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THE ADIABATIC THEOREM AND LINEAR RESPONSE THEORY FOR

EXTENDED QUANTUM SYSTEMS

SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS

Abstract. The adiabatic theorem refers to a setup where an evolution equation contains a time-
dependent parameter whose change is very slow, measured by a vanishing parameter ǫ. Under
suitable assumptions the solution of the time-inhomogenous equation stays close to an instanta-
neous fixpoint. In the present paper, we prove an adiabatic theorem with an error bound that is
independent of the number of degrees of freedom. Our setup is that of quantum spin systems where
the manifold of ground states is separated from the rest of the spectrum by a spectral gap. One im-
portant application is the proof of the validity of linear response theory for such extended, genuinely
interacting systems. In general, this is a long-standing mathematical problem, which can be solved
in the present particular case of a gapped system, relevant e.g. for the integer quantum Hall effect.

1. Introduction

1.1. Adiabatic Theorems. The adiabatic theorem stands for a rather broad principle that can be
described as follows. Consider an equation giving the evolution in time t of some ϕ(t) ∈ B, with B
some Banach space:

(1.1)
d

dt
ϕ(t) = L(ϕ(t), αt),

where L : B×R → B is a smooth function and αt is a parameter depending parametrically on time.
Now, assume that for αt = α frozen in time, the equation exhibits some tendency towards a fixpoint

ϕα, as expressed, for example, by convergence in Cesaro mean 1
T

∫ T
0 ϕ(t)dt → ϕα, as T → ∞ for

any initial ϕ(0). Intuitively, one can then expect that for a very slowly t-dependent αt, the solution
ϕ(t) shadows the instantaneous fixpoint ϕαt if the initial condition ϕ(0) is close to ϕα0 .

There is a multitude of results proving such a principle, starting from the old works [1, 2, 3], see
[4, 5, 6, 7] for more recent accounts focusing on quantum dynamics, [8] for a version outside the
quantum formalism, [9] for a version tailor-made for Markov processes, and [10] for a case where
Lα(·) := L(·, α) : B → B is not linear. In order to guide the discussion, let us state explicitly the
very general result of [11] that is however restricted to a linear Lα. Introducing a scaling parameter
ǫ and a rescaled time s = ǫt, we use s ∈ [0, 1] as the basic variable and an s-dependent parameter
αs, setting φ(s) = ϕ(t). The above equation (1.1) then turns into

(1.2) ǫ
d

ds
φ(s) = Lαsφ(s).

In [11], Lα is assumed to generate a contractive semigroup for any α, and to be such that B =
KerLα⊕RanLα. This corresponds to the intuition above, insofar as the latter condition is equivalent
to mean-ergodicity

(1.3)
1

T

∫ T

0
etLαφ dt −→ Pαφ,
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2 SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS

for all φ ∈ B, where Pα the ergodic projection on KerLα. The result of [11] is then that

(1.4) sup
s∈[0,1]

‖(1− Pαs)φ(s)‖ ≤ Cǫ

where φ(s) is a solution of (1.2), with an initial condition φ(0) satisfying the same bound. In other
words: the dynamically evolved φ(s) remains within the instantaneous kernel, up to a small leak.

1.2. Fundamental applications. There are at least two domains in physics where the adiabatic
principle is fundamental.

Thermodynamic Processes. We consider a phase space Ω (generalised positions and momenta) of
a physical system, endowed with a symplectic structure and a Liouville measure ω. A Hamilton
function Hα : Ω → R generates a flow on Ω, for which the measure ω is invariant. Let us choose
B to be the class of signed measures that are absolutely continuous w.r.t. ω and we identify these
measures with their densities ϕ, so we can put B = L1(Ω, ω). Then the flow on Ω is naturally lifted
to B as

d

dt
ϕ(t) = {Hα, ϕ(t)}

where {·, ·} is the Poisson bracket corresponding to the symplectic structure. If the flow generated
by the Hamiltonian Hα is ergodic on any energy shell ΩE = {x ∈ Ω : H(x) = E} and some technical
conditions are met, then (1.3) is satisfied with Pα projecting on densities that are functions of Hα.
Rescaling the time-dependent equation for the family Hαt to get

ǫ
d

ds
φ(s) = {Hαs , φ(s)},

we are in the framework described above and the result (1.4) applies. It teaches us that the evolution
proceeds via instantaneous fixpoints, i.e. densities that are functions of Hα. Indeed, it is a basic
tenet of thermodynamics that the evolution corresponding to a sufficiently slow αt — called in this
context a quasi-static process — remains within the set of Gibbs states.

(1.5) ϕα,β ∝ e−βHα ,

where 0 < β < ∞. Of course, the fixpoints are not automatically of the form (1.5) but typicality
considerations involving ‘equivalence of ensembles’ make them physically equivalent to Gibbs states,
in the case where the system has a large number of degrees of freedom (see also below). Therefore,
the adiabatic principle is often invoked to justify the relevance and prevalence of Gibbs state to
describe time-inhomogenous systems.

Quantum Dynamics. Here the Banach space B is a separable Hilbert space H, and there is a family
of self-adjoint operators Hα (‘Hamiltonians’) acting on H. The dynamics of φ ∈ H in rescaled time
is given by the driven Schrödinger equation

(1.6) ǫ
d

ds
φ(s) = −iHαsφ(s).

In this case, the condition (1.3) is satisfied by the spectral theorem. To exclude uninteresting trivial
cases, we assume that KerHα is non-empty for all α. For simplicity, we also assume that Hα are
bounded. Then, the result is given again by (1.4), which corresponds in this case to the original
works of Born, Fock and Kato [1, 2, 3].

Note that despite the formulation, there is no distinguished role played by the eigenvalue 0 of Hα.
Indeed, assume that Hα has an eigenvalue Eα, depending smoothly on α (recall that we assume
everything to be smooth throughout). If φ(s) solves (1.6), then

φ̃(s) = e−(i/ǫ)
∫ s

0 Eαuduφ̃(s)
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solves

(1.7) ǫ
d

ds
φ̃(s) = −iH̃αs φ̃(s),

with H̃α = Hα−Eα. The latter equation (1.7) reduces the evolution problem for Eα-eigenvectors to
the case above describing the evolution of vectors in the kernel. The adiabatic theorem in quantum
mechanics is often invoked to argue that a system can be prepared in a certain state by switching
the Hamiltonian slowly.

Finally, it is worthwhile to note here that the adiabatic theorem can be substantially strengthened
if the Hα have a spectral gap, i.e. if the spectra σ(Hα) \ {0} are bounded away from 0, uniformly in
α. In that case, at times in which the first m-derivatives of the Hamiltonian vanish, the result (1.4)
holds with an improved error bound Cmǫ

m, where the integer m depends on the smoothness in α
and it can be made arbitrarily large if α 7→ Hα is C∞.

1.3. Extended systems. The two above applications of the adiabatic theorem — thermodynamic
processes and quantum dynamics — refer to dynamical systems of physics. A key parameter of
any such dynamical system is the number N of degrees of freedom it has. A related important
notion is that of the spatial extension of the physical system and its locality. Indeed, there are
mathematical results that become irrelevant when the number of degrees of freedom grows large.
Take for example the KAM theorem for Hamiltonian dynamics, stating that small perturbations
of integrable systems inherit the integrability, see e.g. [12] and references therein. How small the
perturbation must be depends on N and it must be vanishing with growing N . It is therefore
commonly believed that the KAM theorem has little or no bearing on large physical systems. On
the face of it, the adiabatic theorem suffers from a similar hitch, as the constant C in (1.4) grows
typically linearly with N . As we will explain below, this divergence is unavoidable as the adiabatic
theorem with an N -independent C is shown to be wrong.

Yet, a lot of physics applications do involve macroscopic systems, where N ∼ 1023. Indeed,
thermodynamics always assumes that the dynamical system is macroscopic, namely that one should
take the ‘thermodynamic limit’ N → ∞ which justifies the notion of typicality or the applicability of
laws of large numbers. In quantum dynamics, many considerations involving the adiabatic theorem
deal with extended lattices of spins. We mention most notably the problem of the classification of
gapped phases or the dynamical crossing of a quantum critical point, both notions being meaningless
for small systems where N is fixed.

Hence there is a fundamental and practical need to find a form of the adiabatic theorem that is
applicable for arbitrarily large systems. This is precisely what we provide in the present article for
gapped quantum spin systems. There are two ingredients that will allow us to obtain again (1.4)
with a N -independent constant C for macroscopic systems. First and foremost, we will exploit the
locality of the system: only nearby degrees of freedom interact directly, and the quantum dynamics
exhibits a finite speed of propagation. Second, we will choose a metric that probes φ only through
a few degrees of freedom at a time, instead of the norm on B which considers all degrees of freedom
simultaneously.

1.4. Linear response theory. With an adiabatic theorem for extended systems at hand, we shall
prove the validity of linear response theory. Initially developed by Kubo in [13], the very generally
phrased theory deals with the response of a physical system to a driving, in first order in the strength
of the driving. In a typical setting, the driving (for example an electromotive force) is switched on
adiabatically from 0 in the infinite past to reach an intensity α > 0 at t = 0, where one computes
the induced response (the size of an electrical current in the example) to first order in α. This yields
a linear relationship between response and driving, with a proportionality constant — the response
coefficient — given by the so-called Kubo formula.
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Here again, the theory is well established for small systems whereas for macroscopic systems a
proof of its validity is considered of fundamental interest, see [14]. The crucial issue is that of the
order of the limits: First, the system must be taken to the macroscopic limit N → ∞, the adiabatic
limit ǫ → 0 must be taken second, while the limit of linear response α → 0 is carried out last. We
shall prove (i) that these limits exist in this order and (ii) give an explicit formula for the linear
response coefficient, which is formally equal to Kubo’s formula but rigorously well-defined.

2. Setup and Results

2.1. Quantum spin systems. To introduce the spatial extent and the local structure of our system,
we choose a countable graph Γ endowed with the graph metric that we denote by dist(·, ·). We assume
Γ to be d-dimensional in the sense that there is a κ <∞ such that

(2.1) sup
y∈Γ

|{x ∈ Γ : dist(x, y) ≤ r}| ≤ κrd.

For simplicity, one can keep in mind the main example Γ = Z
d. To each vertex x ∈ Γ, we associate

a quantum system Hilbert space Hx, where sup{dim(Hx) : x ∈ Γ} < ∞. Let F(Γ) denote the set
of finite subsets of Γ. For any Λ ∈ F(Γ), we write |Λ| for its volume (cardinality) and diam(Λ) =
maxx,y∈Λ dist(x, y). We further define its corresponding Hilbert space HΛ := ⊗x∈ΛHx and the

algebra of observables AΛ := B(HΛ). For Λ′ ⊂ Λ, AΛ′

is in a natural way isomorphic to a subalgebra

of AΛ of the form AΛ′ ⊗ 1Λ\Λ′ and we use this embedding without comment. For any operator O,

we write supp(O) for the smallest Λ such that O ∈ AΛ. Each AΛ is equipped with the trace
TrΛ : AΛ → C.

2.2. Dynamics. To define the dynamics, it is useful to first consider interactions. An interaction Φ
is a map that associates an observable Φ(X) = Φ(X)∗ ∈ AX to any finite set X ∈ F(Γ). It defines
a Hamiltonin HΛ ∈ AΛ, for any Λ ∈ F(Γ) by setting

HΛ :=
∑

X⊂Λ

Φ(X).

The notion of an interaction will allow us (i) to consider all finite volumes Λ at the same time and
(ii) to naturally put a locality assumption by requiring that ‖Φ(X)‖ decays when diam(X) grows.

Below, we will systematically drop the superscripts Λ as all assumptions, bounds and statements
apply uniformly in Λ.

As discussed in the introduction, we shall consider a time-dependent interaction Φs, and the
associated time-dependent Hamiltonians Hs, for s ∈ [0, 1]. The evolution on the Hilbert space H is
now given by the time-dependent Schrödinger equation

(2.2) iǫ
d

ds
ψǫ(s) = Hsψǫ(s),

where the parameter ǫ indicates that s should be thought of as a rescaled time, cf. the introduction.
The setup described above is standard in quantum spin systems, see e.g. Section 6.2 of [15], and

it will be elaborated further in Section 4.1. It includes all standard lattice models studied in the
condensed matter theory. We provide some examples in Section 2.5.

2.3. Assumptions. The adiabatic theorem we prove below holds for time dependent Hamiltoni-
ans of quantum spin systems that are gapped and depend smoothly on time. We formulate these
assumptions precisely here, while keeping the notational burden to a minimum.

Assumption 2.1 (Gap Assumption). For any s ∈ [0, 1], let Σs be the spectrum of the Hamiltonian
Hs. There is a splitting Σs = Σ1

s ∪ Σ2
s, such that [minΣ1

s,maxΣ1
s] ∩ Σ2

s = ∅ and

γ := inf{dist(Σ1
s,Σ

2
s) : s ∈ [0, 1]} > 0,
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uniformly in the volume Λ.

The condition [minΣ1
s,maxΣ1

s]∩Σ2
s = ∅ simply excludes that Σ1,2

s would consist of several interlaced
patches, and the min/max exist because the spectrum is a closed set.

Whenever Assumption 2.1 holds, we define Ps to be the spectral projection of the Hamiltonian
Hs associated to Σ1

s.
The second assumption addresses the smoothness of the interactions on the one hand, and their

locality on the other hand. The latter is expressed in terms of a class BE,∞ whose explicit definition
will be given later, and whose meaning is of an exponential decay of ‖Φs(X)‖ with diam(X) for all
s ∈ [0, 1].

Assumption 2.2 (locality and differentiability). Let m be an integer not smaller than 1. For any
X ∈ F(Γ), the matrix-valued function s 7→ Φs(X) is (d + m)-times continuously differentiable.

These derivatives define time-dependent interactions {Φ(k)
s (X) : X ∈ F(Γ)} such that Φ(k) ∈ BE,∞

for 0 ≤ k ≤ d+m, where Φ
(0)
s = Φs. Moreover, Φ

(k)
s (X)|s=0 = 0 for all X ∈ F(Γ) and 1 ≤ k ≤ d+m.

Note that if Assumption 2.2 holds, then by standard perturbation theory, s 7→ minΣ1
s and

s 7→ maxΣ1
s defined in Assumption 2.1 are continuous, although not necessarily uniformly so in Λ.

Similarly, s 7→ Ps is (d+m)-times continuously differentiable.
For simplicity, the reader may keep in mind finite-range interactions: There is R > 0 such that

Φs(X) = 0 unless diam(X) ≤ R.

In that case the statement Φ(k) ∈ BE,∞ in Assumption 2.2 reduces to

sup
{
‖Φ(k)

s (X)‖ : X ∈ F(Γ)
}
<∞,

uniformly in s ∈ [0, 1].

2.4. Result. To state our main result, let us consider a normalised solution ψǫ(s) of the Schrödinger
equation (2.2) such that the initial condition ψǫ(0) lies in the spectral patch Σ1

0, i.e.

(2.3) P0ψǫ(0) = ψǫ(0), ‖ψǫ(0)‖ = 1.

Our result then expresses that in a certain sense the adiabatically evolved ψǫ(s) remains in the
instantaneous patch.

Theorem 2.3. Let Assumption 2.1 hold.

(i) If Assumption 2.2 is satisfied for m = 1, then there is a vector ψ̃ǫ(s) ∈ Ran(Ps) with

‖ψ̃ǫ(s)‖ = 1 and a C1 <∞ that is independent of Λ and ǫ, such that

(2.4) sup
s∈[0,1]

∣∣∣〈ψǫ(s), Oψǫ(s)〉 − 〈ψ̃ǫ(s), Oψ̃ǫ(s)〉
∣∣∣ ≤ C1|supp(O)|2‖O‖ǫ

for any O with supp(O) ⊂ Λ.

(ii) If Assumption 2.2 is satisfied for m > 1, and if Φ
(k)
s (X)|s=1 = 0 for all X ∈ F(Γ) and

1 ≤ k ≤ d+m, then the above bound is strengthened at the endpoint s = 1 to

(2.5) sup
s∈[0,1]

∣∣∣〈ψǫ(1), Oψǫ(1)〉 − 〈ψ̃ǫ(1), Oψ̃ǫ(1)〉
∣∣∣ ≤ Cm|supp(O)|2‖O‖ǫm.

To compare this result to (1.4), it is convenient to first assume that the spectral patch Σ1
s = {0},

namely 0 is an isolated eigenvalue for all s. Then Theorem 2.3 in the case m = 1 is the statement
in (1.4), except that the proximity of ψǫ(s) to the instantaneous spectral subspace Ps is expressed
by a coarser topology, while the bound holds uniformly for all finite volumes. The presence of the
gap, Assumption 2.1, which is anyhow crucial for our result, allows for Σ1

s to contain more spectrum
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than a single eigenvalue. Provided enough smoothness, the gap further allows for an error bound
ǫm instead of simply ǫ, as was already studied via the adiabatic expansion, see [16, 17, 18, 19].
The novelty of our approach, both at the technical and conceptual level, is the construction of an
adiabatic expansion that uses the locality of the dynamics and is compatible with it.

A natural question that is not explicitly addressed by the theorem is how to pick the vector

ψ̃ǫ(s) ∈ Ran(Ps). In general, there is not much to say about this, but a special case arises if we
assume that the spectral patch Σ1

s corresponding to Ran(Ps) is (nearly) degenerate. Let us define
the splitting

δ = sup
s∈[0,1]

(
maxΣ1

s −minΣ1
s

)

and assume near-degeneracy in the form

(2.6) δ ≤ Cmin(ǫ2, ǫ/|Λ|−1)

It is indeed very natural in many-body systems that a degeneracy between ground states is lifted
very slightly (in many examples the splitting δ is exponentially small in the volume). As we shall

show on page 19, our expansion yields that, if (2.6) holds, then ψ̃ǫ(s) satisfying Theorem 2.3(i) can
be simply chosen as a solution of the parallel transport equation

(2.7) Ps
d

ds
Ω(s) = 0, Ω(0) = ψ0,

in which case it is naturally ǫ-independent. Equivalently, Ω(s) is the solution of the equation

(2.8) i
d

ds
Ω(s) = i[Ps, Ṗs]Ω(s), Ω(0) = ψ0,

even though the generator [Ps, Ṗs] is not a local Hamiltonian. Choices of ψ̃ǫ(s) that fulfill Theo-
rem 2.3(ii) can be constructed as well by continuing the expansion to higher orders and strenghtening
(2.6), see [20].

2.5. Examples. We now discuss the result further via some examples, and we shall illustrate some
of the points raised in the introduction.

2.5.1. Non-interacting spins. Take the interactions Φs to be such that Φs(X) = 0 whenever |X| > 1
and write simply hx,s = Φs({x}). Hence we have

Hs =
∑

x∈Λ
hx,s.

Then the class of product vectors ⊗x∈Λψx is preserved by the time evolution and ⊗x∈Λψx,ǫ(s) is a
solution of the many-body dynamics provided that for each x, ψx,ǫ(s) solves the one-site Schrödinger
equation

iǫ
d

ds
ψx,ǫ(s) = hx,sψx,ǫ(s).

Let us now assume that hx,s has an eigenvalue 0 at the bottom of the spectrum of hx,s, and let Px,s

be the associated spectral projection. As always, we assume also that the initial condition ⊗xψx,ǫ(0)
satisfies (2.3), i.e. Px,0ψx,ǫ(0) = ψx,ǫ(0) and ‖ψx,ǫ(0)‖ = 1. Writing Ps = ⊗x∈ΛPx,s, we have than

(2.9) ||(1− Ps)⊗x∈Λ ψx,ǫ(s)||2 = 1−
∏

x∈Λ
||Px,sψx,ǫ(s)||2.

Assuming that the adiabatic theorem holds in the form (1.4) at each site x we get

lim
ε→0

||(1− Ps)⊗x∈Λ ψx,ǫ(s)|| = 0.
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On the other hand it should be expected - and it is easy to find examples where it is the case – that
supx ||Px,sψx,ǫ(s)|| ≤ 1 − cǫ for some c > 0, i.e. the error term does not vanish completely. In that

case the product on the right hand side of (2.9) vanishes as (1− cǫ)2|Λ| with increasing volume |Λ|,
and we get

lim
|Λ|→∞

||(1− Ps)⊗x∈Λ ψx,ǫ(s)|| = 1.

This shows that the adiabatic theorem cannot hold in the form (1.4) with an error bound that is
uniform in |Λ|.

In the non-interacting context of this example however, Theorem 2.3 provides the natural adia-
batic statement to be expected. Although a norm bound clearly fails, the solution is provided by
probing the adiabatically evolved state only on local observables O, with the diabatic error depend-
ing in particular on the support of O. As should be expected the true difficulty is to deal with
interactions, generating a dynamics that does not simply factorise as it did here. Controlling the
propagation properties of the interacting dynamics will be crucial.

2.5.2. Perturbations around gapped systems. Concrete and — unlike the above — non-trivial ex-
amples for the applicability of the main theorem arise from perturbations of simple gapped spin
systems.

Indeed, the sole assumption of the main theorem that can not easily be checked by inspection is
the presence of a spectral gap separating a spectral patch from the rest of the spectrum. The most
natural situation is where the isolated patch lies at the bottom of the spectrum, in which case one
can call this patch the ground state space. In many interesting cases the dimension of the ground
state space remains bounded and the width of the ground state ‘band’ shrinks to zero when volume
grows. In fact, there is a not precisely formulated conjecture in condensed matter that ‘generic’ local
Hamiltonians have a single ground state separated by a gap, while it was recently proved that the
problem of determining whether a given Hamiltonian is gapped or not is undecidable [21]. Among
the rigorous tools to prove gaps above the ground state space, the martingale method [22] stands
out.

Furthermore, a spectral gap above the ground state energy can be proved for weak perturbations
of certain classes of gapped Hamiltonians. Possible choices for the unperturbed H0 include the
non-interacting examples from Section 2.5.1, more interestingly spin systems with finitely correlated
ground states in one dimension [23] such as the AKLTmodel [24], and more generally frustration-free,
topologically ordered systems [25, 26, 27] such as the toric code model [28]. The full Hamiltonian is
then of the form

(2.10) Hs = H0 + αGs, s ∈ [0, 1], α ∈ R,

with Gs a local Hamiltonian satisfying our smoothness assumption, and |α| small. Hence, in these
cases, all assumptions of Theorem 2.3 can be verified and our result describes the evolution of ψǫ(s)
that started at s = 0 in the ground state space.

Somewhat less generally, we also find interesting examples of the form (2.10) where the isolated
spectral patch does not lie at the bottom of the spectrum. In [23], where H0 describes independent
spins, and in [25], where H0 can be taken to be the toric code model, it is proved that for |α| small
enough the spectrum Σs of Hs is of the form

Σs ⊂
⋃

n∈N
Bn, Bn = {z : |z − En| ≤ (C0 + C1n)α},

where En are the eigenvalues of H0 and the constants C0, C1 > 0 are independent of the volume. If
|α| is small enough, the low-lying bands B0, B1, . . . , Bk contain separated patches of spectrum. In
particular, the band Bs,0 will contain the branches of eigenvalues arising from the possibly degenerate
ground states of H0. Furthermore, one may suspect that the jth band can be related to an effective



8 SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS

j-particle subspace, see [29] for weakly interacting spins and [30] for a scattering picture. In this
setting, Theorem 2.3 shows that the adiabatic evolution takes place mostly within the bands, with
vanishing leaks between different bands — as tested by local observables.

2.5.3. Adiabatic dynamics within gapped ground state phases. A gapped ground state phase of a
quantum spin system is usually understood as a set of Hamiltonians defined on the same spin system,
such that they all have a spectral gap above the ground state energy, and there is a piecewise C1-
path of gapped Hamiltonians interpolating between any pair, see for example [31, 32, 33, 34]. It
follows from the quasi-adiabatic flow technique described below that their ground states are locally
unitarily equivalent, which is a structural result about the gapped phases.

The adiabatic theorem proved here adds a dynamical aspect to the equivalence of states within
gapped phases, in that it ensures that if a dynamics is started in the ground state of the initial
Hamiltonian and the system is slowly driven along a gapped path to a Hamiltonian within the same
phase, then the final state is a ground state of the final Hamiltonian, up to small diabatic errors.
As a concrete example, this implies by [35] that the coupling constants of the AKLT model, which
is believed to belong to the phase of the antiferromagnetic spin-1 Heisenberg model, can slowly be
changed so as to reach a product state with vanishing errors. Moreover, how slowly the process
must be run to remain within a given error bound is independent of the length of the spin chain.

2.6. The adiabatic evolution of the projector P0. Theorem 2.3 states that the driven Schrödinger
evolution of a vector initially in the spectral patch Σ1

0 evolves within the spectral patch Σ1
s, up to

small diabatic errors. Not surprisingly, the method of proof can be adapted to deal with the spectral
projector associated with the complete patch. This version will be particularly suited to discuss the
relation of our theorem to the ‘quasi-adiabatic evolution’ results we discuss below.

For this, we consider the von Neumann equation for non-negative trace-class operators

(2.11) iǫ
d

ds
ρǫ(s) = [Hs, ρǫ(s)].

The flow corresponding to (2.11) preserves positivity, preserves the trace, and if the initial operator
is a projection, then so is the solution of the equation for all s. We shall consider the distinguished
initial condition given by the spectral projection P0, and denote Pǫ(s) the solution of the equation.
In other words,

Pǫ(s) = Pǫ(s)
∗ = Pǫ(s)

2

is the solution of

(2.12) iǫ
d

ds
Pǫ(s) = [Hs, Pǫ(s)], Pǫ(0) = P0.

The adiabatic theorem then suggests that Pǫ(s) remains close to Ps for s ∈ [0, 1], and indeed the
following holds: Under the conditions of Theorem 2.3(i),

(2.13) sup
s∈[0,1]

∣∣∣∣
Tr(Pǫ(s)O)

Tr(Pǫ(s))
− Tr(PsO)

Tr(Ps)

∣∣∣∣ ≤ C|supp(O)|2‖O‖ǫ

uniformly in the volume Λ. This shows that the initial projector P0 is parallel transported to Ps

by the adiabatic evolution, up to small diabatic errors. Note also that similarly to Theorem 2.3(ii),
the error becomes smaller than a higher power in ǫ once the driving has stopped, the power being
bounded only by the degree of smoothness of the Hamiltonian.
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2.7. Connection to the quasi-adiabatic flow. Paraphrasing the above, one could view Theo-
rem 2.3 as the statement that the flow s 7→ Pǫ(s) is closely related to the map s 7→ Ps. They are
indeed intimately connected and, as we shall see in the proofs, understanding the latter is crucial
to understanding the former, but they should not be mistaken for one another.

A central element in the proof of the theorem is the fact that s 7→ Ps can be constructed as a flow
that is generated by a local Hamiltonian — although not, of course, the Hamiltonian Hs. Precisely,
there exists a Ks ∈ BS,∞ such that

(2.14) Ṗs = i[Ks, Ps],

see Corollary 4.2 below which provides a shorter proof than the original proof in [33, 36]. While
Ks is often referred to in the literature as the generator of the ‘quasi-adiabatic evolution’ or even
‘adiabatic evolution’, we shall call it here the generator of the spectral flow to avoid any confusion.

2.8. Comparison with the traditional quantum adiabatic theory. In the usual adiabatic
theory [4, 11], the solution of the von Neumann equation is expanded in the powers of ǫ,

ρǫ(s) = Ps +
n∑

j=1

ǫjaj(s) + ǫnRn,ǫ(s).

With appropriate regularity assumptions and initial conditions, operators aj(s) can be determined
from a recurrence relation, the coefficient aj+1(s) being a linear function of aj(s) and ȧj(s). The
remainder term Rn,ǫ(s) is then obtained by Duhamel’s formula,

Rn,ǫ(s) = −
∫ s

0
σs,s′(rn(s

′)) ds′, rn(s) :=
d

ds
[(1− Ps)an(s)] ,

where σs,s′(·) is the flow generated by (2.11) and Ps is the ergodic projection of Ls = −i[Hs, ·].
If aj , rn were local operators in some sense, Theorem 2.3 could be established from such an

expansion. Let us consider consider the first term of the expansion, given by a1(s) = iL−1
s ([Ks, Ps]).

As discussed in Proposition 4.1, one can invert Ls so that a1(s) = i[Υ(s), Ps], where Υ(s) is a local
Hamiltonian. Then we have

Tr(Oa1(s)) = −iTr(Ps[Υ(s), O]).

for any local observable O. Even though the norm of a1(s) grows as the volume, the expression in
the trace manifestly does not because Υ(s) enters only in the commutator with the observable.

One might hope — as the authors initially did — that it is possible to proceed with a2, . . . , an
and rn in a similar manner. Unfortunately, we were not able to do so. Even if all the terms could be
expressed as nested commutators so that traces involving a1, . . . , an would be bounded uniformly in
the volume, the remainder term Rn,ε would diverge as ǫ→ 0, since σs,s′ spreads the support of the
local observable over a distance ǫ−1.

We were only able to circumvent this issue by introducing a new way of expanding the solution
which carefully respects the locality of the dynamics. This is explained in the following section.

2.9. Main idea of the proof. We construct a sequence of local Hamiltonians {Aα : 1 ≤ α ≤ n}
generating a sequence of local unitary dressing transformations of order n

(2.15) Un,ǫ(s) := exp (iSn,ǫ(s)) , Sn,ǫ(s) =

n∑

α=1

ǫαAα(s),

which closely follows the Schrödinger propagator Uǫ(s, 0) in the sense that

iǫ
d

ds
Un,ǫ(s) = (Hs +Rn,ǫ(s))Un,ǫ(s),



10 SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS

where the counter-diabatic driving Rn,ǫ(s) is a local Hamiltonian of order ǫn+1. The local Hamilto-
nians Aα(s) are determined recursively, however, unlike the standard expansion, the operator Aα(s)
is a polynomial function of all the previous operators and their derivatives.

Like in the wishful argument of the previous section, the difference between the dressed projection
Πn,ǫ(s) := Un,ǫ(s)PsUn,ǫ(s)

∗ and the solution of the Schrödinger equation ρǫ(s) is locally of order

ǫn+1−d. By construction Sn,ǫ(s) is of order ǫ, so that the difference between the dressed ground state
and the ground state itself is of order ǫ. Hence, the theorem follows if n can be chosen larger than
d, which can be done if the Hamiltonian is smooth enough.

Furthermore, the Hamiltonians Aα(s) depending locally-in-time on Hs and its derivatives, they
vanish whenever the driving stops. At that point Sn,ǫ(s), which is generically of order ǫ, in fact
vanishes and the dressing transformation becomes trivial. This allows for the improved bound ǫm

at times s where the Hamiltonian has become again time-independent.

3. A corollary: Linear response theory

In this section we present the important theoretical application of Theorem 2.3 that was an-
nounced in the introduction, namely that the theorem allows for a proof of the validity of linear
response theory in the case of gapped systems.

To set the stage, we introduce the key actors in the particular case of the integer quantum Hall
effect. We consider a quantum Hall sample of an area L2 in an external magnetic field B. When
the density of electrons is n = B/(2πq) for some q ∈ Z, the non-interacting system is gapped and
the gap remains open also in the presence of interactions [37]. If such a system is in its ground state
and the Fermi energy lies in the gap there is no net motion of electrons across the sample. When
an electric field Eν is applied, it results in a current jν in the perpendicular direction. It is observed
that for weak driving the current density is proportional to the applied force, jµ = fµνEν , where fµν
are the so-called response coefficients, in this particular case the conductances. In the quantum Hall
effect the matrix of response coefficients is as discussed off-diagonal and these non-zero elements
are equal to 1/(2πq) for integer q. Beyond the simple linear relation between driving and current,
linear response theory provides an explicit formula for the matrix f , first derived by Kubo [13].
The quantisation of the Hall conductance as defined by Kubo’s formula has been established in
various degrees of generality, and in particular including interactions [38, 37]. However, the validity
of the formula itself has not yet been proved from first principles, in particular not in a many-body
situation. The formula was established for non-interacting Landau type Hamiltonians in [39], and
in the presence of disorder in [40]. Progress was also made for the response smoothed in frequency-
domain, see e.g. [41, 42] and the references therein, and for a strictly local driving in a thermal
setting, see and [43, 44].

We adapt Kubo’s framework of linear response theory to the setting of quantum spin systems.
Let Hinitial be the unperturbed Hamiltonian in the infinite past upon which a perturbation V is
slowly switched on to reach an order α at t = 0. The full driven Hamiltonian has the form

Hǫt,α = Hinitial + eǫtαV, t ∈ (−∞, 0].

The response coefficient is associated to a local observable J , typically a current. Let Pα be the
projection on the ground state space of H0,α. Note that P0 is the projection onto the ground
state space of Hinitial. As in the previous section, Pǫ,α(t) shall denote the solution of the driven
Schrödinger equation generated by Hǫt,α with an initial condition Pǫ,α(−∞) = P0. In finite volume,
these projections can be interpreted as density matrices. Choosing the perspective of states as
functionals on observables, we define

ωǫ,α;t(O) =
Tr(OPǫ,α(t))

TrPǫ,α(t)
, ωα(O) =

Tr(OPα)

TrPα
,
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for any local observable O, keeping in mind that all these objects are volume-dependent. Note
that the denominators are constant in the parameters ǫ, α, t, but they generically change with the
volume.

Formally, the response coefficient fJ,V is then given as the linear in α response to the perturba-
tion V , in the adiabatic limit:

(3.1) ωǫ,α;0(J)− ωα(J)− αfJ,V = o(α), as α→ 0, ǫ→ 0.

What makes the claim of validity of linear response truly non-trivial is that the limit ǫ→ 0 is taken
first and that the bound o(α) is uniform in the volume. In particular, if o(α) were allowed to depend
on the volume Λ, then the resulting claim may physically be meaningless, see the arguments in [45].

Let us now see how the above setup connects to adiabatic theory. Since the time-dependence
is slow in the ǫ → 0 limit, it is justified to approximate the evolved projection Pǫ,α(0) by the
instantaneous ground state projection Pα, and hence the evolved state ωǫ,α;0 by the instantaneous
ωα. Moreover, the replacement can be done uniformly in the volume, since the observable J is a
fixed local observable. In order to obtain an expression for the response coefficient fJ,V , we then
simply have to expand ωα(J) in α. As long as the gap remains open for the Hamiltonians, the first
order term is obtained using the generator of the spectral flow Kα, see (2.14). Using cyclicity of the
trace at α = 0, we obtain

ωα(J) = ω0(J)− iαω0 ([K0, J ]) + o(α),

thereby identifying fJ,V = −iω0 ([K0, J ]). The precise theorem we prove is

Theorem 3.1. Suppose that Assumptions 2.1, 2.2 hold for the family of Hamiltonians Hinitial+σαV ,
for some fixed α > 0 and σ ∈ [0, 1]. Let J ∈ AX , with X ⊂ Λ, be an observable, and let fJ,V =
−iω0 ([K0, J ]). Then the expression

(3.2) α−1 (ωǫ,α;0(J)− ω0(J)− αfJ,V )

converges to 0, uniformly in the volume Λ, as first ǫ→ 0 and then α→ 0.

In fact, the convergence works for any coupled limit (α, ǫ) → (0, 0) but we stressed the physical
order of limits. The expression for fJ,V given above might not be familiar. A more recognizable
expression that often appears in expositions of linear response is rather

(3.3) fJ,V = i lim
δ↓0

∫ ∞

0
dt e−δtω0 ([τ−t(V ), J ]) ,

where τt(V ) = eitHinitialV e−itHinitial . We show in Section 4.2 that within our setup, this expression
indeed coincides with fJ,V as given in Theorem 3.1.

Though it goes beyond the framework of this paper, it is worthwile to hint at an infinite-volume
formulation. In this formalism, one considers observables O in the quasilocal algebra A, defined
as the norm-closure of the inductive limit of AΛ,Λ ր Γ. The set of states S(A) consists then of
positive, continuous linear functionals on A, see e.g. [46] for precise definitions. Then, in the weak-*
topology, the family of ground states {ωΛ

α : Λ ∈ F(Γ)} has accumulation points in S(A). Let us
assume for simplicity that there is unique limit, namely that there is a state ωα such that

lim
ΛրΓ

ωΛ
α (O) = ωα(O)

for all local O. In that case, it follows that the dynamically-defined states ωǫ,α;t have thermodynamic
limits ωǫ,α;t in the sense above, and the theorem can be reformulated as

(3.4) lim
α→0

lim
ǫ→0

α−1 (ωǫ,α;0(J)− ω0(J)) = −iω0 ([K0, J ]) ,

where [K0, J ] = limΛ→Γ[K
Λ
0 , J ] with the limit meant in A.
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Another extension can be easily obtained from the theorem in a translation-invariant setting,
where the Hamiltonians and the states are all translation invariant. Then the theorem extends to
the current density j = |Λ|−1J of an extensive current J which is obtained as the sum of translates
of the same local operator. It is in particular instructive to consider the response of the initial
energy Hinitial in this setting. The associated response coefficient −iω0([K0, Hinitial]) is zero in view
of [Hinitial, P0] = 0. This is a manifestation of the fact that response of a gapped quantum system
is always non-dissipative.

4. Proofs

4.1. Setup for locality. As pointed out in the previous sections, the locality of the dynamics of
a quantum spin system will play a key role in the proofs. Here, we detail the setup describing
the locality properties of the lattice and of the Hamiltonians, and recall the central estimate in
Section 4.1.4: the Lieb-Robinson bound. We shall further show that the set of local Hamiltonians is
closed under two natural operations: taking a commutator and the inverse thereof. We treat these
operations in Sections 4.1.5 and 4.1.6.

4.1.1. An integrable structure on Γ. To the countable graph Γ, we associate the function F (r) =

(1 + r)−(d+1) where d is the dimensionality of Γ, as defined by (2.1). This function will be assumed
to be fixed throughout and we mostly omit it from the notation. Its important properties [47] are
the existence of a constant CF <∞ such that

∑

z∈Γ
F (d(x, z))F (d(z, y)) ≤ CFF (d(x, y))

for all x, y ∈ Γ, and that

‖F‖1 := sup
x∈Γ

∑

z∈Γ
F (d(x, z)) <∞.

For any bounded, non-increasing, positive function ζ : [0,∞) → (0,∞) that is logarithmically
superadditive, namely ζ(r+s) ≥ ζ(r)ζ(s), we let Fζ(r) := ζ(r)F (r). Then, Fζ has the two properties
above with CFζ

≤ CF .

4.1.2. Interactions. We already introduced the notion of an interaction as a family of self-adjoint
operators {Φ(Z) : Z ∈ F(Γ)}, possibly time-dependent Φ(Z) = Φt(Z), stressing that such interac-
tions allow to define a family of Hamiltonians {HΛ : Λ ∈ F(Γ)} and therefore of dynamics, indexed
by finite volumes.

For the proofs below, it is natural to consider a slightly more general setup, namely that of a
family of Λ-dependent interactions {ΦΛ : Λ ∈ F(Γ)}, such that ΦΛ(X) = 0 unless X ⊂ Λ. These

interactions are not necessarily compatible, i.e. possibly ΦΛ(X) 6= ΦΛ′

(X), even if both sides are
nonzero. We denote these families of interactions simply by Φ and we call this object an interaction
as well. Some compatibility requirement could be added, for example to ensure the existence of a
well-defined infinite volume limit of the associated dynamics, see e.g. Section 5 of [33], but this will
not be necessary here.

For n ∈ Z and ζ as above, we define a norm on (possibly time-dependent) interactions Φ:

‖Φ‖ζ,n := sup
Λ∈F(Γ)

sup
x,y∈Γ

∑

Z∋{x,y}
sup
t∈R

|Z|n ‖ΦΛ
t (Z)‖

Fζ(d(x, y))
.

We let Bζ,n stand for the Banach space of interactions completed in this norm, which depends on
the function ζ and the power n quantifying the locality. Note that Bζ,n ⊂ Bζ,m whenever n > m.
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We shall encounter two particular classes of functions ζ in the sequel. The first one are the
exponentials, ζ(r) = exp(−µr) for a µ > 0. The second class is that of functions decreasing faster
than any inverse power,

S :=
{
ζ : [0,∞) → (0,∞) : ζ is bounded, non-increasing, logarithmically superadditive and

sup{rnζ(r) : r ∈ [0,∞)} <∞ for all n ∈ N
}
.

In the following, the exact decay rates of the exponential or of a function in S will be irrelevant,
while we will often need the power n to be arbitrary large. Therefore, we define the classes of
interactions

BE,n = ∪µ>0Bexp(−µ·),n, BS,n = ∪ζ∈SBζ,n,

(note that BE,n ⊂ BS,n), and

BE,∞ = ∩n∈NBE,n, BS,∞ = ∩n∈NBS,n,

which are the classes appearing in the main theorem.

4.1.3. Local Hamiltonians. An interaction allows us to build, for any finite volume Λ and time t, an
associated Hamiltonian by

(4.1) HΛ
t =

∑

Z∈F(Γ)

ΦΛ
t (Z) =

∑

Z⊂Λ

ΦΛ
t (Z).

We will often turn the logic around and treat the Hamiltonians as the central object. In particular,
we shall say that a family of operators {HΛ : Λ ∈ F(Γ)} is a local Hamiltonian if there exists
an interaction ΦH such that (4.1) holds. We shall call ΦH an ‘interaction associated to H’, and
we note that ΦH is not unique because the decomposition (4.1) is not unique. We denote by
LE,n,LS,n,LE,∞,LS,∞, the set of local Hamiltonians H for which there is an interaction ΦH in
BE,n,BS,n,BE,∞,BS,∞, respectively.

Finally, we shall denote H ∈ Ck if the jth time derivative H(j) of a Hamiltonian (as a matrix-
valued function) exists for all 1 ≤ j ≤ k. Note that even if H belongs to one of the ‘nice classes’
L, its derivatives do not necessarily do so. For the particular Hamiltonian defining the dynamics in
this paper, Assumption 2.2 however precisely ensures that H(j) ∈ LE,∞ for all 1 ≤ j ≤ d+m.

4.1.4. Lieb-Robinson bounds. A local Hamiltonian generates a dynamics τΛt,t0 on AΛ, i.e. a cocycle

of automorphisms AΛ 7→ AΛ by

−i
d

dt
τΛt,t0(O) = [HΛ

t , τ
Λ
t,t0(O)], τΛt0,t0(O) = O.

This dynamics satisfies a Lieb-Robinson bound [48, 47]: If ΦH ∈ Bζ,n for some n ∈ N ∪ {0} and
ζ ∈ S, there is a constant Cζ such that

(4.2)
∥∥[τΛt,t0(OX), OY ]

∥∥ ≤ 2‖OX‖‖OY ‖
Cζ

e2Cζ‖Φ‖ζ,0|t−t0|
∑

x∈X,y∈Y
Fζ(d(x, y))

for all OX ∈ AX , OY ∈ AY , with X,Y ⊂ Λ. If d(X,Y ) > 0, then
∑

x∈X,y∈Y
Fζ(d(x, y)) ≤ ‖F‖1min{|X|, |Y |}ζ(d(X,Y )),

so that ζ expresses the decay of the commutator for times that are short compared to d(X,Y ). In
particular, in the case ζ(r) = exp(−µr), we define the Lieb-Robinson velocity

(4.3) v :=
2Cζ‖Φ‖ζ,0

µ
.
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4.1.5. Commutators. Let H,G ∈ LS,n be two local Hamiltonians, with associated interactions
ΦH ,ΦG. We define their commutator as the local Hamiltonian J with

JΛ = [HΛ, GΛ], Λ ∈ F(Γ),

and we check that J ∈ LS,n−1. Indeed, a family of interactions ΦΛ
J for J is given by

(4.4) ΦΛ
J (Z) =

∑

X,Y⊂Λ:
X∪Y=Z,X∩Y 6=∅

[ΦΛ
H(X),ΦΛ

G(Y )],

and Lemma 4.5(ii) shows that indeed ‖ΦJ‖S,n−1 <∞.

4.1.6. The map Is. We now introduce a tool which plays an central role in the proof of the main
theorem. For this, we consider only Hamiltonians Hs ∈ LE,∞ featuring in our main Theorem 2.3:
they are associated with an interaction decaying exponentially and are gapped with a gap γ, see

Assumption 2.1. First, let τ s,Λt be the dynamics generated by this local Hamiltonian, but with s

frozen, i.e. we consider here a time-independent Hamiltonian and therefore τ s,Λt carries only one
time-subscript. It is a group and not merely a cocycle. Second, let Wγ ∈ L1(R) be a function such
that sup{|t|n|Wγ(t)| : |t| > 1} <∞ for all n ∈ N, and such that its Fourier transform satisfies

Ŵγ(ζ) =
−i√
2πζ

, if |ζ| ≥ γ.

For an example of such a function, see [33].
With this, a map IΛ

s : AΛ → AΛ is defined by

(4.5) IΛ
s (A) :=

∫

R

Wγ(t)τ
s,Λ
t (A) dt.

Now, we choose A = GΛ, the finite-volume version of a local Hamiltonian G ∈ LS,n with associated
interaction ΦG, and we define Is to be map on local Hamiltonians:

Is(G) := {IΛ
s (G

Λ) : Λ ∈ F(Γ))},
Lemma 4.7(i) shows that Is(G) ∈ LS,n−1.

As an application of this construction, one can choose G = Ḣs, with Hs the same Hamiltonian at

frozen time s as the one generating the dynamics τ s,Λt . Then

Ks = Is(Ḣs),

is the generator of the spectral flow [49, 36, 50, 33] already mentioned, see Corollary 4.2.

4.1.7. Conventions. In what follows, we drop as much as possible the superscripts Λ on HΛ and ΦΛ.
We do this to make the notation lighter and because we believe that confusion is mostly excluded. As
a matter of fact, one could ignore the setup of families of Hamiltonians and interactions completely
and simply imagine that we do all of our analysis in a fixed, large volume. With this picture in
mind, the upshot of the results is that all bounds do not depend on the volume.

Furthermore, from now on the notation H will no longer refer to a general local Hamiltonian, but
to the specific Hamiltonian that features in our main Theorem 2.3 and that satisfies Assumptions 2.1
and 2.2.

Finally, we will also drop the subscript s since all objects but for the ‘test observables’ O depend
on s. As already used above, we usually denote Ȧ = d

dsA.
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4.2. Proof of the main theorem. We first gather some remarkable properties of the map I, which
can be summarised as follows: under suitable conditions, I(·) provides a local inverse of [H, ·]. This
will be repeatedly used in the proof of Theorem 2.3.

Proposition 4.1. Let H be a local Hamiltonian satisfying Assumptions 2.1 and 2.2. Recall that P
denotes the spectral projection onto the spectral patch Σ1.

(i) If an operator A satisfies the off-diagonal condition

(4.6) A = PA(1− P ) + (1− P )AP,

then

A = −i[H, I(A)].
(ii) For any operator L,

[L,P ]− i[[I(L), H], P ] = 0.

(iii) If H ∈ LE,∞ and G ∈ LS,∞, then I(G) ∈ LS,∞
(iv) If H,G depend on a parameter with H,G ∈ Ck and H(j) ∈ LE,∞, G(j) ∈ LS,∞ for 0 ≤ j ≤ k,

then I(G) ∈ Ck with I(G)(j) ∈ LS,∞ for 1 ≤ j ≤ k.

Proof. (i) If H =
∫
λ dE(λ) denotes the spectral decomposition of H, we have that

−i[H, I(A)] =
√
2π

∫
iŴγ(µ− λ)(µ− λ) dE(λ)A dE(µ).

which proves the claim since A is off-diagonal and Ŵγ(ξ) =
−i√
2πξ

for |ξ| ≥ γ.

(ii) For any L, the operator A = [L,P ] is off-diagonal in the sense of (4.6). Therefore, by (i),

[L,P ] + i[H, I([L,P ])] = 0.

Since [H,P ] = 0, we have I([L,P ]) = [I(L), P ] and hence

[L,P ]− i[P, [H, I(L)]] = 0

by the Jacobi identity and again [H,P ] = 0.
(iii) The fact that I(Φ) ∈ LS,∞ is a special case of Lemma 4.7(i) below.
(iv) We first note that

(4.7)
d

ds
I(G) = I(Ġ) + i

∫

R

Wγ(t)τt

([∫ t

0
τ−u(Ḣ) du,G

])
dt,

which proves that I(G) ∈ C1. By Lemma 4.7(i) and the assumption, I(Ġ) ∈ LS,∞. Moreover, the

assumption and the Lieb-Robinson bound imply that
∫ 1
0 τα(Ḣ) dα ∈ LE,∞, so that the commutator

belongs to LS,∞ by Lemma 4.5(iii). The argument of Lemma 4.7(i) applies and proves that the
second term above belongs to LS,∞ as well. This proves (iv) for j = 1.

Furthermore, I(G)(j) similarly depends on H(j′), G(j′) for 0 ≤ j′ ≤ j, and hence I(G) ∈ Ck if

H,G ∈ Ck. The fact that I(G)(j) ∈ LS,∞ follows again from a combination of the Lieb-Robinson
bound, Lemma 4.5 and the proof of Lemma 4.7(i). �

As mentioned above, this proposition provides an elementary proof of the fact that K = I(Ḣ) is
a local generator of the spectral flow.

Corollary 4.2. If Assumptions 2.1 and 2.2 hold, then

Ṗ = i[I(Ḣ), P ] .
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Proof. Since Ṗ is off-diagonal in the sense of (4.6), Proposition 4.1(ii) implies that

Ṗ = −i[H, I(Ṗ )] = −iI([H, Ṗ ]) = iI([Ḣ, P ]) = i[I(Ḣ), P ],

where we used repeatedly that [H,P ] = 0. �

Although this does not play a role here, it is natural in the adiabatic setting to consider the block
decomposition of the generator Ks with respect to the projection Ps. In general, there is nothing
particular to mention, and in particular, (1− Ps)Ks(1− Ps) 6= 0. However, if Ps corresponds to an
exactly degenerate eigenvalue, PsHsPs = EsPs for some Es ∈ R, then

PsKsPs = PsḢsPs

∫

R

Wγ(t) dt,

so that Ks is trivial on RanPs if Wγ is an odd function. In that particular case, the equation

i ddsΩ(s) = KsΩ(s),Ω(0) = ψ0 has the same solution as the parallel transport equation (2.8).
We can now turn to the heart of the proof, namely the argument sketched in Remark 2.9. In the

following lemma, we construct the counter-diabatic driving and the local dressing transformation.

Lemma 4.3. Let Assumptions 2.1,2.2 hold for some m ∈ N. For any n ≤ m̃ = d +m, there are
{Aα, 1 ≤ α ≤ n} with Aα ∈ LS,∞ such that the projector

Πn,ǫ := Un,ǫPU
∗
n,ǫ, with Un,ǫ = exp

(
i

n∑

α=1

ǫαAα

)

solves

(4.8) iǫΠ̇n,ǫ = [H +Rn,ǫ,Πn,ǫ]

where Rn,ǫ ∈ LS,∞ with associated potential Φn,ǫ satisfying ‖Φn,ǫ‖S,k ≤ rn,k(s)ǫ
n+1 for all k ∈ N,

where rn,k(s) is independent of ǫ.

Moreover, Aα ∈ C(m̃−α), with A
(j)
α ∈ LS,∞ for all 1 ≤ j ≤ m̃− α.

Proof. For notational clarity, we drop all indices ǫ in the proof. The Ansatz Πn := UnPU
∗
n and (2.14)

yield

iǫΠ̇n = iǫU̇nPU
∗
n + iǫUnPU̇

∗
n − ǫUn[K,P ]U

∗
n(4.9)

= [H,Πn] +
[
iǫU̇nU

∗
n − ǫUnKU

∗
n + (UnHU

∗
n −H),Πn

]

where we have used that UnU̇
∗
n = −U̇nU

∗ by unitarity and [UnHU
∗
n,Πn] = Un[H,P ]U

∗
n = 0. We

write the second commutator as[
iǫU̇nU

∗
n − ǫUnKU

∗
n + (UnHU

∗
n −H),Πn

]
= Un

[
iǫU∗

nU̇n − ǫK +H − U∗
nHUn, P

]
U∗
n

and aim for an expansion to finite order in ǫ. For this, let Sn =
∑n

α=1 ǫ
αAα and

(4.10) U∗
nHUn = e−iadSn (H) =

n∑

k=0

(−i)k

k!

( n∑

α=1

ǫαadAα

)k
(H) +O(ǫn+1)

and define U∗
nHUn =:

∑n
α=0 ǫ

αHα + ǫn+1hn(ǫ), namely

(4.11) Hα =
∑

j:s(j)=α

(−i)k

k!
adAjk

· · · adAj1
(H),

where the sum is over finite vectors j = (j1, . . . , jk), and s(j) = j1+ . . .+ jk. For the first few orders,
this reads

H0 = H, H1 = −i[A1, H], H2 = −i[A2, H]− 1

2
[A1, [A1, H]].
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Similarly, Duhamel’s formula

iU∗
nU̇n = −

∫ 1

0
e−iλSnṠne

iλSn dλ

can be expanded as

iU∗
nU̇n =

n∑

j=1

ǫj
n−1∑

k=0

ik
(−1)k+1

(k + 1)!

( n∑

α=1

ǫαadAα

)k (
Ȧj

)
+O(ǫn+1) =:

n−1∑

α=1

ǫαQα + ǫnqn−1(ǫ).

Here,

(4.12) Qα = −i
∑

j:s(j)=α

(−i)k

k!
adAjk

· · · adAj2
(Ȧj1),

namely

Q1 = −Ȧ1, Q2 = −Ȧ2 +
i

2
[A1, Ȧ1].

To proceed it is natural to define also Q0 = −K. Altogether,

(4.13) iǫU∗
nU̇n − ǫK +H − U∗

nHUn =

n∑

α=1

ǫα(Qα−1 −Hα) + ǫn+1(qn−1(ǫ)− hn(ǫ)).

For 1 ≤ α ≤ n, we observe immediately that Hα depends only on {Aj : 1 ≤ j ≤ α}, while Qα

depends on {Aj : 1 ≤ j ≤ α− 1} and {Ȧj : 1 ≤ j ≤ α}.
We now inductively construct smooth local Hamiltonians {A1, . . . , An}, such that Aα ∈ LS,∞ and

A
(m̃−α)
α ∈ LS,∞, such that

(4.14) [Qα−1 −Hα, P ] = 0

for 1 ≤ α ≤ n. Defining then

Rn := ǫn+1Un(qn−1(ǫ)− hn(ǫ))U
∗
n,

equation (4.9) reduces to

iǫΠ̇n = [H +Rn,Πn]

as claimed.
The case α = 1. Here, (4.14) reads

(4.15) [K − i[A1, H], P ] = 0

which has solution A1 ∈ LS,∞ given by

A1 = I(K)

by Proposition 4.1(ii). Moreover, by Assumption 2.2 and Proposition 4.1(iii,iv), we have first that

K = I(Ḣ) ∈ C(m̃−1) implies that A1 ∈ C(m̃−1), and second that all derivatives of K define local
Hamiltonians, so that all derivatives of A1 do so as well.

Induction. Let α > 1 and assume that the claim holds for all 1 ≤ β < α. Isolating the dependence
on Aα in (4.14) by writing

Hα = −i[Aα, H] + Lα,

the equation becomes

(4.16) [Qα−1 − Lα, P ] + i[[Aα, H], P ] = 0.



18 SVEN BACHMANN, WOJCIECH DE ROECK, AND MARTIN FRAAS

Note that Lα is a linear combination of multicommutators involving onlyH and {Aβ : 1 ≤ β ≤ α−1}
by (4.11). Hence, by the induction hypothesis, Lα ∈ LS,∞ by Lemma 4.5 and Lα ∈ C(m̃−α+1) with
all derivatives defining local Hamiltonians. We now choose

(4.17) Aα = I(Lα −Qα−1),

which is indeed a solution of (4.16) by Proposition 4.1(ii). By the remarks above and Propo-

sition 4.1(iii), Aα ∈ LS,∞. Finally, Qα ∈ C(m̃−α−1) by (4.12) and Lα ∈ C(m̃−α+1) imply that

Aα ∈ C(m̃−α), see Proposition 4.1(iv).
It remains to prove the local estimates on Rn. First of all,

ǫn+1hn =
∑

j:s(j)>n
ji≤n,k≤n

(−i)k

k!
ǫs(j)adAjk · · · adAj1

(H) + (−i)n+1

∫

Σn+1

eiun+1Snadn+1
Sn

(H)e−iun+1Sndu,

where Σn+1 = {u ∈ R
n+1 : 0 ≤ u1 ≤ . . . ≤ un+1 ≤ 1}. Note that the sum has a finite num-

ber of terms, while both terms are of order ǫn+1. The multicommutators can be estimated by
Lemma 4.5(ii), while the action of exp(−iadSn) is controlled by Lemma 4.7(i) – in fact a slightly
simpler version thereof where Wγ is replaced by the indicator function of [0, 1]. Hence,

(4.18) ǫn+1‖hn‖S,l ≤
∑

j:s(j)>n
ji≤n,k≤n

ǫs(j)

k!
Ck2k(l+k)‖ΦAjk

‖S,l+k · · · ‖ΦAj1
‖S,l+k‖ΦH‖S,l+k

+
1

(n+ 1)!
Cn+12(n+1)(l+n+2)‖ΦSn‖n+1

S,l+n+2‖ΦH‖S,l+n+2,

for any l ∈ N ∪ {0}. This yields an upper bound on ‖hn‖S,l that is uniform in ǫ for 0 < ǫ ≤ 1, since
s(j) ≥ n+ 1 and ‖ΦSn‖S,l+n+2 is of order ǫ. A similar bound holds for qn−1 with H being replaced

by Ȧα, concluding the proof. �

As it is to be expected in adiabatic theory, the Aα depend locally in time on the Hamiltonian
and its derivatives.

Lemma 4.4. With the assumptions of Lemma 4.3, if there is s0 ∈ [0, 1] such that H
(α)
s0 = 0 for all

1 ≤ α ≤ k ≤ d+m, then Aα(s0) = 0 for all 1 ≤ α ≤ k.

Proof. Since Ḣs0 = 0, it follows from (4.7) that d
dsIs(Gs)|s=s0 = Is0(Ġs0) for all differentiable Gs.

Using this j − 1 times to differentiate Eq. (4.17), we see that Aα(s0) = · · · = A
(j−1)
α (s0) = 0

provided A
(j′)
1 (s0) = · · · = A

(j′)
α−1(s0) = 0 for all 0 ≤ j′ ≤ j. The result is then proved by recursion

by realizing that the first k − 1-derivatives of A1(s) = Is(Ks) vanish at s0. This holds because

K
(α−1)
s0 = Is0(H

(α)
s0 ), and the corresponding derivatives of the Hamiltonian vanish by assumptions

of the lemma. �

Proof of Theorem 2.3. In this proof, we reinstate temporarily the s-dependence everywhere, with the
conventions used in Section 2.1. We first note that by the assumptions and Lemma 4.4, Un,ǫ(0) = I.
Let Vn,ǫ(s, s

′) be the solution of

iǫ
d

ds
Vn,ǫ(s, s

′) = (Hs +Rn,ǫ(s))Vn,ǫ(s, s
′), Vn,ǫ(s, s

′) = I.

Since Vn,ǫ(s, 0)P0Vn,ǫ(s, 0)
∗ solves (4.8) for the same initial condition, we have that

(4.19) Vn,ǫ(s, 0)P0Vn,ǫ(s, 0)
∗ = Πn,ǫ(s) = Un,ǫ(s)PsUn,ǫ(s)

∗,
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for all s ∈ [0, 1]. In order to compare it to the Schrödinger evolution

iǫ
d

ds
Uǫ(s, s

′) = HsUǫ(s, s
′),

we note that for any operator O,

(4.20) Vn,ǫ(s, s
′)∗OVn,ǫ(s, s′)− Uǫ(s, s

′)∗OUǫ(s, s
′) = Vn,ǫ(r, s

′)∗Uǫ(s, r)
∗OUǫ(s, r)Vn,ǫ(r, s

′)|r=s
r=s′

=
−i

ǫ

∫ s

s′
Vn,ǫ(r, s

′)∗ [Rn,ǫ(r), Uǫ(s, r)
∗OUǫ(s, r)]Vn,ǫ(r, s

′)dr.

Let now ψǫ(s) be the solution of Schrödinger’s equation, namely

ψǫ(s) = Uǫ(s, 0)ψ0,

with the initial condition ψ0 in the range of P0, see (2.3). Let also φn,ǫ(s) be the solution of
Schrödinger’s equation with counterdiabatic driving for the same initial condition,

φn,ǫ(s) = Vn,ǫ(s, 0)ψ0.

Then by (4.20),

(4.21) 〈ψǫ(s), Oψǫ(s)〉 − 〈φn,ǫ(s), Oφn,ǫ(s)〉 =
i

ǫ

∫ s

0
〈φn,ǫ(r), [Rn,ǫ(r), Uǫ(s, r)

∗OUǫ(s, r)]φn,ǫ(r)〉dr.

Now, by Lemma 4.3, we have that Rn,ǫ(r) is a local Hamiltonian of order ǫn+1. Furthermore, its
commutator with a local observable O evolved for a time |ǫ−1s − ǫ−1r| can be controlled using
Lemma 4.6, yielding

|〈φn,ǫ(r), [Rn,ǫ(r), Uǫ(s, r)
∗OUǫ(s, r)]φn,ǫ(r)〉| ≤ Crn,0(r)|supp(O)|2‖O‖ǫn+1−d.

Finally, we note that by (4.19),

φn,ǫ(s) = Vn,ǫ(s, 0)ψ0 ∈ Ran(Πn,ǫ(s)) = Ran (Un,ǫ(s)PsUn,ǫ(s)
∗) ,

namely, there is a vector ψ̃n,ǫ(s) ∈ RanPs such that φn,ǫ(s) = Un,ǫ(s)ψ̃n,ǫ(s), whence

〈φn,ǫ(s), Oφn,ǫ(s)〉 − 〈ψ̃n,ǫ(s), Oψ̃n,ǫ(s)〉 = 〈ψ̃n,ǫ(s), (Un,ǫ(s)
∗OUn,ǫ(s)−O)ψ̃n,ǫ(s)〉.

By Duhamel’s formula

(4.22) Un,ǫ(s)
∗OUn,ǫ(s)−O = i

∫ 1

0

∫ 1

0

[
e−iSn(s′)OeiSn(s′), e−iuSn(s′)Ṡn(s

′)eiuSn(s′)
]
duds′,

which is bounded again by Lemma 4.6 and the fact that Ṡn is of order ǫ. Altogether, this yields the
bound ∣∣∣〈ψǫ(s), Oψǫ(s)〉 − 〈ψ̃n,ǫ(s), Oψ̃n,ǫ(s)〉

∣∣∣ ≤ ǫ‖O‖|supp(O)|2
(
C1ǫ

n−(d+1) + C2

)

which is the claim (i) of the theorem we had set to prove with the choice n ≥ d+ 1.
Under the stronger smoothness assumptions, we can choose n = d +m, yielding an estimate of

order ǫm for (4.21). Since the driving has stopped as s = 1, Lemma 4.4 implies that Aα(1) = 0 for

1 ≤ α ≤ m+d. Hence Sm+d,ǫ(1) = 0 and the claim (ii) of the theorem holds with ψ̃n,ǫ(s) = φn,ε. �

We are now in a position to discuss more explicitly the possible choices mentioned on page 6 for

the vector ψ̃ǫ(s) of the theorem. The proof above yields a concrete expression for it, namely

ψ̃n,ǫ(s) = Un,ǫ(s)
∗φn,ǫ(s) = Un,ǫ(s)

∗Vn,ǫ(s, 0)ψ0.

Hence, ψ̃n,ǫ(s) is a solution of the differential equation

(4.23) i
d

ds
ψ̃n,ǫ(s) = K̃n,ǫ(s)ψ̃n,ǫ(s), ψ̃n,ǫ(0) = ψ0,
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where

(4.24) K̃n,ǫ(s) = iU̇n,ǫ(s)
∗Un,ǫ(s) + Un,ǫ(s)

∗ǫ−1(Hs +Rn,ǫ(s)Un,ǫ(s).

Expanding in powers of ǫ, we get

K̃n,ǫ(s) = ǫ−1Hs − i[A1(s), Hs] +B(s),

where again B ∈ LS,∞ is of order ǫ. This expansion may seem useless since the leading term
ǫ−1Hs is simply the generator of the original Schrödinger equation. However, we can capitalize on

the knowledge that ψ̃n,ǫ(s) = Psψ̃n,ǫ(s) to multiply any term in K̃n,ǫ(s) from the right with Ps.
Let us for simplicity assume first exact degeneracy in the patch Ps, i.e. δ = 0 and set, without
loss of generality, HsPs = 0. Then we conclude that the highest order term vanishes, while the
ǫ-independent term reduces to

i[A1(s), Hs]Ps = [i[A1(s), Hs], Ps]Ps,

which is also equal to [Ks, Ps]Ps by (4.15), and further to −iṖsPs = i[Ps, Ṗs]Ps.

Since K̃n,ǫ(s) and i[Ps, Ṗs] differ by a local Hamiltonian, B(s), of order ǫ when acting on the range
of Ps, and both generate a dynamics within RanPs, the Duhamel formula yields

sup
s∈[0,1]

∣∣∣〈ψ̃n,ǫ(s), Oψ̃n,ǫ(s)〉 − 〈Ω(s), OΩ(s)〉
∣∣∣ ≤ C(O)ǫ

where Ω(s) is the solution of the parallel transport equation (2.8).
It remains to explain that this conclusion remains valid when the strict degeneracy δ = 0 is

relaxed to the condition (2.6). In that case, the expansion for K̃n,ǫ(s)Ps has two additional terms,
namely

ǫ−1PsHsPs, and iPs[A1(s), Hs]Ps.

The first term has a norm bound ǫ−1δ, and the second term Cδ|Λ|. Therefore, if (2.6) holds, both
terms have norm bounded by Cǫ and the argument goes through.

We now turn to linear response theory.

Proof of Theorem 3.1. Let Hs,α = Hinitial + esαV , and Pǫ,α(s) be the solution of (2.11) with initial
condition lims→−∞ Pǫ,α(s) = Pα. The proof of Lemma 4.3 can be reproduced with the estimates

rn,k(s) on the counterdiabatic driving satisfying rn,k(s) = Cn,kαe
s, since H

(k)
s,α = esαV for all k > 1.

Carrying on with the proof of the theorem, we obtain instead of (4.21)
∣∣∣∣
Tr(Pǫ,α(s)O)

Tr(Pǫ,α(s))
− Tr(Πn,ǫ(s)O)

Tr(Πn,ǫ(s))

∣∣∣∣ ≤ Cα|X|2‖O‖ǫn−d lim
s0→−∞

∫ s

s0

es
′ |s′ − s0|dds′,

which is finite thanks to the exponential factor. A similar argument holds for (4.22) with a similar
conclusion, where the norm of Sn provides the factor α. Altogether,

|ωǫ,α;σ(O)− ωα(O)| ≤ Cα|X|2‖O‖ǫ
uniformly in Λ, σ. Hence,

α−1|ωǫ,α;0(J)− ω0(J) + iαω0([K0, J ])| ≤ C|supp(J)|2‖J‖ǫ+ |α−1(ωα(J)− ω0(J)) + iω0([K0, J ])|.
Now, by Corollary 4.2, d

dαωα(O) = −iωα([Kα, O]) and by Proposition 4.1(iv), this derivative is
continuous in α, uniformly in the volume. It follows that

α−1(ωα(J)− ω0(J)) + iω0([K0, J ]) −→ 0,

as α→ 0, uniformly in the volume. �



THE ADIABATIC THEOREM AND LINEAR RESPONSE THEORY FOR EXTENDED QUANTUM SYSTEMS 21

Proof of the equality (3.3). We abbreviate Hinitial by H and the corresponding spectral projection

P0 by P . We manipulate the right hand side of (3.3). First, V can be replaced by Ṽ = PV (1 −
P ) + (1 − P )V P without changing the value of fJ,V . Then, since Ṽ is off-diagonal in the sense of
Proposition 4.1, we have

(4.25) Ṽ = −i[H, I(Ṽ )].

Furthermore, for any off-diagonal A, using the spectral decomposition of H,

(4.26) i

∫ ∞

0
dte−δtτ−t([H,A]) =

∫
i(µ− λ)

i(µ− λ) + δ
dE(λ)A dE(µ) −→ A

as δ ↓ 0. Indeed, the spectral gap assumption combined with the fact that A is off-diagonal ensures

that |µ − λ| ≥ γ > 0. Choosing A = I(Ṽ ) and using the equalities (4.25,4.26), we find that the

right hand side of (3.3) equals −iω0

(
[I(Ṽ ), J ]

)
. Since we can here again change Ṽ to V , we recover

indeed the form for fJ,V given in Theorem 3.1. �

4.3. Technical lemmas. It remains to prove the few technical results used above.

Lemma 4.5. With the definition (4.4) of the interaction associated with a commutator of local
Hamiltonians, the following holds:

(i) If H ∈ Lζ,0, then for any O with supp(O) ⊂ Λ,

‖[H,O]‖ ≤ 2‖O‖|supp(O)|‖Fζ‖1‖ΦH‖ζ,0.
(ii) Let n, k ∈ N and A0, . . . , Ak ∈ Lζ,n+k. Then adAk

· · · adA1(A0) ∈ Lζ,n and there is a C > 0
depending on ζ but not on n, k, such that

‖ΦadAjk
···adAj1

(A0)‖ζ,n ≤ Ck2k(n+k)‖ΦAjk
‖ζ,n+k · · · ‖ΦAj1

‖ζ,n+k‖ΦA0‖ζ,n+k.

(iii) If A0, . . . , Ak ∈ Lζ,∞, then adAk
· · · adA1(A0) ∈ Lζ,∞

Proof. Claim (i) follows from

‖[H,O]‖ ≤ 2‖O‖ sup
Λ∈F(Γ)

∑

x∈suppO

∑

y∈Λ

∑

X⊂Λ:
x,y∈X

‖ΦΛ
H(X)‖

Fζ(d(x, y))
Fζ(d(x, y)) ≤ 2‖O‖|suppO|‖Fζ‖1‖ΦH‖ζ,0.

For Claim (ii), we first recall that the interaction terms ofG = [A1, A0] are given by [ΦΛ
A1

(X1),Φ
Λ
A0

(X0)]
whenever X0 ∩X1 6= ∅. With Z = X0 ∪X1 and hence

|Z|n ≤
n∑

k=0

(
n

k

)
|X0|k|X1|n−k,

we distinguish two contributions to the sum
∑

Z∋{x,y} |Z|n‖ΦΛ
G(Z)‖/Fζ(d(x, y)): Either x, y ∈ X0

or x ∈ X0, y ∈ X1 \X0. The first contribution can be bounded by

n∑

k=0

(
n

k

) ∑

X0∋{x,y}
|X0|k

‖ΦΛ
A0

(X0)‖
Fζ(d(x, y))

∑

z0∈X0

∑

z1∈Λ

∑

X1∋{z0,z1}
|X1|n−k

‖ΦΛ
A1

(X1)‖
Fζ(d(z0, z1))

Fζ(d(z0, z1))

≤ ‖Fζ‖1
n∑

k=0

(
n

k

)
‖ΦA0‖ζ,k+1‖ΦA1‖ζ,n−k.
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The second contribution is estimated as
n∑

k=0

(
n

k

)∑

z∈Λ

Fζ(d(z, y))Fζ(d(x, z))

Fζ(d(x, y))

∑

X0∋{x,z}
|X0|k

‖ΦΛ
A0

(X0)‖
Fζ(d(x, z))

∑

X1∋{z,y}
|X1|n−k

‖ΦΛ
A1

(X1)‖
Fζ(d(z, y))

≤ Cζ

n∑

k=0

(
n

k

)
‖ΦA0‖ζ,k‖ΦA1‖ζ,n−k.

Both estimates imply that if A0, A1 ∈ Lζ,∞, then [A1, A0] ∈ Lζ,∞. More precisely, if A0, A1 ∈ Lζ,n+1,
then [A1, A0] ∈ Lζ,n with

‖Φ[A1,A2]‖ζ,n ≤ C2n‖ΦA1‖ζ,n+1‖ΦA2‖ζ,n+1,

where C depends on ζ but not on n, and we used that ‖Φ‖ζ,n ≤ ‖Φ‖ζ,m whenever n ≤ m. The
result follows by induction. Finally, Claim (iii) is an immediate consequence of (ii). �

Lemma 4.6. Let H ∈ LE,0 generate the dynamics τt,t′, and let v be the corresponding Lieb-Robinson
velocity (4.3). Then for any O with supp(O) ⊂ Λ and A ∈ Lζ,n, then there is a C > 0 such that

∥∥[A, τt,t′(O)
]∥∥ ≤ C‖ΦA‖ζ,0|supp(O)|2|t− t′|d,

whenever |t− t′| ≥ v−1.

Proof. For any Y ⊂ Γ and n ≥ 0, denote by

Yn := {z ∈ Γ : d(z, Y ) ≤ n}
the fattening of the set Y by n. If O ∈ AX , let

O0 := ΠXvδt(τt,t′(O)),

where δt = |t− t′| and ΠY : A → AY is the partial trace, and for any k ≥ 1,

Ok := ΠXvδt+k(τt,t′(O))−ΠXvδt+(k−1)(τt,t′(O)).

By construction, τt,t′(O) =
∑∞

k=0O
k, where the sum is actually finite since the underlying Λ is

finite. Since Ok is strictly local, Lemma 4.5(i) implies that, with X = supp(O),

‖[A,Ok]‖ ≤ C‖ΦA‖ζ,0‖Ok‖|X|δtdkd

where we used that
|Xvδt+k| ≤ |X|κ(vδt+ k)d ≤ |X|κ(2kvδt)d

since the lattice is d-dimensional, see (2.1). In order to bound the norm of Ok, we add and subtract
an identity and recall that

∥∥(ΠXvδt+k − I
)
(τt,t′(O))

∥∥ ≤ C‖O‖|X|e−µk

by the Lieb-Robinson bound and [51]. Note that C depends on the decay rate of ΦH . Gathering
these estimates, we finally obtain

‖[A, τt,t′(O)]‖ ≤ C‖ΦA‖ζ,0‖O‖|X|2|t− t′|d
∞∑

k=0

kde−µk

which is the claim since the series converges. �

The last result pertaining to Lieb-Robinson bounds expresses the locality of the generator of the
spectral flow, and it is an adapted version of Theorem 4.8 in [33]:

Lemma 4.7. If Assumption 2.2 holds, then

(i) if B ∈ LS,k+1, then I(B) ∈ LS,k, and in particular B ∈ LS,∞ implies I(B) ∈ LS,∞
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(ii) the generator K of the spectral flow belongs to LS,∞.

Proof. (i) First, we note that by a slightly extended argument to the one above, for any O ∈ AX ,
there are operators supp (∆n(O)) ⊂ Xn ∩ Λ, such that

(4.27)

∫ ∞

−∞
τΛt (O)Wγ(t) dt =

∞∑

n=0

∆Λ
n(O),

and there is a function ζ̃ ∈ S, independent of Λ and s, such that

(4.28)
∥∥∆Λ

n(O)
∥∥ ≤ ‖O‖|supp(O)|ζ̃(n),

see also Lemma C.3 of [30].
Now, let B ∈ LS,∞ with associated ΦB ∈ Bζ,n for a ζ ∈ S, and recall that

IΛ(BΛ) =
∑

Z∈F(Γ)

∫ ∞

−∞
Wγ(t)τ

Λ
t

(
ΦΛ
B(Z)

)
dt.

In the notation above, we define an interaction for I(B) by

(4.29) ΦΛ
I(B)(Z) :=

∑

n≥0

∑

Y⊂Λ:
Yn=Z

∆Λ
n

(
ΦΛ
B(Y )

)
,

which satisfies IΛ(BΛ) =
∑

Z⊂ΛΦΛ
I(B)(Z) by (4.27), and ΦΛ

I(B)(Z) ∈ AZ by construction. It remains

to check the decay condition. We decompose
∑

Z⊂Λ:
x,y∈Z

|Z|k‖ΦΛ
I(B)(Z)‖ ≤

∑

Z⊂Λ:
x,y∈Z

∑

Y,n≥0:

Yn=Z

|Z|k‖∆Λ
n(Φ

Λ
B(Y ))‖ =

∑

Y⊂Λ

∑

n≥0

χ(x, y ∈ Yn)|Yn|k‖∆Λ
n(Φ

Λ
B(Y ))‖

where χ is the indicator function and sups∈[0,1] is implicit everywhere. For a d-dimensional lattice,

|Yn| ≤ |Y |κnd.

Rearranging the terms above,

(4.30)
∑

Z⊂Λ:
x,y∈Z

|Z|k‖ΦΛ
I(B)(Z)‖ ≤ κk

∑

Y ⊂Λ:
x,y∈Y

|Y |k
∑

n≥0

nkd‖∆Λ
n(Φ

Λ
B(Y ))‖

+ κk
∞∑

m=1

∑

Y ⊂Λ:
x,y∈Ym

χ({x, y} ∩ Y c
m−1 6= ∅)|Y |k

∑

n≥m

nkd‖∆Λ
n(Φ

Λ
B(Y ))‖ = S1 + S2.

Now, S1 can be estimated using (4.28)

S1 ≤ κk
∑

n≥0

nkdζ̃(n)
∑

Y ⊂Λ:
x,y∈Y

|Y |k+1‖ΦΛ
B(Y )‖ ≤ C‖ΦB‖ζ,k+1Fζ(d(x, y)).

For S2, we note that

(4.31)
∑

Y ⊂Λ:
x,y∈Ym

χ({x, y} ∩ Y c
m−1 6= ∅) ≤

∑

z1∈Bm(x)

∑

z2∈Bm(y)

∑

Y ⊂Λ:
z1,z2∈Y

1.
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This and again (4.28) yield

S2 ≤ κk
∞∑

m=1

∑

z1∈Bm(x)

∑

z2∈Bm(y)

∑

Y ⊂Λ:
z1,z2∈Y

|Y |k+1‖ΦΛ
B(Y )‖

∑

n≥m

nkdζ̃(n)

≤ κk‖ΦB‖ζ,k+1

∞∑

m=1

(∑

n≥m

nkdζ̃(n)

) ∑

z1∈Bm(x)

∑

z2∈Bm(y)

Fζ(d(z1, z2)).

Let m0 = d(x, y)/4. Then for m ≤ m0,

d(x, y) ≤ d(x, z1) + d(z1, z2) + d(z2, y) ≤ 2m+ d(z1, z2)

so that d(z1, z2) ≥ d(x, y)/2. We split the sum over m0 in the bound for S2, to obtain

S2 ≤ C‖ΦB‖ζ,k+1Fζ(d(x, y)/2)

m0∑

m=1

m2d + C‖ΦB‖ζ,k+1

∑

m>m0

md

(∑

n≥m

nkdζ̃(n)

)
.

Here we wrote C for coefficients that do not depend on d(x, y) (or Λ), we used that ζ̃ decays faster
than any polynomial and that Fζ is a decreasing function. Inspecting now the bounds for S1, S2
and using the fast decay of ζ, we see that they can be cast in the form.

∑

Z⊂Λ:
x,y∈Z

|Z|k‖ΦΛ
I(B)(Z)‖ ≤ S1 + S2 ≤ C‖ΦB‖ζ,k+1F (d(x, y))h(d(x, y)),

where h is bounded, nonincreasing, decays faster than any inverse power and it can be chosen such
that h < 1 (by adjusting C). It remains to find a ξ′ ∈ S such that h ≤ ξ′ to conclude the proof.
But the existence of such a function is guaranteed by Lemma 4.8 below, taking f = − log h and
ξ′ = exp(−f̂).

(ii) The second statement follows immediately from (i) since K = I(Ḣ) and Ḣ ∈ LE,∞ by
assumption. �

The above proof requires the following lemma. A function g on the positive reals R
+ is called

subadditive if g(x+ y) ≤ g(x) + g(y) for all x, y. Then

Lemma 4.8. Given a nondecreasing function f on R
+ for which f(0) > 0, there is a subadditive,

positive function f̂ such that

f̂ ≤ f.

Moreover, if f has the property that f(x)−m log x→ +∞ for any m > 0, then f̂ has this property
as well.

Proof. Set, following [52],

f̂(x) := inf
(xi):

∑
i xi=x

∑

i

f(xi)

Then by straightforward considerations, one verifies

a) 0 < f̂ ≤ f ,

b) f̂ is subadditive,

c) If g is subadditive and g ≤ f , then g ≤ f̂ .

Using properties of f , for any m, we can find ym ≥ e large enough so that

(i) f(x) ≥ m log(x) for x ≥ ym,
(ii) f(x) ≥ mx/ym for x < ym.
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Now consider the function

gm(x) :=

{
( m
ym

)x forx ≤ ym

m log x−m log ym +m forx ≥ ym

This function has been constructed so as to be of class C1, concave (hence subadditive), and to

satisfy gm ≤ f . From item c) it then follows that f̂ ≥ gm. Since this holds for any m, the second
claim is proven.

�
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