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Introduction
Adipose tissues are generally regarded as connective tissues without
a specific anatomy. However, accumulating data support the idea
that adipose tissues are organized to form a large organ with
discrete anatomy, specific vascular and nerve supplies, complex
cytology, and high physiological plasticity (Cinti, 1999; Cinti, 2011).
The organ is made up of several depots located in two
compartments of the body: some are below the skin (subcutaneous
depots) and some are in the trunk (visceral depots). Adipose tissues
can thus be considered a multi-depot organ (Cinti, 2001; Cinti,
2005). This organ contributes to many of an organism’s crucial
survival needs: thermogenesis, lactation, immune responses and
fuel for metabolism. In this article and the accompanying poster,
I provide a brief overview of the adipose organ in mice and humans,
touching on cytology, physiological function and dynamics during
health and disease. Because most of the data available derive from
mouse studies, the poster illustrates the adipose organ of mice;
however, many of the anatomical, physiological and pathological

aspects are common to the adipose organ of humans. The anatomy
of female mice is shown to emphasize changes in the adipose organ
that occur during pregnancy and lactation.

Cytology
The main parenchymal cells of the adipose organ are called
adipocytes. There are two main types of adipocytes, which are easy
to distinguish by morphology: white adipocytes [see top scanning
electron microscopy (SEM) image in blue panel of poster] are
leptin- and S100-B-immunoreactive spherical cells with ~90% of
their volume comprising a single cytoplasmic lipid droplet and a
‘squeezed’ nucleus, whereas brown adipocytes (see bottom SEM
image in blue panel of poster) are polygonal cells with a roundish
nucleus and several cytoplasmic lipid droplets. Brown adipocytes
are also characterized by numerous large mitochondria packed with
cristae. Mitochondria in brown adipocytes are marked by the
expression of uncoupling protein 1 (UCP1), a unique protein that
uncouples oxidative phosphorylation from ATP synthesis and
thereby results in the production of heat (thermogenesis) (Cannon
and Nedergaard, 2004; Ricquier, 2005; Frontini et al., 2007). Thus,
white and brown adipocytes are quite different in their morphology
and physiology: white adipocytes store energy for the metabolic
needs of the organism, whereas brown adipocytes burn energy for
thermogenesis. Both cell types are contained in the multiple depots
of the adipose organ (Murano et al., 2005; Murano et al., 2009; Vitali
et al., 2012). White adipocytes of different sizes are present in
subcutaneous depots (mainly large adipocytes) and visceral depots
(mainly small adipocytes) (Murano et al., 2008; Barbatelli et al.,
2010). Brown adipocytes in visceral depots are mainly found near
the aorta. Paucilocular adipocytes, which are cells with intermediate
morphology between that of white and brown adipocytes, are also
present in the adipose organ. It should be noted that some groups
also refer to ‘beige’ (Ishibashi and Seale, 2010) or ‘brite’ (brown in
white) (Petrovic et al., 2010; Waldén et al., 2012) regions of white
adipose tissue, containing brown or brown-like adipocytes.

Anatomy
In mice, the adipose organ is made up of two subcutaneous depots
and several visceral depots. The anterior subcutaneous depot is
quite complex (Frontini and Cinti, 2010; Vitali et al., 2012). Its main
volume is located in the upper dorsal area at the level of the
scapulae. Several parts of it have been described in literature as
distinct depots: interscapular, subscapular, axillary and cervical. The
posterior subcutaneous depot is located mainly in the lower ventral
part of the body, and is formed of three parts (also often described
as distinct depots): dorso-lumbar, inguinal and gluteal. One or two
lymph nodes are present in the dorso-lumbar and inguinal parts.
The truncal depots are contained in the mediastinum and abdomen.
All truncal depots are closely associated with the aorta and its main
collaterals. In females, perirenal, periovarian, parametrial and
perivesical fat form a single anatomical structure called the
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The main parenchymal cells of the adipose organ are
adipocytes. White adipocytes store energy, whereas
brown adipocytes dissipate energy for thermogenesis.
These two cell types with opposing functions can both
originate from endothelial cells, and co-exist in the
multiple fat depots of the adipose organ – a feature that
I propose is crucial for this organ’s plasticity. This poster
review provides an overview of the adipose organ,
describing its anatomy, cytology, physiological function
and histopathology in obesity. It also highlights the
remarkable plasticity of the adipose organ, explaining
theories of adipocyte transdifferentiation during chronic
cold exposure, physical exercise or lactation, as well as in
obesity. White-to-brown adipocyte transdifferentiation is
of particular medical relevance, because animal data
indicate that higher amounts of brown adipose tissue are
positively associated with resistance to obesity and its
co-morbidities, and that ‘browning’ of the adipose organ
curbs these disorders.
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An electronic version of this poster is available online.
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abdominopelvic depot (Murano et al., 2005; Frontini and Cinti,
2010; Vitali et al., 2012). Furthermore, subcutaneous depots in
female mice are infiltrated by ramified epithelial ducts ending in
five symmetrical pairs of nipples; thus, in female mice, all of the
subcutaneous tissue can be considered as part of ten mammary
glands (see Cinti, 1999; Masso-Welch et al., 2000).

The composition of the adipose organ varies in different
anatomical locations, and under different conditions, as represented
by different colors in the blue panel of the poster. In normal animals
in a warm environment, regions close to the aorta and its main
collaterals are shown in brown, representing brown adipose tissue
(BAT). Note that brown adipocytes are normal components of
several subcutaneous and visceral depots and are not exclusive to
interscapular fat. BAT is mainly formed of UCP1-expressing brown
adipocytes, a rich capillary network and a high density of
noradrenergic parenchymal fibers (shown as blue lines in the
poster). The majority of the adipose organ is shown in yellow in
the poster, representing white adipose tissue (WAT), which is
mainly formed of leptin- and S100-B-expressing white adipocytes
(Cinti et al., 1989; Barbatelli et al., 1993; Cinti et al., 1997) and a
network that is five- to six-times less vascularized and innervated
then BAT (Nechad, 1986). The areas shown in peach are mainly
composed of paucilocular cells that can be positive for UCP1 and
S100-B, depending on their differentiation stage (Barbatelli et al.,
1993). On the basis of electron microscopy, paucilocular cells show
features that are intermediate between white and brown adipocytes,
including mitochondrial pleomorphism (Barbatelli et al., 2010), as
illustrated in the green panel of the poster.

Pericardic, omental (which are very small in mice and not
represented in the poster), mesenteric and subcutaneous depots
are characterized by the presence of lymphatic tissue (Cinti, 2011).
Moreover, mesenteric, omental and pericardic fat contain
lymphocytes that are in close contact with adipocytes. Of note,
lymphocytes express the leptin receptor, and visceral fat
lymphocytes have been discovered to have specific functional
properties (Fantuzzi and Faggioni, 2000; Moro et al., 2010).
Furthermore, there are one or two lymph nodes in the posterior
subcutaneous depots as well as in other anatomical sites such as
the popliteal fat depots (Almind et al., 2007). Thus, it is reasonable
to assume a functional relationship between adipocytes and
lymphocytes, and this could be altered in obesity.

Dynamics of adipose organ composition
Innervation and adaptation to temperature changes
The adipose organ is innervated (Bartness and Bamshad, 1998;
Giordano et al., 2008; Bartness et al., 2010), enabling it to interface
with the nervous system and respond to physiological and
environmental cues. Nerve endings in adipose tissue reach the
vasculature and adipocytes (Cannon et al., 1986). Most of the
parenchymal fibers (i.e. nerve fibers in contact with adipocytes)
express tyrosine hydroxylase (TH), an enzyme that is widely
considered to be a marker of noradrenergic fibers (Giordano et al.,
2008). Thermogenesis is required when animals are exposed to
temperatures below thermoneutrality and implies sympathetic
nervous system activation (Himms-Hagen, 1986). Norepinephrine
acts on beta3 adrenoreceptors, which promote the molecular
pathway for thermogenesis in brown adipocytes (Cannon and
Nedergaard, 2004). Our own data show that the density of TH-

expressing parenchymal fibers is much higher in the brown parts
of the adipose organ than in white parts and, during cold exposure,
the density of these fibers increases in parallel with the increase in
number of brown adipocytes (Murano et al., 2009; Vitali et al.,
2012). Thus, the adipose organ of cold-exposed mice is browner
and more densely innervated than the adipose organ of mice in a
warm environment, as shown in the blue panel of the poster.

The adipose organ of humans behaves similarly to the adipose
organ of mice. Metabolically active BAT is detectable by positron
emission tomography (PET) (Nedergaard et al., 2007; Cypess et
al., 2009; Saito et al., 2009; van Marken Lichtenbelt et al., 2009;
Virtanen et al., 2009). Similarly to mouse BAT, human BAT is
composed of UCP1-expressing adipocytes that are densely
innervated by TH-immunoreactive fibers (Zingaretti et al., 2009).
Interestingly, cold-exposed normal subjects and patients suffering
from pheochromocytoma (a norepinephrine-secreting tumor of
the adrenal gland) show increased BAT by PET with an anatomic
distribution similar to that of mice – that is, closely associated
with the aorta and its main collaterals (Kuji et al., 2008; Saito et
al., 2009).

Adipose organ plasticity
The origin of newly formed brown adipocytes in the adipose organ
of cold-exposed animals – a phenomenon referred to as ‘browning’
– is under debate (Timmons et al., 2007; Seale et al., 2008; Barbatelli
et al., 2010). Notably, data obtained from three independent groups
using different experimental approaches support the idea that
brown-like adipocytes arising in predominantly white fat depots
in response to cold exposure are ontogenically different from those
in the classic interscapular BAT (Atit et al., 2006; Seale et al., 2008;
Petrovic et al., 2010).

Our own data support the idea that most of the brown adipocytes
responsible for the browning phenomenon observed after
adrenergic stimulus or cold exposure (with the exception of the
interscapular fat) derive from a direct transformation of white
adipocytes into brown adipocytes (white-to-brown
transdifferentiation) (Himms-Hagen et al., 2000; Barbatelli et al.,
2010). The recent discovery that both brown and white adipocytes
derive from vascular endothelial cells of the adipose organ brings
strong new support to the transdifferentiation theory (Tran et al.,
2012; Gupta et al., 2012). However, it should be noted that other
routes of adipocyte differentiation have been proposed (Crossno
et al., 2006; Maumus et al., 2011; Lee et al., 2012). The
transdifferentiation theory explains why these two different cell
types are contained together in the same organ: in special cases
(such as chronic cold exposure) the white part of the organ might
‘help’ the brown part by forming new BAT (Cinti, 2009a). The many
reasons supporting our theory of transdifferentiation are discussed
in more detail elsewhere (Cinti, 2009a; Cinti, 2009b; Cinti, 2011).
Notably, WAT also expresses beta3 adrenoceptors (De Matteis et
al., 2002), and the browning phenomenon is blunted in beta3
adrenoceptor knockout mice (Jimenez et al., 2003; Barbatelli et al.,
2010). In addition, a wide variety of other mechanisms have been
reported to be involved in BAT activation and browning of the
adipose organ (see Box 1).

The potential to manipulate the inherent plasticity of the adipose
organ is important because it is widely accepted that animals with
more BAT are more resistant to obesity and type 2 diabetes (T2D)
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(Kopecky et al., 1996; Collins et al., 1997; Guerra et al., 1998; Almind
et al., 2007; Vitali et al., 2012). Conversely, animals without
functional BAT are prone to obesity and T2D (Lowell et al., 1993;
Bachman et al., 2002; Feldmann et al., 2009). Furthermore, obesity
in rats is curbed when they are treated with beta3 adrenoceptor
agonists, which induce the browning phenomenon in WAT
(Ghorbani et al., 1997; Ghorbani and Himms-Hagen, 1997). These
data also seem to be valid for humans (Oberkofler et al., 1997;
Cypess and Kahn, 2010).

Very recently, a newly identified hormone named irisin, which is
produced by skeletal muscle during physical exercise, has been shown
to induce browning of WAT in mice (Boström et al., 2012).
Administration of irisin to mice with diet-induced obesity and insulin
resistance reduced these conditions. This hormone is also produced
in humans, suggesting that it could be manipulated to modulate
plasticity of the adipose organ. Thus, both physiological stimuli (such
as cold or physical exercise) or pharmaceutical derivates could be
used for the treatment of obesity and related disorders.

Lactation: a special case for adipose organ plasticity
During pregnancy and lactation, all subcutaneous depots of female
mice transform into milk-secreting glands. This hormone-regulated
phenomenon suggests that there is a progressive reduction in the
number of adipocytes in parallel with an increase in the number
of epithelial cells that form the functional adenomeres of the
mammary glands (shown as green lines in the blue panel of the
poster). Data from our laboratory support the idea that these newly
formed epithelial cells derive from a direct transformation of
adipocytes into milk-secreting epithelial cells (adipo-epithelial
transdifferentiation). The process seems to be reversible and the
epithelial cells, which are marked by the expression of whey acidic
protein (WAP; a milk protein expressed only in milk-secreting
epithelial cells in mammary glands), revert into adipocytes in the
post-lactation period (Morroni et al., 2004; De Matteis et al., 2009).

Pathology
When the energy balance is positive (i.e. when food intake is greater
than energy expenditure), the white part of the adipose organ
expands. This expansion occurs via an increase in the volume of

existing adipocytes as well as the formation of new white adipocytes
(Hausman et al., 2001). These newly formed white adipocytes
develop from pre-adipocytes, but also from a direct transformation
of brown into white adipocytes (Cinti et al., 1997; Bachman et al.,
2002). It was recently discovered that knockdown of SMAD3 (a
component of the TGF signaling pathway) in mice induces
browning of the adipose organ and protects from diabetes and
obesity (Yadav et al., 2011), suggesting that TGF could be involved
in transdifferentiation. Notably, levels of TGF are also correlated
with body mass index. This completes the hypothesis of adipose
organ plasticity: energy accumulation induces BAT to ‘help’ WAT
store more energy (i.e. induces brown-to-white adipocyte
transdifferentiation).

Storing of excess energy over time can lead to obesity and
associated conditions, such as insulin resistance. These conditions
are associated with adipose tissue pathology, to which many
different factors probably contribute. In particular, macrophages
seem to contribute to insulin resistance and other conditions
associated with obesity. The obese adipose organ is infiltrated by
macrophages, and macrophage infiltration of fat is coincident with
the appearance of insulin resistance (Weisberg et al., 2003; Xu et
al., 2003; Strissel et al., 2007). The number of macrophages is much
higher in visceral than in subcutaneous fat, both in diet-induced
and genetic obesity (Strissel et al., 2007; Murano et al., 2008).
Macrophages [>90% of which are immunoreactive for galactose-
specific lectin 3 (also known as MAC2)] form crown-like structures
(CLSs) surrounding dead adipocytes, which are phagocytosed by
the macrophages (see bottom-right panel of the poster) (Cinti et
al., 2005). Tumor necrosis factor- (TNF), interleukin-6 (IL-6),
interleukin-1 (IL-1) and other pro-inflammatory cytokines are
produced by macrophages, and the ability of such cytokines to
interfere with the physiology of insulin receptor signaling is well
known (Gregor and Hotamisligil, 2011). CLSs are also present in
the fat of obese humans (Cinti et al., 2005). Macrophage infiltration
is positively correlated with the size of adipocytes both in visceral
and subcutaneous fat, but can occur independently of obesity per
se, because lean mice deficient for hormone-sensitive lipase have
hypertrophic adipocytes and the same amount of CLSs as obese
mice (Cinti et al., 2005). Notably, obese mice and humans without

Box 1. Mechanisms reportedly involved in BAT activation and browning of the adipose organ
• Enhancement of the activity of the regulatory subunit RI of the cAMP-dependent protein kinase A (PKA) (Cummings et al., 1996)
• Activation of peroxisome proliferator-activated receptor- (PPAR) (Toseland et al., 2001)
• Inhibition of the activity of 4E-BP1, which represses translation of PPAR coactivator-1 (PGC1) (Tsukiyama-Kohara et al., 2001)
• Activation of the activity of forkhead box protein C2 (FOXC2), which increases the sensitivity of the -adrenergic cAMP-PKA signaling pathway (Cederberg et al.,

2001)
• Inhibition of retinoblastoma (Rb) protein activity (Hansen et al., 2004)
• Inhibition of RIP140 [also known as nuclear receptor-interacting protein 1 (NRIP1)] (Leonardsson et al., 2004)
• Activation of the zinc-finger protein PRDM16 (Seale et al., 2007; Seale et al., 2011)
• Activation of bone morphogenetic protein 7 (BMP7) (Tseng et al., 2008)
• Activation of cyclooxygenase 2 (COX2) (Madsen et al., 2010; Vegiopoulos et al., 2010)
• Activation of the microRNA cluster comprising miR-193b-365 (Sun et al., 2011)
• Inhibition of the TGF-SMAD3 system (Yadav et al., 2011)
• Activation of the evolutionarily conserved PLAC8 protein (Jimenez-Preitner et al., 2011)
• Inhibition of the gender-sensitive -arrestin domain-containing 3 (ARRDC3) protein (Patwari et al., 2011)
• Activation of the growth factor FGF21 (Hondares et al., 2010; Fisher et al., 2012)
• Induction of myokine irisin (Boström et al., 2012)
• Activation of microRNA 196a (Mori et al., 2012)
• Inhibition of retinaldehyde dehydrogenase 1 (ALDH1A1) (Kiefer et al., 2012)
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adipocyte hypertrophy (hyperplastic obesity) do not show CLSs in
fat and are insulin sensitive (Cinti et al., 2005; Hoffstedt et al., 2010).
Visceral adipocytes in obese mice are smaller than subcutaneous
adipocytes, but visceral fat has a higher amount of CLSs, suggesting
a different ‘critical death size’ (CDS) for adipocytes in visceral fat
(Murano et al., 2008; Virtue and Vidal-Puig, 2010). Thus, visceral
adipocytes die at a smaller CDS, which might explain the well-
known dangerous metabolic consequences of visceral fat
accumulation (Cinti, 2009a).

On the basis of the current data, the sequence of events linking
obesity with insulin resistance could be:
• adipocyte hypertrophy due to obesity;
• adipocyte stress, possibly involving hypoxia (Wood et al., 2009)
and the production of chemoattractants;
• chemoattraction and infiltration of macrophages;
• death of adipocytes on reaching the CDS (visceral adipocytes die
first);
• chronic reabsorption of adipocyte remnants by macrophages,
accompanied by a massive production of cytokines by
macrophages;
• increased levels of circulating cytokines contributes to insulin
resistance in peripheral tissues.

Conclusion
In conclusion, the adipose organ is a complex structure with highly
plastic properties that include the ability of its parenchymal cells
(the adipocytes) to reprogram their genes and transdifferentiate
into cells with a different morphology and physiology (a state that
is physiologically reversible). It is hoped that this plasticity of the
adipose organ can be exploited in the next generation of therapeutic
strategies to combat the increasing incidence of metabolic diseases,
including obesity and T2D.

This article is part of a special issue on obesity: see related 
articles in Vol. 5, issue 5 of Dis. Model. Mech. at
http://dmm.biologists.org/content/5/5.toc.
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