
The Advantages of Generative Grammatical Encodings for Physical Design

Gregory S. Hornby

415 South Street

DEMO Lab

Brandeis University

Waltham, MA 02454

hornby@cs.brandeis.edu

Jordan B. Pollack

415 South Street

DEMO Lab

Brandeis University

Waltham, MA 02454

pollack@cs.brandeis.edu

Abstract- One of the applications of evolutionary algo-

rithms is the automatic creation of designs. For evolu-

tionary techniques to scale to the complexities necessary

for actual engineering problems, it has been argued that

generative systems, where the genotype is an algorithm

for constructing the final design, should be used as the en-

coding. We describe a system for creating generative spec-

ifications by combining Lindenmayer systems with evolu-

tionary algorithms and apply it to the problem of generat-

ing table designs. Designs evolved by our system reach an

order of magnitude more parts than previous generative

systems. Comparing it against a non-generative encod-

ing we find that the generative system produces designs

with higher fitness and is faster than the non-generative

system. Finally, we demonstrate the ability of our system

to go from design to manufacture by constructing evolved

table designs using rapid prototyping equipment.

1 Introduction

Evolutionary algorithms (EAs) have been successfully ap-

plied to a variety of design problems [1, 2, 3], but it has

yet to be shown that evolutionary techniques can scale to the

complexities necessary for typical design projects. Past work

has typically used a direct encoding of the solution, either

by parameterizing the search space [1] or through a com-

ponent based representation of the solution [4, 5, 6]. It has

been argued that a generative encoding scheme, an encod-

ing that specifies how to construct the phenotype, can achieve

greater scalability through self-similar and hierarchical struc-

ture [7, 8]. In addition, by re-using parts of the genotype in

the creation of the phenotype a generative encoding is a more

compact encoding of a solution. Some examples of genera-

tive systems are cellular automata rules to produce 2D shapes

[9], context rules to produce 2D tiles [10], graph encoding for

3D animated creatures [11], and cellular encoding for artifi-

cial neural networks [12].

Here we use Lindenmayer systems (L-systems) as a gen-

erative encoding for an EA. L-systems are a grammatical

rewriting system introduced to model the biological devel-

opment of multicellular organisms [13]. Rules are applied in

parallel to all characters in the string just as cell divisions hap-

pen in parallel in multicellular organisms. Complex objects

are created by successively replacing parts of a simple object

by using the set of rewriting rules. L-systems have been used

mainly to construct plants [14]. However, it is difficult to

hand-make an L-system to produce a desired form. Previous

work combining L-systems with EAs has been to generate

plant-like structures [14, 15, 16, 17] and architectural floor

designs [18] – but only limited results have been achieved.

Our work evolving L-systems uses parametric, context-

free L-systems (P0L-systems), a more powerful class of L-

systems than has been previously evolved. Using this sys-

tem we define a component-based language for constructing

objects made of voxels and define a fitness function for ta-

ble designs for which we evolve table designs with thousands

of voxels. We compare the generative encoding to a non-

generative encoding and find that better designs evolve faster

with the L-system as a generative encoding and the designs

have more complex regularities than do tables created with

the non-generative representation. Evolved tables are then au-

tomatically manufactured using rapid prototyping equipment.

In the following section we outline the design space and

describe the components of our generative design system. We

then give examples of tables evolved with the different encod-

ing schemes and discuss the results.

2 Method

The system for creating generative designs consists of the

design builder and evaluator, the L-system module and the

evolutionary algorithm. L-systems are evolved by the evolu-

tionary algorithm with individual L-systems scored for their

goodness by the design builder and simulator. The end result

of our system are 3D static structures; in this paper we evolve

tables.

2.1 Design Builder and Evaluator

The design constructor builds a model from a sequence of

build commands. Once built, a model is simulated and evalu-

ated. Commands are listed in table 1.

The command string consists of a sequence of build com-

mands that give instructions to a LOGO-style turtle that is

used to construct an object out of voxels. The 3D ma-

trix of voxels starts out empty and voxels are filled as

the turtle enters them. [and] push and pop the cur-

rent state – consisting of the current and orientation – to

and from a stack. Forward moves the turtle forward in

Table 1: Design Language

Command Description Symbol

[] push/pop orientation to stack []�✂✁☎✄✝✆✟✞✡✠☞☛✍✌✝✎✑✏
repeat enclosed block

✎
times

�✒☛

forward
✌✓✎✑✏

move in the turtle’s positive

X direction
✎

units

f

backward
✌✓✎✑✏

move in the turtle’s negative

X direction
✎

units

b

up
✌✓✎✑✏

rotate heading
✎✕✔✗✖✙✘✍✚

about

the turtle’s Z axis

✛

down
✌✓✎✑✏

rotate heading
✎✜✔✜✢✣✖✙✘✍✚

about the turtle’s Z axis

v

left
✌✝✎✑✏

rotate heading
✎✕✔✗✖✙✘✍✚

about

the turtle’s Y axis

✤

right
✌✓✎✑✏

rotate heading
✎✜✔✜✢✣✖✙✘✍✚

about the turtle’s Y axis

✥

clockwise
✌✓✎✑✏

rotate heading
✎✕✔✗✖✙✘✍✚

about

the turtle’s X axis

✦

counter-

clockwise
✌✓✎✑✏ rotate heading

✎✜✔✜✢✣✖✙✘✍✚
about the turtle’s X axis

✧

the current direction and backwards moves the turtle back

one space, both place a block in the space if none exists.

Turn left/right/up/down/clockwise/counter-clockwise rotate

the turtle’s heading about the appropriate axis in units of
✖★✘★✚

.

Command sequences enclosed by
�✩☛

are repeated a number

of times specified by the brackets’ argument.

(a) (b)

Figure 1: Two example structures.

For example, the string,

[
�

[forward(6)] left(1)
☛
(4)] up(1) forward(3) down(1) [�

[forward(4.5)] left(1)
☛
(4)] up(1) forward(3) down(1) [�

[forward(3)] left(1)
☛
(4)] up(1) forward(3) down(1) for-

ward(3)

is interpreted as:

[[forward(6)] left(1) [forward(6)] left(1) [forward(6)]

left(1) [forward(6)] left(1)] up(1) forward(3) down(1) [[

forward(4.5)] left(1) [forward(4.5)] left(1) [forward(4.5)]

left(1) [forward(4.5)] left(1)] up(1) forward(3) down(1) [[

forward(3)] left(1) [forward(3)] left(1) [forward(3)] left(1)

[forward(3)] left(1)] up(1) forward(3) down(1) forward(3)

and produces the structure in figure 1.a.

As the construction language only allows voxels to be

placed next to existing voxels, evolved designs are guaran-

teed to generate a single, connected structure. The design

simulator then determines the stability of the object. Once

an L-system specification is executed, and the stability of the

object is determined, the resulting structure is evaluated using

the fitness function described in section 3.

2.2 Parametric 0L-Systems

The class of L-systems used as the encoding is a parametric,

context-free L-system (P0L-system). Formally, a P0L-

system is defined as an ordered quadruplet, G = (V, ✪ , ✫ , P)

where,
V is the alphabet of the system,

✪ is the set of formal parameters,

✫✭✬ ✌✯✮✰✔✗✱✣✲✳✏✵✴
is a nonempty parametric word called

the axiom, and

P ✶ ✌✷✮✸✔ ✪ ✲✡✏✹✔✻✺✻✌ ✪ ✏✼✔✽✌✯✮✸✔✻✾✿✌ ✪ ✏❀✏❁✲ is a finite set of

productions.

The symbols : and ❂ are used to separate the three compo-

nents of a production: the predecessor, the condition and the

successor. For example, a production with predecessor A(n0,

n1), condition n1
✥

5 and successor B(n1+1)cD(n1+0.5, n0-2)

is written as:

❃ ✌✝✎❄✘✿❅❀✎✼❆❇✏❉❈✙✎✼❆ ✥❋❊ ❂❍● ✌✓✎✼❆❏■❑❆▲✏✵✞✡▼◆✌✓✎✼❆❏■❖✘✿P ❊ ❅❀✎❄✘✑✢☞◗✙✏

A production matches a module in a parametric word iff the

letter in the module and the letter in the production prede-

cessor are the same, the number of actual parameters in the

module is equal to the number of formal parameters in the

production predecessor, and the condition evaluates to true

if the actual parameter values are substituted for the formal

parameters in the production.

For implementation reasons we add constraints to our

P0L-system. The condition is restricted to be compar-

isons as to whether a production parameter is greater

than a constant value. Parameters to design commands

are either a constant value or a production parameter.

Parameters to productions are equations of the form:❘✹❙❯❚✟✆✟❱★❲❳✞☎❨❬❩❭✆❇✎✸❙❳❪★❚✟❪✍❫✕❴✳❨✵❴▲❚❛❵✣✞☎✆❇✎✑❜✳❨✵❪✍✎❝❨❑❞❡❘❢■❣❵❤✢ ❵✜✔
❵✿✧✩❞✂❘❇❙❯❚✟✆✟❱✙❲✐✞❥❨❬❩❬✆❇✎❡❙❦❪✍❚✟❪★❫✕❴▲❨✵❴▲❚❡❵❧✞☎✆❇✎✑❜✳❨✵❪✍✎❝❨✹❞

. The following

is a P0L-system using the language defined in table 1 and

consists of two productions with each production containing

one condition-successor pair:

♠ ✘❯✌✓✎❄✘✍✏✂❈
✎❄✘ ✥ ❆★P ✘ ❂ ❘ ♠ ❆★✌✝✎❄✘✒♥♦❆✙P ❊ ✏❝❞❧❲✍❙♣✌❀❆▲✏♣q✐✆❇❚▲r♦❪★❚✟❱❳✌✝s✍✏❱✍✆❇r✣✎✹✌✵❆❇✏ ♠ ✘❯✌✓✎❄✘t✢✭❆▲✏
♠ ❆★✌✓✎❄✘✍✏✂❈
✎❄✘ ✥ ❆★P ✘ ❂ �✩❘▲q✐✆❇❚❇r✒❪✍❚✟❱❳✌✓✎❄✘★✏♣❞✿✄✯❴❇q❳❨☎✌❀❆▲✏✼☛✍✌✓✉❧✏

Starting this P0L-system with P0(4), produces the follow-

ing sequence of strings,

P0(4)

[P1(6)] up(1) forward(3) down(1) P0(3)

[
�

[forward(6)] left(1)
☛
(4)] up(1) forward(3) down(1) [

P1(4.5)] up(1) forward(3) down(1) P0(2)

[
�

[forward(6)] left(1)
☛
(4)] up(1) forward(3) down(1) [�

[forward(4.5)] left(1)
☛
(4)] up(1) forward(3) down(1) [

P1(3)] up(1) forward(3) down(1) P0(1)

[
�

[forward(6)] left(1)
☛
(4)] up(1) forward(3) down(1) [

�
[forward(4.5)] left(1)

☛
(4)] up(1) forward(3) down(1) [

�
[

forward(3)] left(1)
☛
(4)] up(1) forward(3) down(1)

The last string of commands produces the tree in fig-

ure 1.a. Trees of arbitrary size can be created by starting the

production system with a different argument – the tree in fig-

ure 1.b is created from this system by starting it with P0(6).

2.3 Evolutionary Algorithm

An evolutionary algorithm is used to evolve individual L-

systems. The initial population of L-systems is created at

random and then evolution then proceeds by iteratively se-

lecting a collection of individuals with high fitness for par-

ents and using them to create a new population of individual

L-systems through mutation and recombination. In addition

to the L-system, each individual also contains values for the

initial calling parameters of the first production rule and the

maximum number of iteration updates to be performed. We

now describe how the initial population of L-systems are gen-

erated and then how variation is applied to them.

2.4 Initialization

L-systems have a predetermined number of production rules

with a fixed number of arguments and production bodies. A

new L-system is created by generating a random string of 3 to

8 build commands for each production body – for trials using

a single command string this 4 to 104 commands – in blocks

of 1 to 3 commands. Each added block can be enclosed by

push/pop brackets [a(1)], block-repetition parenthesis
�

b(1)

c(2)
☛
(3), or not at all d(1) e(2) f(3).

2.5 Mutation

Mutation creates a new individual by copying the parent in-

dividual and making a small change to it. First a production

rule is selected at random from one of the used production

rules and then this rule is changed in some way. Changes

that can occur are: replacing one command with another; per-

turbing the parameter to a command by adding/subtracting a

small value to it; changing the parameter equation to a pro-

duction; adding/deleting a sequence of commands in a suc-

cessor; changing the condition equation; or encapsulating a

block of commands and turning it into a, previously unused,

production rule.

For example, if the production
♠ ✘

is selected to be mu-

tated,

♠ ✘❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �✇❪✐✌✵❆✙P ✘★✏♣✁✟✌✯◗✿P ✘✍✏✼☛❧✌✓✎✼❆❇✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆✇✢①❆★P ✘❯❅❀✎❄✘❧✦②◗❏P ✘★✏❦❞

some of the possible mutations are,

Mutate the condition:
♠ ✘❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥④③ P⑥⑤ ❂ �✇❪✐✌❀❆✙P ✘★✏✑✁②✌✯◗❏P ✘★✏✼☛✍✌✝✎✼❆▲✏

✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆✇✢①❆★P ✘❯❅❀✎❄✘❧✦②◗❏P ✘★✏❦❞

Mutate an argument:

♠ ✘❯✌✝✎❄✘✿❅❀✎✼❆❇✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �✇❪❳✌❀❆✙P ✘★✏⑦✁✟✌✯◗✿P ✘✍✏⑧☛❧✌✓✎✼❆▲✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆★✌✯⑨❶⑩☞✢❸❷❄P ⑤❄❅❀✎❄✘❧✦②◗❏P ✘★✏✐❞

Mutate a symbol:

♠ ✘❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �✇❹❯✌❀⑩❦P⑥⑤❦✏⑦✁✟✌✷◗❏P ✘★✏✹☛✍✌✓✎✼❆❇✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆✇✢①❆★P ✘❯❅❀✎❄✘❧✦②◗❏P ✘★✏❦❞

Delete random character(s):

♠ ✘❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �✇❪✐✌✵❆✙P ✘★✏✼☛✍✌✝✎✼❆▲✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆✇✢①❆★P ✘❯❅❀✎❄✘❧✦②◗❏P ✘★✏❦❞

Insert a random sequence of character(s):

♠ ✘❦✌✓✎❄✘❯❅❀✎✼❆▲✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �❶❪✐✌✵❆✙P ✘★✏❝✁②✌✯◗❏P ✘★✏♣☛❧✌✓✎✼❆❇✏✐❹❯✌✯❺✑P⑥⑤❦✏
✎❄✘ ✥ ◗❏P ✘ ❂ ❘ ♠ ❆★✌✓✎✼❆❻✢✭❆✙P ✘✿❅❁✎❄✘✍✦✙◗❏P ✘★✏❦❞

Encapsulate a block of characters:

♠ ✘❦✌✓✎❄✘❯❅❀✎✼❆▲✏❉❈ ✎❄✘ ✥❋❊ P ✘ ❂ �✂❼☞❷✑✌✝⑨⑧⑤✑❅❁⑨❉⑩❧✏✹☛✍✌✝✎✼❆▲✏
✎❄✘ ✥ ◗❏P ✘ ❂ ❘ ♠ ❆★✌✝✎✼❆✂✢✭❆✙P ✘✿❅❁✎❄✘✍✦✙◗❏P ✘★✏❦❞

❼☞❷✑✌✝⑨⑧⑤✑❅❁⑨❉⑩❧✏✂❈❽⑨⑧⑤ ✥❾③ P⑥⑤ ❂❍❿ ✌✵⑩❳P ⑤❳✏❄➀✇✌✷❷❄P⑥⑤❦✏⑨⑧⑤ ✥ ❷❝P⑥⑤ ❂❍❿ ✌✵⑩❳P ⑤❳✏❄➀✇✌✷❷❄P⑥⑤❦✏

2.6 Recombination

Recombination takes two individuals,
❙♣❆

and
❙❳◗

, as parents

and creates one child individual,
✞
, by making it a copy of

❙✑❆
and then inserting a small part of

❙✐◗
into it. This is done by

replacing one successor of
✞

with a successor of
❙❳◗

, inserting

a sub-sequence of commands from a successor in
❙✐◗

into
✞
,

or replacing a sub-sequence of commands in a successor of
✞

with a sub-sequence of commands from a successor in
❙✐◗

.

For example if parent 1 has the following rule,

♠ s❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �❻❪✐✌✵❆★P ✘✍✏✑✁✟✌✷◗❏P ✘★✏⑧☛❧✌✓✎✼❆❇✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆❻✢✭❆✙P ✘✿❅❀✎❄✘❧✦②◗✿P ✘✍✏❦❞

and parent 2 has the following rule,

♠ s❯✌✝✎❄✘✿❅❀✎✼❆❇✏❉❈✈✎✼❆ ✥ s❯P ✘ ❂ ✁✟✌✯s✿P ✘★✏✑❪❳✌✷◗❏P ✘★✏
✎❄✘ ✥ ❆★P ✘ ❂ ♠ ❆✍✌✓✎✼❆❻✢✭❆✙P ✘✿❅❀✎✼❆✂✢❸◗❏P ✘★✏

Then some of the possible results of a recombination on suc-

cessor P3 are:

Replace an entire condition-successor pair:

♠ s❯✌✝✎❄✘✿❅❁✎✼❆▲✏❉❈❽⑨❉⑩ ✥ ❺✑P⑥⑤ ❂ ➀✂✌✷❺❄P⑥⑤❳✏ ❿ ✌❭❷❝P⑥⑤❳✏✎❄✘ ✥ ◗✿P ✘ ❂ ❘ ♠ ❆✍✌✓✎✼❆❻✢✭❆✙P ✘✿❅❀✎❄✘❧✦②◗✿P ✘✍✏❦❞

Replace just a successor:

♠ s❯✌✝✎❄✘✿❅❀✎✼❆❇✏❉❈✈✎❄✘ ✥❋❊ P ✘ ❂ �✇❪❳✌❀❆✙P ✘★✏♣✁✟✌✯◗✿P ✘✍✏✼☛❧✌✓✎✼❆▲✏
✎❄✘ ✥ ◗✿P ✘ ❂ ❼✻⑩✐✌✝⑨❉⑩➁✢✭⑩❦P⑥⑤❄❅➂⑨❶⑩☞✢❸❷❄P ⑤❳✏

Replace one block with another:

♠ s❦✌✓✎❄✘✿❅❁✎✼❆▲✏❉❈✈✎❄✘ ✥④❊ P ✘ ❂ �✂❪✐✌✵❆★P ✘✍✏♣✁✟✌✷◗❏P ✘★✏✼☛✍✌✓✎✼❆❇✏
✎❄✘ ✥ ◗❏P ✘ ❂ ❘✳➀✇✌✯❺✑P⑥⑤❦✏ ❿ ✌✷❷❄P⑥⑤❦✏❄❞

3 Experiments and Results

In this section we present the results of evolving tables with

the non-generative encoding, and the P0L-system as a gen-

erative encoding. All trials are run for a maximum of 1000

generations using an evolutionary algorithm with 100 indi-

viduals. The best 2 individuals of one generation are copied

to the next (an elitism of 2) and remaining individuals are

created with an equal probability of using mutation or recom-

bination. The grid size for evolved tables is 40 wide
✔

40

deep
✔

40 high – except for the the grid used for tables that

were manufactured, which use a grid of 50 wide
✔

20 deep✔
20 high.

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 100 200 300 400 500 600 700 800 900 1000

fit
ne

ss➃

generation

generative
non-generative

Figure 2: Performance comparison between the non-

generative encoding and the P0L-system generative encod-

ing.

The fitness of a table is a function of its height, surface

structure, stability and number of excess voxels used. Height

is the number of voxels above the ground. Surface structure

is the number of voxels at the maximum height. Stability

is a function of the volume of the table and is calculated by

summing the area at each layer of the table, except for the

surface. Maximizing height, surface structure and stability

typically result in table designs that are solid volumes, thus a

measure of excess voxels is used to reward designs that use

fewer bricks.

q②➄❇➅❬➆➈➇❥➄✳➉➋➊
the height of the highest voxel, ➌❦➍❻➎❥➏ Pq✙➐❬➑❇➒➂➓ ➎☎➔ ➅→➊
the number of voxels at ➌❦➍❻➎❥➏ P

q②➐❭➉ ➎✡➣ ➆➈↔↕➆➈➉✓➙ ➊ ➛▲➜✑➝❁➞✟➟❄➠➡
➙☎➢❝➤ q ➎ ➒➥➅ ➎ ✌✓➦✿✏

q ➎ ➒➂➅ ➎ ✌✓➦✿✏➋➊
area in the convex hull at height y.q②➅ ➏❇➔ ➅✵➐✵➐➧➊
number of voxels not on the surface.

For these experiments we combine these measures into a sin-

gle function 1,

fitness
➊❾q✙➄▲➅✵➆↕➇☎➄✳➉✇✔✕q②➐✵➑▲➒➥➓ ➎☎➔ ➅♦✔✕q✙➐❭➉ ➎☎➣ ➆↕↔➈➆↕➉✓➙★✦✙q②➅ ➏❇➔ ➅✵➐✵➐ (1)

(a) (b)

(c) (d)

(e) (f)

Figure 3: Tables evolved using a non-generative encoding.

1A more appropriate method of evolving against these criteria may be to

use a multi-objective approach [19].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Tables evolved using the P0L-system as a genera-

tive encoding.

To determine if generative encodings are better than non-

generative encodings we ran two sets of experiments using

equation 1 for the fitness function. For a non-generative en-

coding, the command language listed in table 1 was used

without the block replication operator. Each individual con-

sisted of a single sequence of a maximum of 20000 com-

mands. For the generative encoding we used the P0L-system

described in section 2.2 with 20 production rules, a maxi-

mum of 3 condition-successor pairs and production rules had

2 parameters and the command language of table 1. Both en-

codings used the same mutation and recombination operators.

The graph in figure 2 plots the average, maximum fitness over

100 trials for the two different encodings and shows that the

average fitness using the P0L-system as a generative encod-

ing is significantly better than the non-generative encoding.

Different weightings and variations of the components of

the fitness function were tried but in all cases the generative

encoding produced better tables than the non-generative en-

coding. Table designs for both systems tended to have from

1500 to 2500 voxels, the largest is shown in figure 4.a and

consists of 5921 voxels. Examples of high-fitness designs

evolved with the non-generative encoding are shown in fig-

ure 3. On evolutionary runs with this system over half the

trials converged to poor structures and no run produced struc-

tures with complex regularities. Tables evolved using the gen-

erative encoding encoding are shown in figure 4 and figure 6.

Most trials converged to good structures, and even those with

low fitness had regularities.

(a) (b)

Figure 5: Tables evolved using:
❪
, a non-L-system, gener-

ative encoding with block replication; and
✁
, a P0L-system

encoding without block replication.

The difference between the non-generative encoding and

the generative, P0L-system encoding are block replication

and parametric production rules. Using only one of block

replication or parametric production rules there are two vari-

ants of the generative encoding, with which we performed

a small number of evolutionary runs. The first variant con-

sisted of removing production rules from the generative sys-

tem and leaving block replication. Also, the single command

sequence of this encoding was allowed to grow to 20000 com-

mands. This system was not as good as the original generative

encoding with production rules, but it produced better tables

than did the non-generative encoding. The other variant we

tried was the P0L-system without block replication. This sys-

tem also performed worse than the original P0L-system with

block-replication but better than the non-generative encoding.

Both variants produced tables with regularities, although the

second variant did not necessarily have the sequential replica-

tions of structure as did the first variant, and both are improve-

ments over the non-generative encoding. Figure 5 contains a

table evolved with both alternative, generative encodings.

Automated manufacture of evolved table designs is

achieved by use of rapid-prototyping equipment. Designs that

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 6: Manufacture tables shown both in simulation (left)

and reality (right).

are generated by the evolutionary system are saved to a file

format describing their shape. Tables are then constructed by

printing them on a 3D printer, shown in figure 6.

4 Discussion

Regardless of how it is achieved, a generative encoding

should incorporate a bias towards re-used modules. Re-using

code to re-use parts in the actual design makes certain types of

design changes easier. For example, if a table is created from

modules then changing the length of each table-leg requires

only one change in the leg-building module. A direct en-

coding scheme would require this change to be made at each

occurrence of a table-leg in the genotype. As designs become

more complex, the likelihood of the same change happening

simultaneously to all uses of a part becomes increasingly un-

likely in a direct encoding, but does not change in a modular,

generative encoding.

The following is the generative encoding for the table in

figure 4.d, and has a genotypic structure that is related to the

structure of the table,

P0:

(n1>3.0) :- P11(n0/4.0,n0=2.0) v(1.0)

{P17(n1=3.0,n1/2.0) P18(n1+n0,n0+n1)

P3(n1=1.0,n1-n0) }(4.0)

P2:

(n0>0.0) :- [<(4.0) P12(n1=3.0,n0=4.0)]

P3:

(n1>2.0) :- P16(n1=4.0,n0-n1) P16(n1=4.0,n0-n1)

P16(n1=4.0,n0-2.0) P16(n1=4.0,n0-n1)

P6:

(n1>1.0) :- [b(5.0) <(1.0) b(5.0) v(1.0) ˆ(1.0)

b(5.0) b(5.0) b(5.0)]

(n0>1.0) :- [b(5.0) ˆ(1.0) b(n0) <(1.0) b(n0)

v(5.0) ˆ(1.0) b(5.0) <(n1) b(5.0)

v(1.0)]

P7:

(n0>-1.0) :- [/(1.0) /(1.0) <(1.0) /(1.0) /(5.0)

>(1.0) /(1.0)] v(1.0)

P8:

(n0>0.0) :- P8(n0/4.0,n1+1.0) [b(4.0) b(4.0)

P8(n1-2.0,n0-5.0)]

(n1>-2.0) :- [P8(n0/4.0,n1+1.0) b(5.0)

P8(n1-5.0,n0-5.0) b(4.0) b(4.0)

b(4.0) P6(n1-n0,n0+n1)]

P9:

(n1>3.0) :- P7(3.0-3.0,n0+n1) /(1.0)

P8(n1-n0,n1+1.0)

P11:

(n1>-10.0) :- >(1.0)

P12:

(n1>0.0) :- \(4.0)

P14:

(n0>10.0) :- P2(n1/3.0,n1+n0) P9(n0=n1,n0/n1)

P16:

(n1>22.0) :-

(n1>5.0) :-

(n1>0.0) :- [P19(n0/2.0,n1-n0) b(1.0) f(3.0)]

/(2.0) P3(n0=5.0,n1-5.0)

P17:

(n1>3.0) :- ˆ(n1) b(2.0) b(4.0) b(n0) b(3.0)

b(3.0) b(5.0)

P18:

(n1>3.0) :- b(n1) P14(n1-3.0,n1=3.0) <(1.0)

<(1.0) >(1.0) >(1.0)

This L-system is started with the command
♠ ✘❦✌✓✉❦P ✘❯❅✡❆✳✘❯P ✘✍✏

and goes through 17 iterations of parallel replacement – struc-

tures created by some of these intermediate stages are shown

in figure 7. The first iteration produces the string, P11(1,2)

v(1)
�
P17(3,5) P18(14,14) P3(1,6)

☛
(4), which uses block

replication to encode that the table has four legs – reducing

the block-replication parameter to 3 results in a 3-legged ta-

ble. Within this block, the productions
♠ ❆✟➨

,
♠ ❆✳➩

and
♠ s

are

called once, and this is the only time they are called. The

structure of the base is encoded in productions
♠ ❆❇➨

and
♠ ❆✳➩

.

Reducing the number of voxels created from its
✁❥❪❧✞✡✠❧r✒❪✍❚✟❱❳✌✯✏

command,
✁✟✌✷✏

, in these productions reduces the width and

depth of the table.
♠ s

calls
♠ ❆▲➫

, but all of
♠ ❆✳➫

’s condi-

tions fail, and this sequence of productions produces no build

commands. From
♠ ❆✳➩

there are calls to
♠ ❆✡✉

then
♠ ✖

–
♠ ❆✡✉

stage 5 stage 9

stage 10 stage 12

Figure 7: Growth of a table.

also calls
♠ ◗

which then calls
♠ ❆▲◗

, but none of these produc-

tions produce bricks.
♠ ✖

changes the direction of the turtle

to build the table legs with the help of
♠ ➨

, and then the ta-

ble legs and surface are encoded in productions
♠ ➫

and
♠ ➩

,

which construct the legs and surface through repeated calls to

each other. In both
♠ ➫

and
♠ ➩

the parameter values are used

to select which production body to use. The height of the legs

is encoded in the first successor, for which the condition suc-

ceeds when
♠ ➩

is initially called and then for the first time

it calls itself. In later calls to
♠ ➩

the first condition fails and

the second condition succeeds resulting in the first call to
♠ ➫

and this begins the sequence of commands for constructing

the table’s surface. Later evolution changed the production

rules
♠ ➫

and
♠ ➩

to,
P6:

(n1>1.0) :- [b(5.0) ˆ(5.0) b(n0) <(1.0) b(5.0)

b(5.0) b(5.0) b(4.0)]

(n0>2.0) :- [b(5.0) ˆ(5.0) b(n0) b(5.0) <(1.0)

v(5.0) ˆ(5.0) b(5.0) b(5.0) b(5.0)

b(4.0)]

(n1>0.0) :- [b(5.0) ˆ(5.0) <(1.0) b(n0) b(5.0)

v(5.0) ˆ(1.0) b(5.0) b(5.0) b(5.0)

b(4.0)]

P8:

(n0>0.0) :- P8(n0/5.0,n1+1.0) [b(4.0) b(4.0)

P8(n1-2.0,n0-5.0)]

(n1>-2.0) :- [P8(n0/4.0,n1+1.0) b(5.0) b(4.0)

P8(2.0-5.0,3.0-5.0) b(4.0) b(5.0)

P6(n1-n0,n0+n1)]

(n0>-1.0) :- \(1.0) v(3.0) v(n0)

with the resulting table shown in figure 4.e. By count-

ing each production head as 1 character, each condition as 2

characters and 1 for each character in the production body the

specification length of the encoding for the table in figure 4.d

is 123 characters and encodes into a command sequence of

5574 commands – a compression factor of over 45 – to pro-

duce a table of 1280 voxels.

Block replication and production rules with parameters

differentiate this work from previous work in evolving L-

systems [15, 20, 17, 18]. Both block replication and produc-

tion rules are similar to features of past work in evolution-

ary design and both have analogues in computer languages.

Block replication is similar to
q✐✆❇❚

-
✎❄❴▲➭❯❨

loops in computer

programs and is almost identical to the multiple re-writing

of the recurrent symbol (using the life register) of cellular

encoding [21] and the recursive-limit parameter in graph en-

coding [22]. Production rules are like subroutine calls in pro-

gramming languages and are similar to the automatically de-

fined sub networks (ADSNs) of cellular encoding and auto-

matically defined functions (ADFs) of genetic programming

[23]. With analogues to loops and parameterized subroutines,

evolution of generative encodings becomes like the evolution

of a computer program, as in genetic programming [23].

A beauty of L-systems as a generative encoding is that it is

a general, generative encoding system. By changing the lan-

guage of terminals different structures can be generated, such

as plants [14], artificial neural networks [24], and locomoting

creatures [25, 26].

5 Conclusion

A system for automatically producing generative design sys-

tems with regular structure was achieved by using parametric

Lindenmayer-systems as the generative encoding for an evo-

lutionary algorithm. To compare performance between the

generative encoding and a non-generative encoding we de-

fined a voxel-based language for building structures and a fit-

ness function for evaluating table designs constructed by this

language. Using this system, tables with thousands of voxels

were evolved, an order of magnitude more parts than previous

generative systems [9, 10]. Evolution using the L-system as

a generative encoding was both more consistent at producing

good table designs and produced better results faster than the

non-generative, component-based encoding.

Acknowledgements

This research was supported in part by the Defense Ad-

vanced Research Projects Administration (DARPA) Grant

No. DASG60-99-1-0004. The authors would like to thank

the members of the DEMO Lab: A. Bucci, E. DeJong, S. Fi-

cici, P. Funes, S. Levy, H. Lipson, O. Melnik, S. Viswanathan

and R. Watson.

Bibliography

[1] P. Husbands, G. Germy, M. McIlhagga, and R. Ives.

Two applications of genetic algorithms to component

design. In T. Fogarty, editor, Evolutionary Computing.

LNCS 1143, pages 50–61. Springer-Verlag, 1996.

[2] H. Lipson and J. B. Pollack. Automatic design and

manufacture of robotic lifeforms. Nature, 406:974–978,

2000.

[3] P. J. Bentley, editor. Evolutionary Design by Computers.

Morgan Kaufman, 1999.

[4] Couro Kane and Marc Schoenauer. Genetic operators

for two-dimentional shape optimization. In J.-M. Alliot,

E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers,

editors, Artificiale Evolution - EA95. Springer-Verlag,

1995.

[5] P. J. Bentley. Generic Evolutionary Design of Solid Ob-

jects Using a Genetic Algorithm. PhD thesis, University

of Huddersfield, 1996.

[6] P. Funes and J. Pollack. Computer evolution of build-

able objects. In Phil Husbands and Inman Harvey, edi-

tors, Proceedings of the Fourth European Conference on

Artificial Life, pages 358–367, Cambridge, MA, 1997.

MIT Press.

[7] Marc Schoenauer. Shape representations and evolution

schemes. In L. J. Fogel, P. J. Angeline, and T. Bäck,

editors, Evolutionary Programming 5. MIT Press, 1996.

[8] P. J. Bentley. Exploring component-based represen-

tations - the secret of creativity by evolution? In

Fourth International Conference on Adaptive Comput-

ing in Design and Manufacture (ACDM 2000), 2000.

[9] Hugo de Garis. Artificial embryology : The genetic pro-

gramming of an artificial embryo. In Branko Soucek

and the IRIS Group, editors, Dynamic, Genetic and

Chaotic Programming. Wiley, 1992.

[10] P. Bentley and S. Kumar. Three ways to grow designs: A

comparison of embryogenies of an evolutionary design

problem. In Banzhaf, Daida, Eiben, Garzon, Honavar,

Jakiel, and Smith, editors, Genetic and Evolutionary

Computation Conference, pages 35–43, 1999.

[11] Karl Sims. Evolving Virtual Creatures. In SIGGRAPH

94 Conference Proceedings, Annual Conference Series,

pages 15–22, 1994.

[12] Frédéric Gruau. Neural Network Synthesis Using Cel-

lular Encoding and the Genetic Algorithm. PhD thesis,

Ecole Normale Supérieure de Lyon, 1994.

[13] A. Lindenmayer. Mathematical models for cellular in-

teraction in development. parts I and II. Journal of The-

oretical Biology, 18:280–299 and 300–315, 1968.

[14] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic

Beauty of Plants. Springer-Verlag, 1990.

[15] C. Jacob. Genetic L-system Programming. In Y. Davi-

dor and P. Schwefel, editors, Parallel Problem Solving

from Nature III, Lecture Notes in Computer Science,

volume 866, pages 334–343, 1994.

[16] C. Traxler and M. Gervautz. Using genetic algorithms

to improve the visual quality of fractal plants generated

with csg-pl-systems. In Proc. Fourth International Con-

ference in Central Europe on Computer Graphics and

Visualization 96, 1996.

[17] G. Ochoa. On genetic algorithms and lindenmayer sys-

tems. In A. Eiben, T. Baeck, M. Schoenauer, and H. P.

Schwefel, editors, Parallel Problem Solving from Na-

ture V, pages 335–344. Springer-Verlag, 1998.

[18] P. Coates, T. Broughton, and H. Jackson. Explor-

ing three-dimensional design worlds using lindenmayer

systems and genetic programming. In P. J. Bentley, edi-

tor, Evolutionary Design by Computers, 1999.

[19] Carlos M. Fonseca and Peter J. Fleming. An overview of

evolutionary algorithms in multiobjective optimization.

Evolutionary Computation, 3(1):1–16, 1995.

[20] C. Traxler and M. Gervautz. Using genetic algorithms

to improve the visual quality of fractal plants generated

with csg-pl-systems. In Proc. Fourth Intl. Conf. in Cen-

tral Europe on Computer Graphics and Visualization

96, 1996.

[21] Frédéric Gruau and Kameel Quatramaran. Cellular en-

coding for interactive evolutionary robotics. Technical

Report 425, University of Sussex, 1996.

[22] Karl Sims. Evolving 3d morphology and behavior

by competition. In R. Brooks and P. Maes, editors,

Proceedings of the Fourth Workshop on Artificial Life,

pages 28–39, Boston, MA, 1994. MIT Press.

[23] J. R. Koza. Genetic Programming: on the programming

of computers by means of natural selection. MIT Press,

Cambridge, Mass., 1992.

[24] H. Kitano. Designing neural networks using genetic al-

gorithms with graph generation system. Complex Sys-

tems, 4:461–476, 1990.

[25] G. S. Hornby, H. Lipson, and J. B. Pollack. Evolution of

generative design systems for modular physical robots.

In Intl. Conf. on Robotics and Automation, 2001.

[26] G. S. Hornby and J. B. Pollack. Body-brain coevolution

using l-systems as a generative encoding. In Genetic

and Evolutionary Computation Conference, 2001.

