

Delft University of Technology

The Adoption of JavaScript Linters in Practice: A Case Study on ESLint

Tómasdóttir, Kristín; Aniche, Maurício; van Deursen, Arie

DOI
10.1109/TSE.2018.2871058
Publication date
2020
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Tómasdóttir, K., Aniche, M., & van Deursen, A. (2020). The Adoption of JavaScript Linters in Practice: A
Case Study on ESLint. IEEE Transactions on Software Engineering, 46(8), 863-891. [8468105].
https://doi.org/10.1109/TSE.2018.2871058

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2018.2871058
https://doi.org/10.1109/TSE.2018.2871058

1

The Adoption of JavaScript Linters in Practice:
A Case Study on ESLint

Kristı́n Fjóla Tómasdóttir, Maurı́cio Aniche, Arie van Deursen

Delft University of Technology - The Netherlands

kristinfjolato@gmail.com, {m.f.aniche, arie.vandeursen}@tudelft.nl

✦

Abstract—A linter is a static analysis tool that warns software devel-

opers about possible code errors or violations to coding standards. By

using such a tool, errors can be surfaced early in the development

process when they are cheaper to fix. For a linter to be successful, it is

important to understand the needs and challenges of developers when

using a linter.

In this paper, we examine developers’ perceptions on JavaScript

linters. We study why and how developers use linters along with the

challenges they face while using such tools. For this purpose we perform

a case study on ESLint, the most popular JavaScript linter. We collect

data with three different methods where we interviewed 15 developers

from well-known open source projects, analyzed over 9,500 ESLint

configuration files, and surveyed 337 developers from the JavaScript

community.

Our results provide practitioners with reasons for using linters in their

JavaScript projects as well as several configuration strategies and their

advantages. We also provide a list of linter rules that are often enabled

and disabled, which can be interpreted as the most important rules

to reason about when configuring linters. Finally, we propose several

feature suggestions for tool makers and future work for researchers.

1 INTRODUCTION

An important part of software development is to maintain
code by keeping it readable and defect free. This is where
static analysis tools can step in: they automatically examine
source code and look for defects or any issues related to best
practices or code style. These tools aid in finding issues and
refactoring opportunities early in the software development
process, when they require less effort and are cheaper to
fix [1], [2]. Due to their many benefits, static analysis tools
have become commonly used in software development [3].

There is an abundance of available static analysis tools,
ranging from academic research prototypes to tools widely
used in industry. These tools vary in functionality, use di-
verse approaches for static analysis and can be used for dif-
ferent languages [4]. Some tools focus on coding styles, code
smells or general maintainability issues, while others try to
identify faults in code, perhaps examining specific types of
defects such as related to security or concurrency [5], [6].
One type of a static analysis tool is a linter, which often uses
a relatively simple analysis method to catch non-complex
errors and violations of coding standards.

In fact, a good amount of research has already been
conducted on general static analysis tools, including how
developers use and perceive these tools [7], [8], [6] as well as

how such tools are configured in the wild [9], [3]. Research
already showed that using static analysis tools does not
come without its challenges. They are known to produce
a high number of warnings which includes many false
positives [8], [10]. Moreover, some warnings need not to
be relevant for all projects and can therefore be perceived
as false positives when tools are not configured appropri-
ately [11], [2], [6].

Most of the current research does not focus on JavaScript,
an evergrowing language with a vibrant community.
JavaScript has become a very popular programming lan-
guage in the last years and in fact has been the most
commonly used language on GitHub since 2013 [12]. It is
known as the language of the web and has recently also
become popular for server side development, serving as
a general-purpose language. A notable characteristic of
JavaScript is its dynamic nature, which is unlike other pop-
ular programming languages such as Java. For example, it
allows for generating new code during program execution,
dynamic typing, and use of undeclared variables.

Partly due to its dynamic features, JavaScript is consid-
ered an error-prone language [13]. For example, it can be
easy to introduce unexpected program behavior with simple
syntactic or spelling mistakes, which can go unnoticed for
a long time [14], [15]. A linter can therefore be especially
useful for JavaScript to detect these types of mistakes. Ad-
ditionally, as JavaScript has become widespread, it becomes
more important to have tool support that aids developers in
keeping JavaScript code maintainable, secure, and correct.
In recent years, linters have increasingly become commonly
used tools for dynamic languages such as JavaScript [3].
We thus hypothesize that our current knowledge about how
developers make use of static analysis tools may not directly
apply to the JavaScript ecosystem.

This study therefore aims at complementing the exist-
ing body of knowledge by understanding why and how
developers use static analysis tools in real world JavaScript
software systems, and to see which challenges they face.
Furthermore, linters need to be incorporated to the devel-
opment process and configured appropriately for a project.
This can be done in different ways and can be a demanding
process when there are many rules to choose from. We in-
vestigate what methods developers use to configure linters
and how they maintain those configurations.

2

We use a mixed methods research approach which in-
volves collecting a combination of qualitative and quanti-
tative data [16]. We choose ESLint [17] as a case study as
it is currently the most popular JavaScript linter [18]. First,
we apply a qualitative method, inspired by Grounded The-
ory [19], to conduct and analyze interviews with 15 devel-
opers from reputable open source software (OSS) projects.
These developers were identified to be actively involved
with enabling and configuring ESLint. Next we perform
a quantitative analysis on the usage and configurations of
ESLint in 9,548 JavaScript projects on GitHub. Finally, to
challenge and generalize the previous two analyses, we sur-
vey 337 developers from the JavaScript community. We ask
them about their experiences and perceptions with using
linters, employing the previously acquired knowledge as
input to a questionnaire.

This paper extends our previous work “Why and How
JavaScript Developers Use Linters” that appeared at the
32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2017 [20]. Our previous work
included a qualitative analysis of interviews with JavaScript
developers, which is now extended with an extensive anal-
ysis of linter configurations in OSS projects, along with a
survey distributed in the JavaScript community.

The main contributions of this paper are:

• Perceptions on the usage of linters, after interviewing
15 developers that have actively used and configured a
linter in reputable OSS projects.

• An extensive analysis of linter configurations in over
9,500 JavaScript projects on GitHub, shedding light on
the most common linter configuration patterns.

• A study on the experiences and perceptions of 337
JavaScript developers on linters and specific ESLint
rules, via a survey distributed in the JavaScript com-
munity.

2 BACKGROUND: LINTERS FOR JAVASCRIPT

Well known and much researched static analysis tools in-
clude FindBugs [21], CheckStyle [22] and PMD [23]. These
tools all have a different focus. For example, FindBugs de-
tects numerous defects, such as infinite recursive loops and
references to null pointers, CheckStyle is focused towards
following coding standards, and PMD detects both code
style violations and possible defects. JavaScript linters work
in a similar fashion where the best known and most popular
ones include ESLint, JSHint [24], JSCS1 [25] and, the first
linter created for JavaScript, JSLint [26].

ESLint is the newest of these and has gained much
popularity in the last two years in the JavaScript community.
ESLint was designed to be an extremely flexible linter that
is both easily customizable and pluggable. ESLint provides
236 base rules2, grouped in seven categories designed to
help developers understand their purpose: Possible Errors,
Best Practices, Strict Mode, Variables, Node.js & CommonJS,
Stylistic Issues, and ECMAScript 6. In Table 1, we provide
the description and the number of rules in each of these
categories. Example rules include no-eval (Possible Errors),

1. JSCS is no longer supported and the maintainers have joined forces
with ESLint as of April 2016.

2. As of release v3.13.0 in January 2017.

which disallows the use of the notorious eval function in
JavaScript [27], and indent (Stylistic Issues), which enforces
consistent use of indentation. The description of each rule
and category can be found in the tool manual [28]. Develop-
ers are required to specify which of these 236 rules should
be turned on, or instead use publicly available presets. A
preset is a set of rules that are made available to the public,
such as the ones from Airbnb [29], Standard [30], or even
ESLint’s recommended settings [28].

ESLint does not come with a configuration that is en-
abled by default, and is instead extremely customizable [31].
There are several different ways to configure rules for
ESLint: 1) specifying individual rules in a configuration
file, 2) specifying individual rules with comments in a file
containing code, 3) using a preset, and 4) using a plugin
(additional rules that can be created by any developer and
plugged directly into ESLint).

When specifying an individual rule, it is possible to
disable a rule (with the settings off or 0) or to enable it,
either as a warning (warn or 1) or as an error (error or 2).
The rule is turned off when applying off and will have no
effect whatsoever3. When a rule is set to warn, each instance
of the rule being broken will appear in the output when
running the linter. Lastly, error will have the same effect as
warn except it gives an exit code of 1, meaning it can break
the build when ESLint is a part of the build process.

Some rules have more detailed options that further
specify how the rule is applied. As an example, the rule
indent can have the setting tab to enforce the usage of
tabs for indentation, or the setting 2 to enforce using two
spaces. Even further customization is possible with this
rule by enforcing explicit indentation settings for different
statements and expressions, such as switch statements or
variable declarations.

We chose ESLint as the linter to be analyzed in this study
as it is the most commonly used linter in the JavaScript
community, with over 72M downloads in npm (JSHint,
the second most popular, has approximately 56.5M down-
loads4) [18]. Of all JavaScript linters, ESLint also has the
most active community around it where it has the most
contributors on GitHub, highest number of commits and
frequent releases. In addition, it offers the greatest amount
of functionality and flexibility out of all well known lin-
ters, thus not excluding nor focusing on any specific type
of linting such as only analyzing styling issues or solely
identifying possible errors.

3 METHODOLOGY

The goal of this study is to understand how developers use
JavaScript linters in real world software systems as well as
the challenges that they face. To that aim, we propose the
following research questions:

• RQ1: Why do JavaScript developers use linters?
• RQ2: Which linter configuration strategies do develop-

ers adopt in their projects?
• RQ3: What linter rules do developers commonly enable

and disable?

3. Disabling rules often occurs when projects make use of a pre-
defined preset and developers want to disable some of its rules.

4. Measured in May 2017.

3

Category Description Available rules

Possible Errors Possible syntax or logic errors in JavaScript code 31
Best Practices Better ways of doing things to avoid various problems 69
Strict Mode Strict mode directives 1
Variables Rules that relate to variable declarations 12
Node.js and CommonJS For code running in Node.js, or in browsers with CommonJS 10
Stylistic Issues Stylistic guidelines where rules can be subjective 81
ECMAScript 6 Rules for new features of ES6 (ES2015) 32

Total 236

TABLE 1: ESLint rule categories with ordering and descriptions from the ESLint documentation [28]

• RQ4: What are the challenges in using a JavaScript
linter?

To answer these research questions, we perform three
different steps that involve three different sources of in-
formation: first, we interview developers with the goal of
understanding why and how they use linters as well as
the challenges they face; next, we mine existing JavaScript
open source repositories to analyze their linter configura-
tions; finally, to generalize the results obtained in the inter-
views, and to further explain what we observed in GitHub
repositories, we survey developers from different JavaScript
communities. Each step is described in the following sub-
sections.

3.1 Part I. Interviewing JavaScript Developers

To answer RQs 1, 2, and 4, we followed a qualitative
research approach in our study [16], inspired by many
concepts of classic Grounded Theory [19], [32] where the
aim is to discover new ideas emerging from data instead
of testing any preconceived hypotheses. We also followed
Stol et al.’s guidelines [33] that were derived after a system-
atic literature review on the usage of Grounded Theory in
Software Engineering.

With an open mind we wanted to understand how
and why developers use a linter for JavaScript. For that
purpose we collected data by conducting 15 interviews with
developers from reputable JavaScript projects on GitHub.
We explain the process of conducting these interviews in
Section 3.1.1. The interview recordings were manually tran-
scribed and analyzed with continuous memoing and coding,
which is further described in Section 3.1.2. Finally, we detail
our participants in Section 3.1.3.

3.1.1 Interview Procedure and Design

The interviews were conducted in a semi-structured fash-
ion as it is commonly done in software engineering re-
search [34]. With this method, specific questions are com-
bined with open-ended questions to also allow for un-
expected information in responses. Hove and Anda [34]
encourage interviewers to talk freely, to ask relevant and
insightful questions and to follow up and explore interesting
topics. These guidelines were followed while performing
the interviews. Each interview was built upon a list of 13
standard questions.

To begin with, participants were asked broad questions
which often provided an opportunity for further discussion.
Example questions include: Why do you use a linter in your
project? and How do you create your configuration file and

maintain it?. Other questions were more specific, such as:
Do you experience false positives? if so, which?. The complete
list of questions is available in the paper appendix and in
the extended online version [35].

Interviewees were asked to participate in an online video
call. The interviews were recorded with permission and
lasted from 16 to 60 minutes, with an average duration of
35 minutes. Three out of the 15 participants were not able
to participate in an online call and instead received a list of
questions via e-mail and provided written responses.

3.1.2 Analysis

Continuously after each interview, memoing was conducted
to note down ideas and to identify possible categories in the
data. The interview recordings were then ultimately man-
ually transcribed. First, we performed open coding where
the transcripts were broken up into related sentences and
grouped together into the three main topics that drove
our interviews (why and how developers use linters and
the challenges they face). Secondly, we performed selective
coding where more detailed categories were identified which
became the topics we present in the Results (Section 4). In
this process we took advantage of the memos that had been
written over the course of conducting the interviews. The
complete list of codes can be found in the appendix [35].

3.1.3 Interview Participants

In order to find potential participants for the interviews we
examined the most popular JavaScript projects on GitHub,
according to their number of stars in December, 2016. We
conjecture that by observing the top projects on GitHub we
can obtain an insight into active and reputable projects with
many contributors, providing more interesting and relevant
information about the usage of linters. We detected projects
that 1) use ESLint, 2) have some custom configurations
(e.g., not only using a single preset) and 3) where one or
two contributors could be identified that have been more
involved than others in editing the configuration file. We
then sent an e-mail to one or two main contributors of
the ESLint configuration file of the corresponding project,
briefly explaining the purpose of the study and asking for
a short interview. These requests were sent out in batches
of 5-10 e-mails (starting with the most popular projects)
as it was difficult to predict how many positive replies we
would receive. Batches were sent out until we had received
a sufficient number of positive replies back, where the goal
was to perform at least 10 interviews, or until we were
satisfied with the amount of information we had collected.

4

TABLE 2: All participants’ codenames, number of months
using ESLint in the corresponding OSS project and the range
for the project placement in the top 120 JavaScript projects
on GitHub

Code Months Placement

P1 25 11-20
P2 22 11-20
P3 5 21-30
P4 14 21-30
P5 8 31-40
P6 7 41-50
P7 1 61-70
P8 23 71-80
P9 5 81-90
P10 3 81-90
P11 4 91-100
P12 16 91-100
P13 15 111-120
P14 24 111-120
P15 22 111-120

TABLE 3: Experience of participants, showing the lowest
and highest answers along with the average of all answers

.

Low High Average

Years as developer 3.5 27 11.8
Years as JavaScript developer 1.3 20 8.9
Years in project 0.6 5.0 2.7
Project age 1.0 8.0 5.1

A number of 120 projects were eventually examined
where 37 requests were sent out. These resulted in 15 in-
terviews being performed, thus with a response rate of 40%.
The information from these 15 interviews was considered
enough to provide us with theoretical saturation [19]. Table 2
shows the developers who participated in the interviews
where, in order to keep the participants’ anonymity, they
are given names starting with the letter P and a number
from 1 to 15. The months each corresponding project had
used ESLint is also displayed5, where most projects had
migrated from another linter such as JSHint. The table
also shows the placement of the projects in the top 120
JavaScript projects on GitHub within a range of 10 projects
each (to maintain the participants’ anonymity). Participants
are ordered by the projects’ number of stars on GitHub, and
not by the order we interviewed the developers. A summary
of the participants’ experience is shown in Table 3 where
the average experience as a professional software developer
was 11.8 years. Among the 15 participants, four are founders
of the project, seven identified themselves as lead or core
developers and four are project maintainers.

3.2 Part II. Mining Linter Configurations in Open
Source Systems

To answer RQ3, we performed a quantitative analysis to
know exactly how developers configure their linters and
what the most common configuration patterns are. For
this purpose, we analyzed 9,548 ESLint configuration files
extracted from 86,366 JavaScript projects on GitHub. We an-
alyzed how much configurations are applied by developers,

5. As of February 2017.

whether they rely more on pre-made settings (presets) or
their own configurations, and which types of rules are most
commonly used.

3.2.1 Data Collection

To collect projects we chose GitHub as a data source due
to the high number of available JavaScript projects and the
convenience of retrieving the data [36].

The original data selection consists of all JavaScript
projects on GitHub that have at least 10 stars and are not
forks of other projects. The purpose of giving a star to
a project on GitHub is to keep track of projects that a
user finds interesting or simply to show appreciation to a
repository [37]. By only including repositories with at least
10 stars the intent is to analyze “real” software projects.
Kalliamvakou et al. [36] showed that a large portion of
GitHub repositories are not for software development but
for other functions such as for experimental or storage
purposes. It is expected that repositories that were created
for experimentation or testing purposes only, or pet projects
that were started and abandoned, will not receive 10 stars
from other users. Furthermore, forks of other projects were
excluded to avoid having duplicate configuration files in
the dataset. This resulted in 86,366 projects being collected
to analyze.

To retrieve data on these projects, we used Google Big-
Query [38] on the most recent GHTorrent [39], [40] dataset
on GitHub projects from April 1st, 2017. The precise SQL
query that was used to obtain the data can be found in our
online appendix [35].

After retrieving the 86,366 project entries, additional
filtering was performed on the dataset. First of all, there
were examples of duplicate entries in the dataset where they
point to the same GitHub API URL for the project. This can
happen when the project name has been modified or when
the owner has been changed for a repository, in which case a
new entry is created in the GHTorrent dataset. The duplicate
entry that had a more recent date for its last commit was
kept in the analysis. This filtering resulted in 1,596 projects
being removed from the dataset.

Secondly, even though the query includes a statement to
not include deleted projects, some repositories could not be
accessed. In seven cases, an HTTP error status code of 451
(unavailable for legal reasons) was returned when trying to
access the repository. More commonly, or in 871 cases, the
repository’s URL could not be found, returning an HTTP
status code of 404. Due to this filtering, a number of 878
additional projects could not be analyzed, resulting in a final
number of 83,892 possible projects.

Besides removing forked, duplicated and deleted
projects, no additional filters were applied such as regarding
project size or activity. We decided not to filter the projects
by a minimum size, as the intention was to analyze all dif-
ferent types of JavaScript projects: big or small, collaborative
or personal. However it could therefore be the case that
the resulting dataset includes projects that are not suited to
ever use a linter, e.g., a repository that is not a software but
simply a collection of scripts or even tips for developers.
Additionally, these could be projects that have not been
active for several years, and perhaps even not active since
ESLint was created in June 2013.

5

3.2.2 Extracting the Linter Configuration

While we only analyze the linter configurations for ESLint,
we note down the usage of other linters as well, namely:
JSHint, JSCS and Standard. For each linter the tool searches
for a configuration file with a specific known name and
file ending. The configuration file is typically located in
the main directory of a project (as it will then be used for
the whole project), so in order to save execution time and
to simplify the tool, it is the only location where the tool
searches for the file.

If a configuration file (either .eslintrc or package.json) is
found for ESLint then it is retrieved. For the other linters the
tool merely notes down their presence in order to measure
their prevalence.

With the configuration file in hand, our tool extracts
all the relevant information about enabled and disabled
rules. We make the tool available for download in our
appendix [35].

3.2.3 Dataset Characteristics

The sizes of the projects in GHTorrent are expressed in
kilobytes (KB) where the first, second and third quartiles
are the following: 126 KB ; 364 KB ; 1,928 KB. Moreover,
55,9% of the projects are 500 KB or smaller.

For the last commit date of the projects, 7.4% of the
projects had their last commit before ESLint was first re-
leased (v0.0.2) in June 2013 and 35.4% of the projects before
the first major release (v1.0.0) in July 20156. Thus when an-
alyzing the prevalence of linter usage in JavaScript projects
or even more specifically, ESLint usage, some projects in the
dataset are less likely to have used a linter. Moreover, when
manually inspecting the dataset, we found examples of pro-
gramming guides (example at [43]) and tutorials (example at
[44]). Nevertheless, these types of projects were not filtered
out as we wanted to avoid making any assumptions about
the dataset and for it to be as broad and general as possible.

Table 4 shows the estimation of the usage of four linters
in our dataset, where ESLint was the most commonly used
linter followed by JSHint. We observe a similar pattern for
npm, where ESLint is also the most downloaded linter,
followed by JSHint, but with a greater difference [18]. In
total 20,292 out of the 83,892 of the analyzed projects, or
24.2%, used a linter. We also show the number of projects
that use more than one linter in Table 5. Only 9.1% of the
projects that use a linter, use two or more linters, where 4.3%
use ESLint and another linter. The percentage of projects
using any of these linters appears to be higher for those
that have more stars. Table 6 shows the number of projects
that use any of these linters while observing only the top
starred projects, such as the top 10 or top 1,000 projects.
The percentage of projects using a linter steadily decreases
when observing more projects, going from 70.0% for the top
10 projects to 28.5% for the top 30,000 projects.

3.3 Part III. Surveying Developers

To generalize the findings we obtained from the interviews
and to further explain the results we obtained after mining

6. The exact dates that were used for this comparison were 08:00 June
30th 2013 [41] and 08:00 July 15th 2015 [42].

Linter Projects with linter % of all projects

ESLint 9,548 11.4%
JSHint 9,447 11.3%
Standard 1,651 2.0%
JSCS 1,578 1.9%

Total 20,292 24.2%

TABLE 4: Estimation of the number of projects using ESLint,
JSHint, Standard and JSCS in our dataset

Linters used Number of projects % of all projects

1 18,450 22.0%
2 1,753 2.1%
3 88 0.1%
4 1 0.0%

Total 20,292 24.2%

TABLE 5: Estimation of the number of projects using multi-
ple linters in our dataset

configuration files on GitHub, we surveyed 337 developers
from the JavaScript community about their perceptions and
experiences with using linters. The survey was built upon
the previously acquired knowledge where the information
was used as input to both open and closed questions.

3.3.1 Survey Design

This survey was constructed under guidelines from both
social sciences and software engineering research, e.g., from
Fink [45], De Vaus [46] and Kitchenham [47]. A shortened
version of the survey is present in the paper appendix and
a full PDF version is available online [35].

We mainly took advantage of closed questions to make
the survey more reliable and more compelling for partic-
ipants to complete. To minimize the risk of forcing opin-
ions on participants, each closed question, where possible,
contained an option where the user could write his or her
own response, along with having a neutral option in ordinal
questions. Moreover, to minimize the risk of bias due to the
order of options in the survey, the options were randomly
shuffled for each participant, wherever possible. To choose
the options for the closed questions, we used input from the
results of the two previous data sources.

Early on in the survey, participants were asked if they
had ever used a linter in a project. If the answer to that
question was negative, they were only presented with two

Top projects Projects with linter % of top projects

10 7 70.0%
100 65 65.0%
300 185 61.7%

1,000 535 53.5%
3,000 1,371 45.7%
5,000 2,082 41.6%

10,000 3,675 36.8%
20,000 6,306 31.5%
30,000 8,554 28.5%

Total 20,292 24.2%

TABLE 6: Estimation of the number of projects using a linter
in our dataset

6

additional questions, asking how important they consider a
linter and why they have never used a linter. Other partici-
pants received questions on the usage of linters, including a
question asking which linters they had used. If a participant
had not used ESLint in any project, he or she was not
presented with questions that had specifically to do with
ESLint rules. Instead they (and also those that had used
ESLint) received more generic questions about why they use
a linter, what methods they use to configure it and which
challenges they have faced.

One of the main goals of the survey is to collect the
perceptions of participants on the importance of individual
ESLint rules. For this we derive a set of 14 rules in the
four most important ESLint categories, as identified by the
interviewees and in project configuration files, except for the
Variables category where there are only 12 available rules.
These sets were created with the following criteria: First,
we select the five most commonly enabled rules where a
preset is not used (according to our previous analysis) and
five where a preset is also used. Some rules can appear in
both these sets where additional rules are then chosen. If an
even number of additional rules were needed, one rule was
added from each list of commonly enabled rules (e.g., the
sixth top enabled rule without a preset and also the sixth
top enabled rule with using a preset). If an odd number of
additional rules were needed, the last chosen rule is the next
rule of either set that has been more commonly enabled. The
same process was applied to select the remaining four rules,
except this time observing the most commonly disabled
rules, consisting of two rules where a preset is used and two
where no preset is used. Like with many other questions, the
order of the rules was randomized, along with the order of
the questions themselves as they appeared for each of the
four categories.

Before publishing the survey we performed pilot studies,
but rather in the nature of moderating focus groups. More
specifically, six participants with different characteristics
were recruited to take the survey in individual sessions with
the first author. The pilot participants were colleagues of
the authors that were known to have used JavaScript, with
different levels of experience. The participants were asked
to read each question out loud and to express their thoughts
and understanding of the text. They were especially encour-
aged to speak out if they thought any questions were un-
clear or vague and to express whether answer options were
appropriate. Furthermore, before answering the questions,
the pilot participants were asked to read the introductory
text to evaluate how appropriate and motivating it was. At
the end, we discarded the data generated in the pilot studies.

3.3.2 Target Population

The survey was specifically directed towards JavaScript
developers that have used a linter, and in particular those
that have used ESLint, as they can answer more of the
survey’s questions and have more knowledge on the topic.
We applied convenience sampling where the survey was
advertised in several places on the web where it was likely
to find members of the target population. More specifically,
the survey was distributed in the following four locations
(the references point to the direct post where the survey
was promoted):

15

268

44

10Twitter

JS.is

Echo JS

JS Reddit

0 100 200 300

Fig. 1: Number of full responses from each location where
the survey was distributed.

1) JS.is. An Icelandic JavaScript user group on Facebook
with 789 members [48]7.

2) JS Reddit. A “subreddit” about JavaScript on the popu-
lar community-driven social news site reddit.com with
111,649 subscribers [49].

3) Echo JS. A community-driven news site about
JavaScript development [50]8.

4) Twitter. A news and social networking site [51].

Distributing the survey in these four locations resulted
in a total number of 337 completed responses, as shown
in Figure 1. Furthermore, additional 476 partial responses
were received, which we did not include in the analysis.
The completion rate is therefore 42.0%. The survey was first
posted on the web on June 1st and eventually closed on June
14th, thus being available for 14 days.

3.3.3 Analysis of the Survey Results

We apply descriptive statistics to report the findings of the
closed questions. For the open questions, further manual
analysis was needed. There are eight questions in the survey
that are completely open (essay questions) but many more
that are closed but additionally contain an open answer
possibility to add an extra option. Similarly as when pro-
cessing the interviews, an inductive method [45] was used
where the main themes of each question were identified as
they emerged when processing the answers. Each identified
category received a code and each answer was labeled with
at least one code. When needed, the coding was conducted
on different levels of detail, where broad categories were
identified which were then sub-classed into more detailed
ones [46]. In cases where answers described more than one
item, e.g., listing several different reasons for something, it
was decided to give multiple codes instead of choosing only
one and then possibly disregarding parts of an answer. The
derived analysis can be found in our online appendix [35].

7. All information about the four resources was collected on June 14th
2017.

8. This reference does not contain a direct link to the promotion post
as it is not made accessible by the Echo JS website.

7

38.4%

6.9%

6.3%

6.0%

4.2%

4.2%

3.3%

30.3%All others

France

Netherlands

Iceland

Canada

United Kingdom

Germany

United States

0 10 20 30 40 50

Fig. 2: The country of residence of participants

3.3.4 Participants’ Characterization

Nearly all of the survey’s participants are male, or 96.4%,
with only four female participants, accounting for 1.2%. One
participant chose Gender Variant/Non-conforming while
the rest preferred not to answer the question. The respon-
dents’ country of residence covers 53 different countries
where more than half of all participants, or 69.7%, come
from seven dominating countries as shown in Figure 2, most
commonly from the United States.

A large majority of the participants identified their pri-
mary role in software development as a developer, or 86.1%,
as shown in Figure 3. Other noticeable roles are team leader
(6.3%) and student (4.8%).

The experience of the participants in software develop-
ment and with JavaScript is shown in Figure 4. The average
experience of the participants in software development is
8.0 years, and their average experience in working with
JavaScript is 5.8 years. All participants claimed to have used
JavaScript in the last year and 96.1% reported that it was
one of their main programming languages.

The majority regularly works with commercial software
(87.0%) while around half of the participants work with
open source software (50.6%) (some participants chose both
options). Finally, 93.7% claimed to have used a linter in
a JavaScript project. We thus consider that our survey
achieved our targeted population. The 21 participants that
had never used a linter were not presented with the greater
part of the rest of the survey.

4 RESULTS

In the following we present our results on why and how
JavaScript developers use linters, along with the challenges
that they face.

4.1 RQ1. Why Do JavaScript Developers Use Linters?

We first introduce the six reasons to why JavaScript devel-
opers use linters, which we derived from the 15 interviews.
Each of the following sub-sections represent the reasons that
emerged from our qualitative analysis. In addition, in Fig-
ure 5, we present the survey participants’ agreements with

86.1%

6.3%

4.8%

1.2%

0.6%

0.6%

0.3%Designer

Other

Project manager

Manager

Student

Team leader

Developer

0 30 60 90

Fig. 3: The primary roles of participants in software devel-
opment

the proposed reasons aforementioned9. Sections are ordered
by their importance, according to the survey participants.

4.1.1 Maintain Code Consistency

Every single interview participant mentioned that one of
the reasons why they use a linter is to maintain code consis-
tency. Moreover, 97% of our survey respondents also agree
or strongly agree, and this was in fact the most agreed topic
in the entire survey (Figure 5, Maintain code consistency).

Having a consistent code style in a project is beneficial
for many reasons, one being that it improves the readability
and understandability of the code. As an example, P10
reported that inconsistent code, such as having different
spaces and semi colons, makes the code very difficult to read
and understand since in those cases these inconsistencies
consume all his attention. This might even be especially
relevant in the case of JavaScript since it is a language where
the developer has substantial freedom in how to write the
code (P12, P14): “With JavaScript you can write code in many
ways, and it can be hard to read other people’s code if you write it
in a different way.” (P12).

This topic relates mostly to the category Stylistic Issues
where there are many different rules available to enforce
specific code styles. Even though every participant men-
tioned this matter in the interviews, it does not seem to
be of high priority for them. When participants were asked
which category of rules they thought were the most and
least important ones, two considered Stylistic Issues to be
the most important category while 10 thought it to be the
least important one.

Some participants were bothered by the fact that choos-
ing which style to follow is a very subjective decision and
developers generally have very different opinions on how
code should be written (P1, P3, P5): “Stylistic Issues - they’re
all opinion based.” (P5). On the other hand, four participants
explained that Stylistic Issues was indeed the least important
category simply because other categories can catch bugs
which is far more important (P2, P4, P9, P13). This category

9. The reasons presented in Figure 5 have been shortened to fit in the
figure, and two of those reasons have been combined into one section in
the text (namely, Automate Code Review and Avoid Giving Negative
Comments).

8

2

14

26

35

32

39

31

23

18

11

22

8

5 5

2

22

4

2

4

2

10

2
1 1

5

2

0

5

10

15

20

25

30

35

40

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Years of experience

N
u

m
b

e
r

o
f

p
a

rt
ic

ip
a

n
ts

(a) Experience in software development

2

24

47
49

37

48

26

19

15

8

18

2

5

1 1

14

3
2

1

4

1
3

0

5

10

15

20

25

30

35

40

45

50

−2 0 2 4 6 8 10 12 14 16 18 20 22 24
Years of experience

N
u

m
b

e
r

o
f

p
a

rt
ic

ip
a

n
ts

(b) Experience with using JavaScript

Fig. 4: Participants’ experience in software development and with JavaScript. Axes show years of experience and number
of participants with the corresponding answer.

2%

3%

6%

13%

12%

42%

39%

97%

93%

82%

68%

64%

31%

27%

2%

4%

12%

20%

24%

28%

35%

Prevent errors

Avoid complex code

Maintain code consistency

Automate code review

Avoid negative comments

Save discussion time

Learn about JS

100 50 0 50 100

Fig. 5: Level of agreement with reasons as to why the partic-
ipants have used a linter. Bars show Strongly Disagree, Dis-
agree, Neutral/Not Applicable, Agree, and Strongly Agree,
respectively. (N = 309)

thus still provides a lot of value and they would not want to
omit it: “They make [the code] harder to read but they just don’t
cause issues as much.” (P13).

4.1.2 Prevent Errors and Augment Test Suites

Using a dynamic language such as JavaScript is not free
of risks: “Without a linter [JavaScript] is a very dangerous
language. It’s very easy to make a very big problem and then spend
30 minutes to find it.” (P7). The majority of the interview
participants reported that the number one reason as to why
they use a linter is to catch possible errors in their code:
“There are things which are easy mistakes to make and are obvious
errors and I think those provide the highest value. Because you
have a one to one correspondence between times that a rule catches
something and bugs that you’ve prevented.” (P4). This is also
inline with the results of our survey, as 93% of participants
agree or strongly agree that this is an important category of
issues (Figure 5, Prevent errors).

More explicitly, when asked about the most important
category of warnings in ESLint, 10 interviewees answered
that Possible Errors was the most important one (P1, P2, P3,
P4, P5, P7, P8, P9, P11, P12): “Possible Errors is the #1 most
important, the biggest reason to use a linter is to catch errors
the programmer missed, before they become a runtime bug.” (P9).
These rules can be especially useful for bugs that are hard
to find and to debug (P15).

A special category of bugs in JavaScript has to do with
the declaration of variables because of the dynamic nature
of the language. Two of our interview participants reported
that Variables was the most important category (P10, P15).
When a developer e.g., mistypes a variable or uses the
wrong variable name, the linter can catch it and warn the
developer: “It’s very easy to write JavaScript code that has errors,
you might use a variable that hasn’t been declared or you might
have a typo in your variable name and because JavaScript is often
not compiled, you’ll only discover that much later when you run
the code.” (P1).

Nine participants (P1, P3, P4, P5, P8, P10, P12, P13,
P15) mentioned the importance of the rule no-unused-vars
(identifies variables that have been declared but never used)
and five (P1, P3, P5, P13, P15) mentioned no-undef (identifies
variables that have not been defined) which are both useful
to identify mistyped variables. In addition, no-dupe-keys and
no-dupe-args, two duplication rules for keys in objects and
names in function parameters, were also mentioned by P3,
P4, P8, and P15.

While linters are being used to catch errors in code, there
is another popular and widely accepted method to catch
bugs which is to write unit tests. It is therefore interesting
to know how these two methods are combined for this
purpose. Some participants mentioned that they use a linter
on top of unit testing as a complementary approach to the
regular tests (P1, P3, P8). P1 and P8 pointed out that unit
tests commonly do not cover all code, which can result in
problems being easily missed: “You need to seek all possible
cases for unit tests, but sometimes it’s very hard, and of course in
all projects, unit tests don’t cover all possible cases. So this is why

9

a linter is a second protection line.” (P8). Furthermore, the tests
can also take substantial time to run and thus the linter can
be seen as a much faster version of smaller subtests (P1).

On the other hand, participant P4 believes that unit
tests and manual tests can usually cover all errors, so
even though ESLint would not be used, the errors would
eventually be caught by the various tests that are applied.
However, P4 says that the linter can catch them earlier in
the process and is also better at identifying code that is
ambiguous.

4.1.3 Save Discussion Time

Having a set of rules regarding code style can also save time
that is spent on discussing different styles and opinions (P2,
P4, P5, P6, P7, P10). 82% of our survey participants also
agree or strongly agree (Figure 5, Save time on discussions).

In big projects with many contributors there can be
many pull requests in circuit and discussions can occur
where developers disagree on a certain style that is used. P2
explains that discussing code styles is not worth the effort
when there are other more important things to discuss. He
further describes that comments regarding code style on
pull requests can be different depending on which devel-
oper is conducting the review. In some cases, contributors
can therefore receive contradictory advice if no rules exist
that everyone goes by.

The discussions about code style that can occur in pull
requests or in issues can also even lead to arguments be-
tween people since developers have very different opinions
on the matter (P1, P2, P3, P5). All this can be avoided by
deciding upon a set of rules to begin with: “It’s almost like a
code contract. There may be things that each of you have assumed
and you don’t know what your own assumptions are, and what
could possibly lead to conflict down the road, so you have a written
contract to try to address everything up front.” (P7).

4.1.4 Avoid Ambiguous or Complex Code

It can be difficult to understand code correctly where the
intention is not perfectly clear. The category Best Practices
tries to tackle this problem where, according to its docu-
mentation [17], it contains rules that relate to better ways
of doing things to help developers avoid problems. While
only one participant recognized this category to be the most
important one (P6), others identified it as the second most
important (P4, P8, P13, P15). In our survey, 68% of partici-
pants agree or strongly agree that avoiding ambiguous and
complex code is important, while 20% were neutral, and
13% disagree or strongly disagree (Figure 5, Avoid complex
code).

Some of these rules try to prevent code from being
misunderstood: “It helps enforce code which says what it does,
so that it’s easy to understand.” (P4). In some cases code is
actually doing something else than it appears to and a linter
can help to detect these situations (P2, P4, P6). For exem-
plary beneficial rules, participants mentioned restricting the
usage of switch statements by forbidding the use of ”fall
throughs”10 (P4), and disallowing unreachable code (P2, P3,
P6, P15).

10. A ”fall through” occurs when all statements after a matching
case are executed until a break statement is reached, regardless if the
subsequent cases match the expression or not.

4.1.5 Automate Code Review

Several participants mentioned that they use the linter to
avoid having to manually review the code style in pull
requests (P1, P2, P3, P4, P8, P11, P14, P15). Furthermore,
it saves time for the contributor of the pull request since he
or she receives much faster feedback from a linter than from
a person that would conduct a review (P4). In the survey,
we see that 64% of participants agree or strongly agree with
the usage of linters for improving code reviews. However,
only 12% disagree or strongly disagree with it (Figure 5,
Automate code review).

Maintaining code consistency with a linter can also make
pull requests much easier to review. When there is a set of
stylistic rules in a project to which everyone has to conform,
all pull requests have minimal stylistic changes. If there are
no rules, there can be multiple code changes of e.g., only
whitespaces or line formatting which might be caused by
different editors being used. This can make it difficult to see
the actual changes that were done in the contribution since
they are hidden by these formatting changes (P3, P12).

In addition, when receiving comments from a code re-
view, developers can sometimes be sensitive to criticism
(P2, P8, P11). This can particularly be the case for new
developers: “If you tell to a new developer that he or she made a
mistake, it will be very sensitive. He may feel very uncomfortable
because somebody found a mistake in his work. But if a linter tells
you about a mistake, it is not a problem, because it’s not personal.”
(P8). A new developer might also look up to the person
that is conducting the code review which can make the
criticism especially dispiriting (P2). Having a linter doing
this job can also contribute to people feeling more equal in
a project if there is no senior person telling others to do
things differently (P11). However, this does not seem to be a
common reason for using a linter as only 27% of the survey
participants agree or strongly agree with using a linter as a
way to avoid giving negative comments to other developers
(Figure 5, Avoid giving negative comments).

4.1.6 Learn About JavaScript

ESLint can be used to learn about new JavaScript features
or new syntax. P12 used ESLint in helping him to learn the
new syntax of ECMAScript 6 (ES6): “When I switched to ES6, I
used it as an educational tool. It’s so easy to continue to use var for
variable declarations. I used ESLint very strictly to enforce ES6
syntax, otherwise I would probably still use ES5 when I write
code. But with the help of the linter it forces you to switch to ES6,
which is a good habit.” (P12).

Even though linters can be beneficial to all JavaScript
developers, they can be especially helpful for new devel-
opers, either those who are new to a project or those who
are new to programming in general (P6, P7, P9, P13, P14).
Contributors in OSS projects usually have different levels of
experience and using a linter can help with “leveling the play-
ing field and helping people to understand what’s actually going
on” (P13). This particular example came from a developer
that had been working with students who were accustomed
to getting errors from the Java compiler, telling them what
they can and can not do. However when using JavaScript,
one can run code that includes various coding mistakes and
not get notified about it (P13).

10

Interestingly, our survey participants did not fully agree
with using linters as a way to learn JavaScript: only 31%
of them agree or strongly agree, whereas 42% disagree or
strongly disagree with it (Figure 5, Learn about JS).

4.1.7 Why Not to Use a Linter?

There were 21 survey participants that had never used
a linter in a JavaScript project. These participants only
received two additional questions in the survey, including
why they do not use a linter. Three participants explained
that they simply do not need to use a linter, e.g., as they
already use an editor formatter or rather rely on TypeScript
for typing analysis and on team discipline and code reviews
for code quality. Two participants did not find it sufficiently
beneficial to use a linter since it can complicate the build
process, can require demanding configuration, and it can
increase the cost of the development life cycle. Two others
did not have sufficient knowledge about linters, one was
not in charge of the repository settings and three simply did
not know why they had never used a linter. Other reasons
given once were: there is too much effort involved in setting
up a linter in a big project, it is difficult to integrate the linter
with some IDEs and that other tasks have taken precedence
before setting up a linter.

RQ1: JavaScript developers use linters for the follow-
ing reasons: to maintain code consistency, to prevent
errors and augment test suites, to save discussion
time about which style to use, to avoid ambiguous
and complex code, and to automate code reviews.

4.2 RQ2. Which Linter Configuration Strategies Do De-
velopers Adopt in Their Projects?

In the following we present eight strategies that developers
use to configure their linters, which emerged from our
qualitative analysis by conducting the interviews. These
strategies were presented to our survey participants who
could select all methods they had ever used, and also had
the chance to add their own methods to the list. The follow-
ing sections are ordered by their importance, according to
the survey participants, which is also displayed in Figure 6.

4.2.1 Use an Existing Preset

There are many publicly available presets that anyone can
use in a project instead of creating a custom configuration,
or that one can use as a part of a custom configuration.
Many of these presets have been carefully constructed by
their creators and have been changed attentively over time:
“They thought about the code standard quite extensively and put
a lot of thought in it.” (P12). Several interviewees use a preset
as a part of their configuration file (P1, P6, P10, P12, P13,
P15) and one participant normally tries to solely use the
preset as is (P8).

A large portion of our survey participants (70.2%) also
use an existing preset. We also took the opportunity to
ask our survey participants about how often they use the
default configurations that come with the linter. 51.1% of
them affirm to do so. This highlights the importance of such

70.2%

56.0%

51.1%

37.9%

33.0%

21.0%

19.1%

10.4%

7.4%

1.3%I never configured a linter

Automatically generated

Consistent rules

Effort of enforcing a rule

Minimal configurations

Most used style within team

Pull Request discussions

Default configurations

Project fit

Use an existing preset

0 20 40 60 80

Fig. 6: Strategies used by developers to configure a linter
(N = 309). The full survey question can be found in our ap-
pendix. Number in the bars are represented as percentages.

default configurations or presets to be carefully thought, as
they are highly adopted by practitioners.

4.2.2 Project Fit

It is important that the stylistic and best practice rules fit the
existing code when the rules are chosen (P3, P4, P6, P12): “I
wanted them to fit the code as it was, I wanted the linting in place
with as little mess as possible.” (P12).

According to P4, if there is already some sense of style
in the existing code, it is not very sensible to change it to
something else since it would create more work than nec-
essary when setting up a linter. P4 also considers whether
a particular rule will be useful for the project or if it will
need to be disabled or overridden in multiple locations in
the code. If it needs to be disabled frequently, it is not worth
it to enforce it.

In our survey, we also observed that choosing rules that
fit the current project is a common configuration strategy, as
56% of our participants affirmed to use it.

4.2.3 Pull Request Discussions

Three participants (P2, P4, P10) reported that when some-
thing is discussed in a pull request that can be enforced with
a rule, they use the opportunity to enable the corresponding
rule. According to P2, since the topic surfaced in the pull
request, then there was obviously a need to make a decision.
That way, the topic will not surface again and time will not
be spent on discussing it (P2).

In the survey, 37.9% of the participants affirm to use
team discussions as input to choose which rules to enable
or disable.

4.2.4 Most Used Style Within Team

P7 reported that in a new project he would most likely go
with the code style that is the most common one amongst
the developers in the team, consequently adding rules that
enforce that style. Generally when working with a new
team, the first discussion he often has with the team mem-
bers is regarding which code style people are used to.

33% of our survey participants also affirm to use the
style that is the most commonly preferred one amongst
developers of a team.

11

4.2.5 Minimal Configurations

Some prefer to keep the configuration as simple and mini-
malistic as possible (P1, P5, P8, P15): “We don’t want people to
feel like they have to jump through unnecessary hoops to get their
PR’s in, so turning on every single thing wouldn’t be great.” (P1).
Furthermore, P8 thinks that if too many rules are enabled in
a project, people will not trust the configurations: “They will
think that it is a bureaucracy and that it’s not important.” (P8).
Both P1 and P8 prefer to only enable rules that can prevent
errors.

In the survey, we see that 21% of the survey participants
have chosen to also have configurations that are as minimal-
istic as possible.

4.2.6 Effort of Enforcing a Rule

P15 described that he commonly enables a set of rules,
e.g., a known preset, and then sees how it works out for the
project. If some of the rules are starting to be bothersome
for the project, e.g., needing to be disabled with inline
comments or if too much refactoring is required to fit the
rule, it is permanently disabled: “Just start to use it and see
how much pain it causes, where it’s beneficial. But usually it’s
turning things off when it’s apparent that it’s creating more effort
than it really helps.” (P15). He also describes the process as a
feedback cycle where it is important that contributors agree
on the rules that are used: “The disagreement between people is
very important, you have to get everyone on the same page.”.

Although this was only mentioned by one interviewee,
enabling rules that involve less effort to follow is used as a
strategy by 19.1% of our survey participants.

4.2.7 Consistent Rules

To some developers it is not important which exact rules
are actually enabled (P2, P6, P10): “I almost don’t even care
what the rules are, I have some opinions, but I’m much more
interested in there just being consistent rules, than having a point
of view about any particular rule.” (P10). There simply has
to be some fixed set of rules to enforce consistency and
to prevent unnecessary time being spent on discussions:
“Having a linter forces us to make choices, even if it’s arbitrary
choices in some situations.” (P2).

Interestingly, only 10.4% of our survey participants af-
firm that they do not care about which rules are there, as
long as they are consistent. We see this as evidence that
choosing the right rules matters to most developers.

4.2.8 Automatically Generated

ESLint provides an automatic method to ensure that a
configuration fits well to a specific project, based on its
source code in addition to a small questionnaire to the
developer. Two interviewees used this method to create
their configuration file (P11, P14). P11 then reviewed the
generated rules and the errors in the output to see if he
agreed with them. In general, he does not consider it wise
to use a preset since linter configurations are generally very
project dependent: “I didn’t even consider Airbnb or Google
because I think every project is a little different.” (P11).

This strategy’s lack of popularity among our intervie-
wees is also observed in our survey, where only 7.4% of
participants affirmed to use it (making it the least frequent
strategy amongst our survey participants).

4.2.9 Additional Methods

Survey participants mentioned 15 additional methods,
where three participants claimed to configure the linter
according to their personal preferences. Another three par-
ticipants use a company style guide, where one explained
that there is a special committee at his workplace which
maintains JavaScript coding standards for the whole com-
pany. Other strategies include using the strictest setting
possible, choosing rules that prevent bugs or to have a big
team discussion on which style to use.

RQ2: The most common linter configuration strate-
gies are: to use an already existing preset, to choose
rules that fit the current style of a project, to enable
rules that surface in discussions (e.g., on a pull re-
quest), to use the most commonly preferred coding
style within a team, to be as minimalistic as possi-
ble, and to use rules that involve the least effort to
enforce.

4.3 RQ3. What Linter Rules Do Developers Commonly
Enable and Disable?

As stated before, ESLint does not come with default con-
figurations. It therefore has to be configured in some way,
most commonly by specifying a configuration file. This
configuration can include presets, and/or some rules that
are enabled, disabled or set as warnings. We first discuss
the prevalence of presets, followed by an analysis on the
prevalence of individual rules that are specified.

Throughout the results, we separate the results between
projects that make use of a preset as basis and projects that
do not make use of a preset as basis. We conjecture their
behavior are different: when not using a preset, developers
need to think about which rules to enable and which rules
not to enable. When using a preset, developers already start
with a set of enabled (and, as a consequence, disabled) rules;
however, they may disagree with some of the decisions of
the preset and, in this case, they have to overrule what was
there (in other words, developers make a decision to go
“against” the preset). Thus, in our results, we control this
possible factor of influence.

4.3.1 Presets

Out of the 9,548 projects that were analyzed, 6,413 or 67.2%
used a preset in their configurations, with a total of 6,967
presets being used (some projects using more than one pre-
set). This result is inline with the results of our survey, where
70.2% of participants affirm to use presets as a configuration
strategy (Figure 6).

The 10 most popular presets are displayed in Table 7. It is
evident that only a handful of presets are extremely popular
amongst these projects. Only the five most popular presets
account for 67.2% of all presets that are used. The recom-
mended setting from ESLint [31] is the most popular preset,
followed by the Airbnb preset [52]. It is interesting that in
the top five places, there are two presets by Airbnb: the
base version (airbnb-base [53]) and the extended version that
includes rules for some external JavaScript libraries (airbnb).

12

Preset Projects % of all presets

eslint:recommended 2,226 32.0%
airbnb 1,166 16.7%
standard 627 9.0%
airbnb-base11 557 8.0%
google 104 1.5%
standard-react 81 1.2%
prettier 58 0.8%
rackt 49 0.7%
react-app 48 0.7%
semistandard 44 0.6%

Total 4,960 71.2%

TABLE 7: The 10 most popular presets, showing the number
of projects using each preset and the percentage of the times
the preset is used out of all used presets

If these two presets are counted together, they have a total of
1,723 instances, making airbnb and eslint:recommended (2,226)
by far the most popular ones (56.7% of all presets that are
used).

4.3.2 Frequency of Specified Rules

Here we examine the frequency of rules that are specified
in configurations, for each type of rule setting and differen-
tiating between projects that use presets and those that do
not. The quantity of rules that are configured are displayed
in Tables 8a, 8b, 8c, and 8d.

First of all, it is evident that the warning mechanism that
is provided by the tool is not often used, as we observe
only three warnings used on average per project (with and
without presets). We will therefore not focus on this setting
in the rest of the analysis. Rules are however most frequently
turned on, or on average 17 times per project (with and
without presets). In addition, developers also turn off an
average of seven rules per project.

It is visible that projects that do not use presets, specify
more rules in general than projects that use a preset. More
specifically, 95% of the projects that do not use a preset,
use at least one rule and specify 58 rules (to be enabled or
disabled) on average in their configurations (the remaining
5% only use plugins or do not configure the rules correctly).
Furthermore, 70% of the projects that do use a preset have
at least one rule specified, and use 10 rules on average. For
these projects, the same percentage of projects enable and
disable at least one rule (53%) but more rules are enabled on
average (seven rules enabled and three rules disabled).

4.3.3 Common Categories

ESLint provides a set of rules that is grouped into seven
different categories, as explained in the Background section.
We examine which categories are most commonly enabled
or disabled, separately between projects that use presets and
those that do not. Tables 9 and 10 show the average number
of rules that are enabled and disabled, respectively, from
each category per project along with how many projects use
at least one rule from each category.

11. There were two entries for the Airbnb base configurations,
namely airbnb-base and airbnb/base, with 378 and 179 instances, respec-
tively. The latter is however only a deprecated npm entry point for the
previous, so these two were counted as one preset in the analysis.

Total Mean # %
rules per proj projects projects

Projects w/ preset 43,340 7 3,389 53%
Project w/o preset 115,500 37 2,735 87%

(a) Enabled rules

Total Mean # %
rules per proj projects projects

Projects w/ preset 5,159 1 1,125 18%
Project w/o preset 20,122 6 1,601 51%

(b) Warned rules

Total Mean # %
rules per proj projects projects

Projects w/ preset 17,263 3 3,395 53%
Project w/o preset 45,024 14 2,344 75%

(c) Disabled rules

Total Mean # %
rules per proj projects projects

Projects w/ preset 65,762 10 4,465 70%
Project w/o preset 180,646 58 2,979 95%

(d) All rules

TABLE 8: All used rules, divided into the different settings:
enabled, disabled and warned rules. Each shows the total
number of used rules, the round up arithmetic mean of rules
used per project, the number of projects that use at least one
rule, and the percentage of projects that use at least one rule.
Total number of projects = 9,548, total number of projects
with a preset = 6,413, total number of projects without a
preset = 3,135.

Enabled Categories. For projects that do not use presets,
four categories are enabled in more than 50% of all projects:
Possible Errors, Best Practices, Variables and Stylistic Issues
(Table 9a). The category Stylistic Issues is by far the most
commonly enabled one, where 82% of all projects that do
not use a preset, enable at least one rule. The next category
in line is Best Practices where 62% of projects without a
preset enabled at least one rule. Furthermore, most rules
are enabled on average per project for these two categories.
However since these two categories also include the highest
number of available rules (81 and 69), they are not the most
commonly used categories in proportion with the amount
of available rules. In that sense, Possible Errors is the most
commonly used category with 24% of available rules being
used on average per project, whereas with Stylistic Issues
and Best Practices the ratio is 13% and 19%, respectively. The
other three categories, Strict Mode, Node.js & CommonJS and
ECMAScript 6, all have a similar percentage of projects with
at least one rule, or around 28-29%.

There is a similar story when it comes to projects that
do use a preset (Table 9b). Much fewer rules are generally
enabled as shown in the previous analysis on rule frequency
(Table 8a), but the most popular categories remain the same.

13

Category Avg % available # proj % proj
rules

Possible Errors 7.5 24.2% 1,631 52.1%
Best Practices 13.1 19.0% 1,929 61.6%
Strict Mode12 0.3 30.0% 895 28.6%
Variables 2.7 22.5% 1,882 60.1%
Node.js & CommonJS 0.9 9.0% 917 29.3%
Stylistic Issues 10.6 13.1% 2,562 81.9%
ECMAScript 6 1.8 5.6% 897 28.7%

(a) Enabled rules per category for projects that do not use a
preset

Category Avg % available # proj % proj
rules

Possible Errors 0.4 1.3% 777 12.1%
Best Practices 2.1 3.0% 1,171 18.3%
Strict Mode 0.1 10% 448 7.0%
Variables 0.4 3.3% 1,043 16.3%
Node.js & CommonJS 0.2 2.0% 279 4.4%
Stylistic Issues 3.0 3.7% 3,020 47.1%
ECMAScript 6 0.6 1.9% 799 12.5%

(b) Enabled rules per category for projects that do use a preset

TABLE 9: Enabled rules per category, showing the average
number of rules used per project, the average percentage
of rules used per project out of all available rules in the
category, the number of projects with at least one rule and
the percentage of projects with at least one rule out of all
projects. Categories are listed in the order as they appear in
the ESLint documentation [28].

Disabled Categories. For projects that use a preset, Stylis-
tic Issues is the most commonly disabled category, with 33%
of projects disabling at least one rule (Table 10b). The second
category in this case is Possible Errors with 25% of projects
disabling a rule. A singularity in these results is that the
Variables category is by far the least disabled category out of
the four popular ones, with only 11% of projects disabling a
rule.

As seen in Table 10a, some projects that do not use
presets still disable some rules, even though it does not
change any of the linter’s functionality. In fact, more than
half of all projects that do not use a preset disable at least one
rule from the Stylistic Issues and Possible Errors categories,
and disable as much as seven stylistic rules on average. We
discuss possible reasons for why rules are disabled in these
projects in the next section when examining commonly
disabled rules.

4.3.4 Common Rules

Examining which categories are used gives a good overview
of which types of rules are commonly used and what devel-
opers find important. In this part we dive deeper into these
categories and examine which individual rules are enabled
and disabled most often.

12. The category Strict Mode is a special case in this analysis since it
is the only category that includes only one rule (others have 10 or more
rules). For that reason, it is less appropriate to report values for this
category on the average percentage of used rules out of all available
rules, as that percentage will always be relatively high compared to
other categories. To maintain consistency, the values are reported in
this table and in the following tables, but are not specifically analyzed
in the text.

Category Avg % available # proj % proj
rules

Possible Errors 1.0 3.2% 1,180 37.7%
Best Practices 3.7 5.4% 1,687 53.9%
Strict Mode 0.3 30.0% 980 31.3%
Variables 0.8 6.7% 1,111 35.5%
Node.js & CommonJS 1.0 10.0% 886 28.3%
Stylistic Issues 6.8 8.4% 2,096 67.0%
ECMAScript 6 0.9 2.8% 532 17.0%

(a) Disabled rules per category for projects that do not use a
preset

Category Avg % available # proj % proj
rules

Possible Errors 0.3 1.0% 1,569 24.5%
Best Practices 0.6 0.9% 1,505 23.5%
Strict Mode 0.1 10.0% 394 6.1%
Variables 0.2 1.7% 709 11.1%
Node.js & CommonJS 0.1 1.0% 404 6.3%
Stylistic Issues 1.2 1.5% 2,087 32.5%
ECMAScript 6 0.3 0.9% 975 15.2%

(b) Disabled rules per category for projects that do use a preset

TABLE 10: Disabled rules per category, showing the average
number of rules used per project, the average percentage
of rules used per project out of all available rules in the
category, the number of projects with at least one rule and
the percentage of projects with at least one rule out of all
projects. Categories are listed in the order as they appear in
the ESLint documentation [28].

Enabled Rules. We show in Table 11a that the three most
commonly enabled rules for projects without presets, all
belong to the Stylistic Issues category. These are formatting
rules that enforce which type of quotation marks should be
used (quotes), whether semicolons should be placed at the
end of a line (semi) and what kind of indentation should
be used (indent). The next four rules in line are from the
Best Practices category and Variables, namely eqeqeq which
requires the use of the type-safe triple equality operator
(=== instead of ==), no-undef which disallows undeclared
variables, no-unused-vars which disallows unused variables
and curly that enforces consistent use of curly braces for
control statements. More rules in Best Practices follow, along
with rules from the Possible Errors category and Stylistic
Issues. The rule no-dupe-keys prevents errors when two keys
in object literals are identical, no-caller disallows use of
callers and callees which can otherwise make several code
optimizations impossible, and no-unreachable disallows un-
reachable code, e.g., after a return, throw or break statement.
In general, all rules in this list belong to the four categories
that have been popular in the previous analyses: Possible
Errors, Best Practices, Variables and Stylistic Issues.

Table 11b shows the top 20 enabled rules for projects that
do use presets. Interestingly, these rules mostly belong to
the Stylistic Issues category with 14 out of the 20 rules orig-
inating from the category. The same three stylistic rules as
before are the most popular ones, followed by linebreak-style
which enforces consistent line endings, comma-dangle which
enforces or disallows trailing commas in object literals, and
space-before-function-paren which enforces consistent use of
spaces before function parameter parentheses. These rules
are followed by some of the few rules from other categories

14

Rule Category Freq % proj

1 quotes Stylistic Issues 1,898 60.6%
2 semi Stylistic Issues 1,506 48.1%
3 indent Stylistic Issues 1,356 43.3%
4 eqeqeq Best Practices 1,338 42.7%
5 no-undef Variables 1,270 40.6%
6 no-unused-vars Variables 1,260 40.3%
7 curly Best Practices 1,232 39.4%
8 no-dupe-keys Possible Errors 1,228 39.2%
9 no-caller Best Practices 1,171 37.4%
10 no-unreachable Possible Errors 1,163 37.2%
11 no-eval Best Practices 1,155 36.9%
12 brace-style Stylistic Issues 1,126 36.0%
13 no-with Best Practices 1,123 35.9%
14 wrap-iife Best Practices 1,123 35.9%
15 no-irregular-whitespace Possible Errors 1,090 34.8%
16 comma-style Stylistic Issues 1,089 34.8%
17 no-cond-assign Possible Errors 1,085 34.7%
18 no-func-assign Possible Errors 1,083 34.6%
19 no-redeclare Best Practices 1,083 34.6%
20 no-invalid-regexp Possible Errors 1,079 34.5%

(a) Top 20 enabled rules for projects that do not use a preset

Rule Category Freq % proj

1 semi Stylistic Issues 1,641 25.6%
2 indent Stylistic Issues 1,567 24.4%
3 quotes Stylistic Issues 1,336 20.8%
4 linebreak-style Stylistic Issues 888 13.8%
5 comma-dangle Stylistic Issues 714 11.1%
6 space-before-

function-paren Stylistic Issues 605 9.4%
7 eqeqeq Best Practices 601 9.4%
8 no-unused-vars Variables 595 9.3%
9 curly Best Practices 515 8.0%
10 no-trailing-spaces Stylistic Issues 491 7.7%
11 brace-style Stylistic Issues 482 7.5%
12 strict Strict Mode 451 7.0%
13 space-before-blocks Stylistic Issues 424 6.6%
14 max-len Stylistic Issues 419 6.5%
15 no-use-before-define Variables 419 6.5%
16 keyword-spacing Stylistic Issues 416 6.5%
17 object-curly-spacing Stylistic Issues 396 6.2%
18 eol-last Stylistic Issues 386 6.0%
19 new-cap Stylistic Issues 366 5.7%
20 no-eval Best Practices 365 5.7%

(b) Top 20 enabled rules for projects that do use a preset

TABLE 11: Top 20 enabled rules for projects that use and do
not use a preset, showing the total number of projects using
them, along with the percentage of those projects out of all
projects that use or do not use a preset

which were also detailed in the previous list.

Disabled Rules. Table 12b shows the most commonly
disabled rules for projects that use a preset. The rule no-
console from the Possible Errors category is by far the most
commonly disabled rule, with 19% of projects specifying
the rule. Logging with the console is mainly used for de-
bugging purposes which should normally not be present
in production code. This is followed by no-underscore-dangle
from the Stylistic Issues category which disallows dangling
underscores in identifiers, which are commonly used to
indicate a private variable. Interestingly, here we observe
again comma-dangle as the third one on the list, thus proving
to be a controversial rule. Other rules include func-names to
require or disallow named function expressions for debug-
ging purposes, and no-param-reassign from the Best Practices
category which disallows reassigning function parameters.

2%

3%

4%

3%

9%

9%

18%

92%

89%

87%

86%

78%

63%

58%

5%

8%

9%

11%

13%

29%

24%

Variables

Strict mode

ECMAScript 6

Best Practices

Possible Errors

Stylistic Issues

NodeJS and CommonJS

100 50 0 50 100

Fig. 7: Perception of participants on the importance of
each category. Bars show Unimportant, Slightly important,
Neutral/Not Applicable, Important, and Very Important,
respectively. (N = 266)

Interestingly, as before, we also observed some rules be-
ing disabled even in projects that do not use a preset (Table
12a). We conjecture two possibilities to why that happens:
1) Some configurations are written in a way where every
single available rule is listed, and each is set to being enabled
or disabled. This might make changes clearer, for example
showing which rules existed when the configuration file was
last updated, and thus differentiating between newly added
rules by ESLint and older rules that the developers decided
to later enable, and 2) Developers want to explicitly show
that some rules should absolutely not be turned on. For
example, the rule no-underscore-dangle is disabled by 49.3%
of projects that do not use a preset, where developers might
want to show that they indeed allow the naming pattern
where variables start with an underscore. This would make
the style obvious to a newcomer and it would also be clear
that the rule was not simply forgotten or overseen by not
being included in the configurations. Future research needs
to be conducted in order to better understand why this
behavior occurs.

4.3.5 Developers’ Perceptions on the Importance of Cate-

gories and Rules

The survey participants were asked which ESLint categories
they considered important to include in configurations.
Figure 7 shows that Possible Errors is the most important cat-
egory where 92.5% of the participants consider it to be either
important or very important. Possible Errors is then followed
by Best Practices, ECMAScript 6, and Variables, where over
86% of the participants consider each of them to be either
important or very important. For these four categories, only
four participants considered any of them to be unimportant
(one for Possible Errors and three for ECMAScript 6). The
three remaining categories, Strict Mode, Node.js & CommonJS
and Stylistic Issues, are all widely considered to be important
as well, but to a lesser extent than the other categories. Strict
Mode is the category that is most commonly considered to
be unimportant by the participants (11%).

Interestingly, we observe that there is a mismatch be-
tween the perceptions of participants on how important

15

Rule Category Freq % proj

1 no-underscore-dangle Stylistic Issues 1,543 49.3%
2 strict Strict Mode 982 31.4%
3 no-ternary Stylistic Issues 686 21.9%
4 func-names Stylistic Issues 681 21.8%
5 new-cap Stylistic Issues 634 20.3%
6 one-var Stylistic Issues 608 19.4%
7 sort-vars Stylistic Issues 597 19.1%
8 padded-blocks Stylistic Issues 582 18.6%
9 no-use-before-define Variables 581 18.6%
10 consistent-return Best Practices 572 18.3%
11 no-console Possible Errors 570 18.2%
12 camelcase Stylistic Issues 565 18.1%
13 no-extra-parens Possible Errors 560 17.9%
14 func-style Stylistic Issues 549 17.5%
15 no-plusplus Stylistic Issues 535 17.1%
16 vars-on-top Best Practices 525 16.8%
17 no-shadow Variables 525 16.8%
18 no-warning-comments Best Practices 514 16.4%
19 valid-jsdoc Possible Errors 499 15.9%
20 wrap-regex Stylistic Issues 495 15.8%

(a) Top 20 disabled rules for projects that do not use a preset

Rule Category Freq % proj

1 no-console Possible Errors 1,216 19.0%
2 no-underscore-dangle Stylistic Issues 646 10.1%
3 comma-dangle Stylistic Issues 479 7.5%
4 func-names Stylistic Issues 430 6.7%
5 no-param-reassign Best Practices 411 6.4%
6 strict Strict Mode 395 6.2%
7 no-use-before-define Variables 358 5.6%
8 consistent-return Best Practices 356 5.6%
9 max-len Stylistic Issues 315 4.9%
10 padded-blocks Stylistic Issues 305 4.8%
11 arrow-parens ES6 266 4.1%
12 new-cap Stylistic Issues 262 4.1%
13 camelcase Stylistic Issues 259 4.0%
14 global-require Node.js 254 4.0%
15 no-shadow Variables 243 3.8%
16 arrow-body-style ES6 224 3.5%
17 no-plusplus Stylistic Issues 204 3.2%
18 vars-on-top Best Practices 196 3.1%
19 space-before-

function-paren Stylistic Issues 194 3.0%
20 id-length Stylistic Issues 193 3.0%

(b) Top 20 disabled rules for projects that do use a preset

TABLE 12: Top 20 disabled rules for projects that use and do
not use a preset, showing the total number of projects using
them, along with the percentage of those projects out of all
projects that use or do not use a preset

each category is and the number of projects that actually
enable these categories (Figure 7 and Table 9). More specifi-
cally, the Possible Errors category is considered important by
92.50% of our participants, while only 52.10% of the projects
actually enable at least one rule in the category (among
projects that do not use a preset). Similar ratios are found
for Best Practices and Variables, and an even larger difference
exists for ECMAScript 6. We also highlight an interesting
fact about the Stylistic Issues category: while this category is
by far the most enabled one in projects (81.9% of projects
that do not use a preset and 47.1% of projects that do use a
preset enable at least one of its rule), it is only the fifth most
important category according to the developers’ perceptions
(although considered important or very important by 78%
of participants).

We hypothesize a few reasons for such a phenomenon,

which should be further studied: 1) Although participants
perceive these categories as highly important for a linter,
they do not completely provide what developers need, or
2) Participants are not actually spending time configuring
their linters to provide feedback on what they believe is
important.

To know which individual rules are considered to be the
most important ones, we asked the survey participants to
rate the importance of a chosen set of 54 rules. By mining
projects on GitHub we saw that there are four categories
that are most commonly used in configurations: Possible
Errors, Best Practices, Variables and Stylistic Issues, and these
were also discussed most often in the interviews. For each
of these categories we asked the participants to rate the
importance of 14 rules, where the individual rules were
chosen as described in Section 3.3. We show the results in
Figure 8.

The rules in the Possible Errors category are shown in Fig-
ure 8a. Using the median rating value, eight of the 14 rules
are thought to be either important or very important. The
rules that originate from the list of enabled rules without
using a preset are generally thought to be the more impor-
tant ones, where no-dupe-keys is the most important rule,
followed by no-unreachable and no-invalid-regexp. Moreover,
the rule no-console seems to be one of the most debatable
rules where it is thought to be unimportant by 25.6% of
participants but also important by 35.2% of participants.
This rule was further commented on by four survey re-
spondents, saying that it is sometimes not necessary to
include the rule on single-person projects and that most
logging should be disallowed except for logging errors.
In addition, one participant mentioned the importance of
the rule no-await-loop (not included in list) due to potential
performance problems. Others claimed that the rules that
cause actual bugs are generally the most important ones
(without mentioning any specific rules).

The Best Practices rule set is shown in Figure 8b. In this
case, most rules are thought to be (very) important or 12 out
of the 14 listed rules. The rules eqeqeq and no-eval appear
to be the most important ones where 90.4% and 81.1%
consider them to be either important or very important.
These are then followed by no-unused-expressions and curly.
Furthermore, the rules vars-on-top and no-warning-comments
are notably the least important ones, which were originally
retrieved from the lists of the most commonly disabled rules
in GitHub projects. One participant shared his discontent
with the rule no-warning-comments, saying that he did not
know about it previously and that he “would probably flip
a table if it broke a CI build”. Another participant expressed
that this rule should only be a part of a specific setup for
deployment or production and not for development.

A general observation was also shared by another par-
ticipant saying that it is good to enforce some rules for
production code but that they “should not hinder one’s de-
velopment style”. The less rated rule vars-on-top was also said
to be unimportant as with ES6 it is possible to have block
scope local variables with let and const (instead of using the
var statement which defines a variable regardless of block
scope). Lastly, one respondent discussed the rule no-extend-
native and the two opposing views about extending native
objects. Being in favor of the feature, he described it as one

16

5%

7%

7%

17%

17%

19%

21%

30%

25%

32%

28%

44%

39%

40%

88%

86%

81%

70%

67%

60%

53%

51%

46%

44%

40%

35%

34%

32%

7%

7%

12%

14%

17%

21%

26%

19%

29%

24%

32%

20%

27%

28%

no−dupe−keys

no−unreachable

no−irregular−whitespace

no−func−assign

no−invalid−regexp

valid−jsdoc

no−console

no−cond−assign

no−inner−declarations

no−extra−semi

no−extra−parens

no−empty

no−constant−condition

no−extra−boolean−cast

100 50 0 50 100

(a) Possible Errors (N = 256)

4%

7%

9%

12%

14%

20%

20%

27%

27%

20%

26%

24%

48%

44%

90%

81%

79%

75%

75%

60%

57%

55%

52%

51%

51%

47%

33%

18%

6%

12%

12%

12%

11%

21%

23%

18%

20%

29%

23%

29%

19%

38%

eqeqeq

curly

no−caller

no−eval

no−with

no−redeclare

wrap−iife

no−extend−native

no−unused−expressions

no−multi−spaces

no−param−reassign

consistent−return

vars−on−top

no−warning−comments

100 50 0 50 100

(b) Best Practices (N = 251)

6%

8%

9%

12%

23%

19%

18%

17%

18%

30%

36%

37%

88%

82%

79%

60%

59%

58%

55%

54%

53%

44%

38%

25%

6%

10%

12%

28%

17%

23%

27%

29%

29%

26%

26%

39%init−declarations

no−catch−shadow

no−delete−var

no−label−var

no−restricted−globals

no−shadow

no−shadow−restricted−names

no−undef

no−undef−init

no−undefined

no−unused−vars

no−use−before−define

100 50 0 50 100

(c) Variables (N = 252)

8%

15%

8%

10%

15%

15%

18%

19%

23%

28%

38%

32%

44%

78%

86%

81%

79%

75%

75%

75%

67%

65%

61%

53%

44%

38%

28%

10%

5%

4%

13%

15%

10%

10%

15%

16%

15%

19%

19%

30%

28%

12%

quotes

semi

indent

brace−style

comma−style

comma−dangle

space−before−blocks

eol−last

linebreak−style

space−before−function−paren

no−underscore−dangle

func−names

max−len

no−ternary

100 50 0 50 100

(d) Stylistic Issues (N = 244)

Fig. 8: Participants’ perceptions on the importance of different rules. Bars show Unimportant, Slightly Important,
Neutral/Not Applicable, Important, and Very Important, respectively.

of the advantages of JavaScript where avoiding it is “akin to
leaving the protective plastic on a couch”.

For the Variables category in Figure 8c, the set simply
consists of all available rules as there are only 12 in the
category. Nine out of the 12 rules are considered to be
important by the participants. Three rules seem to be partic-
ularly important, no-unused-vars, no-undef and no-use-before-
define, where 87.5%, 81.9% and 79.4% of the participants,
respectively, consider them to be either important or very
important. No specific comments were made about any of
these rules.

The subset of rules for the Stylistic Issues category is
shown in Figure 8d. 10 out of the 14 rules are considered
to be important, but those are exactly the rules that were
retrieved from the lists of the most commonly enabled rules.
One rule is considered to be very important (based on the
median value), indent, where 86.3% consider it to be either
important or very important. There are three other rules
which over 40% of the participants consider to be very
important: quotes, semi and linebreak-style. On the contrary,
the rule no-ternary is unquestionably the least important rule
where 63.8% of participants consider it to be unimportant
and only 9.6% consider it to be important. Interestingly,
this rule had only been enabled 8 times in the 3,135 (0.3%)
analyzed projects that do not use a preset, despite having

been available for 2,5 years at the time of analysis. Lastly,
the rule comma-dangle was mentioned by two participants to
be particularly good to catch errors, where it was described
as “unquestionably the source of most of my lint errors”13. Other
participants generally described rules from this category to
be beneficial for code readability within a team and for
simple code merging.

RQ3: Presets are used by 67% of all ESLint projects,
and projects that do not use presets specify a high
number of 58 rules on average, whereas those that
do use presets specify 10 rules on average. Stylistic
Issues is the most commonly enabled category, fol-
lowed by Best Practices and Variables. The Possible
Errors category is considered to be the most impor-
tant one, according to survey participants.

13. The rule comma-dangle was previously a part of the Possible Errors
category due to the known errors that dangling commas could cause in
Internet Explorer version 8 and below. The rule was however moved to
the Stylistic Issues category when older versions of Internet Explorer
stopped being supported by Microsoft, thus making this error less
relevant.

17

47.0%

38.3%

33.9%

33.6%

33.2%

29.2%

24.5%

8.4%No challenges

The lack of dynamic analysis

Too many warnings/errors

Enabling rules in existing projects

Enforcing rules

False positives

Creating and maintaining configurations

Agreeing on rules as a team

0 10 20 30 40 50

Fig. 9: The challenges that participants face when using a
linter (N = 298). The full survey question can be found
in our appendix. Numbers in the bars are represented as
percentages.

4.4 RQ4. What Are the Challenges in Using a
JavaScript Linter?

In this sub-section, we discuss the results that we derived
from the interviews, together with the agreement of our
survey participants. We show the most commonly faced
challenges in Figure 9. We provide one additional option in
the survey that did not emerge from the interviews, namely:
too many warnings/errors outputted from the linter, as it was
suggested by one of the pilot test participants and has been
reported in related research to be a common problem with
using static analysis tools [8], [54].

In the following, sections are ordered by their frequency,
according to the survey participants.

4.4.1 Agreeing on Rules as a Team

In an open source project it is relatively easy to build
consensus around what people want to do (P4, P15). If
someone wants a new rule to be enabled, then only a few
main contributors need to say yes and it is decided upon.
Other maintainers usually follow what the project leaders
propose (P4, P15). In a business environment, where there
may not be clear leaders, several members of the team
can have different opinions on which rules to enable and
disable: “There are 60 people with their own opinion about how
code should be written.” (P4). P4 further explains that it can
be especially difficult to introduce rules on stylistic issues
since it is not considered to be important and it can be hard
to justify why you would inconvenience people to adhere
to new rules: “It may create more tension than it does actually
solve problems.” (P4).

Agreeing on which rules to use within a team is also seen
as a challenge for our survey participants, but almost half of
them (47.0%) reported to have experienced it as a problem.

4.4.2 Creating and Maintaining Configurations

Several interviewees mentioned that it was challenging to
create the original configuration or to keep it updated (P1,
P3, P5, P8, P12). Only two participants reported that they
had read over all available rules when they originally cre-
ated the configuration file (P3, P9). This involves evaluating

22.8%

27.8%

22.4%

19.3%

2.7%

1.9%

3.1%

Very Frequently

Frequently

N/A

Occasionally

Rare

Never

Very rare

0 10 20 30 40

Fig. 10: The frequency of how often developers experienced
false positives when using ESLint.

a set of 236 rules that ESLint has available which can be a
tedious process: “Most of it was read through every rule, it was
kind of a very painful process to set it up.” (P3). Another par-
ticipant used very similar wording when it came to setting
up the tool: “Sometimes a pain to set up in your editor with the
right configuration.” (P5). Meanwhile, the other participant
that manually created the configuration file claimed that it
was actually quite easy to set up (P9).

Others have been frustrated with keeping their configu-
rations up to date after they have been created, especially
when using presets (P1, P8, P12). When the presets are
updated, there are often new rules that are enabled or older
rules that are changed which can cause a high volume
of new warnings or errors (P12). P12 explained that these
changes are sometimes beneficial and he happily fixes the
warnings, but at other times the change is not useful and
they have to be overwritten. Moreover, P1 discussed that it
can be frustrating when the presets update very frequently
and the code has to be changed often because of it. However
he also likes that the presets keep him updated of new rules
regarding new JavaScript features.

A substantial portion of our survey participants also face
these challenges: 38.3% agreed that creating or maintaining
configurations was a challenging part of using a linter.

4.4.3 False Positives

We also questioned our survey participants about how often
they experience false positives (as, according to our inter-
viewees, this does not happen often, contradicting related
work [55], [8], [10], [56]).

Interestingly, although one third of the participants see
false positives as a challenge (see Figure 9), their perception
on how often they observe false positives when using ESLint
is low, as we see in Figure 10.14 We discuss more about this
contradiction in Section 5.3.2.

4.4.4 Enforcing Rules

As previously introduced in the Background section, there
are three possible settings for a rule in ESLint: off, warn

14. We also asked how often users from other JavaScript linters
encounter false positives, and numbers were also similarly low. As we
focus on ESLint in this paper, these other numbers can be found in our
online appendix [35].

18

and error. The majority of the interviewees used only or
mostly errors and rarely warnings (which also matches with
our findings in GitHub repositories, see Table 8). These
settings are used by the participants for different purposes,
such as indicating the criticality of a rule (P15) or by using
warnings as an adaptation period when enabling new rules
(P4, P7, P13). Other participants liked to use warnings in
the development process so that their build would not be
interrupted when working on unfinished features (P9, P12,
P15).

There is however a problem with using warnings: sev-
eral interviewees claimed to use only errors since warnings
would simply be ignored by developers (P2, P3, P4, P13).
In addition, according to these participants, when warnings
live for a long time in the codebase, people start to devalue
them and leave them behind. Developers do not feel any
responsibility for the warnings and might think “there were
some warnings when I checked it out, not my job to fix it, I’m
going to check it back in with warnings.” (P4). P4 further ex-
plains that especially if there are many warnings, developers
will not even read them and simply leave them behind. To
enforce removal of the warnings, they therefore have to be
set as errors that actually prevent a build from succeeding.

Indeed, making sure that the defined rules are actually
followed by developers is a challenge that many developers
face. In our survey, 33.6% of the participants had trouble
with enforcing developers to follow the defined rules in the
past.

4.4.5 Enabling Rules in Existing Projects

Six participants (P1, P3, P4, P7, P10, P13) mentioned that
it can be difficult to start using a linter or to enable new
rules in an existing codebase. Moreover, 33.2% of our survey
participants also face this challenge.

If the rules that are enabled cause many warnings or
errors to occur, substantial effort is needed to go over all
existing code to fix every reported instance. There can even
be such a large volume of existing code that it would simply
take too much time to review: “The problem with [the project]
is that it’s really old and big, so for that we don’t have the luxury of
turning on whatever rules we want to because we’re never going
to be able to update a lot of our code to support them.” (P1).

Even if it is possible to fix all warnings, it can be risky
to change old code to conform to these rules since it is
easy to introduce new bugs in the meantime (P3, P7, P10).
Knowing the original intent of the code can be very difficult
and can take considerable time to try to understand (P7).
P7 discussed an example where there were many instances
of two equal marks being used in the code instead of three,
which resulted in many errors from the linter. In these cases
it could have been intentionally written so or by accident,
which would need to be carefully verified and tested. The
risk and effort of going back and changing the old code
might therefore not be worth it: “Cleaning up for just clean
up, just to enable it, I think is risky. I’ve been bitten by that a
couple of times.” (P3). Enabling a linter in a project to begin
with can be a lot easier: “A linter is great if you start with that
and you enforce all those rules and the idea is that you will never
run into ambiguous code.” (P7). However with older projects
it can be more difficult and even dangerous (P7).

In large existing projects with many collaborators it can
also cause conflicts and frustration when new rules are
enabled (P4, P13). P4 was working at a company with
around 60-70 developers, all working on the same code
every day. Usually there are multiple pull requests open at
the same time and there will be many merge conflicts when
a new rule is suddenly enabled, since it will likely affect
code everywhere in the project. In P13’s project it caused
frustration with people to enable many rules all at once
since the developers were not accustomed to them before.
Instead, it was decided to do it slowly by enabling only one
rule at a time to give developers a chance to get used to the
new rules.

4.4.6 The Lack of Dynamic Analysis

JavaScript has been described as harsh terrain for static anal-
ysis because of its dynamic nature [57]. Static analysis for
JavaScript has thus been critized and said to be limited since
it can not account for runtime behavior [58]. The majority of
the interview participants would indeed like ESLint to be
able to do more, but they however think that the current
version is very acceptable since they choose themselves to
work with a dynamic language (P2, P5, P6, P7, P8, P9,
P10, P11, P15). When P9 was asked whether he misses
dynamic analysis from the linter he replied: “Of course, but
I don’t particularly think that is ESLint’s fault, so much as a
language defect. Due to the dynamic nature of JavaScript, static
analysis ranges from extremely difficult to impossible. I don’t
expect ESLint to be able to fix that.” (P9).

Regarding type checking, there are tradeoffs in choosing
JavaScript as a programming language and there is a reason
why some languages are not strictly typed (P2, P15). If
static typing is something that a developer wants, he or
she should rather use TypeScript or some statically typed
language (P2, P10, P15): “Each developer has to make a decision
on if they want to work in a typed language or in an untyped
language and the tradeoffs of that kind of lead you to the path of
what tools can provide.” (P15). The majority therefore claimed
to be quite satisfied with what the linter can achieve and do
not expect it to be able to detect more of the dynamic side
of the language.

Other participants were more bothered by the fact that
a linter can not analyze the dynamic parts of the language,
where the problem was mostly centered around the lack
of variable types (P3, P4, P13, P14). P3 reports that he
has spent substantial time on testing various mix-ups with
strings and numbers, for which he would either like ESLint
to warn about types that change or would like to switch
from using regular JavaScript to TypeScript. Indeed, we
observe that, in order to remedy this, organizations like
Microsoft and Facebook have exerted substantial effort on,
e.g., TypeScript [59] and Flow [60].

24.5% of our survey participants see the lack of analysis
for the dynamic features of the JavaScript language as a
challenge. These numbers strenghten the motivation for
more research on the topic.

4.4.7 Additional Challenges

Participants also had the opportunity to add other chal-
lenges which 15 of them did. Amongst these were three chal-
lenges mentioned by more than one participant: 1) Getting

19

team members to use a linter (3 participants), 2) Integration
with an IDE or other tools (3 participants), and 3) When
ESLint, presets or plugins change (2 participants). This last
challenge was described by one participant as: “I detest it
if the rules in a preset change”, which is largely captured
by a previous challenge in Section 4.4.2. Other reported
challenges included difficulty with writing new linting rules
and the fact that using the tool during development is
“obnoxious” but is more beneficial when it comes to the time
of committing code.

RQ4: The challenges that developers face when us-
ing linters are: to agree on rules in an industrial
setting, to create and maintain the configurations,
the (low but existing) number of false positives, to
enforce developers to follow the rules, to enable
rules in existing projects, and the lack of analysis for
JavaScript’s dynamic features.

5 DISCUSSION

The results have several implications for developers, linter
creators and researchers, which we discuss in the following.
Finally we explore the relation between the results and the
experience of the survey participants.

5.1 Supporting Developers in Configuring Their Linters

There are mainly two ways of defining which rules can be
configured by developers: 1) by using an existing preset, or
2) by manually selecting rules.

Although presets have been developed by experts from
the JavaScript community, our study suggests that making
use of a preset in an existing project can be challenging
to developers as the number of warnings can be high.
Thus, in cases where greenfield engineering is not possible,
developers should enable rules carefully and incrementally.
By incrementally introducing rules and continuously fixing
the corresponding warnings, the number of warnings can
be kept to a minimum, making developers more likely to
examine and fix them. Previous research has also reported
that many static analysis tools output too many warnings
which makes it more difficult to use these tools [8], [61], [4].

We recommend developers to start by enabling the rules
that they consider as the most important ones. After ana-
lyzing the three different sources of data, we conjecture that
some rules are indeed more important than others (i.e., are
used and considered important by several projects and
developers). More specifically, we collected the top four15

rules that appeared in the three data sources: they were
mentioned by the interviewees, appeared on the top 10 most
frequent rules in GitHub, and received a median rating of
“Important” in the survey. As we did not discuss with or
ask any of the participants about the rules in the categories
ECMAScript 6, Node.js & CommonJS, and Strict Mode,
we did not make any assumptions or recommendations
regarding those.

15. For the Variables category, we were able to collect only three rules.

These rules are shown in Table 13, in no particular order
except being grouped by category. When compared to the
ESLint recommended, Airbnb, Google, and Standard presets
(the four most popular presets in our sample, see Table 7),
we observe that the rules we propose are only fully covered
by the Standard preset. We suggest developers to take this
list as a starting point for teams that face the challenge of
agreeing on which rules to use, where these rules have been
shown to be important to many other developers. While
this is the first step towards an empirical catalogue, research
needs to be conducted so that this catalogue can go beyond
developers’ perceptions (as we also discuss in Section 5.3.4).

Additionally, we recommend developers to use presets
from the very beginning in case of greenfield engineering,
where developers still do not have to deal with large com-
plex codebases or legacy issues. As aforementioned, the
existing presets contain the set of rules that experts from
the JavaScript community believe to be the most important
ones. Thus, presets can serve as an initial point for new
projects, where the number of warnings is still manageable
even with the possibly large number of enabled rules in
them. In particular, Ayewah et al. [7] found that FindBugs
users are more likely to fix warnings that apply to new code
than to older code. We expect the same phenomenon to
happen in greenfield JavaScript systems.

5.2 Implications for Tool and Preset Makers

We have seen the main reasons as to why developers choose
to use linters along with which categories they find to be the
most important ones. Tool creators should therefore place
emphasis on these topics that developers are most con-
cerned with. Both the interviewees’ and survey respondents’
main reasons for using linters were to maintain code consis-
tency and to catch possible bugs in code. While stylistic rules
are used the most often in configurations, developers claim
that bug-catching rules are far more important. These two
topics should therefore be of main interest for tool makers
when deciding on what type of functionality to implement.

Table 13 displays the rules that are deemed the most
important based on this study’s results. This list of rules
could be further expanded and ordered based on the rules’
importance, which could be used by ESLint to assign a
priority to all available rules. It has been shown in this study
that it can be difficult to configure a linter, especially when
one needs to go through all available rules to choose from.
Partly for that reason, the majority of developers choose to
use a preset in their configurations, while also making some
modifications to their settings. The process of going through
all 236 ESLint rules could be made easier by assigning
them with an importance rating which could be based on
this study’s results, i.e., on the importance reported by the
JavaScript community and the frequency of the rules being
enabled in GitHub projects.

On a similar note, we can also identify some rules
that are rarely used or commonly disabled and are not
thought to be important by the JavaScript community. These
rules include no-ternary (Stylistic Issues), no-underscore-dangle
(Stylistic Issues) and vars-on-top (Best Practices). Preset cre-
ators should make sure to not enable these rules as most
developers do not want them to be used.

20

Rule Category ESLint recommended Airbnb Google Standard

no-dupe-keys Possible Errors X X X

no-unreachable Possible Errors X X X

no-invalid-regexp Possible Errors X X X

no-irregular-whitespace Possible Errors X X X X

no-unused-vars Variables X X X X

no-undef Variables X X X

no-shadow-restricted-names Variables X

eqeqeq Best Practices X X

no-eval Best Practices X X

curly Best Practices X X

no-caller Best Practices X X

semi Stylistic Issues X X X

indent Stylistic Issues X X X

quotes Stylistic Issues X X X

comma-dangle Stylistic Issues X X X

TABLE 13: Most important rules to include in configurations and their existence in the ESLint recommended [31],
Airbnb [62], Google [63], and Standard [64] presets.

In general, preset makers should be careful to not update
the rule selection too often. Developers that use the presets
can get frustrated when they have to do frequent changes to
their code due to the presets being modified.

Furthermore, as it can be difficult to enforce linting rules
without making them break the build, other methods would
be beneficial to encourage developers to fix warnings. Sad-
owski et al. [65] had a similar experience when introducing
static analysis tools at Google, where developers would
ignore warnings that did not cause the build to fail. Tool
creators should therefore find and employ other ways to
make developers feel responsible to fix them. For example,
this could be done by linking the output of the tool to the
project repository, to make a somewhat more personal con-
nection to the developers that are responsible. A warning
could perhaps be marked with the name of the developer
who introduced it, which could motivate him or her to fix
the warning.

5.3 Implications for Researchers

The results offer ample opportunities for further research
into these findings. Example research directions are listed
below.

5.3.1 Evolution of Linter Configurations Over Time

Beller et al. [3] studied in large scale the configurations of
static analysis tools and how those configurations change
over time. Since several participants claim that it is difficult
to enable linters for existing code, it would be intriguing
to further research how configuration files in projects that
enable a linter early on differ from those in projects that
enable a linter at a later stage. Furthermore, many partic-
ipants explained that they try to create the configuration
so that it fits the project in the best way possible. It would
be valuable to know how thoroughly projects follow these
configurations, providing insight into how well the config-
uration reflects the project style and how much developers
care about upholding these code standards.

5.3.2 False Positives

One third of the survey participants affirm that false posi-
tives are a challenge when using linters. On one hand, these

findings are in line with what previous literature reports on
general static analysis tool usage [55], [8], [10], [56], that the
presence of false positives is indeed a problem. On the other
hand, both our interviewees and survey respondents claim
to not often experience false positives when using ESLint
(see Figure 10). These findings are opposite to what previous
literature reports on general static analysis tool usage [55],
[8], [10], [56], where false positives are said to be frequent.
We conjecture this might be due to the relatively simplistic
analysis methods that are applied in linters and the non-
complex issues they mostly identify.16

Our current data does not show which rules provide
developers with false positives. However, our intuition
suggests that researchers should separate rules that apply
simplistic analysis (such as identifying the usage of tabs or
spaces) from rules that apply more sophisticated analysis
(such as identifying non used variables). We do not expect
the former to be the main cause of false positives. Thus,
more research should be conducted in order to better un-
derstand the quantity of false positives in JavaScript linters.

Additionally, research shows that the fact that devel-
opers tend to categorize irrelevant warnings as false pos-
itives [11], [65] might contribute to the number of expe-
rienced false positives. ESLint, in particular, offers vast
functionality for configuring the tool to fit developers’ needs
and preferences, and we’ve seen that ESLint users often take
advantage of that. Research needs to be conducted in order
to evaluate whether ESLint users experience fewer false pos-
itives because they have configured the tool appropriately.

5.3.3 Reasons for Not Using a Linter

Similarly to Johnson et al. [8], we have studied the chal-
lenges in using a linter by interviewing active users of such
a tool. Furthermore, much like Christakis and Bird [6], we
surveyed linter users and asked which challenges they face.
In our survey, most participants had used a linter but we do
not know how actively they used one or if they continued
using a linter. As the main focus of our survey was to
explore the experiences of linter users, we did not ask many

16. In our ASE paper [20], we affirmed that these results only con-
tradicted previous literature. In this paper, in the light of new data,
we observe that false positives are still an open question in JavaScript
linters.

21

questions to the few participants that had never used one. It
would be informative to specifically target developers that
do not use a linter or those that previously used a linter
but have ceased using one. These developers might provide
different insights into the challenging parts of using such a
tool.

5.3.4 Evidence-based Linting Configuration

Our results shed light on what rules developers see value
in and what rules they do not, by means of two different
points of view: first, the configuration they actually choose
to apply to their projects (more than 9,000 projects), and
second, based on their perceptions (collected after a survey
with more than 300 developers).

Currently, all the most popular presets are based either
on the communities’ or companies’ own experiences. Our
proposal as to which rules to enable (in Table 13) is the first
set of rules for ESLint that comes from concrete data.

Although our results do not provide an explanation of
what makes developers decide between one rule or the
other (as previously discussed), our results emerge from
the experience (and choices) of thousands of projects. In
future research, we plan to evaluate in which scenarios
these choices are the best ones; however, we again reiterate
that our results provide a very first concrete step towards
evidence-based linting configuration.

5.4 The Role of Experience

Throughout the analysis of our survey, we put all partici-
pants in the same bucket, regardless of their experience as
software developers. However, experience can indeed be a
factor of influence, as studies have shown that experience,
among other examples, can play a role in productivity [66]
and in testing [67].

To investigate the role of experience in our results, we
applied statistical methods that would reveal any differ-
ences between groups. To separate participants in these
different groups, we first measured the first, second, and
third quantiles of their years of experience in software
development (1Q = 4, Median = 4, 3Q = 10). With
that, we derived four groups, where each group contained
participants within the following range of experience: 1) G1
= [0, 1Q] (116 participants), 2) G2 =]1Q,Median] (75 partic-
ipants), 3) G3 =]Median,Q3] (83 participants), and 4) G4 =
]Q3,∞[(84 participants).

We then set a number of hypotheses:

H1. The experience of participants does influence their mo-
tivations as to why they use linters (related to RQ1).

H2. The experience of participants does influence their con-
figuration strategies (related to RQ2).

H3. The experience of participants does influence their
perceptions on which ESLint rule categories are most
important (related to RQ3).

H4. The experience of participants does influence the chal-
lenges they face (related to RQ4).

We applied a Chi-Squared test [68] to test each of the hy-
potheses. The test is often used to determine whether there
is a significant difference between the expected frequencies
and the observed frequencies in one or more categories. We
used a significance level of α = 0.05 and all the scripts

can be found in our online appendix [35]. Although we
perform multiple tests, we did not apply any correction on
the significance level (e.g., Bonferroni correction). The reason
is that we are interested in the output of each individual test,
and not that that all hypotheses are true simultaneously [69].

For H1, we applied the Chi-Squared test for the combina-
tion of the four different experience groups and five options
in the Likert scale (strongly disagree, disagree, neutral/NA,
agree, strongly agree). We also repeated the same procedure
for each one of the seven reasons (see Figure 5). We did not
obtain a significant p-value in any of the tests, which means
we are not able to accept the hypothesis that the experience
influences any of their motivations.

For H2, we applied the Chi-Squared test for the combi-
nation of the four different experience groups and whether
that participant has applied that configuration strategy
(yes/no). We also repeated the same procedure for each
one of the nine strategies (see Figure 6). We obtained a
significant p-value for two strategies: to fit the configuration
to the style of the project, and to decide on rules after
discussing them in pull requests or similar mechanisms. In
both, it seems that, the more experienced a developer is, the
more he or she makes use of these strategies.

For H3, we applied the Chi-Squared test for the combina-
tion of the four different experience groups and five options
in the Likert scale (unimportant, slightly unimportant, neu-
tral/NA, important, very important). We also repeated the
same procedure for each one of the seven rule categories (see
Figure 7). We did not obtain a significant p-value in any of the
tests, which means we are not able to accept the hypothesis
that the experience influences their perceptions on which
rule categories are most important.

Finally, for H4, we applied the Chi-Squared test for the
combination of the four different experience groups and
whether that participant has faced that challenge (yes/no).
We also repeated the same procedure for each one of the
seven challenges (see Figure 9). We did not obtain a signifi-
cant p-value in any of the tests, which means we are not able
to accept the hypothesis that the experience influences their
perceptions on which challenges they face.

Therefore, given the results we obtained, we conclude
that experience does not play an important role in the results
we presented throughout this paper.

6 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of this
study as well as the actions we took to mitigate them. We
divide this section according to the three different method-
ologies we apply in this study.

6.1 Part I. Interviewing JavaScript Developers

Transferability. The main limitation to this part of the study
is its possible lack of generalizability. The sample size is not
large and it thus may not represent all OSS development.
Moreover, as we only talk to developers from OSS projects,
the results may not represent industry software. We tried
to mitigate this fact by interviewing experienced developers
from popular and reputable projects. However, that selec-
tion of the sample creates another bias in the study where

22

the results might be different if smaller projects were ex-
amined along with projects having smaller configurations.
Only projects were selected that had somewhat extensive
configurations as we then expected to receive more input
on how rules are selected for a project, thus being able to
report on what methods are used for the task.

As we only looked at projects that use ESLint, the results
might not reflect on usage of all JavaScript linters. Also
examining other linters such as JSLint or JSHint might
produce different results than presented in this study, which
would be an interesting aspect to see in future studies. We
chose to observe the usage of only one linter to make the
interviews more consistent. As the available linters have
different features, e.g., regarding configurability, we would
not have been able to ask all participants the same questions,
and thus possibly making the analysis less reliable. To
minimize the effects of this possible lack of transferability,
we chose to address the most popular and most flexible
linter, also to not restrict the results with more limited use
cases. Additionally, we verified that ESLint is indeed the
most popular linter among the top 120 JavaScript projects
by manually examining the linter configurations of each
project.

Credibility. Possible variables that effect the results of
this study relate to the previous knowledge of the partici-
pants. It is likely that we interviewed people who already
feel strongly about linters as they are frequent users of
the tool. We can not know for sure if their opinions are
based on their own experience with using the tool or if it
is based on external literature that they have read. Because
of this concern, we tried to address our questions to relate
specifically to the participants’ own opinions and experience
working on the particular project. However, in some cases,
the participants had other and even more experience in
working with a linter on other projects, for which they also
based their answers on.

Confirmability. A possible limitation concerns the analy-
sis of the interviews. The interviews were conducted by the
first author only, who also analyzed the transcripts. In order
to reduce any possible bias that this decision could bring to
the results, the first and the second authors of this paper met
after every conducted interview and discussed about what
that new piece of information brought to the overall results.
Any existing conflict of ideas were solved in these meetings.
Both researchers also used these meetings to refine the final
codes that were used as main topics throughout the Results
section of this paper.

Due to this iterative process, we did not calculate inter-
rater agreement, as commonly done in qualitative studies.
Nevertheless, it is possible that someone else would have
constructed the codes differently, perhaps resulting in differ-
ent conclusions [70]. We therefore make the derived codes
available online for inspection [35].

6.2 Part II. Mining Linter Configurations in Open
Source Systems

Sample Selection. Our sample selection procedure consisted
of selecting all JavaScript projects on GitHub with more
than 10 stars. As we explain in the Methodology section,
our goal was to only analyze repositories that can possibly

count as “real” software projects, i.e., not short lived coding
experiments or small personal projects. Although it is well
known that stars on GitHub do not necessarily represent the
quality (nor the size) of a project [71], manually selecting
them would have been costly and possibly biased. Never-
theless, as we see in Section 3.2.3, our sample contains open
source projects that highly vary in terms of code size and
creation dates. Future work should focus on replicating this
study in industry projects.

Reliability of the Linter Detection Strategy. A limitation
of the tool is that it can possibly miss out on some ESLint
configuration files. The configuration file is typically located
in the main directory of a project (as it will then be used
for the whole project), so in order to save execution time
and to simplify the tool, it is the only location where the
tool searches for the file. It could however be the case with
some projects that they place their configuration file in a
subdirectory of the project and pass it to the linter with the
command line. This limitation does however not have any
significant effects on the results, since the only real implica-
tion is that the dataset for analyzing the configuration files
is smaller than it could have been. A trivial limitation is
that the numbers are skewed regarding the prevalence of
using ESLint, as reported in Section 3.2.3 about the dataset’s
characteristics. That information is however not of main
interest for this study.

Continuing on the topic of the prevalence of linter usage,
there are limitations in acknowledging the presence of other
linters as well. As the tool does not check for all linters
that exist, no assumptions can be made about the overall
prevalence of linter usage. For example, the tool does not
account for usage of JSLint, but it was decided to disregard
that linter since the usage is less frequent than of the other
linters and it was more difficult to identify its usage.

Moreover, for some linters it is not necessary to have a
configuration file in place and it is also possible to specify
a configuration file with other names than the default rec-
ognized formats. For these reasons the usage could as well
be understated. On the other hand, the usage in some cases
can be overstated. Even though a project has a configuration
file for a specific linter, it does not guarantee that the linter
is actually used. As an example, the tool found that one
project has four linters enabled, having configuration files
for ESLint, JSHint and JSCS along with having Standard as
a dependency [72]. On closer inspection one can see that
only one of them seems to be currently in use (and even
additionally uses TSLint that is intended for TypeScript).

Further measures could have been taken to make this
analysis more accurate, such as analyzing the dependencies
of all projects along with all its pre-running scripts. That
would however still not guarantee true results and was
considered out of scope, as this is not the main purpose
of the study. For these reasons, the prevalence results are
presented as estimations of the usage and not as definite
findings.

To increase confidence in the current implementation to
identify the usage of ESLint, JSHint, JSCS and Standard,
manual and automated unit testing were applied. Actual
use cases of all covered situations to detect these linters were
used as input to see if the tool identified them correctly.

Data Analysis. Our linter detection tool also took the

23

opportunity to summarize the data on-demand (i.e., count
the number of projects that do and do not use presets, num-
ber of enabled and disabled rules, as well as the arithmetic
mean of rules per project), as we show in Table 8. Our
tool did not store the raw files for future analysis. As we
only report the arithmetic mean, readers do not have the
opportunity to explore the entire distribution, which could
lead them to different insights. In future work, we plan to
better understand the distribution of the enabled, disabled,
and warned rules.

6.3 Part III. Surveying Developers

Survey Design and Analysis. It is important to consider both
the validity and reliability of a survey [45], [46]. The validity
mainly has to do with how well surveys measure what
they are intend to measure, while reliability considers how
consistent and true the responses are. To try to ensure that
this survey was both valid and reliable, much consideration
went into writing relevant questions that use direct and
appropriate language. All questions were then reviewed
and evaluated in pilot tests with members of the target
population. To further evaluate the reliability of the survey,
the responses were reviewed in separate batches based on
the source of the participants, e.g., a separate batch for
all participants that entered the survey via the promotion
on Reddit. We did not observe any major discrepancies
between the different groups.

For the coding of the open questions, we followed a
strategy similar to Part I, where the first author performed
the initial coding, and then refined the results by means of
several discussions with the second author. Similarly to the
threats of Part I (Section 6.1), it is however possible that
someone else would have coded the responses differently,
perhaps resulting in different conclusions [70]. We therefore
also make the derived codes available online for inspection
[35].

Survey Evaluation. The survey was pilot tested in order
to identify possible problems and to make general im-
provements. Six participants were recruited who provided
valuable feedback for the survey where some crucial im-
provements were made. After these six tests, the authors
were confident that these improvements were sufficient for
the survey to be considered both valid and reliable.

It is however possible that not all problems were de-
tected in these tests and that more tests would have led
to making more improvements. To make the pilot tests
as efficient and effective as possible, several sources of
literature were examined to learn about what aspects to
focus on. This preparation played a key part in the resulting
confidence that the authors had about the final quality of the
survey. Additionally, when examining the final responses of
the survey, no major problems could be identified with the
answers, such as anything implying a wide misunderstand-
ing of any questions.

Sampling and Responses. It is important to consider
the response rate and the representativeness of a survey’s
response set [73], but it is however difficult to calculate a
response rate for this kind of convenience sampling. For two
of the distribution places, JS.is and Echo JS, it is impossible
to know how many individuals viewed the original posts

to estimate a response rate. For JS Reddit, it is known
that the post was opened by 1,300 individuals, resulting
in a response rate of 20.6% for complete responses17. It is
however not known how many people saw the post on
the front page and did not decide to take a further look,
consequently not having access to the survey link. For the
last location, Twitter, the tweet reached a number of 4,615
users but it is difficult to predict how many of those users
actually noticed or read the tweet.

Perhaps more important in this case is the representa-
tiveness of the response set. Three of the locations (JS.is,
JS Reddit and Echo JS) are communities that are specifically
created for JavaScript enthusiasts, which is exactly the target
group of the study. Furthermore, as the title and description
of the survey refer to linters for JavaScript, it should attract
mostly JavaScript developers that have used a linter in the
past. In the case of Twitter, all retweeters except for one (who
did not have a self-description) are either developers or
software engineering professors or researchers. These peo-
ple most likely have many followers of related professions
where however not all might be involved with JavaScript.

We observe that JavaScript is the main language for
96.1% of the participants, with an average experience of
5.8 years with using JavaScript and every single respondent
had used the language in the last 12 months. Furthermore,
87.0% regularly work in industry and 50.6% with OSS,
which allows this analysis to cover both the commercial and
open source sectors. Additionally, the sample is very diverse
regarding the participants’ country of residence, leading to
the results not representing only one market or one part of
the world.

However, there is almost no gender diversity in the sam-
ple, which is unfortunately a common problem when per-
forming surveys within the software engineering field [74].
Even companies like Stack Overflow, with high media im-
pact, have trouble with gender balance in their popular sur-
veys (in the 2018 survey with more than 100k respondents,
only 6.9% identified themselves as female [75]). Studies have
shown that there exists bias against women in open source
communities [76] and the authors of this paper are strongly
committed to gender diversity. Future work must explore
different JavaScript communities with a better gender bal-
ance.

7 RELATED WORK

Static analysis has been a popular research topic where
many tools have been created, both for academic and in-
dustrial use. These tools can be convenient as they are
used without executing the software which they are applied
on. A common research topic is the construction of such
tools, such as for security vulnerability, fault detection, and
code smells [77], [78], [79], [80], [81], [82], and the various
methods to do so, such as data flow, information flow,
path or pointer analysis [5]. Other research topics explore
the usage of these tools, which we are more interested in
for this particular study. These topics include developers’
perceptions of static analysis tools [6], [8], the value of
using these tools in real world applications [55], [5] and the

17. It is estimated that 378 partial responses were received from
Reddit, resulting in a response rate of 49.7% for all responses.

24

challenge of false positives [10], [56]. In the following we
briefly explore these latter topics and finally discuss static
analysis in the world of JavaScript.

7.1 Perceptions of Static Analysis Tools

Johnson et al. [8] researched the usage of static analysis tools,
in particular why some developers do not use these tools to
find bugs despite of their proven benefits. They conducted a
study where they interactively interviewed 20 participants
while applying FindBugs on software. They found that
the main reasons why the participants chose to use static
analysis tools were to avoid the time consuming manual
labor to find bugs, to support team development efforts and
to enforce coding standards. Reasons to not use these tools
include poorly presented output where there are too many
false positives or too many warnings reported in general,
in addition to tools not being integrated conveniently in
the workflow. Moreover, most participants claimed that it
is important for these tools to be easily customizable and
that warnings should be explained properly, including how
they can be fixed. Our work is inspired by this study where
we also research why static analysis tools are used and how
they can be improved, but focusing solely on JavaScript.
We see that the overall expectation of JavaScript developers
with static analysis tools are similar to the ones in previous
research.

A similar study was conducted by Christakis and Bird [6]
who also investigate how developers perceive static analysis
tools, specifically which barriers they face in the adoption of
these tools and how these tools should be created so that
developers will take advantage of them. For this purpose
they surveyed a random sample of 375 Microsoft devel-
opers. What was considered to be the largest obstacle in
using these tools was the fact that some unwanted rules are
turned on by default in the tools’ configurations. Proposed
solutions to this problem are to have a subset of rules
enabled instead of all rules being enabled by default, or to
make the configuration process easy for developers. This
idea is similar to what ESLint does; there are no default
configurations but one can easily enable a preset with a
selected subset of rules that the creators of ESLint think
are the most important (eslint:recommended). In addition,
in RQ2, we explore the different strategies that JavaScript
developers have been applying in order to derive the best
configuration for their projects. We conjecture our findings
also make sense for static analysis tools of other languages.

Moreover, other frequently experienced challenges, as
reported by Christakis and Bird, were bad warning mes-
sages, too many false positives and for the analysis to be
too slow. For the functionality that these developers want
static analysis tools to detect, security issues, best practices
and concurrency issues were the most commonly requested
ones. Issues relating to style were among the least requested
features for such a tool to have. However, the majority of
the developers reported that the issues they encounter that
can be caught by static analysis tools are most commonly
best practices violations and style inconsistencies, opposed
to more complex issues such as regarding reliability or
concurrency. The expectations of these developers therefore
seem to match with a tool like ESLint. Our results show that,

although developers agree that Possible Errors is a highly
important category to be enabled, in practice, only 52% of
projects actually enable such rules. Our hypothesis is some-
what inline with previous research, where we conjecture
that the set of available Possible Errors rules is not sufficient.
Thus, more research needs to be conducted in order to
provide developers with a set of rules that are able to detect
more complex and important bugs.

7.2 Configurations of Static Analysis Tools

Ayewah et al. [7], [83] studied the usage of FindBugs
where they saw that users are generally interested in fixing
warnings from the tool, especially the high priority ones, but
which types of warnings depends on the user’s context. It
is therefore deemed valuable to have configuration options
for these different groups of users. Similarly, Jaspan et al. [2]
recognized the importance of customizing and prioritizing
rules to make developers more willing to use a static analy-
sis tool as it reduces the number of perceived false positives
for a project.

Regarding how developers configure these tools, Beller
et al. [3] performed a large-scale study on the prevalence
of static analysis tool usage along with how they are config-
ured. They examined static analysis tools for four languages,
Java, JavaScript, Python and Ruby, where for JavaScript they
observed JSHint, ESLint, JSCS and JSL [84]. They found that
these tools are commonly used in OSS software (over half
of all analyzed projects) and in particular for JavaScript
projects where JSHint was by far the most widely used
linter18. The configurations for these projects are most often
changed from the default settings, but typically only one
rule is added, removed or modified. Furthermore, after a
configuration file has been created, they are rarely modified.
For the types of rules that are configured, those that are re-
lated to maintainability were both more commonly enabled
and disabled than those that have to do with functional
defects. This is in line with our findings as we have seen that
rules from the categories Stylistic Issues and Best Practices are
enabled and disabled more often than rules from the Possible
Errors category. Beller et al. predict that fewer bug-finding
rules are enabled as tools are known to perform poorly in
finding defects.

Zampetti et al. [9] further analyzed the usage of static
analysis tools in continuous integration (CI) pipelines in
popular OSS projects. For the 20 analyzed projects, Check-
style was the most commonly used static analysis tool,
followed by FindBugs, where 11 projects used only one
tool while the rest employed multiple tools. Most of these
static analysis tools were configured to break the build
in the CI pipeline, especially in the case of Checkstyle
(only one project solely raised warnings). Most projects
manually configured the rules that were activated in these
projects for at least one tool that was used, where Check-
style was configured in every single case. While FindBugs
was typically configured to include all available rules, the
percentage of used rules for Checkstyle always remained
below 40%. The most commonly enabled Checkstyle rules
were regarding indentation (Whitespace), unused imports
(Imports), possible defects (Coding) and code blocks (Block

18. At the time of analysis in early 2015.

25

checks). The configurations of the static analysis tools were
not changed often over the projects’ lifetime, each with less
than 10 modifications except for one project. Zampetti et
al. recommend developers to configure static analysis tools
to their needs to benefit the most from using these tools,
e.g., to avoid unnecessary build failures.

Some of the previous literature indeed included ESLint
but we suspect that these results would be somewhat dif-
ferent if these studies would be conducted again today, as
ESLint has since then removed any default configurations
in the tool and all rules are now off by default. A developer
using the tool thus now needs to create some configuration,
which in the simplest case could just include the recom-
mended settings from ESLint.

In addition, the related work does not perform a fine-
grained analysis on the rules that are enabled and disabled,
as we proposed. Our results bring clear understanding on
the prevalence of each existing rule in ESLint. We suggest
researchers to replicate our approach in the configuration of
static analysis tools in other languages.

7.3 Effectiveness of Static Analysis Tools

Several studies have focused on the effectiveness of static
analysis tools to find bugs in software systems. In a case
study, Wagner et al. [85] found that static analysis tools
report on different warnings than those that are found by
testing a software, indicating that it is beneficial to use these
two methods in combination. Furthermore, static analysis
tools find a subset of the issues that are found via code
review, thus if used beforehand, they can save some of
the time that goes into performing the manual task. Zheng
et al. [5] also found that static analysis tools are comple-
mentary to other fault-detection techniques but with limited
usability where testing was found to be more effective.

Wedyan et al. [55] further examined how effective static
analysis tools are in detecting faults and refactoring oppor-
tunities. Studying two software systems, three known static
analysis tools were only able to detect 3% of the defects
that were actually found in the projects’ lifetime. These
tools were however much more successful in identifying
the refactorings that were performed in the project, or
around 70%. Similarly, Couto et al. [61] also found that
FindBugs was not able to identify most of the errors that
had been fixed in some studied software systems. However
they found some level of correlation between the number of
reported warnings and the number of actual field bugs. So
despite the fact that static analysis tools may not be good at
finding actual field defects, they can serve as good indicators
of the level of internal quality in a software system.

In our paper, although we extensively report how devel-
opers have been using linters, which rules they opt to enable
and disable, as well as their perceptions on how important
each of them are, we do not measure how effective each
rule really is. In future work, we intend to understand and
measure the quality of these rules.

7.4 False Positives in Static Analysis Tools

A common problem with static analysis tools is the high
volume of false positives [55], [8], [10], [56]. For example,
Wedyan et al. [55] found well known static analysis tools

to produce a false positive rate above 90% when applying
them on several software systems. The presence of false
positives is indeed known to be one of the main barriers of
static analysis tool adoption [8], [6], [4]. Developers will not
tolerate a high false positive rate and quickly discard a tool if
the rate is too high [6], [65]. More specifically, Christakis and
Bird [6] found that most developers do not tolerate a false
positive rate of over 20%. They prefer for tools to identify
fewer defects, rather than catching more bugs and having
a higher volume of false positives. Furthermore, Wagner et
al. [85] experienced that when static analysis tools report a
high number of false positives, it can take even more time
to shift through them to find the true defects, than the time
that is saved on manual effort by using a static analysis tool
in the first place.

The term false positive can be understood in two dif-
ferent ways, either a wrongly reported warning or a true
warning that is not considered by a developer to improve
the software under analysis [11]. Tool makers have thus
experienced that the users decide for themselves what a
false positive is and therefore how effective a tool is [65].
Additionally, when tools identify more intricate issues, the
risk increases of users not understanding the issue and
mistaking true positives for false positives [10]. In general
when there are many reported false positives, developers
start trusting the tool less and less [10]. With less trust, even
more true positives are thought to be false positives by the
developers. Couto et al. [61] and Jaspan et al. [2] further
experienced that developers categorize warnings that are
not of their interest as false positives. They stressed the
importance of customizing tools and prioritizing rules so
that only high-priority and relevant warnings are reported.
Without doing so, tools can not become practically usable.

As we discuss in Section 5.3.2, although our participants
see false positives as a challenge, they perceive them to
occur infrequently. We raised a few hypotheses on why this
happens in that section. Therefore, we invite researchers to
conduct studies on the prevalence of false positives in the
existing JavaScript linters.

7.5 Static Analysis Tools Used in Industry

An abundance of static analysis tools have been developed
with diverse features and implementations, where software
systems have different requirements for these tools. Many
static analysis tools have been used by major software
companies such as Google, Facebook and Microsoft, both
tools that have been created internally and externally [6].
Bessay et al. [10], the creators of Coverity, experienced first
hand how difficult it can be to create a static analysis tool
that fits for commercial use of companies with large code
bases. The technical requirements of such companies can
vary greatly, e.g., using miscellaneous build processes and
developing environments that can make running the tool
different for each particular case. The size and nature of
software projects can also entail different requirements for
static analysis tools, where Google resorted to creating their
own tool as no other available static analysis tool could
handle the size of their codebase [65].

Google have indeed tried and reported from using sev-
eral static analysis tools such as FindBugs and Coverity [86].

26

Despite some success with adopting these tools, ultimately
they were not frequently used by developers due to the
presence of false positives, lack of scalability and incon-
venient workflow integration [65]. Eventually they instead
created their own tool, Tricorder [65], a static analysis tool
with an ecosystem of developers creating and reviewing
custom analyzers. They only display high priority warnings
from analyzers that have received good reviews from other
developers, in an attempt to make the developers more
willing to use the tool by eliminating false positives and
low priority warnings.

EBay [2] reported on their substantial effort into choos-
ing the most valuable and appropriate tool set for their
projects. They report on a method to evaluate these tools
where eventually the tool FindBugs was integrated to their
development process. For their software it was deemed
important that the adopted tool should be extensible (to
allow for project custom rules) and customizable. They
report that customization and prioritization are important
steps in evaluating a tool as it can reduce the false positive
rate for a project and make developers more willing to use
the tool.

In our paper, although some of the interviewees were
also developers in industry, the extensive mining analysis
we performed was conducted solely on open source sys-
tems. Future work should focus on how companies are
configuring such linters.

7.6 Static and Dynamic Analysis for JavaScript

As JavaScript has become more popular it has also attracted
more attention in the research community. The need for
more and better tooling for the language has been empha-
sized along with the challenges that JavaScript introduces
for proper static analysis. Several studies have therefore
focused on techniques for, and the creation of, static analysis
tools for JavaScript [87], [88], [89].

JavaScript is a dynamic language, which e.g., involves
dynamic typing, dynamic file loading, first-class functions
and property access, and in general code that can be gener-
ated during runtime. Richards et al. [57] analyzed the usage
of dynamic features in JavaScript code in commonly used
websites and found that some dynamic features are indeed
frequently used, such as adding and removing properties to
objects after their initialization and using the eval function
for various unpredictable purposes. As such, JavaScript has
been described as harsh terrain for static analysis [57], [89],
[90], [91]. The usability of static analysis tools for JavaScript
has thus also been criticized and said to be limited since
these tools can not account for runtime behavior [58]. For
this problem, tools have been created that employ dynamic
analysis of program executions [91], [58], [92]. A recent
example is DLint [58] that, evaluated against JSHint, de-
tected on average 49 new code quality issues per studied
system. Example issues they identified are object properties
shadowing prototype properties, passing too many argu-
ments to a function, accessing the undefined property, and
silent coercion of arithmetic operations to NaN. Some issues
were detected by both DLint and JSHint but with different
methods to do so, where DLint increased the total warnings
found by 10%, thus complementing JSHint.

In general, while there have been several proposed static
analysis tools and techniques for JavaScript in previous
research, most suffer from being sound but impractical,
or the opposite, practical but unsound [93], [91]. Practical
limitations include lack of scalability and inabilities to an-
alyze library usage. More tools have been developed for
specific challenges of JavaScript, such as the prevalent use
of external libraries [94], [89]. Some large libraries, such as
the Browser API and HTML DOM, are written in other
languages and do not provide a JavaScript implementation,
thus making static analysis more difficult.

Other common libraries like jQuery [95] are also known
to make extensive use of many dynamic language fea-
tures, such as use of eval and computed property names,
which also contributes to the difficulty of static analysis for
JavaScript code. Another related challenge is the dynamic
file loading of these libraries where the code is therefore not
made available immediately for analysis. For this problem,
researchers have proposed staged analysis [96], [97] which
is applied in two stages, first for all statically available
code and later for the remaining dynamically loaded code.
Interestingly, the false positives that have been identified
with static analysis of JavaScript code (by applying the
tool SAFE [98]), mostly had to do with API usage and
asynchronous function calls, though also due to dynamic
file loading and dynamic code generation [99].

Despite the challenges that it brings, automated static
analysis can be especially beneficial for languages that do
not have strict typing [5]. Type analysis is considered to
be a crucial part to catch representation errors where, for
example, numbers can be confused with strings or func-
tions confused with booleans [87], [15]. Additionally, simple
mistakes such as spelling mistakes can result in surprising
consequences at run time, which is mostly avoided in other
languages with static typing [90]. Pradel et al. [15] created
a tool, TypeDevil, to counter against errors that have to
do with inconsistent types in JavaScript, using dynamic
analysis where types of variables, properties and functions
are observed at runtime. Moreover, as typing systems have
been developed such as TypeScript [100], Gao et al. [101]
studied the effects of dynamic typing on errors in JavaScript
applications and examined whether typing systems could
prevent them. They added type annotations to code that had
caused errors in software systems and examined whether
using TypeScript or Flow on that code would surface the
previously encountered errors. They saw that applying
these static type systems would detect many errors (15% in
this study) that otherwise can go unnoticed into production
code.

As our results show, developers acknowledge the fact
that JavaScript is a dynamic language, and thus, they accept
the fact that static analysis tools may have a hard time
in analyzing dynamic behavior. However, developers also
showed their interest in seeing such analysis. Our findings
reinforce the importance of more research in the field of
static and dynamic analysis of dynamic languages.

Lastly, code smells in JavaScript have recently been stud-
ied where Fard et al. [92] developed a tool, JSNose, to detect
potential smells. Saboury et al. [102] later analyzed the
prevalence and impact of several code smells and surveyed
developers on their perceptions of those smells. The studied

27

code smells were derived from literature and online style
guides, including recommendations from ESLint and from
the Airbnb preset. They found that JavaScript files that are
affected with code smells tend to be more error-prone than
those without any smells. Moreover, Variable Re-assign and
Assignment in Conditional Statements were among the most
dangerous smells. Additionally, when surveying a large
sample of JavaScript developers, Nested Callbacks, Variable
Re-assign and Long Parameter List were perceived to be the
most hazardous smells affecting the maintainability and
reliability of JavaScript applications.

8 CONCLUSION

In this study we have applied three research methods where
we first interviewed 15 experts on using ESLint, then an-
alyzed over 9,500 ESLint configuration files from GitHub
projects and finally surveyed more than 300 JavaScript
developers about their experiences with using a linter, ex-
ploring the findings from the previous two analyses.

Our findings can be summarized as follows:

• We see that most developers use a linter to maintain
code consistency. Nevertheless, both interview and sur-
vey participants claim that rules that relate to possible
errors are far more important than those that relate to
stylistic issues.

• Regarding how developers configure linters, they gen-
erally prefer to use a preset rather than to manually
choose every rule that is used for a project. However,
most developers additionally apply some configura-
tions that are specific to a project or a team.

• While it is important to be able to identify errors early
in the development process by using a linter, even more
developers feel the need to have consistent formatting
where everyone taking part in a project uses quotes,
semicolons and indentation in the same way.

• Upholding these configurations can be a challenging
task where it can be difficult to agree with teammates
on which rules should be used for a project.

The results of this study produced valuable implications
for developers, tool makers and researchers, who can use the
information to make better use of linters, to improve future
versions of linters and to further research this important
aspect of software development.

REFERENCES

[1] B. W. Boehm, Software engineering economics. Prentice-hall Engle-
wood Cliffs (NJ), 1981, vol. 197.

[2] C. Jaspan, I. Chen, A. Sharma et al., “Understanding the value of
program analysis tools,” in Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion. ACM, 2007, pp. 963–970.

[3] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyz-
ing the state of static analysis: A large-scale evaluation in open
source software,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1.
IEEE, 2016, pp. 470–481.

[4] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug
finding tools for Java,” in Software Reliability Engineering, 2004.
ISSRE 2004. 15th International Symposium on. IEEE, 2004, pp.
245–256.

[5] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,
and M. A. Vouk, “On the value of static analysis for fault
detection in software,” IEEE transactions on software engineering,
vol. 32, no. 4, pp. 240–253, 2006.

[6] M. Christakis and C. Bird, “What developers want and need
from program analysis: an empirical study,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2016, pp. 332–343.

[7] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh, “Using static analysis to find bugs,” IEEE software,
vol. 25, no. 5, 2008.

[8] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 672–681.

[9] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and
M. Di Penta, “How open source projects use static code analysis
tools in continuous integration pipelines,” in Proceedings of the
14th International Conference on Mining Software Repositories. IEEE
Press, 2017, pp. 334–344.

[10] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: using static analysis to find bugs in the
real world,” Communications of the ACM, vol. 53, no. 2, pp. 66–75,
2010.

[11] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production soft-
ware,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. ACM, 2007,
pp. 1–8.

[12] GitHub, “Language Trends on GitHub,” https://github.com/
blog/2047-language-trends-on-github, [Online; accessed 13-
June-2017].

[13] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “JavaScript errors
in the wild: An empirical study,” in Software Reliability Engineer-
ing (ISSRE), 2011 IEEE 22nd International Symposium on. IEEE,
2011, pp. 100–109.

[14] T. Mikkonen and A. Taivalsaari, “Using JavaScript as a real
programming language,” Sun Microsystems, Inc., 2007.

[15] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type
inconsistency analysis for javascript,” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 314–324.

[16] J. W. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications, 2013.

[17] “ESLint,” http://eslint.org, [Online; accessed 11-July-2017].
[18] P. Vorbach, “npm-stat, download statistics for packages eslint,

jshint, jslint, jscs, standard,” https://npm-stat.com/charts.html?
package=eslint&package=jshint&package=jslint&package=jscs&
package=standard&from=2015-01-01&to=2017-05-31, [Online;
accessed 2-June-2017].

[19] B. G. Glaser and J. Holton, “Remodeling grounded theory,” in Fo-
rum Qualitative Sozialforschung/Forum: Qualitative Social Research,
vol. 5, no. 2, 2004.

[20] K. F. Tómasdóttir, M. Aniche, and A. v. Deursen, “Why and
how javascript developers use linters,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engi-
neering. IEEE Press, 2017, pp. 578–589.

[21] “FindBugs,” http://findbugs.sourceforge.net, [Online; accessed
11-July-2017].

[22] “Checkstyle,” http://checkstyle.sourceforge.net, [Online; ac-
cessed 11-July-2017].

[23] “PMD,” https://pmd.github.io, [Online; accessed 11-July-2017].
[24] “JSHint,” http://jshint.com, [Online; accessed 11-July-2017].
[25] “JSCS,” http://jscs.info, [Online; accessed 11-July-2017].
[26] “JSLint,” http://jslint.com, [Online; accessed 11-July-2017].
[27] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that

men do,” in European Conference on Object-Oriented Programming
(ECOOP). Springer, 2011, pp. 52–78.

[28] ESLint, “Rules,” http://eslint.org/docs/rules, [Online; accessed
2-June-2017].

[29] AirBnb ESLint preset. [Online]. Available: https://github.com/
airbnb/javascript

[30] “Standard JS,” https://standardjs.com, [Online; accessed 11-July-
2017].

[31] ESLint, “Configuring ESLint,” http://eslint.org/docs/
user-guide/configuring, [Online; accessed 27-May-2017].

[32] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory
to study the experience of software development,” Empirical
Software Engineering, vol. 16, no. 4, pp. 487–513, 2011.

28

[33] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in
software engineering research: a critical review and guidelines,”
in Proceedings of the 38th International Conference on Software Engi-
neering. ACM, 2016, pp. 120–131.

[34] S. E. Hove and B. Anda, “Experiences from conducting semi-
structured interviews in empirical software engineering re-
search,” in Software metrics, 2005. 11th ieee international symposium.
IEEE, 2005, pp. 10–pp.

[35] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “The Adop-
tion of JavaScript Linters in Practice: A Case Study on ESLint
[Data set],” https://doi.org/10.5281/zenodo.1410967, zenodo.

[36] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,”
in Proceedings of the 11th working conference on mining software
repositories. ACM, 2014, pp. 92–101.

[37] GitHub, “About Stars,” https://help.github.com/articles/
about-stars, [Online; accessed 6-March-2017].

[38] “BigQuery,” https://cloud.google.com/bigquery, [Online; ac-
cessed 29-May-2017].

[39] G. Gousios, “The GHTorrent dataset and tool suite,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 233–236. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2487085.2487132

[40] “GHTorrent,” http://ghtorrent.org, [Online; accessed 29-May-
2017].

[41] “ESLint first release (v0.0.2),” https://github.com/eslint/eslint/
releases?after=v0.1.0, [Online; accessed 23-May-2017].

[42] “ESLint first major release (v1.0.0),” https://github.com/eslint/
eslint/releases?after=v1.0.0, [Online; accessed 23-May-2017].

[43] “stream-handbook via GitHub (example of a repository con-
taining a programming guide),” https://github.com/substack/
stream-handbook, [Online; accessed 23-May-2017].

[44] “Impress.js-Tutorial via GitHub (example of a repository con-
taining code for a tutorial),” https://github.com/cubewebsites/
Impress.js-Tutorial, [Online; accessed 23-May-2017].

[45] A. Fink, The survey handbook. Sage, 2003, vol. 1.
[46] D. De Vaus, Surveys in social research. Routledge, 2013.
[47] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey re-

search: part 1: turning lemons into lemonade,” ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 6, pp. 16–18, 2001.

[48] K. F. Tómasdóttir, “Post promoting survey on JavaScript user
group (Iceland) on Facebook,” https://facebook.com/groups/
nodejsis/permalink/1709121425832578, [Online; accessed 14-
June-2017].

[49] ——, “Post promoting survey on Reddit.” https://redd.it/
6eumsp, [Online; accessed 14-June-2017].

[50] “Echo JS,” http://echojs.com, [Online; accessed 14-June-2017].
[51] K. F. Tómasdóttir, “Post promoting survey on Twitter.” https://

twitter.com/kristinfjolato/status/871986432952479747, [Online;
accessed 14-June-2017].

[52] “eslint-config-airbnb via npm,” https://npmjs.com/package/
eslint-config-airbnb, [Online; accessed 29-May-2017].

[53] “eslint-config-airbnb-base via npm,” https://npmjs.com/
package/eslint-config-airbnb-base, [Online; accessed 29-May-
2017].

[54] S. Heckman and L. Williams, “On establishing a benchmark
for evaluating static analysis alert prioritization and classifica-
tion techniques,” in Proceedings of the Second ACM-IEEE interna-
tional symposium on Empirical software engineering and measurement.
ACM, 2008, pp. 41–50.

[55] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of
automated static analysis tools for fault detection and refactoring
prediction,” in Software Testing Verification and Validation, 2009.
ICST’09. International Conference on. IEEE, 2009, pp. 141–150.

[56] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[57] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of
the dynamic behavior of JavaScript programs,” in ACM Sigplan
Notices, vol. 45, no. 6. ACM, 2010, pp. 1–12.

[58] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: Dynami-
cally checking bad coding practices in JavaScript,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 94–105.

[59] “TypeScript,” http://typescriptlang.org, [Online; accessed 10-
July-2017].

[60] “Flow,” http://flowtype.org, [Online; accessed 10-July-2017].

[61] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static cor-
respondence and correlation between field defects and warnings
reported by a bug finding tool,” Software Quality Journal, vol. 21,
no. 2, pp. 241–257, 2013.

[62] “AirBnb ESLint base preset,” https://github.com/airbnb/
javascript/tree/master/packages/eslint-config-airbnb-base,
[Online; accessed 15-January-2018].

[63] “Google ESLint preset,” https://github.com/google/
eslint-config-google, [Online; accessed 15-January-2018].

[64] “Standard ESLint preset,” https://github.com/standard/
eslint-config-standard, [Online; accessed 15-January-2018].

[65] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Con-
ference on, vol. 1. IEEE, 2015, pp. 598–608.

[66] W. Fong Boh, S. A. Slaughter, and J. A. Espinosa, “Learning
from experience in software development: A multilevel analysis,”
Management Science, vol. 53, no. 8, pp. 1315–1331, 2007.

[67] A. Beer and R. Ramler, “The role of experience in software testing
practice,” in Software Engineering and Advanced Applications, 2008.
SEAA’08. 34th Euromicro Conference. IEEE, 2008, pp. 258–265.

[68] P. E. Greenwood and M. S. Nikulin, A guide to chi-squared testing.
John Wiley & Sons, 1996, vol. 280.

[69] T. V. Perneger, “What’s wrong with bonferroni adjustments,”
BMJ: British Medical Journal, vol. 316, no. 7139, p. 1236, 1998.

[70] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

[71] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of
mining github,” Empirical Software Engineering, vol. 21, no. 5, pp.
2035–2071, 2016.

[72] “MQTT.js via GitHub (example of a repository containing four
linters),” https://github.com/mqttjs/MQTT.js, [Online; accessed
26-May-2017].

[73] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary guidelines
for empirical research in software engineering,” IEEE Transactions
on software engineering, vol. 28, no. 8, pp. 721–734, 2002.

[74] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey re-
search: part 5: populations and samples,” ACM SIGSOFT Software
Engineering Notes, vol. 27, no. 5, pp. 17–20, 2002.

[75] S. Overflow, “Stack Overlow Developer Survey 2018.” https:
//insights.stackoverflow.com/survey/2018/, [Online; accessed
April-2018].

[76] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,
C. Parnin, and J. Stallings, “Gender differences and bias in open
source: Pull request acceptance of women versus men,” PeerJ
Computer Science, vol. 3, p. e111, 2017.

[77] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities
in Java applications with static analysis.” in USENIX Security
Symposium, vol. 14, 2005, pp. 18–18.

[78] M. Christodorescu and S. Jha, “Static analysis of executables
to detect malicious patterns,” Wisconsin Univ-Madison Dept of
Computer Sciences, Tech. Rep., 2006.

[79] M. Aniche, G. Bavota, C. Treude, A. Van Deursen, and M. A.
Gerosa, “A validated set of smells in model-view-controller ar-
chitectures,” in Software Maintenance and Evolution (ICSME), 2016
IEEE International Conference on. IEEE, 2016, pp. 233–243.

[80] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A.
Gerosa, “Satt: Tailoring code metric thresholds for different
software architectures,” in Source Code Analysis and Manipula-
tion (SCAM), 2016 IEEE 16th International Working Conference on.
IEEE, 2016, pp. 41–50.

[81] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van
Deursen, “Code smells for model-view-controller architectures,”
Empirical Software Engineering, pp. 1–37, 2017.

[82] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant:
Identification and removal of type-checking bad smells,” in
Software Maintenance and Reengineering, 2008. CSMR 2008. 12th
European Conference on. IEEE, 2008, pp. 329–331.

[83] N. Ayewah and W. Pugh, “A report on a survey and study of
static analysis users,” in Proceedings of the 2008 workshop on Defects
in large software systems. ACM, 2008, pp. 1–5.

[84] “JavaScript Lint,” http://javascriptlint.com, [Online; accessed 7-
August-2017].

29

[85] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing
bug finding tools with reviews and tests,” Lecture Notes in Com-
puter Science, vol. 3502, pp. 40–55, 2005.

[86] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Pro-
ceedings of the 19th international symposium on Software testing and
analysis. ACM, 2010, pp. 241–252.

[87] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for
JavaScript,” in SAS, vol. 9. Springer, 2009, pp. 238–255.

[88] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip, “Cor-
relation tracking for points-to analysis of JavaScript,” European
Conference on Object-Oriented Programming (ECOOP), pp. 435–458,
2012.

[89] M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis
of JavaScript applications in the presence of frameworks and li-
braries,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM, 2013, pp. 499–509.

[90] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML
DOM and browser API in static analysis of JavaScript web appli-
cations,” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering.
ACM, 2011, pp. 59–69.

[91] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determi-
nacy analysis,” in ACM SIGPLAN Notices, vol. 48, no. 6. ACM,
2013, pp. 165–174.

[92] A. M. Fard and A. Mesbah, “JSNOSE: Detecting JavaScript code
smells,” in Source Code Analysis and Manipulation (SCAM), 2013
IEEE 13th International Working Conference on. IEEE, 2013, pp.
116–125.

[93] Y. Ko, H. Lee, J. Dolby, and S. Ryu, “Practically tunable static
analysis framework for large-scale JavaScript applications (T),”
in Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE, 2015, pp. 541–551.

[94] E. Andreasen and A. Møller, “Determinacy in static analysis for
jQuery,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM, 2014,
pp. 17–31.

[95] “jQuery,” https://jquery.com, [Online; accessed 13-June-2017].
[96] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner, “Staged informa-

tion flow for JavaScript,” ACM Sigplan Notices, vol. 44, no. 6, pp.
50–62, 2009.

[97] S. Guarnieri and B. Livshits, “GULFSTREAM: Staged Static Anal-
ysis for Streaming JavaScript Applications.” WebApps, vol. 10, pp.
6–6, 2010.

[98] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu, “SAFE: Formal specifi-
cation and implementation of a scalable analysis framework for
ECMAScript,” in International Workshop on Foundations of Object-
Oriented Languages (FOOL), vol. 10, 2012.

[99] J. Park, I. Lim, and S. Ryu, “Battles with false positives in static
analysis of JavaScript web applications in the wild,” in Proceed-
ings of the 38th International Conference on Software Engineering
Companion. ACM, 2016, pp. 61–70.

[100] G. Bierman, M. Abadi, and M. Torgersen, “Understanding Type-
Script,” in European Conference on Object-Oriented Programming.
Springer, 2014, pp. 257–281.

[101] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: quantifying
detectable bugs in JavaScript,” in Proceedings of the 39th Interna-
tional Conference on Software Engineering. IEEE Press, 2017, pp.
758–769.

[102] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empirical
study of code smells in JavaScript projects,” in Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on. IEEE, 2017, pp. 294–305.

Kristı́n Fjóla Tómasdóttir is a Software De-
veloper at Amazon in Cambridge, United King-
dom. Kristı́n completed her (cum laude) MSc
degree at Delft University of Technology, The
Netherlands. Her research focused on an empir-
ical evaluation of JavaScript linters in real-world
open source systems.

Maurı́cio Aniche is an Assistant Professor at
Delft University of Technology, The Netherlands.
Maurı́cio helps developers to effectively main-
tain, test, and evolve their software systems. His
current research interests are systems monitor-
ing and DevOps, empirical software engineering,
and software testing.

Arie van Deursen is professor in software en-
gineering at Delft University of Technology, The
Netherlands, where he heads the Software En-
gineering Research Group (SERG) and chairs
the Department of Software Technology. His re-
search interests include empirical software en-
gineering, software testing, and software archi-
tecture. He aims at conducting research that will
impact software engineering practice, and has
co-founded two spin-off companies from earlier
research. He serves on the editorial boards of

Empirical Software Engineering, and the open access PeerJ/CS.

