable ellipse and
the distance from the axis of the star to the last unstable ellipse. It can be seen that,
for major axis parallel, almost all ellipses are unstable and the region of instability
increases as the ellipses become more eccentric; in this case the field configuration
is likely to cease to make sense before a stable ellipse is reached. For major axis
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TasLE II

Parameters for limiting stable ellipses

(a) Major axis parallel to axis of star

e 00 02 04 06 o8 09 10
ac/R 0963 0:988 1+069 1°240 1663 2293 0
@e/R 0°:037 0031 0°'019 0008 0°002 0000 0000

(b) Major axis perpendicular to axis of star
e 00 02 04 06 0-8 09 10
ac/R 0°963 0°957 0°929 0826 0569 0384 0000
@e/R 0-037 0°043 0°071 0°174 0°431 0°616 1°000

perpendicular, the region of instability decreases with increasing eccentricity and
instability disappears, for the chosen perturbation, when the ellipse is infinitely
flattened. It is not possible to tell without much more detailed study whether this
result is entirely dependent on the choice of perturbation or whether the perpendicu-
lar case is genuinely more stable.

4. OFF-CENTRED MAGNETIC FIELDS

We suppose that a star contains a magnetic field which is axially symmetric
and which has concentric circular field lines near to the magnetic axis. The centre
of symmetry of the field is displaced from the centre of the star. This is illustrated
in Fig. 3, which shows that cross-section of the star which passes through both the
centre of symmetry of the field and the centre of the star. As in the other sections
of this paper, we suppose that the field is weak enough that the star can be assumed
to be spherical, so that the gravitational field always acts towards the centre of the
star.

F1c. 3. Sketch of configuration in which the magnetic field has a centre of symmetry which
is displaced from the centre of the star. C is the centre of the star and O the centre of sym-
metry of the field and the cross-section through both C and O s shown.
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To discuss the stability of the system we use a coordinate system i, ¢, y based
on the magnetic field; this is the system used in Paper II. We once again suppose
that the perturbation can be Fourier analysed, as in equation (2.9). However, when
we apply conditions (2.7) and (2.8), the different 7 modes do not completely
decouple because g depends on ¢, except when the angle « shown in Fig. 3 is =/2.
Thus the expressions for the components of g are

gy o r— R cos y—d sin a sin x —d cos o cos x cos ¢,
84 o d cos a sin ¢, (4.1)

g, o dsin a cos y—(R+d cos « cos ¢) siny,

where, as shown in Fig. 3, d is the distance of the centre of symmetry of the field
from the centre of the star.

The study of the stability of configurations with o = /2 for which no coupling
of m modes occurs, is a simple generalization of the problem studied in Paper II
and it is easy to show that field lines near to the magnetic axis are always unstable.
For the case of « # 72 we first write

&y = Y, Xm cos m$p|wB,

¢y = Y, w Yy sin mp/m, (4.2)
¢, = Y. BZy cos mé,

where X, Y, Zm are functions of ¢ and y. The equation div§ = o gives a
relation between Xy, Y and Z,, for all m. In contrast the condition §.g = o
now couples the different 7 modes.

‘We choose as a first approximation to our trial perturbation

X =) Xy cosm

= Xo [sin X—% sin o cos X+%cos a sin y cos gb] cos M¢,

Z = Z Zn], Ccos m("b

= %B{—(; [cos X—I%-*-% sin o sin X‘*‘% COS o COS )y COS ¢] cos M, (4.3)
so that both X and Z contain terms in cos (M —1) ¢, cos M¢ and cos (M +1) ¢
and where M is arbitrary at present, but will later be taken to be very large. From
the equation div § = o expressions can be found for the Yy, which can be seen to
be of the same order as the X, and Zy,. The perturbation (4.3) satisfies the equa-
tion £.g = o only if the terms in Y7, are neglected. As these all contain a factor
1/m, it should in principle be possible to choose small correction terms to X and Z
which cause §.g to vanish, provided M has been chosen to be very large. These
correction terms 8;.X, 8;Z in turn lead to a correction 8, Y from the incompressi-
bility condition. There is then a need for a further correction 62X, 82Z. In principle,
instability can only be proved if all of the resulting series are shown to be con-
vergent.

In fact, what has been demonstrated is the following. If the change of potential
energy, 8W, of the system is calculated for the trial function (4.3) with M> 1, it
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is always found to be negative near enough to the magnetic axis. Thus provided
that the correction terms to 8/ are unimportant the system is unstable. The first
approximations to the Yy, are then calculated and a choice must be made for the
expressions 61X, 81Z. There s a choice because they are only connected by the one
equation

§£B [R cos x—7+d sin a sin y +d cos « cos ¢ cos y]
W'
+ B8Z[R sin x —d sin « cos y+d cos « cos ¢ sin y]

=) w”fm sin me d cos a sin ¢. (4.4)

The choice must be made to obtain convergent expressions for § and 8.

It has not proved possible to find appropriate expressions for §;X, §;Z which
certainly lead to convergence for all values of d and « but it appears that:
(1) if either d sin a>7 or & = o the relation

81X cos y+061ZwB2siny = o (4-5)

leads to convergent expressions for large enough values of M
(i) if R>r cos x—d cos « cos ¢ or equivalently R>r and d cos q,

81X sin y—81ZwB2 cos y = o (4.6)
is appropriate.
The first choice should give suitable expressions for 6;.X, §1Z for all values of
d and « for a range of values of 7 but if d is small the second choice may lead to
more rapid convergence. Although a rigorous proof of convergence has not been
obtained, instability of the general configuration has been made very plausible. It
does not appear appropriate to include the full mathematical details in the present
paper but we shall be happy to discuss them with any interested reader.

5. CONCLUDING REMARKS

The discussion in the previous three sections indicates that it is highly probable
that all purely poloidal field configurations, which have closed field lines inside
stars, are unstable. It is uncertain whether configurations, all of whose field lines
are open, are unstable because they cannot be discussed without considering the
physical conditions outside the star. In an earlier paper (Tayler 1973, Paper I),
it has been shown that a wide class of toroidal field configurations are unstable,
with the instability being located near to the axis of the star. In Wright (1973)
and Paper II, it has been strongly suggested that the poloidal field instabilities
near to the magnetic axis can be removed if the star contains a toroidal field of
comparable strength to the poloidal field. At the same time, the poloidal field may
reduce the instabilities of the toroidal field found in Paper I. In the absence of the
gravitational field, it would be difficult to expect to find a completely stable con-
figuration but, because of the constraint that the gravitational field exerts on allowed
perturbations, it is possible that mixed toroidal/poloidal field configurations exist,
which are stable throughout the star. We hope to consider that problem.
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