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The behaviour of the quark parton. distribution functions is discussed through the 
phenomenological 'analysis of the deep inelastic e-p and· e-n data under constraint of the 
saturation of the Adler sum rule. It is concluded that in the region o::;;:x::;;:x. where the 
Regge parametrization can be applied, u(x) is equal to d(x), and both behave as const/x, 
(xo will be 0.04"-'0.05); for xo<x::;;:1, both u(x) and d(x) reduce rapidly to sufficiently small 
values as x increases and u(x)<d(x) holds; and s(x) and s(x) have roughly the similar 
behaviour to u(x) and d(x). One possible explanation of u(x) <d(x) for x>xo is given. 
The rate of convergence of the Adler sum rule is also discussed. 

§ 1. Introduction and preliminaries 

The first check of the local current-algebra in the near future, which was 
proposed by Gell-Mann,*l yv-ill be the Adler sum rule for neutrino processes.2J It 
is derived from the local current-algebra, supplemented by some assumptions on 
analyticity and asymptotic behaviour of certain amplitudes; 

(1) 

where w2!h is one of the structure functions**) for an inelastic lepton-hadron 
process, q 2 ( =q2 -q0

2) is the square of the momentum transferred from lepton to 
hadron, v the energy transfer in the laboratory frame, m the nucleon mass and 
{}c is the Cabbibo angle. Throughout this paper we set {}c equal to zero since 
sin2 ec~5%. Assuming_ the Bjorken scaling law,4) that is, as J) and l-HXJ with 
w = 2mv / l fixed, 

we can rewrite Eq. (1) as 

(2) 

Let us call Eq. (2) the Adler sum rule (ASR) hereafter. 

*J For an excellent review, see Ref. 1). 
**l For their definitions in detail, for example, see Ref. 3). ' 
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The Adler Sum Rule and Quark Parton Distribution Functions in Nucleon 193 

In a past few years there have been several works which discuss the satura

tion of ASR by making use of the SLAC-MIT data on deep inelastic electron

nucleon scattering and/or by model calculations.5l Two typical examples which 

were studied in the first (and also in the second) paper of R'ef. 5) are the Regge 

pole model with the so-called counting picture of Iizuka et al.6l and the Kuti

W eisskopf parton model/) both of which give remarkably slow convergence of 

ASR. These models satisfy the relation 

(3) 

which is obtained in the former model by the assumption of the Regge pole 

description throughout the entire . range of w and the strong exchange degeneracy 

for A 2 and 'p poles, and in the latter model by the assumption of equal distribu

tions of u- and d-type anti-quark partons (i.e., ii(x) =d(x), see below). 

With the help of Eq. (3), ASR can be rewritten in terms of the structure 

functions of electroproduction: 

(4) 

The rate .of convergence of the sum rule ( 4) is extremely slow in the above 

two models: In fact, 90% saturation occurs at W=413 in the model of Iizuka 

et al., and at W=477 in the Kuti-Weisskopf model.*l On the other hand, the 

l.h.s. of the sum rule ( 4) was experimentally· evaluated9l by using the data of 

SLAC-MIT groups up to w=20 and by assuming the Regge form from w=20 to 

oo, and it amounted to 0.28. .If ASR (2) is correct, the fact that the sum rule 

(4) seems difficult to be saturated leads us to consider that the relation (3) 

may be doubtful. 

In this paper we discuss, through the phenomenological analysis of the e-p 

and e-n data, the saturation of ASR within the framework of the Gell-Mann

Zweig quark parton model.**),lOl ·Although the future neutrino and anti-neutrino 

experiments make it possible for us to obtain the quark parton distribution functions 

u(x), u(x), d(x), d(x) and s(x) +s(x) separately (see below for their defini

tions), we shall show that those behaviour can be predicted with certainty only 

by using the current deep inelastic electroproduction data and the constraint of 

*l Some authors argue that such slow convergence of ASR seems to be unreasonable. See 

Ref. 8). 

**l There exist other parton models which are different from one another in the way of 

assigning quantum numbers to partons, for example, (i) partons as fractionally charged "colored" 

quarks of Fritzsch and Gell-Mann;"l (ii) partons as integrally charged Han-Nambu quarks;"l and ; ,; 

(iii) partons as integrally charged three-triplets of Cabibbo, Maiani and Preparata.18l But if all 

hadronic states are singlets with respect to . color (in the case of the model (i)) or if no "charmed" 

particles are produced (in the cases of the models (ii) and (iii)), the above three models . cannot 

be distinguished from the Gell-Mann-Zweig quark parton model in the processes of deep inelastic 

lepton-nucleon scattering. "l 
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194 A. Niegawa and K. Sasaki 

convergence of ASR (equivalently, the convergence of the quark parton sum rules 
(6a) and (6b) below). In fact the sum rules (6a) and (6b) will be shown to 
put severe constraints upon the behaviour of u(x),d(x), s(x) and s(x). 

Now, as is well known, in the quark parton model we have10J 

F 2•P(x) =x -(u(x) +u(x)) +-(d(x) +d(x)) +-(s(x) +s(x)) , 
' [4 1 - 1 ] 

9 9 ' 9 

F 2•n(x) =x[_!_(u(x) +u(x)) +_!(d(x) +d(x)) +_!_(s(x) +s(x))], 
9 9 9 

F/P(x)=2x[u(x) +d(x)], 

F 2"P(x) =2x[u(x) +d(x)], 

(5a) 

(5b) 

(5c) 

(5d) 

where u(x), d(x), s(x), u (x), d(x) and s(x) represent respectively the probability 
of finding u, d, s, u, d and s quarks inside a proton with a fraction x of the nucleon 
longitudinal momentum in the infinite momentum frame. We have used the re
lation (J) = 1/ x which holds in parton models. The above six parton distribution 
functions need satisfy the following sum rules so as to conserve the total net 
charge, the third component of isospin and the strangeness of a proton: 

r (u (x)-u (x) )dx=2' 

r (d(x) -d(x))dx=1' 

r (s(x) -s(x))dx=O. 

(6a) 

(6b) 

(6c) 

From Eqs. (5c), (5d), (6a) and (6b), we obtain ASR (2) again. In other 
words, the quark parton model comprizes ASR in itself. This seems to be a 
natural consequence when we observe that the quark parton model is of free 
quark picture and that ASR is a representation of the current-algebra which is 
abstracted from the free quark model. 

As already stated, the evaluation of the l.h.s. of Eq. (4) with the naive fit 
of the data available now does not reach to 1/3. And if u(x) =d(x), ASR (2) 
can be reduced to Eq. ( 4) upon using Eqs. (5a) "-" (5d). Hence the consistency 
of ASR with the naive fit of the data of SLAC-MIT groups leads us to speculate 
u(x)'$d(x). 

Motivated by the above preliminary considerations, we first obtain the scaling 
limit data on F 2ep ((J)) and F 2en ((J)) from the available SLAC-MIT electroproduction 
data and make a phenomenological fit in § 2. Although the behaviour of F 2•P ((J)) 
,and F 2•n((J)), especially at large (J), is very crucial to the saturation problem of 
ASR, analyses already made so far do not seem to be suitable for treating the 
data for large (J). The available data on vw2•Pcl, (J)) and vWa"n(q2, (J)) with large 
(J) COme from where the q2's are not large, SO that VW2ep(q2, (J)) and VW2en(q2, (J)) 
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The Adler Sum Rule and Quark Parton Distribution Functions in Nucleon 195 

may possibly not yet scale. So we aim at careful analysis of the data in large w region. 

In § 3 we discuss the behaviour of the parton distribution functions by making 

use of the fit functions obtained in § 2 and the constraint of the quark parton sum 

rules (6a) and (6b). Through the analysis in § 3 we conclude that u(x) =d(x) 

holds only for very small x, O<x<x0, where the Regge parametrization can be 

applied, and Xo will be 0.04rv0.05; for x 0<x<1, it must be that u(x)<d(x) and 

that both take very small values and tend to zero much faster than u(x) and 

d(x) as x increases; and s(x) and s(x) have roughly similar behaviour to u(x) 

and d(x). The behaviour of these distribution functions u(x),d(x), s(x) and 

s (x) is consistent with the expectation from the experiments of Ji (v) -nucleon total 

cross sections at CERN15) and FNAL.16) 

Also in § 3 we discuss the rate of convergence of ASR. Implications of our 

results and possible physical interpretations are discussed in § 4, 

§ 2. Data analysis and determination of F 2ep ( 0>) and F 2en ( 0>) 

We need the scaling limit functions F 2•P(w) and F 2en(w), especially their accu

rate behaviour at large w, because the saturation problem of ASR highly depends 

on the behaviour of F 2ep(w) and F 2en(w) in that region. In the following we 

show how we obtain the data on F 2i (w) in the scaling limit, where i stands for 

ep or en (in § 2.1.), and how we make a fit to get the scaling limit function 

F 2i(w) (in § 2.2.).*l 

2.1. Determination of scaling limit data on F/P(w) and F 2en(w) 

We have used the electroproduction data**l·***l of SLAC-MIT groups. 18 l~ 2 n 

In translating the data given in the form of differential cross section into v W2 ( q 2, w), 

Table I. Eight data on each e-p and e-n scattering employed from 4o scattering data of Ref. 

21) are tabulated: 

q'(GeV/c)' (l) vW:•±JvW,'• 
I 

vW:"±JvW:" 

0.90 22.68 0.303 ± 0.013 0.277 ± 0.018 

1.00 18.18 0.315 ± 0.011 0.282 ± 0.016 

1.10 14.62 0.335 ± 0.010 0.283 ± 0.014 

1.13 13.46 0.329 ± 0.009 0.280 ± 0.013 

1.19 11.99 0.327 ± 0.010 0.289 ± 0.014 

1.26 10.59 0.340 ± 0.004 0.284 ± 0.006 

1.28 10.10 0.341 ± 0.007 0.278 ± 0.010 

1.37 8.42 0.341 ± 0.006 0.284 ± 0.085 

*l Contents of this section have been already discussed briefly in Ref. 17). 

**l We discard some data pionts in Refs. 18) and 19) which overlap those in Ref. 20). 

***l We have employed 4o scattering data, 8 points for each e-p and e-n scattering, from Ref. 

21). The values of v W~· and v W~n were found by making a one-to-one correspondence of data 

points in Fig. 7 to those in Fig. 8 therein. They are shown in Table I. 
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196 A. Niegawa and K. Sasaki 

we adopt the experimental suggestion that 68 /6T=0.168.*>• 9' We' obtain the data 
on vW2•n(l, ())) from Ref. 20) as follows: 

vW2en(l, ())) =vW2•P(l, ())) ·N/P, (7) 

where N / P is the neutron-proton cross section ratio at each data point in electron
deuteron scattering. 

At present, however, the available data on vW/(q2, ())) with large ()) come 
from where the q2' s are small, so that v W 2i ( l, ())) may possibly not yet scale. In 
what follows we show the procedures to obtain the scaling limit data which we 
will use in the next section 2.2 to get the scaling limit functions. 

We plot all e-p '(e-n) data points with s>4.84 (GeV) 2 in the s-l plane, 
where s=2mv-q2 +m2• First we see the q2-dependence of vW2•P with fixed s. 
We choose for s the following 14 values where sufficiently many data points are 
distributed: {s,} = (5.2, 6.3, 7.65, 9.1, 10.1, 12.3, 14.1, 15.2, 16.0, 17.75, 19.4, 21.0, 
23.1 and 25.0). The data points from an experiment with a fixed incident energy 
and a fixed scattering angle of elec-

tron fall on a straight line in the 

s-l plane. We obtain the value of 
v w2ep at the intersecting point of one 

of the straight lines mentioned above 

and a line s= s, by interpo-lation be-

tween the two data points which lie 

on the same line and are the nearest 

to the desired point. We apply this 

interpolation procedure to all the 

intersecting points. We also employ 

the extrapolation technique to obtain 
v w2ep at several points only when 

those s1 satisfy /si-sa/</sa-s11 / (sp 
<sa<s1 or s1<sa<sp), where Sa and 
Sp denote the values of s at the two 

nearest data points. An illustration 
is given in Fig. 1. 

Then the l-dependence of vW2•P 

with each fixed s, will be obtained. 

For each s1 we make a l-fit of the 
form**> 

0.4 

0.3 

1t 0.2 4,__ _ _.__---~. __ 1 ..... 0--lt::2'----ll4--

s (GeVIc)2 

Fig. 1. :A typical example of the interpolation and 
extrapolation procedures for 11W~P in .. ·s and q' 
(0=6° and E=lO.O GeV). Crosses show experi
mental data, dots are the desired interpolation 
points and a triangle. is the desired extrapolation 
point. 

*' The parton model with spin 1/2 constituents suggests that R=r(w)/11, (see p. 139 of 
Ref. 10)). But in the region where we perform the analysis, the use of R=r(w)/11 (with r(w) 
=0.18mw) or R=O.l68 does not make much difference in determining 11W~P(q', w).'' 

**' According to the analysis of Rittenberg and Rubinstein, Wll W;P(q', s) can be fitted by a 
universal function of wR==(s+a)/(q'+p) with free parameters a and {3. See Ref. 22). At this stage 
we have performed fits of that kind assuming several functions, but no good fit has been obtained. 
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V Wz"P (q 2,s,) =a1l(l fazl +asq4 ) exp ( -a4l). (8) 

The l-behaviour of v W 2"P with s1 = 10.1 and its fit curve are shown as a typical 

example in Fig. 2. 

Next we observe the l-dependence of vW2"P(q2,w) with fixed al. When we 

fix al, there exists the point (q/, s1) corresponding to each s1• Using the fit

function Eq. (8), we can evaluate the values of vW2"P(q/, s1 ; w=fixed), where 

j=1, ···, 14. We then perform the eyeball-fit to these vW2"P(q/, sf> w=fixed) as 

a function of l.*> From th!s fit we see that vWz"P(q2, w=fixed) approaches a 

constant value as q 2 increases (i.e., scaling). In this way we _obtain the limit 

value of vW2"P(q2, w) and the value q0
2 (w) at which scaling starts for fixed (1). 

This procedure is applied later to seeing whether or not each datum on v W2"P 

(and also vW2"") is in the scaling region. A typical example is shown in Fig. 3. 

We apply the same procedures to the data on v W 2"". One difference is that, 

in this case, we choose for s1 the following 10 values: {s1} = (6.4, 7.6, 9.05, 10.7, 

12.6, 14.1, 16.1, 17.75, 19.5 and 21.3). 

Finally we obtain the scaling limit data on F 2i(w) from data on vW2i(l, w) 

in the following way: (1) We employ all data on vW2i(l, w) with l>1 (GeV/c) 2 

and s>4 (GeV) 2.; (ii) each datum on vW2i(l,w) with l>q0
2 (w) is considered 

to have reached the scaling limit value and is adopted as data on F 2i (w); (iii) 

when l<q0
2 (w), we find from the w~fixed-eyeball-fit the difference J between the 

limit value and the value on the curve at the same q 2 as the original data point. 

We then adopt the sum of J and the valu~ ·of vW/(q2, w) as data on F 2i(w) 

(see Fig. 3); (iv) we take the error of vW2i(l, w) as that of data on F 2i(w). 

S= 10.1 (Gevl2 

0.1 

QOOL-~-L--~~~5--~~~~~-,0~---

q2(GeV/cl2 

Fig. 2. The q'-behaviour ·-of YW~· with s fixed 

( =10.1 (Ge V)~) and the best fit curve. 

0.4 

0.3 

0.1 

! 
I 
I 

W=l2.2 

l---a datum with same W 

1.0 2.0 3.0 
q"(GeV/cl2 

Fig. 3. The q'-behaviour -of YW:• with (J) fixed 

( =12.2) and the eyeball-fit curve. The scal

ing limit and one datum with the same (J) are 

also shown. 

*' We have tried different fits of the form aq'/(q'+fi) and atanh(fiq') with a and {3 free 

parameters. But none of them have reproduced well the q'-behaviour of YW:• with fixed (J). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

4
/1

/1
9
2
/1

8
2
8
2
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



198 A. Niegawa and K. Sasaki 

The way of modification of the data in the procedu,re (iii) reflects that we should 
take account of both the statistical fluctuation of the data and the scaling. We 
have modified (in the way mentioned above) 20 out of 314 data on J.iVY7

2"P and 
9 out of 201 data on vW2•n. All modified data have w>4. 

2.2. Scaling limit functions F2•P(w) and F{"(w) 

Now we are ready to make a l-fit to the scaling limit data obtained in § 2.1. 
and to get F2ep (w) and F 2en (w). But it should be noted that the errors in small aJ 
region are usually small compared with the ones at large aJ. In order to obtain 
the fit functions as faithfully as possible at large dJ, not affected by the data in 
small aJ region, we devide the data into two groups, those with w>w0 and the 
others with w<wo, and we make a l-fit to each group separately. We choose 
alo as given in Table II. 

Table II. The values of llJo we choose and fit-parameters rJ. and r j with their errors and 
the reduced x.' of the fits for llJ"2:1lJo are shown. The numerical results for the quark 
parton sum rules (6a) and (6b) by using our extreme choice of. the parton distribution 
functions are also shown. 

llJo 11/0.06 11/0.06511/0.07 11/0.07511/0.08 11/0.08511/0.09 11/0.0951 1/0.1 

r?(=r?) 0.234 0.262 0.238 0.227 0.235 0.256· 0.256 0.251 0.244 
±0.057 ±0.040 ±0.035 ±0.032 :±:0.028 ±0.023 ±0.023 ±0.018 ±0.017 

r'l 0.386 0.232 0.361 0.413 0.382 0.291 0.291 0.310 0.330 
±0.263 ±0.177. ±0.150 ±0.130 ±0.112 ±0.091- ±0.091 ±0.065 ±0.059 

rT(=2r?/3) 0.257 0.155 0.241 0.276 0.255 0.194 0.194 0.206 0.220 
±0.175 ±0.118 ±0.100 ±0.087 ±0.075 ±0.061 ±0.061 ±0.043 ±0.039 

Reduced x.' 0.10 0.37 0.47 0.47 0.39 0.42 0.42 0.39 0.69 
mu(x) -u(x)]dx 1.73 1.51 1.63 1.66 1.61 1.47 1.44 1.44 1.45 
md(x) -d(x) ]dx 1.07 0.96 1.00 1.00 0.96 0.89 0.86 0.85 0.85 

We assume the Regge behaviour of F/(w) for large w(w>w0) and that the 
Pomeron and the exchange-degenerate A 2:fo trajectories contribute to F 2i (w). *l 
Hence F2i (w) 1s parametrized for w>wo as follows: 

(9) 

where the zero intercepts of the Pomeron and the A 2:fo trajectories are assumed 
to be 1 and 1/2 respectively. Assuming, furthermore, the pure F coupling of· 
the A 2:fo trajectory to nucleon, we can set rA•n=irA•P. 

In making a l-fit to the data on F/ (w) with w>wo in the form of Eq. (9), 
we pUt r/n= rpep and rAen= irAep and fit the proton and neutron data simultaneously. 
Next we perform a l-fit to the data on F 2•P(w) and F2en(w) with w<wo separately 
m the form 

*l We assume that there is no Pomeron satellite term proportional to inverse power w-'. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

4
/1

/1
9
2
/1

8
2
8
2
6
4
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



The Adler Sum Rule and Quark Parton Distribution Functions in Nucleon 199 

'S 0.2 
o..." .. ~ 

...!.. 
w 

QOO~.--~~--~~~~--L-0~.5~~~~~~~1 

....L 
w 

Fig. 4. All of the scaling limit 

data on FtP((J)) with associated 

errors for (1)210 and a few data 

for (1)<10 are shown. The solid 

line is the best fit curve when 

we take IJ)o=1/0.07. Note that 

they are plotted versus 1/IJ) and 

that the region 0<1/(1)<0.1 is 

enlarged. 

Fig. 5. All of the scaling limit 

data on F:"((J)) with associated ·• 

errors for (1)~10 and a few data 

for (1)<10 are shown. The solid 

line is the best fit curve when 

we take IJ)o=1/0.07. Note that 

they are plotted versus 1/ {)) and 

that the region O<l/(1)<0.1 is 

enlarged . 

(i=ep, en) (10) 

under the condition that it should join smoothly onto the fit for large w. *l The 

data on F 2"P(w) and F 2"n(w), the associated errors and also fit curves with Wo 

taken to be 1/0.07 are shown in Figs. 4 and 5. 

By using our fit-functions F 2"P(w) and F 2"n(w), the integrals of f/F2"P(x)dx 

and f 0
1F 2"n(x) dx can be immediately evaluated to be nearly 0.165 and 0.12 re

spectively. These values are in agreement with the analyses made so far.15)' 23) 

Also the l.h.s. of Eq. ( 4) is evaluated. It takes rather small value from 0.19 

to 0.22 depending somewhat upon W0• Compare it with the value 0.28 in Ref. 

9). This disagreement might be due to our modification of the data at large ()), 

Finally we remark that other )(fits to the data with large {)) have also been 

performed: (i) A fit with rA•P and rA•n treated as free parameters; (ii) a fit with 

*l The reduced x• of the fits for IJ)<IJ)o ranges from 2.0 to 2.3 for i=ep and from 1.5 to 1.8 

for i=en. 
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200 A. Niegawa and K. Sasaki 

three terms, added one more term rA~w- 312 , which is the sum of the contribution 
of the Az' -trajectory with zero intercept -1/2, the possible satellite term of 
the A 2:fo pole and everything else, and with the constraints of rp'"'= rP•P and 
rA•n=irA•P; (iii) A fit with three terms and with only one constraint of r/n=rp'P. 
Since the errors in large w region are not small, fit parameters highly depend 
on w0 and we cannot say any definite conclusion at the present stage of the data 
accumulation. 

§ 3. Distribution functions of quark partons 

In this section, with scaling limit functions F 2•P(w) and F 2'n(w) obtained in 
§ 2.2. and with the quark partbn sum rules (6a) and (6_b), we discuss the behav
iour of parton distribution functions and also the rate of convergence of ASR. 

In the framework of the quark· parton model, ASR (2) c1m be derived frorri 
quark parton sum rules (6a) and (6b). Let us, therefore, examine these two sum 
rules. As implied in the discussion in § 1, the experimentally evaluated value of 
the integral of Eq. ( 4) is less than 1/3 (much less than 1/3 in our analysis), and 
there is a doubt that the current electroproduction data may not be compatible with 
the saturation of the quark parton sum rules. Therefore we try to divide scaling 
limit Junctions Fz'P (w) and F 2en (w) into parton distribution functions so that they 
may serve most favourably the saturation of sum rules (6a) and (6b). (Re
sultant parton distributions are therefore unrealistic.) First we set s(x) =s(x) =0. 
Then, using Eqs. (5a) and (5b), we can solve for u(x) +u(x) and d(x) +d(x). 
Further, these distribution functions are divided into u(x), u(x), d(x) and d(x) 
so that the integrals ~f Eqs. (6a) and (6b) may reach maximum. 

Here we should note that when we made a fit to obtain the scaling-. limit 
functions Fz'P (w) and F 2'"' (w) in § 2.2, we performed Regge -parametrization for 
o<x<x0 (x0=1/w0). We assumed that there is no first satellite term of Pomeron 
and no Pomeron-P' cut (i.e., no term proportional to inverse power w-1). Then 
u(x) and d(x) should be equal and proportional to 1/x for o<x<x0• The 
proportional constant is given by 9rp ep /10 (note rpep = r/"') which is derived from 
Eqs. (5a) and (5b) and from a constraint that xu(x) and xu(x) should be 
equal at x = 0. In order to maximize the l.h.s. of Eqs. (6a) and (6b), we set, 
though unrealistic, u(x) =d(x) =0 for x 0<x<l. The values of the integrals 
(6a) and (6b) in this extreme case are shown in Table II. 

Even though we took the extreme choice of .parton distribution functions, 
we shall see from Table II that the l.h.s. of Eq. (6a) is still short of saturation 
by 15% or more. One thing to be noteworthy is that the saturation of Eq. (6b) 
is better than that of Eq. (6a) in every -choice of x 0• In fact, in the cases 
Xo = 0.06, 0.07 and 0.075, ou:r extreme choi'ce of parton distribution functions makes 
it possible to saturate the l.h.s. of Eq. (6b) completely. 

In the cases of other fits mentioned at the end of § 2.2, the fit parameters, -
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and hence the saturation of the sum rules (6a) and (6b) highly depend upon Xo. 

But the situation that the saturation of Eq. (6b) is better than that of Eq. (6a) 

does not change in all of the fits. 

From the analysis we have made so far, we see that as long as our method 

of fit parametrization is suitable, x 0 must be taken still smaller, say 0.05 or less, 

in order to saturate the quark parton sum rules and also to obtain reasonable 

parton distribution functions. This means that (1)0 (at w>wo, Regge parametrization 

is justified) goes farther away. Therefore we need further accumulation of the 

deep inelastic scattering data with still larger w. But from the arguments made 

in this section we can predict with certainty the behaviour of the parton distribu

tion functions as follows: For O<x<x0, u(x) =d(x) and they behave as const/x. 

For x 0<x<1, u(x) and d(x) must be very small and tend rapidly to zero compar

ed with u(x) and d(x) as X increases. Otherwise the saturation of quark parton 

sum rules would become difficult. Another thing we should note is that, for 

x 0<x<1, d(x) >u(x) and accordingly the relation (3) and Eq. (4) will not hold. 24' 

This is supported by the fact that in our extreme choice of the parton distribu

tion functions the saturation of the sum rule (6b) has been much better than the 

other one (6a). The distribution functions of s(x) and s(x) must show similar 

behaviour to those of u(x) and d(x) for x 0<x<l. For o<x<x0, the argument 

of SU(3) symmetry suggests that s(x) and s(x) have the same behaviour as 

u(x) and d(x). Or if we can apply here the argument of Carlitz, Green and 

Zee,25' it is concluded that s(x) =s(x) ~0.6u(x) (=0.6d(x)). The behaviour of 

these parton distribution functions u(x), d(x), s(x) and s(x) is compatible with 

the expectation from the experiments of v(P)-nucleon total cross sections at CERN15' 

and FN AL.16) 

When d(x) >u(x), Eq. (4) is replaced by an inequality: 

(11) 

This will improve the convergence of ASR as compared with the case in which 

Eq. ( 4) holds. But our analysis in this section suggests that the rate of con

vergence will be still slow, with the ·value of !li not less than 100 for 90% 

saturation. The reason for this is the following. We calculate !J, which is defined 

by 

_l_ fg-•[u(x) -u(x)]dx= fg-•[d(x) -d(x)]dx=0.1, 
2 Jo Jo 

with our (extreme) choice of parton distribution functions to get !2=22/'../68. If 

we restrict ourselv~s to the cases in which the values of l.h.s. of Eq. (6a) are 

larger than 1.6, we get !2=52"'68. Taking into account the fact that in the real 

world the contribution from the region x> x 0 to the integrals (6a) and (6b) is 

smaller than that of our extreme case, the 90% saturation of the quark parton 
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202 A. Niegawa and K. Sasaki 

·sum rules, or ASR, will be achieved at !J not less than 100. This makes a clear 
contrast to the arguments for early saturation of ASR.8> 

In concluding this section we add a remark that when the data with larger 
w are accumulated, there is a possibility that the 3-term.fit, added a low-lying Az' 
trajectory contribution, may give the better fit than the 2-term fit. If that is the 
case, a possibility remains that the early saturation of ASR may be realized.*> 

. § 4. ·Summary and discussion 

In this paper we are concerned with the behaviour of the parton distribution 
functions under the constraint of ASR, more· specifically, quark parton sum rules 
(6a) and (6b). By keeping-in mind that the accurate behaviour of the scaling 
limit functions F2•P(w) and F2."(w) in large w region is necessary· to the saturation 
problem of ASR, the scaling limit data on F2"P(w) and F 2""(w) were obtained 
from the available electroproduction data of SLAC"MIT groups and the phenome
nological fits were made (in § 2). Then the extreme case of parton distribution 
functions was taken (though unrealistic) so that the l.h.s. of the parton sum rules 
(6a) and (6b) should be maximized: That is, s(x) =s(x) =0 for all x, d(x) 
=u(x) =const/x for O<x<x0 and d(x)=u(x) =0 for x 0<x<1, and the evalua
tion of the integrals was made. Even with such an extreme case, the l.h.s. -of 
Eq. (6a) was found to -come short of saturation by about 15% or more. On the 
other hand, the l.h.s. of Eq. (6b) was saturated or almost saturated (it depends 
somewhat upon x 0). 

Through this analysis, we found that w0 (at w>wo, Regge parametrization 
can be applied) should run farther away, say Wo= 25""30. So further accumulation 
of data with larger w will be needed. But based upon the present analysis the 
following behaviour of the parton distribution functions can be reasonably predicted: 
(i) For O<x<x0, d(x) =u(x), and both behave as const/x, and for x 0<x<1, 
both d(x) and u(x) are much smaller and tend more raPidly .to zero than u(x) 
and d(x) as x increases; (ii) For x 0<x<l, it holds that u(.c)<d(x). · Hence 
the relation (3) and the sum rule (4) will fail. (iii) s(x) and s(x) have roughly 
a similar behaviour to u(x) and d(x). 

It is interesting here to see what the above statement (ii) will suggest. A few 
years ago, one of the present authors (A.N.) 27> proposed an idea.:, concerning one 
of the possibilities to explain the behaviour of F 2""(w)/F2"P(w) near the threshold 
region w=1, that quark parton obey a certain statistics with the exclusion principle. 
We briefly present the argument here. 

In many quark parton models,7>' 28> the diagrams in which the current couples 
to one of the valence quarks dominate in the region x=1. If we assume that 
the exclusion principle works among the partons of the same kin:d with almost 
the same momentum fraction, the configuration in which the leading parton (its 

*> In fact, such models are reported, see for example Ref. 26). 
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momentum fraction x=1) is d-quark will be suppressed in comparison with the 

configuration where the leading parton is u-quark. The reason is that in the 

former case residual valence partons (both have x=O) are of the same kind, 

uu and in the latter they are of a different kind, ud. Here we have assumed that 

there is no long range correlation between the leading parton and the residual 

partons. Then the suppression of d(x) relative to u(x) near the region x=1 

leads through Eqs. (5a) and (5h) to that as x---)1, F 2"n((I))/F2"P((I)) reduces to 

the value less than 2/3 which is the ratio given by the "naive" counting of the 

three valence quarks. 

The argument along the same line also serves to be one of the possibilities 

to explain that u (x) <d (x) for "moderate" x. Let us consider two cases of the 

lowest configuration which is made up of three "valence" partons plus one pair 

of "sea" partons:. The one is u1u2d3 + (u4u5) (case A) and the other is u1u2d3 + 
( d4dr,) (case B). We have labeled the partons of each configuration as 1, 2, 3, 4 

and 5. Each parton carries a fraction of X; (i=1, 2, ···, 5) of the longitudinal 

momentum of a proton. By neglecting the transverse momentum, spins and other 

internal degrees of freedom of partons, *l the amplitudes of these configurations 

are expressed as functions of only momentum fraction X; of partons: FeA> ( {x1}) 

for case A and FeB> ( {x;}) for case B. 

Again we assume the exclusion principle among quark partons of the same 

kind and the absence of the (long range) correlation between the leading parton 

and the residual partons. Then in. case A when u5 is a leading parton (say, 

x 5>1/5) and the residual partons have the small x's, the amplitude may possibly 

he written as 

and in case B when dr, is a leading parton, we may obtain 

(12h) 

where a and (3 are some real numbers. The contribution of the configurations 

(case A) and {case B) to the parton distribution functions u(x) and d(x) can 

he calculated respectively to he 

fl 5 dx· 6 

'ilcAl(x)= Jon X;•~(1-~x;)JFcAl({x;})J2~(x5-x), (13a) 

- rl 6 dx; . 6 2 

dcBl(x)= Jo n~~(1-~x;)JFcBl({x;})j ~(x5-x). (13h) 

Inserting (12a) and (12h) into Eqs. (13a) and (13h), respectively, we find that 

'ileA> (x)<dcBl (x) for "moderate" x, say x>l/5. This argument can also he ap-

*> Even when we take into account transverse momenta, spins and other internal degrees of 

freedom of partons the discussion here is still applicable to the amplitudes which are. symmetric 

with respect to those degrees of freedom. 
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204 A. Niegawa and K. Sasaki 

plied to the cases where we consider the contributions of the higher configura
tions with many "sea" partons toward u(x) and d(x). Summing up all the 
contributions, we reach u(x)<d(x) for "moderate" x. 

Although our arguments are based on the validity of quark parton sum rules 
(6a) and (6b), and hence on that of ASR(2), there have been several works 
where ASR itself is criticized and/or its alternatives are presented. 29' Also one 
possibility was' discussed that the original ASR (1) is correct but the sum rule 
(2) which we call ASR in this paper does not hold.30' If any one of the above 
possibilities comes true in our physical world, then the parton ideas would topple 
down. 
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and q(x)==x(u(x) +d(x)): ij(x) is a monotone decreasing function of x and ij(x=0.05)=il(x=O)/e. 
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