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Abstract

Many deep learning models are vulnerable to the adversarial
attack, i.e., imperceptible but intentionally-designed perturba-
tions to the input can cause incorrect output of the networks.
In this paper, using information geometry, we provide a rea-
sonable explanation for the vulnerability of deep learning
models. By considering the data space as a non-linear space
with the Fisher information metric induced from a neural net-
work, we first propose an adversarial attack algorithm termed
one-step spectral attack (OSSA). The method is described by
a constrained quadratic form of the Fisher information matrix,
where the optimal adversarial perturbation is given by the first
eigenvector, and the vulnerability is reflected by the eigen-
values. The larger an eigenvalue is, the more vulnerable the
model is to be attacked by the corresponding eigenvector. Tak-
ing advantage of the property, we also propose an adversarial
detection method with the eigenvalues serving as characteris-
tics. Both our attack and detection algorithms are numerically
optimized to work efficiently on large datasets. Our evaluations
show superior performance compared with other methods, im-
plying that the Fisher information is a promising approach to
investigate the adversarial attacks and defenses.

1 Introduction

Deep learning models have achieved substantial achieve-
ments on various of computer vision tasks. Recent studies
suggest that, however, even though a well-trained neural net-
work generalizes well on the test set, it is still vulnerable to
adversarial attacks (Szegedy et al. 2013). For image classifi-
cation tasks, the perturbations applied to the images can be
imperceptible for human perception, meanwhile misclassified
by networks with a high rate. Moreover, empirical evidence
has shown that the adversarial examples have the ability to
transfer among different deep learning models. The adver-
sarial examples generated from one model can often fool
other models which have totally different structure and pa-
rameters (Papernot, McDaniel, and Goodfellow 2016), thus
making the malicious black-box attack possible. Many deep
learning applications, e.g. the automated vehicles and face
authentication system, have low error-tolerance rate and are
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sensitive to the attacks. The existence of adversarial exam-
ples has raised severe challenges for deep learning models in
security-critical computer vision applications.

Understanding the mechanism of adversarial examples
is a fundamental problem for defending against the attacks.
Many explanations have been proposed from different facets.
(Szegedy et al. 2013) first observes the existence of adver-
sarial examples, and suggests it is due to the excessive non-
linearity of the neural networks. On the contrary, (Goodfel-
low, Shlens, and Szegedy 2014) suggests that the vulnerabil-
ity results from the models being too linear. Despite its con-
tradiction to the general impression, the explanation is sup-
ported by numbers of experimental results (Krotov and Hop-
field 2017; Tabacof and Valle 2016; Tanay and Griffin 2016;
Tramèr et al. 2017). On the other hand, by approximating
the vertical direction of the decision boundary in the sample
space, (Moosavidezfooli, Fawzi, and Frossard 2016) proposes
to find the closest adversarial examples to the input with an
iterative algorithm. (Moosavidezfooli et al. 2017b) further
studies the existence of universal perturbations in state-of-
the-art deep neural networks. They suggest the phenomenon
is resulted from the high curvature regions on the decision
boundary (Moosavidezfooli et al. 2017a).

These works have built both intuitive and theoretical un-
derstanding of the adversarial examples under the Euclidean
metric. However, studying adversarial examples by the Eu-
clidean metric has its limitations. Intrinsically, for neural
networks, the adversarial attacking is about the correlation
between the input space and the output space. Due to the
complexity of the networks, it is hard to explain why small
perturbation in the input space can result in large variation
in the output space. Many previous attack methods presume
the input space is flat, thus the gradient with respect to the
input gives the fastest changing direction in the output space.
However, if we regard the model output as the likelihood of
the discrete distribution, and regard the model input as the
pullback of the output, a meaningful distance measure for
the likelihood will not be linear, making the sample space a
manifold measured by a non-linear Riemannian metric. This
motivates us to adopt the Fisher information matrix (FIM)
of the input as a metric tensor to measure the vulnerability of
deep learning models.

The significance of introducing the Fisher information met-
ric is three folds. First, the FIM is the Hessian matrix of the

5869



Kullback-Leibler (KL) divergence, which is a meaningful
metric for probability distributions. Second, the FIM is sym-
metrical and positive semi-definite, making the optimization
on the matrix easy and efficient. Third, the FIM is invari-
ant to reparameterization as long as the likelihood does not
change. This is particularly important for bypassing the influ-
ence of irrelevant variables (e.g. different network structures),
and identifying the true cause for the vulnerability of deep
learning models.

Based on these insights, we propose a novel algorithm to
attack the neural networks. In our algorithm, the optimization
is described by a constrained quadratic form of the FIM,
where the optimal adversarial perturbation is given by the
eigenvector, and the eigenvalues reflect the local vulnerability.
Compared with previous attacking methods, our algorithm
can efficiently characterize multiple adversarial subspaces
with the eigenvalues. In order to overcome the difficulty in
computational complexity, we then introduce some numerical
tricks to make the optimization work on large datasets. We
also give a detailed proof for the optimality of the adversarial
perturbations under certain technical conditions, showing that
the adversarial perturbations obtained by our method will not
be “compressed” during the mapping of networks, which has
contributed to the vulnerability of deep learning models.

Furthermore, we perform binary search for the least adver-
sarial perturbation that can fool the networks, so as to verify
the eigenvalues’ ability to characterize the local vulnerabil-
ity: the larger the eigenvalues are, the more vulnerable the
model is to be attacked by the perturbation of corresponding
eigenvectors. Hence we adopt the eigenvalues of the FIM
as features, and train an auxiliary classifier to detect the ad-
versarial attacks with the eigenvalues. We perform extensive
empirical evaluations, demonstrating that the eigenvalues
are of good distinguishability for defending against many
state-of-the-art attacks.

Our main contributions in this paper are summarized as
follows:

• We propose a novel algorithm to attack deep neural net-
works based on information geometry. The algorithm can
characterize multiple adversarial subspaces in the neigh-
borhood of a given sample, and achieves high fooling ratio
under various conditions.

• We propose to adopt the eigenvalues of the FIM as features
to detect the adversarial attacks. Our analysis shows the
classifiers with the eigenvalues being their features are
robust to various state-of-the-art attacks.

• We provide a novel geometrical interpretation for the deep
learning vulnerability. The theoretical results confirm the
optimality of our attack method, and serve as a basis for
characterizing the vulnerability of deep learning models.

2 Preliminaries

Fisher information The Fisher information is initially pro-
posed to measure the variance of the likelihood estimation
given by a statistical model. Then the idea was extended by
introducing differential geometry to statistics (Amari and
Nagaoka 2007). By considering the FIM of the exponential

family distributions as the Riemannian metric tensor, Chen-
stov further proves that the FIM as a Riemannian measure is
the only invariant measure for distributions. Specifically, let
p(x|z) be a likelihood function given by a statistical model,
where z is the model parameter, the Fisher information of z
has the following equivalent forms:

Gz = Ex|z[(∇z log p(x|z))(∇z log p(x|z))
T ]

= Dx|z[∇z log p(x|z)]

= −Ex|z[∇
2
z log p(x|z)], (1)

where Dx|z[.] denotes the variance under distribution p(x|z).
When the FIM is adopted as a Riemannian metric tensor,

it enables a connection between statistics and differential
geometry. It is proved that the manifold composed of expo-
nential family distributions is flat under the e-connection,
and the manifold of mixture distributions is flat under the m-
connection (Amari and Nagaoka 2007). The significance is
that the metric only depends on the distribution of the model
output, i.e., the FIM is invariant to model reparameteriza-
tion, as long as the distribution is not changed. For example,
(Amari 1999) shows the steepest direction in the statistical
manifold is given by the natural gradient, which is invariant
to reparameterization and saturation-free.

Adversarial attacks Many methods are proposed to gen-
erate adversarial examples. The fast gradient method (FGM)
and the one-step target class method (OTCM) are two basic
methods that simply adopt the gradient w.r.t. the input as
the adversarial perturbation (Kurakin, Goodfellow, and Ben-
gio 2016b). The basic iterative method (BIM) performs an
iterative FGM update for the input samples with less modifi-
cations (Kurakin, Goodfellow, and Bengio 2016a), which is
a more powerful generalization of the ones-step attacks. Sev-
eral attack strategies, including the optimization based attack
(Liu et al. 2016) and the C&W attack (Carlini and Wagner
2017c), are proposed to craft the adversarial examples via
optimization. The adversarial examples of C&W attack are
proved to be highly transferable between different models,
and can almost completely defeat the defensive distillation
mechanism (Papernot et al. 2015).

Adversarial defenses The defense against the adversar-
ial examples can be generally divided into the following
categories. The adversarial training takes the adversarial
examples as part of the training data, so as to regularize
the models and enhance the robustness (Miyato et al. 2015;
Sinha, Namkoong, and Duchi 2017). (Katz et al. 2017) pro-
poses to verify the model robustness based on the satisfia-
bility modulo theory. The adversarial detecting approaches
add an auxiliary classifier to distinguish the adversarial
examples (Metzen et al. 2017). Many detection measure-
ments, including kernel density estimation, Bayesian uncer-
tainty (Feinman et al. 2017), Jensen Shannon divergence
(Meng and Chen 2017), local intrinsic dimensionality (Ma
et al. 2018), have been introduced to detect the existence
of adversarial attacks. Despite the success of the above de-
fenses in detecting many attacks, (Carlini. and Wagner 2017a;
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Carlini and Wagner 2017b) suggest these mechanisms can be
bypassed with some modifications of the objective functions.

3 The adversarial attack under the Fisher

information metric

3.1 Proposed algorithm

In this section, we formalize the optimization of the adver-
sarial perturbations as a constrained quadratic form of the
FIM. As mentioned in the previous section, for classification
tasks, the output of the network can be considered as the
likelihood of a discrete distribution. In information theory, a
meaningful metric for different probability distributions is
not linear. Therefore, we start by using the KL divergence to
measure the variation of the likelihood distributions.

Consider a deep neural network with its likelihood distri-
bution denoted as p(y|x;θ), where x is the input sample, and
θ is the model weights. Since the model weights are fixed
after training, and x is the only changeable parameter when
attacking, we omit the model parameters θ in the conditional
distribution, and regard x as the model parameter. What the
attackers are likely to do is to find a subtle perturbation η,
such that the probability p(y|x+η) varies from the correct to
the wrong output. Hence we adopt the KL divergence to mea-
sure the variation of the probability p(y|x). The optimization
objective can be formulated as follows:

max
η

DKL(p(y|x)||p(y|x+ η)) s.t. ‖η‖22 = ǫ, (2)

where ǫ is a small parameter to limit the size of the pertur-
bation under the Euclidean metric. Previous literature has
shown that the adversarial examples generally exist in large
and continuous regions (Goodfellow, Shlens, and Szegedy
2014). such that the models can always be fooled with small
perturbation. Let us assume the perturbation ‖η‖ is suffi-
ciently small, such that the log-likelihood log p(y|x + η)
can be decomposed using the second-order Taylor expansion.
This yields a simple quadratic form of the FIM:

DKL(p(y|x)‖p(y|x+ η)) = Ey|x[log
p(y|x)

p(y|x+ η)
]

≈
1

2
ηTGxη, (3)

where Gx = Ey|x[(∇x log p(y|x))(∇x log p(y|x))T ] is the
Fisher information of x. Note that the FIM here is not the
same as that in (Miyato et al. 2015). Since the expectation
is over the observed empirical distribution p(y|x), let pi be
the probability of p(y|x) when y takes the i-th class, and let
J (y,x) = − log p(y|x) be the loss function of the network,
the matrix can be explicitly calculated by

Gx =
∑

i

pi[∇xJ (yi,x)][∇xJ (yi,x)]
T . (4)

Hence we have a variant form of the objective function,
which is given by:

max
η

ηTGxη s.t. ‖η‖22 = ǫ, J (y,x+ η) > J (y,x).

(5)

Setting the derivative of the Lagrangian w.r.t. η to 0 yields
Gxη = λη. In general, the optimization can be solved by ap-
plying eigen-decomposition for Gx, and assigning the eigen-
vector with the greatest eigenvalue to η. Note that eigenvector
gives a straight line, not a direction, i.e., multiplying η by −1
does not change the value of the quadratic form. Therefore,
we add an additional constraint J (y,x+η) > J (y,x) here,
guaranteeing that the adversarial examples obtained by x+η
will always attain higher loss than the normal samples.

The significance of our method is as follows. If we consider
DKL(p(y|x)||p(y|x+η)) as a function of η, the Fisher infor-
mation is exactly the Hessian matrix of the infinitesimal KL
divergence. This implies that the vulnerability of deep learn-
ing models can be described by the principal curvature of KL
divergence. Therefore, given an input sample x, the eigen-
values of the FIM represent the robustness in the subspaces
of corresponding eigenvectors. The larger the eigenvalues
are, the more vulnerable the model is to be attacked by the
adversarial perturbations in the subspaces of corresponding
eigenvectors. This allows us to efficiently characterize the
local robustness using the eigenvalues of the FIM.

3.2 Optimization strategies

As mentioned before, the simplest approach to solve the ob-
jective function (5) is to calculate the greatest eigenvector
of Gx. However, such optimization can be impractical for
large datasets. One main obstacle is that Gx is computed
explicitly. When the image size is large, the exact eigen-
decomposition of Gx becomes inefficient and memory con-
suming. In order to reduce the computational complexity, the
critical part is to avoid the access to the explicit form of Gx.
This can be achieved by computing Gxη alternatively. Let
gy = ∇xJ (y,x) be the gradient of the class y loss w.r.t. the

input x. Since the FIM has the form Gx = Ey|x[gyg
T
y ], by

putting η into the expectation we obtain

Gxη = Ey|x[(g
T
y η)gy]. (6)

This allows us to calculate the inner product first, so as to
avoid dealing with Gx explicitly. After η converges, the
greatest eigenvalue has the form Ey|x[(g

T
y η)

2].
Specifically, when computing the greatest eigenvector of

Gx, a naive approach with the power iteration can be adopted
to accelerate the eigen-decomposition. In Step k, the power
iteration is described by the recurrence equation ηk+1 =
Gxηk

‖Gxηk‖
. The iteration thus becomes

ηk+1 =
Ey|x[(g

T
y ηk)gy]

‖Ey|x[(gT
y ηk)gy]‖

. (7)

Similar approach can be adopted when computing the
top m eigenvalues and eigenvectors. The Lanczos algorithm,
which also does not require the direct access to Gx, is an
efficient eigen-decomposition algorithm for Hermitian matri-
ces (Calvetti, Reichel, and Sorensen 1994). The algorithm is
particularly fast for sparse matrices. Since Gx is the pullback
of a lower dimensional probability space, this guarantees the
efficiency of our implementation.

Additionally, the expectation term in the exact computa-
tion of Gx requires to sum over the support of p(y|x), which
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(a) MNIST (b) CIFAR-10 (c) ILSVRC-2012

Figure 1: Visualization for the adversarial examples crafted with our method (Best viewed with zoom-in). All the adversarial
examples are obtained via one-step update for the original images. (a) The model prediction is marked in red numbers. (b) All
the images here can successfully fool a 14-layer network trained on CIFAR-10. (c) The top row shows the original samples,
while the second row is the adversarial examples. The model prediction is labeled in the top of the images.

Table 1: The comparison for the computation time of OSSA using different numerical methods

time (seconds) Eigen-decomposition Lanczos Alias+Lanczos Power iteration Alias+Power iteration

CIFAR-10 1.49± 0.12 0.30± 0.02 0.15± 0.04 0.28± 0.03 0.25± 0.01
ILSVRC-2012 intractable 58.63± 3.50 7.23± 0.12 47.79± 3.15 3.15± 0.62

is still inefficient for the datasets with large number of cat-
egories. In practice, the estimation of the integral can be
simplified by the Monte Carlo sampling from p(y|x) with
less iterations. The sampling iterations are set to be approx-
imately 1/5 number of the classes. Despite the simplicity,
we empirically find the effectiveness is not degraded by the
Monte Carlo approximation. The randomized sampling is per-
formed using the alias method (Marsaglia, Tsang, and Wang
2004), which can efficiently sample from high dimensional
discrete distribution with O(1) time complexity.

Algorithm 1: One Step Spectral Attack (OSSA)
Implemented with power iteration+alias sampling

Input: input sample x, corresponding labels y, a deep
learning model with the output p(y|x) and the
loss J (y,x).

Output: the perturbation η, the greatest eigenvalue λ∗.
1 Initialize η as an random vector with unit norm;
2 Initialize the alias table with p(y|x);
3 while η not converged do

4 Update η ← Ey|x[(g
T
y η)gy] using alias sampling;

5 Normalize η ← η
‖η‖2

;

6 end

7 The greatest eigenvalue λ∗ ← Ey|x[(g
T
y η)

2];

8 if J (x+ η) ≤ J (x) then
9 η ← −η;

10 end

In our experiments, we only use the randomization trick
for ILSVRC-2012. Table 1 shows the comparison for the time
consumption of the aforementioned methods. To summarize,
the algorithm procedure of the alias method+power iteration
implementation is shown in Algorithm 1. In Figure 1, we

also illustrate some visualization of the adversarial examples
crafted with our method.

3.3 Geometrical interpretation

Characterizing the vulnerability of neural networks is an im-
portant question for studying adversarial examples. Under
the Euclidean metric, (Sinha, Namkoong, and Duchi 2017)
has suggested that identifying the worst case perturbation
in ReLU networks is NP-hard. In this subsection, we give
an explanation for the vulnerability of deep learning from a
different aspect. Our aim is to prove that under the Fisher in-
formation metric, the perturbation obtained by our algorithm
will not be “compressed” through the mapping of networks,
which has contributed to the vulnerability of deep learning.

Geometrically, let z = f(x) be the mapping through the
neural network, where z ∈ (0, 1)k is the continuous output
vector of the softmax layer, with p(y|z) =

∏
i z

yi

i being
a discrete distribution. We can conclude the FIM Gz =
Ey|z[(∇z log p(y|z))(∇z log p(y|z))

T ] is a non-singular di-
agonal matrix. The aforementioned Fisher information Gx is
thus interpreted as a Riemannian metric tensor induced from
Gz . The corresponding relationship is

ηTGxη = ηTJT
f GzJfη, (8)

where Jf is the Jacobian of z w.r.t. x. Note that for most neu-
ral networks, the dimensionality of z is much less than that of
x. making Jfη a mapping for η from high dimensional data
space to low dimensional probability space. This means f is
a surjective mapping and Gx is a degenerative metric tensor.
Therefore, the geodesic distance in the probability space is
always no larger than the corresponding distance in the data
space. Using the inequality, we can define the concept of
optimal adversarial perturbation, formulated as follows.

Definition 1. Let N andM be two Riemannian manifolds
with the FIMs Gz and Gx being their metric tensor respec-
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tively. Let f :M→N be the mapping of the neural network.
For x ∈ M, an adversarial perturbation η ∈ TxM is op-
timal if f(x) is an isometry for the geodesic determined by
the exponential mapping Expx(η) : TxM→M.

Definition 2. Let f :M → N be a smooth mapping, and
f∗ : TxM→ Tf(x)N be the derivative of f . The mapping
f is a submersion if f is surjective and f∗ is surjective,
and a Riemannian submersion if f∗ is an isometry on the
horizontal bundle H = ker f⊥

∗ .

The definitions show the optimal perturbations span only
on the horizontal bundles. Thus the conclusion is as follows.

Theorem 1. Let Jf be the Jacobian field of f(x) w.r.t. x.

If JfJ
T
f is non-singular, and f : M → N is a smooth

mapping, then a sufficiently small perturbation η ∈ TxM
obtained by Algorithm 1 is optimal.

Proof. For the neural network f , we define Vx ⊂ TxM,
the vertical subspace at a point x ∈ M, as the kernel of
the FIM Gx. In our algorithm, we always apply the greatest
eigenvector in the FIM Gx as the adversarial perturbation.
Given a smooth network f , because JfJ

T
f is always non-

singular, the first eigenvalue in the FIM is always larger than
zero, which corresponds to the non-degenerative direction.
Therefore the adversarial perturbation η ∈ TxM obtained is
always in the horizontal bundle, i.e., η ∈ H . By definition,
f∗ : TxM→ Tf(x)N will be an isometry for the horizontal
sub-bundles. Then f will also be an isometry for the geodesic
determined by Expx(η) : TxM→M.

In a broader sense, the theorem confirms the validity of
our proposed approach, and serves as a basis for character-
izing the vulnerability of deep learning models. Note that
the theorem is concluded without any assumption for the
network structures. The optimality can thus be interpreted as
a generalization of the excessive linearity explanation (Good-
fellow, Shlens, and Szegedy 2014). The statement shows that
the linearity may not be a sufficient condition for the vul-
nerability of neural networks. Using our algorithm, similar
phenomenon can be reproduced in a network with smooth ac-
tivations, e.g. the exponential linear unit (Clevert, Unterthiner,
and Hochreiter 2015).

3.4 Experimental evaluation

In this section, by presenting experimental evaluations for
the properties of the adversarial attacks, we show the abil-
ity of our attack method to fool deep learning models, and
characterize the adversarial subspaces. The experiments are
performed on three standard benchmark datasets MNIST,
CIFAR-10 (Krizhevsky and Hinton 2009), and ILSVRC-2012
(Russakovsky et al. 2015). The pixel values in the images
are constrained in the interval [0.0, 1.0]. We adopt three dif-
ferent networks for the three datasets respectively: LeNet-5,
VGG, and ResNet-152 (He et al. 2015). The VGG network
adopted here is a shallow variant of the VGG-16 network (Si-
monyan and Zisserman 2014), where the layers from conv4-1
to conv5-3 are removed to reduce redundancy. We use the pre-
trained ResNet-152 model integrated in TensorFlow. In our
experiments, all the adversarial perturbations are evaluated
with ℓ2 norm.

Table 2: The fooling rates and the mean of least ℓ2 perturba-
tion norms under two one-step attack strategies

MNIST CIFAR ILSVRC
Attacks mean rate % mean rate % mean rate %

FGM 2.11 94.98 1.11 95.21 0.48 100
OSSA 1.80 95.68 1.06 97.85 0.47 100

White-box attack In the first experiment, we perform com-
parisons for the ability of our method to fool the deep learning
models. The comparison is made between two one-step attack
methods, namely FGM and OTCM, and their iterative vari-
ants. The target class in OTCM is randomly chosen from the
set of incorrect classes. Similar to the relationship between
FGM and BIM, by computing the first eigenvector of FIM in
each step, it is a natural idea to perform our attack strategy it-
eratively. For the iterative attack, we set the perturbation size
ǫ = 0.05. We only use the samples in the test set (validation
set for ILSVRC-2012) to craft the adversarial examples.

(a) One-step attack (b) Iterative attack

Figure 2: (a) The models’ misclassification rates increase
with the perturbation size. (b) The models’ misclassification
rates increase with the number of iterations. When perform-
ing the iterative attacks, we set perturbation size to 0.05,
0.025, 0.0125 for the three datasets respectively.

The results are illustrated in Figure 2. Observe that our pro-
posed method quickly attains a high fooling rate with smaller
values of ‖η‖. For one-step attacks, our method achieves 90%
fooling ratio with the ℓ2 perturbation norms 2.1, 1.4, and 0.7
on MNIST, CIFAR-10, and ILSVRC-2012 respectively. This
implies that the eigenvectors as adversarial perturbations is a
better characterization for model robustness than the gradi-
ents. Another evidence is shown in Table 2, where we conduct
binary search to find the mean of the least perturbation norm
on three datasets. Our approach achieves higher fooling ratios
than the gradient-based method, with a smaller mean of the
least perturbation norm. Both of the results are consistent
with our conclusion in previous sections.

Black-box attack In the real world, the black-box attack
is more common than the white-box attacks. It is thus impor-
tant to analyze the transferability between different models.
In this experiment, we show the ability of our attack ap-
proach to transfer across different models, particularly the
models regularized with adversarial training. The experiment
is performed on MNIST, with four different networks: LeNet,
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Table 3: The cross-model fooling ratios on MNIST using
OSSA.

Fooling rates Crafted from
Tested on LeNet VGG LeNet-adv VGG-adv

LeNet 100.0 62.02 88.49 82.20
VGG 53.64 100.0 76.93 74.45

LeNet-adv 27.92 17.83 100.0 90.04
VGG-adv 15.06 29.24 94.15 100.0

VGG, and their adversarial training variants, which is referred
to as LeNet-adv and VGG-adv here. For the two variant net-
works, we replace all the ReLU activations with ELUs, and
train the network with adversarial training using FGM. All
of the above networks achieve more than 99% accuracy on
the test set of MNIST. To make the comparison fair, we set
ǫ = 2.0 for all the tested attack methods.

The results of this experiment are shown in Table 3. The
cross-model fooling ratios are obviously asymmetric between
different models. Specifically, the adversarial training plays
an important role for defending against the attack. The mod-
els without adversarial training produce 22.51% error rate in
average on the the models with adversarial training, while
the reversed case is 80.52% in average. Surprisingly, the ad-
versarial examples crafted from the models with adversarial
training yield high fooling ratios on the two normal networks.
Whereas a heuristic interpretation is that the perturbations
obtained by OSSA correspond to only one subspace, making
the adversarial training less specific for our attack strategy,
the reason of the phenomenon requires further investigation.

(a) MNIST (b) CIFAR-10

Figure 3: Using 800 random samples, the scatter illustrates
the relationship between the least ℓ2 perturbation norm and
the maximum eigenvalues. The least ℓ2 perturbation size
is obtained via binary search in the interval [0.0, 6.0]. The
horizontal axis is shown in logarithm.

Characterizing multiple adversarial subspaces As
shown in the previous sections, the eigenvalues in FIM can
be applied to measure the local robustness. We thus perform
experiments to verify the correlation between the model
robustness and the eigenvalues. In Figure 3, we show the
scatter of 800 randomly selected samples in the validation
set of MNIST and CIFAR-10. The horizontal axis is the
logarithm of the eigenvalues, and the vertical axis is the least
adversarial perturbation size, i.e., the least value of ‖η‖2 to
fool the network. The value is obtained via binary search
between the interval [0.0, 6.0]. Most adversarial examples

can successfully fool the model in this range. The result
shows an obvious correlation between the eigenvalues and
the model vulnerability: the least perturbations linearly
decrease with the exponential increasing of eigenvalues.

A reasonable interpretation is that the eigenvalues reflect
the size of the perturbations under the Fisher information met-
ric. According to our optimality analysis, large eigenvalues
can result in isometrical variation for the output likelihood,
which is more likely to fool the model with less perturbation
size. This property is crucial for our following discussion,
the adversarial detection, where we take advantage of the
distinguishability of the eigenvalues to detect the adversarial
attacks.

4 The adversarial detection under the Fisher

information metric

(a) Eigenvalues’ distributions (b) Increment of eigenvalues

Figure 4: Some empirical evidence for the distinguishability
of the eigenvalues. (a) The histograms for the distribution of
largest eigenvalues. The statistic is performed on all the sam-
ples in the test set of MNIST. (b) The increment of the eigen-
values along the direction of the adversarial perturbations.
The samples are randomly sampled from MNIST, CIFAR-10,
and ILSVRC-2012.

As shown in the previous sections, given an input sample x,
the eigenvalues in FIM can well describe its local robustness.
In this section, we show how the eigenvalues in FIM can
serve as features to detect the adversarial attacks. Specifically,
the detection is achieved by training an auxiliary classifier
to recognize the adversarial examples, with the eigenvalues
serving as the features for the detector. Motivated by (Fawzi,
D. Moosavi, and Frossard 2016), besides the normal original
samples and the adversarial inputs, we also craft some noisy
samples to augment the detection. Since the networks are
supposed to be robust to some random noise applied to the
input, the set of negative samples should contain both the
normal samples and noisy samples, while the set of positive
samples contain the adversarial examples.

In the left of Figure 4, we show a histogram of the eigenval-
ues distribution. We adopt the FGM to generate adversarial
examples for the samples from MNIST, and evaluate their
greatest eigenvalues in FIM. The histogram shows that the
distributions of the eigenvalues for normal samples and adver-
sarial examples are different in magnitude. The eigenvalues
of the latter are densely distributed in larger domain, while
the distribution of the former is approximately an Gaussian
distribution with smaller mean. Although there is overlapping
part for the supports of the two distributions, the separabil-
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Table 4: The AUC scores of detecting adversarial attacks using random forest. The best are marked with bold font.

MNIST CIFAR-10
AUC (%) FGM OTCM Opt BIM OSSA FGM OTCM Opt BIM OSSA

KD 78.12 95.46 95.15 98.61 84.24 64.92 92.13 91.35 98.70 88.89
BU 32.37 91.55 71.30 25.46 74.21 70.40 91.93 91.39 97.32 87.44

KD+BU 82.43 95.78 95.35 98.81 85.97 76.40 94.45 93.77 98.90 93.54
Ours 96.11 98.47 95.67 99.10 93.13 80.18 93.68 99.45 99.43 98.01

ity for the adversarial examples can be largely enhanced by
adding more eigenvalues as features. In the right of Figure 4,
using our proposed OSSA, we illustrate some examples of the
eigenvalues increasing along the direction of the adversarial
perturbations. As we predicted, the eigenvalues increase with
the increasing of the perturbation size, showing that the ad-
versarial examples have higher eigenvalues in FIM compared
with the normal samples.

The next question is which machine learning classifier
should be adopted for the detection. In out experiments, we
empirically find the models are more likely to attain high
variance instead of high bias. The naive Bayes classifier with
Gaussian likelihood, and the random forest classifier yields
the best performance among various models. The success of
the former demonstrates that the geometry structure in each
subspace is relatively independent. As for the random forest
classifier, we empirically find that varying the parameters
(e.g. the tree depth, the value of ǫ, etc.) does not significantly
affect the AUC scores. We also find the tree depth not to
exceed 5, and more than 20 trees in the random forest yields
good performance. These results imply that our detection
with Fisher information enjoys low variance.

In Table 4, we adopt the AUC score to evaluate the perfor-
mance of our random forest classifier under different attacks.
The comparison is made between our approach and two char-
acteristics described in (Feinman et al. 2017), namely the
kernel density estimation (KD) and the Bayesian uncertainty
(BU). In our experiments, only the top 20 eigenvalues are
extracted as the features for classification. Observe that the
detector achieves desirable performance in recognizing the
adversarial examples. The eigenvalues as features outper-
form KD and BU on both datasets. In addition, our detector
is particularly good at recognizing OSSA adversarial exam-
ples. The AUC scores are 7.16% and 4.47% higher than the
combination of the other two characteristics.

In the real world, we cannot presume all the attacks strate-
gies are known before we train the detector. It is thus impor-

Table 5: The generalization ability for detecting adversarial
attacks on MNIST with random forest classifier

AUC (%) Tested on
Trained on FGM OTCM Opt BIM OSSA

FGM 94.31 91.92 90.78 91.87 92.13
OTCM 98.55 98.96 98.26 97.78 98.57

Opt 95.18 95.30 96.90 97.15 96.11
BIM 98.10 96.00 97.09 98.57 96.35

OSSA 91.17 91.47 89.77 89.47 89.67

tant for the features to have sufficient generalization ability.
In Table 5, we show the AUC scores of the detector trained
on only one type of adversarial examples. Observe that most
of our results exceed 90% of AUC scores, indicating the
adversarial examples generated by various methods share
similar geometric properties under the Fisher information
metric. Interestingly, the detector trained on OSSA obtain the
worst generalization ability among all methods. We regard
this is due to the geometrical optimality of our method. Ac-
cording to our analysis in the previous section, the adversarial
examples of OSSA may distribute densely in more limited
subspaces, resulting in less diversity for generalization.

5 Conclusion

In this paper, we have studied the adversarial attacks and de-
tections using information geometry, and proposed a method
unifying the adversarial attack and detection. For the attacks,
we show that under the Fisher information metric, the optimal
adversarial perturbation is the isometry between the input
space and the output space, which can be obtained by solving
a constrained quadratic form of the FIM. For the detection,
we observe the eigenvalues of FIM can well describe the
local vulnerability of a model. This property allows us to
build machine learning classifiers to detect the adversarial at-
tacks with the eigenvalues. Experimental results have shown
promising robustness on the adversarial detection.

Addressing the adversarial attacks issue is typically dif-
ficult. One of the great challenges is the lack of theoretical
tools to describe and analyze the deep learning models. We
are confident that the Riemannian geometry is a promising ap-
proach to leverage better understanding for the vulnerability
of deep learning.

In this paper, we only focus on the classification tasks,
where the likelihood of the model is a discrete distribution.
Besides classification, there are many other tasks which can
be formulated as statistical problems, e.g. Gaussian distribu-
tion for regression tasks. Therefore, investigating the adver-
sarial attacks and defenses on other tasks will be an interest-
ing future direction.
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