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Abstract

In vitro assays and high-throughput screening (HTS) tools are increasingly being employed as 

replacements for animal testing, but most concentration-response curves are still evaluated with 

models developed for animal testing. We argue that application of in vitro assays, particularly 

reporter gene assays, to environmental samples can benefit from a different approach to 

concentration-response modelling. First, cytotoxicity often occurs at higher concentrations, 

especially for weakly acting compounds and in complex environmental mixtures with many 

components. In these cases, specific effects can be masked by cytotoxicity. Second, for many HTS 

assays, low effect levels can be precisely quantified due to the low variability of controls in 

cellbased assays and the opportunity to run many concentrations and replicates when using high 

density well-plate formats (e.g., 384 or more wells per plate). Hence we recommend focusing 

concentration-response modelling on the lower portion of the concentration-response curve, which 

is approximately linear. Effect concentrations derived from low-effect level linear concentration-

response models facilitate simple derivation of relative effect potencies and the correct application 

of mixture toxicity models in the calculation of bioanalytical equivalent concentrations.
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Linear concentration-response curves allow simple description of low-dose effects yet rigorous 

derivation of bioanalytical equivalent concentrations.

Introduction

Biological data are often log-normally distributed (Limpert 2001) and so are toxicity data. 

Hence the most popular models for describing sigmoidal concentration-response curves with 

logarithmic concentration scale (log-CRC) are based on log-normal distributions (probit), 

log-logistic distributions (logit) and various similar symmetric and asymmetric models that 

fit deviations from ideal distributions (normal distribution with standard deviation of 1 or a 

probit CRC with a slope of 1).

One can take different approaches to curve fitting of experimental CRCs for complex 

environmental samples that contain mixtures of hundreds and thousands of chemicals. The 

CRC may be described by any best-fit model, even a polynomial, to derive an ECy value that 

best describes the concentration triggering the effect y (y being typically 10 or 50% of the 

maximum effect but also any other measure of effect level of monotonous CRCs) indicated 

by the absolute residuals in a weighted least squares regression analysis (Scholze 2001). One 

of the most popular models for continuous data, which has been applied for many decades 

for microbiological and biochemical assays, is the logistic CRC model using logarithmic 

concentrations and a four-parameter logistic fit that determines the minimum and the 

maximum of the curve as well as the location (EC50) and the slope of the log-linear middle 

portion of the curve (Volund 1978). Such curves can also be approximated on a linear 

concentration scale by slope-ratio models at the low and high end of the curve (Finney 1951) 

or by a log-linear model in the middle portion of the curve (Volund 1978). These models 

were often adopted in toxicological and ecotoxicological studies that rely on small numbers 

of observations and replicates to derive precise EC values from logarithmic concentrations 

(Ritz 2010, Scholze 2001, Slob 2002). The EC values are then typically used for risk 

assessment where additional extrapolation factors are applied to derive safe concentrations. 

For interpretation of high-throughput in vitro bioassays data from environmental samples, 

we rely on data for single chemicals tested with the same bioassay to derive relative (effect) 

potency (RP or REP) (Villeneuve 2000) to compare effects between chemicals, mixtures and 

environmental samples. Further we use toxic units (TU = 1/EC) and bioanalytical equivalent 

concentrations (BEQ) to describe effects of complex samples (Wagner 2013). These 
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approaches require parallel log-CRCs and the same minima and maxima of effects (efficacy) 

(Villeneuve 2000). The easiest way to comply with the condition for effect-level 

independent REP is to use only the low effect-level portion of the CRC, where the slope-

ratio models apply (Volund 1978). This also tends to be the relevant concentration range for 

single chemicals in complex environmental mixtures, where the individual components are 

often present at concentrations below visible effect levels. The CRC on a linear 

concentration scale (linear-CRC) are typically linear up to 30% of the maximum effect level.

High-throughput screening (HTS) in vitro bioassays

Classic whole animal testing generally employs a low number of replicates, often with high 

variability of the biological controls. Hence, effect levels below 10% of the maximum effect 

are often not statistically distinguishable from background. This is one of the reasons why 

no observable effect concentration/lowest observable effect concentration (NOEC/LOEC) 

and no observable adverse effect level/lowest observable adverse effect level (NOAEL/

LOAEL) values were traditionally derived by hypothesis testing (Fox 2016, Green 2013). 

Benchmark effect concentrations, such as EC10, estimated from dose-response modelling, 

were advocated when continuous dose-response (or concentration-response) data became 

more widely available. The situation is different for many modern in vitro assays that can be 

run in 384- or even 1536-well plate format allowing large numbers of dose levels in one 

experiment. In addition, precision pipetting with robotic instrumentation allows not only 

efficient and accurate pipetting with few technical replicates but also the ability to design the 

spacing of concentrations at will, easily covering anything from several orders of magnitude 

of serial dilutions to narrow linear spacing. Consequently, repeatability of many cellbased 

bioassays has become so good that the limit of detection (effect of control wells plus three 

times standard deviation of controls) is typically below an induction ratio (IR) of 1.5 or an 

effect level of 10%. This allows the derivation of effect concentrations at low effect levels 

with high precision and accuracy. Hence, in the case of HTS bioassays, there are not the 

traditional experimental limitations to working with low level linear-CRCs. Further, unlike 

for more complex CRC models that will not yield a reliable fit with only partial data or are 

over-parameterized in the case of partial CRCs, any deviation from linearity is easily visible.

Even more important to consider is the make-up of reporter gene assays, many of which are 

used in both large chemical screening programs such as Tox21 (Shukla 2010) and in 

environmental monitoring (Escher 2012a). Reporter gene assays work on the principle that a 

gene is engineered to be under control of the response element of a specific nuclear receptor 

or transcription factor and translates into a protein, which can be quantified in a simple way, 

such as green fluorescence protein or an enzyme that can be quantified by substrate turnover 

(e.g., luciferase after addition of luciferin and ATP, or β-lactamase after addition of a 

fluorescent substrate). The reporter protein read out is proportional to the activation of the 

targeted nuclear receptor or transcription factor. This proportionality will only be valid 

provided the cells remain viable and are not compromised by cytotoxicity.

How to deal with cytotoxicity in reporter gene assays?

The activation of the reporter gene can be masked by cytotoxicity. This problem is especially 

pronounced for complex environmental samples where the majority of chemicals in the 
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mixture might have non-specific effects that contribute to cytotoxicity while only a small 

fraction specifically activates the response of interest. Consequently it is recommended to 

run parallel cytotoxicity assays and use only non-cytotoxic concentrations when evaluating 

CRCs.

Even if the cells are not dead, a burst of activity across a wide range of stress response 

pathways and even nuclear receptors, not directly related to cell death, has been widely 

observed during screening of single chemicals in the Tox21 program (Judson 2016). Similar 

effects have been observed when screening environmental samples using cell-based assays 

(Hebert 2018, Nivala 2018). This phenomenon, termed the cytotoxic burst (Judson 2016), 

represents another artefact that can complicate CRC modelling when working with 

concentrated samples required to elicit higher effect levels.

The current strategy to deal with this phenomenon is to omit any effect data associated with 

concentrations above the inhibitory concentration leading to 10% reduced cell viability 

(IC10) (Neale 2017b, Nivala 2018). Using linear CRCs focused on effect levels up to 30% 

maximum effect only, one greatly reduces the risk of reaching cytotoxic concentrations but it 

remains important that any concentrations above the IC10 for cytotoxicity are omitted in the 

derivation of EC values for the specific effects. This might lead in some cases to the inability 

to derive EC values for activation of a specific response. In our experience this situation is 

quite common for certain assays (e.g., p53) where effects of environmental samples start to 

occur right around the IC10 with often just one or two measured concentrations in the range 

between ECy and IC10. In this case we recommend a conservative approach and would 

report no activity up to cytotoxicity to assure that there are no false-positive results.

Linear concentration-response modelling: why and how?

Cumulative normal distributions of log-CRCs with standard deviations of one, probit log-

CRCs with slopes of one or logistic log-CRC with slopes around 1.2 lead to 

logconcentration-response plots of the sigmoidal form depicted in Figure 1 (dotted lines). 

Concentrations with any units (e.g., molar, ppb, or mg/L), including relative enrichment 

factors (REFs) in the case of environmental samples, can be used. A REF indicates the factor 

by which a water sample would need to be concentrated to achieve the effect level y. For 

example, a REF of 8 would indicate that 8-fold enrichment would be needed to yield a 

response equal to 10% of the maximum effect (y for this example) (Escher 2012a). Such 

cumulative normal distributions with a standard deviation of one have, per definition, 

parallel slopes (Figure 1). Reformatting the CRC to a linear concentration scale 

demonstrates that all CRCs are approximately linear up to an effect level of around 30%. 

Linear CRCs at lower effect levels are not only less prone to be affected by cytotoxicity but 

can also be treated mathematically with much simpler models.

Low-level linear CRCs for HTS in vitro bioassays

For reporter gene assays that target the activation of nuclear receptors, the response is 

typically expressed as relative luminescence units, relative fluorescence units, etc. depending 

on the mode of detection. These values must be normalized for each microtiter plate by 

comparison with a known reference compound as a positive control activating 100% of the 
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defined maximal response and negative controls, i.e., the signal of the unexposed cells or the 

solvent control, set to 0% response.

The effect concentration triggering effect y (y = 10% or any other benchmark) is defined by 

eq. 1 and the associated standard error (SEECy) are derived by error propagation shown in 

eq. 2. The same equation also holds for cytotoxicity and cell population growth rate and 

biomass, provided the data can be assigned to effects between zero and 100%.

EC
y

=
y

slope
(1)

SE EC
y

≈
y

slope2
⋅ SE(slope) (2)

Super-induction (i.e., responses exceeding the maximum observed for the positive reference 

compound (Baston 2011)) and partial agonism (i.e., levelling off of the maximum effect at 

lower than 100% of a full agonist (Howard 2010)) have been observed in some reporter gene 

assays on nuclear receptors for chemicals and environmental mixtures. Mixture models, like 

the generalized concentration addition model (Howard 2009), have been developed to 

account for mixture effects even in complex environmental samples. However, applying 

these models generally requires that that full CRCs are available for all independent 

components of the mixture, whether they are full or just partial agonists (Brinkmann 2018). 

Unfortunately, in complex environmental samples even if some of the composition is known, 

the complete composition is generally unknown and full CRCs, even for the known 

components are often unavailable to support the mixture modeling. By applying linear CRCs 

focused on effect levels below 30%, we can circumvent the problems of partial agonism and 

super-induction.

There are reporter gene assays, such as those indicative of transcription factors of adaptive 

stress responses or some genotoxicity assays such as umuC, where there is no maximum 

(100%) response. In these cases an induction ratio (IR) can be used as a measure of effect. 

The IR is defined as the ratio of the signal of the sample divided by the signal of the control. 

The resulting CRCs are typically linear up to an IR of 4 to 5 and IR 1.5 is typically a suitable 

effect benchmark that is above the limit of detection, which is defined as three times the 

standard deviation of the effects of the unexposed cells (Buchinger 2010, Escher 2012b, 

ISO13829:2000 2000). The ECIR1.5 is thus derived by eq. 3 and the standard error of the 

ECIR1.5 (SE(ECIR1.5)) can be calculated by error propagation with eq. 4.

ECIR1.5 =
0.5

 slope 
(3)
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SE ECIR1.5 ≈
0.5

slope2
⋅ SE(slope) (4)

Examples of applications

To illustrate how these approaches work in practice several examples from water quality 

assessment are provided (Figure 2).

The first example shows responses for a solid phase extract of a wastewater treatment plant 

effluent (Figure 2A). Solid phase extraction (SPE) is frequently used as a technique to 

concentrate micropollutants present in a water sample while separating those compounds 

from other matrix constituents that can interfere with downstream analyses (Neale 2018). In 

this example, the activation of the arylhydrocarbon receptor in the AhR CALUX assay 

(Brennan 2015) by a wastewater plant treatment effluent extract (Nivala 2018) is 

compromised by cytotoxicity which begins to occur around a REF of 10 (Figure 2A, left). 

At concentrations that are already cytotoxic super-induction compared to the maximum 

response of the 2,3,7,8-TCDD reference compound can be observed. This is clearly an 

artefact of the cytotoxicity burst (Judson 2016), which does not indicate a specific effect but 

is a consequence of non-specific toxicity. Fitting a specific effect beyond cytotoxicity would 

not be mechanistically meaningful and could confuse mixture modelling. These issues are 

avoided when applying the linear evaluation of the activation-CRC (EC10, Figure 2A, 

middle) because concentrations causing 10% or more cytotoxicity (IC10, Figure 2A, right) 

only occurred at concentrations causing more than 30% effect and thus were not included in 

the analysis.

A second example refers to activation of the oxidative stress response quantified with the 

AREc32 assay in drinking water (Figure 2B) (Hebert 2018). Here cytotoxicity was observed 

at a 200 fold enrichment of the water sample, but a linear CRC allows the derivation of an 

ECIR1.5 of 30 fold enrichment for the oxidative stress response (Figure 2B). Despite the high 

enrichment needed, the response was not compromised by cytotoxicity at effect levels up to 

IR 4 and was distinctly different from the control. Hence an ECIR1.5 could be derived despite 

the inverse U-shaped form of the raw CRCs for the activation of oxidative stress response.

The third example refers to a study where relatively clean creek water was spiked with 579 

different micropollutants, among them steroidal estrogens but also others that would disturb 

the estrogenic effect by causing cytotoxicity (Neale 2018). As the non-estrogenic chemicals 

had a strong effect on cell viability with an IC10 of REF 50, the activation of the estrogen 

receptor quantified with the ER-GeneBLAzer assay (Neale 2018) followed an inverted U-

shaped curve but was again fairly linear at low effect levels (Figure 2C). Note that in this 

example (Figure 2C) a slight deviation from linearity was evident (corresponding to a slope 

> 1.2 of the log-logistic fit) but the EC10 was still within a factor of two from the 

concentrations corresponding to the experimental IR 1.5, which would equate to 0.3 log-

units error as compared to a perfect sigmoidal fit. This low uncertainty is acceptable because 

a log-logistic fit would have led to unknown uncertainty for the subsequent analysis of 

relative effect potency, as discussed in the next chapter.
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Relative (Effect) Potency

If we want to compare effects of chemicals between each other and between different 

bioassay or predict mixture effects of defined chemical mixtures, we need to know the 

relative potency RPi of compound i, also called relative effect potency REPi. REPi is also a 

vital parameter for the derivation of effect-based trigger values (Escher 2018, Escher 2015) 

that are used to define acceptable water quality with respect to mixtures in a similar way as 

environmental quality standards or guideline values do for single compounds.

REPi can be calculated by eq. 5 and its associated SE by eq. 6. Using the low-level linear 

CRCs described above, the REPi and its SE can also be directly calculated from the slopes 

(eq. 5) and hence REPi is independent of the effect level within the linear low-level effect 

range (Figure 3).

REPi =
EC

y
(reference) 

EC
y
(i)

=
 slope (i)

 slope (reference) 
(5)

SE REPi ≈
1

ECy(i)2
⋅ SE ECy( reference )

2
+

EC
y
( reference )2

ECy(i)4
⋅ SE ECy(i)

2

=
1

 slope (reference) )2
⋅  SE ( slope (i))2 +

 slope(i) 2

 slope (reference )4
⋅  SE ( slope (reference) )2

(6)

Another advantage of linear low-level CRC for deriving REPi is that the concept also works 

for weakly potent chemicals (partial agonist) that do not reach 50% effect. There are other 

ways to cope with non-similar concentration effect curves (Dinse 2011) and derive REPs as 

a function of response level (Ritz 2006) but the linear method described here is probably the 

most simple for evaluation of HTS data and circumvents complex approaches to derive the 

REPi that then cannot be easily applied for the determination of BEQ, which are essential 

for the description of mixture effects of environmental samples.

Bioanalytical equivalent concentrations

BEQ are commonly used to express the potency of a complex mixture in terms of an 

equivalent concentration of a well-defined reference compound that produces the same 

biological response. BEQbio can be calculated directly from bioassay EC values and 

BEQchem are calculated from chemical concentrations and the REPs of all components of a 

mixture. Comparison of BEQbio and BEQchem can be used to determine which fraction of 

the mixture effect of a water sample is triggered by known and by unknown chemicals (Tang 

2014), an approach that is termed “iceberg modelling” (Neale 2018).
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BEQ derived from bioassay results (BEQbio)

The calculation of BEQbio is very similar to the REPi estimation described above. Because 

the mixtures are generally undefined, REPi cannot be calculated directly from a ratio of 

concentration units, rather an equivalent biological activity is used to associate an 

enrichment factor, equivalent volume of water, equivalent mass of sediment, etc. with a 

certain concentration of a reference chemical. There is a fairly confusing nomenclature on 

BEQ in the literature. For example, scientists often referred to toxic equivalent 

concentrations (TEQ). However, because many in vitro assays are not reporting toxicity but 

some defined biological effect, bio-equivalents or bioanalytical equivalent concentrations 

BEQ have become more popular for in vitro bioassays. Wagner et al. (2013) reviewed 234 

peer-reviewed publications on that topic and came to a very similar conclusion as Villeneuve 

et al. (2000) did for the REPi, i.e., that nonparallel log-CRCs and the variability of the 

maximum effect were the largest impediments, as well as the extrapolation to untested 

enrichment factors. After this analysis, Wagner et al. (2013) recommended the definition of 

bio-equivalents from non-linear interpolations of log-CRC and proposed a checklist to assess 

the validity of the approach in practical applications when often only single point estimates 

were available. At the time of that publication the use of linear CRC for environmental 

samples was already emerging (Escher 2012b, Escher 2013) but they were not accounted for 

in that review. In recent years the linear approaches and slope-ratio for first developed and 

applied to single compounds decades ago have been increasingly, and effectively, applied to 

environmental samples (König 2017, Neale 2015, Neale 2017b, Nivala 2018). However, 

their advantages and differences relative to other curve fitting and effect concentration 

estimation approaches have not been thoroughly discussed preventing wider implementation.

As the BEQbio from effect concentrations in a bioassay is the ratio of the ECy of a bioassay-

specific reference compound divided by the ECy of the sample (eq. 7), it can be directly 

calculated from the inverse ratio of the slopes, provided there is an equal intercept of both 

lines. The associated standard error of the BEQ (SE(BEQbio)) can be simply calculated by 

error propagation (eq. 8). This is a great advantage over more complex models where 

advanced statistical tools or Monte Carlo resampling methods are required to estimate the 

uncertainty of the BEQ.

BEQbio =
EC

y
( reference) 

 ECy (sample) 
=

 slope (sample) 
 slope (reference) 

(7)

SE BEQbio

≈
1

EC
y
(sample)2

⋅ SE  EC
y
(reference)

2
+

EC
y
(reference)2

EC
y
(sample)4

⋅ SE EC
y
(sample)

2

(8)
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Naturally the BEQ can also be calculated with the same equation (eq. 7) for EC values that 

are derived from logistic fits of log-CRCs. However, if the slopes of the logistic log-CRC 

were not equal for the reference compound and sample, the error associated with the BEQ 

would be more difficult to estimate, e.g., by non-linear interpolation yielding a range of 

BEQ values instead of a single estimate (Schmitt 2012). Approaches to deal with non-linear 

CRC and quality control measures were discussed in detail by Wagner et al. (2013) giving 

some guidance for the use of historic data.

In contrast, if the linear-CRC did not yield a perfect linear fit, which would be equivalent to 

a slope different from 1 of a logistic log-CRC, we can still quantify this deviation by the SE 

of the slope of the linear CRC and propagate the error all the way through to the BEQ. This 

is demonstrated by the fact that in the formulation of eq. 7 we do not even need the ECy 

values but the BEQ can be directly calculated from the inverse ratio of the slopes and 

accordingly the SE could also be calculated from the slopes and their errors alone.

BEQ derived from chemical analysis BEQchem

The BEQchem can be calculated as the sum of the product of the REPi and the concentration 

Ci of all detected chemicals i (eq. 9, SE, eq., 10).

BEQchem = ∑i = 1

n
REP

i
⋅ Ci (9)

SE BEQchem ≈ ∑i = 1

n
Ci

2 ⋅ SE REPi
2 + REPi

2 ⋅ SE C
i

2
(10)

The comparison of BEQbio with BEQchem can be used as a “mass balance” or “potency 

balance” analysis if all causative agents are known, e.g. for effect-directed analysis (Hashmi 

2018). It can also be used to evaluate whether the known composition of an environmental 

sample can reasonably account for the biological activity observed, or whether unknown 

constituents and/or complex (greater than additive) interactions are likely contributing 

(Neale 2017a, Tang 2014).

Advantages and limitations of linear CRCs

Overall, the low-dose linear CRC approach proposed here has many practical advantages for 

application of HTS assays with environmental samples but also one main theoretical caveat. 

The caveat is that a normal distribution with a standard deviation of one of the effect data or 

a log-logistic fit with a slope of 1.2 is a prerequisite for the CRC to be linear from 0% to 

30% effect level. Based on several years of experience with this linear approach we are 

confident that the majority of linear-CRCs are fairly linear below effect levels of 30% of 

maximum effect or IR 4 for a wide range of water, sediment and biota samples but there are 

exceptions, as shown in Figure 2C. Fortunately, even small deviations from linearity can be 

easily detected by visual inspection and described by the regression coefficient and the SE of 

the slope of the linear regression. Generally speaking, complex dose-response modelling is 
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unnecessary and linear fits can easily be accomplished in standard spreadsheet calculation 

programs. This can both accelerate evaluation of HTS data and help avoid error when non-

experts are applying these tools. Additionally, by focusing the analysis on low effect levels, 

solubility problems are often circumvented, and cytotoxicity interferences can be much 

better managed, avoiding experimental artefacts.

The major practical limitation is that the serial dilutions which are most commonly used 

because they can easily be prepared manually, are not perfectly suited for linear CRC 

modelling. However, the increasingly widespread availability of simple automated 

dispensers and HTS bioassay robots can help overcome this practical problem. Furthermore, 

even using manual dilution approaches, linear dilution series can be prepared.

CONCLUSIONS

In working with users of bioassay data who have different levels of expertise, e.g., 

regulators, students, scientists from other fields, we have found that a simple and consistent 

evaluation method is much less prone to error than a complex model where the user must 

make decisions about the selection of valid data points to be included in the analysis and the 

models to be applied. Summarizing all discussion points above, we recommend using the 

entire data set of concentrations against cell viability obtained from testing a given 

environmental sample to derive the IC10 for cell viability (Figure 4A). Then only 

concentrations below the IC10 should be used for further processing (Figure 4B). The 

remaining data should be visually inspected before plotting concentrations against activity 

and applying an appropriate concentration-response model to derive the EC10 or ECIR1.5 for 

reporter gene activation (Figure 4C). In our experience, in most practical cases we were left 

with only a low effect level portion of the curve up to 30% (Figure 1), which was often very 

close to linearity, making linear fits of linear-CRCs (i.e., slope ratio) most amenable for the 

data analysis. We have successfully applied the low level linear-CRC approach in numerous 

case studies with over one hundred in vitro bioassays applied to many different types of 

water samples from sewage to surface water to drinking water in collaboration with more 

than 20 international research groups (e.g., Escher 2014, Neale 2015, Neale 2017a, Neale 

2017b, Nivala 2018). However, this approach will attain its full potential only once 

cytotoxicity is measured in parallel, which was admittedly not the case in all of the previous 

case studies.

The simple and transparent approach with all uncertainty quantified is a good starting point 

for the regulatory acceptance of in vitro bioassays for water quality assessment. Since 

proposed effect-based trigger (EBT) values for water quality are typically derived as EBT-

BEQ (Brand 2013, Escher 2015, van der Oost 2017, Escher 2018) the discussed 

uncertainties in BEQ from log-CRC modelling (Wagner 2013) would potentially lead to 

low-quality EBTs and subsequently to high uncertainty in the water quality monitoring and 

compliance assessment. Furthermore, the simplicity of the linear CRC approach opens up 

application in sediment and biota testing. Of course, this aspect is not the only one to 

consider when applying environmental samples in in vitro HTS assays (Windal 2005), but it 

is a crucial one and one can truly simplify life by simplifying modeling.
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Figure 1. 
Relationship between sigmoidal log-CRCs and linear CRCs
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Figure 2. 
Examples for the proposed linear CRC evaluation. A. Wastewater treatment plant effluent 

enriched with SPE, run in the AhR CALUX assay for activation of the arylhydrocarbon 

receptor (data from Nivala 2018). B. Drinking water enriched with SPE, run in the AREc32 

assay for oxidative stress response (data from Hebert 2018). C. 579 chemicals spiked to a 

pristine creek water sample, run in the ER-GeneBLAzer assay for estrogenicity (Neale 

2018). The empty symbols are cell viability data and the filled symbols activity data with 

different symbols from different independent experiments and the same symbols in activity 

and cytotoxicity from a matching experiment.
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Figure 3. 
If the slopes of the log-CRCs are not the same for reference compound and chemical i, then 

the REPi are dependent on the effect level (A). For log-CRC with the same slope (B) and 

linear-CRCs (C), the REPi are independent of the effect level.
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Figure 4. 
Recommended processing of CRC data of environmental samples. A. Measured effect yields 

often U-shaped CRCs due to cytotoxicity overlaying activation. B. All concentrations above 

the IC10 for cytotoxicity should be removed for analysis of effect. C. The linear-CRC model 

should be only applied to data <30% effect (linear range, see Figure 1).
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