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1. Introduction. The drag of supersonic wings increases rapidly with increasing thick-

ness. This has led to some speculation about the potentialities of supersonic biplanes,

which might afford structural strength and rigidity by virtue of their external structure

and hence permit the use of thinner airfoil profiles than would be possible in a mono-

plane. This brings to mind the possibilities, recognized for several years, of actually

reducing the drag of wings by providing the proper wave interactions between the upper

and lower wings of a biplane arrangement. That this can be done in the two-dimensional

case, i.e., in a biplane of infinite span, was proved in 1935 by Busemann (Ref. 1), who

showed that the drag (excluding viscous drag) can be made equal to zero for a biplane

at zero lift.

Clearly, it is of interest to study the aerodynamics of finite-span biplanes at super-

sonic speeds, and especially to estimate the effects of the wing tips on the drag of a

finite "Busemann biplane." In this paper we shall report briefly on an investigation

(Ref. 8) of the aerodynamics of biplanes having rectangular wings of identical planform.

To simplify the work, we shall use here the small-perturbation linear theory, in which

all shock and expansion waves are replaced by Mach waves inclined at the free-stream

Mach angle. Busemann, to be sure, did not make this approximation in his two-dimen-

sional biplane studies; nevertheless, it should be permissible for the slender airfoils that

are of greatest practical interest.

In the linearized theory, the Busemann biplane arrangement becomes the one shown

in Fig. 1, i.e., the top and bottom surfaces are flat, the leading-edge Mach wave of either

wing intersects the other wing at mid-chord, and the airfoil slopes are related by the

formulas, for x > c/2,

Y[(x) = - Y'2(x - c/2), Y&x) = - Y[(x - c/2).

The typical case is then simply that of two isosceles triangles pointing at each other.

In this investigation, the Busemann relationship between gap, chord, and Mach

angles shown in Fig. 1 will always be assumed, but it will not be necessary to specify

the shape of the profile in deriving some general results. It will be shown that the velocity

potential, including all interaction effects, can be calculated by means of integrations

involving the wing surface slopes only. The general results will be applied to the numerical

calculation of the wave drag, at zero lift, of the typical Busemann arrangement having

triangular wing sections.

2. Formulas for source distributions. The equation satisfied by the disturbance

velocity potential <fi in the linearized theory is

P24>ix ~ <t>Vy - 0.. = 0; /32 = M2 - 1. (1)

where subscripts denote partial differentiation with respect to the rectangular Cartesian
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coordinates x, y, z. Here M denotes the free-stream Mach number, and the coordinate

x is taken in the direction of the undisturbed stream. It has been assumed in deriving

Eq. (1) that <j>x , <j>y , and <f>z are small compared to the stream speed, U. A consistent

approximate formula for the pressure coefficient is

Cv = 2(p - p0)/poU2 = -24>,/U, (2)

where p0 , po are the pressure and density of the undisturbed stream.

An elementary solution of Eq. (1) is the so-called supersonic source, 4>(x, y, z) =

[{x — £)2 — (f{y — t))2 — 02(z — f)2] 1/2, provided that the value zero is taken outside

Fig. 1. The Busemann biplane arrangement.

of the Mach cone that originates at the point £, r?, f. For brevity, we shall adopt the

following notation:

dz) - Kx - ?)2 - p\y - vT ~ /3V]-/2.

It is well known (Refs. 2, 3) that a continuous distribution q of these singularities over

a surface parallel to the flow yields a solution satisfying Eq. (1) and the boundary condi-

tion dcj}/dn = irq on the surface. Moreover, Evvard (Ref. 4) has shown how a distribution

of these sources over a fictitious diaphragm at a wing tip can be used to account for the

interaction of upper and lower surfaces of a monoplane wing.

We shall adopt Evvard's scheme here for the calculation of tip effects for both upper
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and lower wings, placing a diaphragm at each wing tip and introducing the conditions

that these diaphragms are stream surfaces of the flow. The potential at points on the

top (T) and bottom (B) surfaces of the upper (it) wing is given by

<t>» t{x, y) = - [ quTv(0) dS, (3)
J S

y) = - / ?ubm(0) dS - / q,Tii{c) dS, (4)
J S

and there are analogous formulas for the lower (I) wing. The areas of integration S, on

the wing under consideration, and S' on the other wing, are shown in Fig. 2.

Fig. 2. Diagram showing areas of integration, S of wing considered, and S' of other wing, including

portions of diaphragms.

Now the integrations over portions of S and S' can be simplified immediately by use

of monoplane results. First of all, it is clear that, in all areas unaffected by biplane inter-

action, the wing-surface boundary condition requires that q = Ua/ir where a is the

slope of the wing profile in the x direction. Moreover, Eward has shown, that for mono-

planes—and therefore for biplane regions unaffected by interwing interaction—the inte-

gration over the diaphragm can be replaced by another integration over part of the

wing. For any point forward of mid-chord, i.e., x < a, there can be no biplane interaction,

hence it is convenient to write the relatively simple expressions for these points before

going on to treat the interacting regions.
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x < a : no biplane interaction: Here monoplane results are applicable. For both upper

and lower wings, we have (cf. Ref. 4)

y) = — — [ o-tm(O) dS — ~ f (<rB — ) dS, (5)
7r Jsi Air Jsit,

y) = — — [ <tbiu(0) dS — ~ f (<rT — o-b)m(O) dS. (6)
7T Jsi J S io

x > a: We consider now a point on the wpper wing, top surface. If the point lies forward

of the Mach line from the tip mid-chord (outside of area N in Fig. 3), there is again

Fig. 3. Diagram defining notation used in calculations for the upper wing.

aa'b—N, PP'Ouo—Si , u0OP"—Sn,

UoUo'O—Sj0, Ou*u—Si', Ou*v*—Sjj'.

no biplane interference and Eqs. (5) and (6) apply. For a point in N, however, there

exists an effect of the lower wing, transmitted through the interaction region of the tip

diaphragm. We can write

4>ut(x, y) = -- f w(0) dS - - f XuM(0) dS. (7)
IT Js, T Jsii

Here, and in subsequent formulas, we denote by A(£, 17) the slopes of the tip diaphragms

of upper and lower wings. Thus, for any point on the top of the upper-wing diaphragm,

quT is equal to U\u/tt, and this value has been used in Eq. (7). In regions unaffected by

biplane interaction (e.g. for £ < a), X(£, jj) is the same as for a monoplane, and Evvard's
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results will be used for such regions. In interacting regions X is still unknown, of course;

its determination constitutes the main problem of this investigation. We shall postpone

this to the next section, after writing an analogous formula for points on the bottom

surface of the upper wing.

All points of the bottom surface of the upper wing, for which x > a are affected by

biplane interaction. Let Si and S'n denote the areas of the lower wing and its diaphragm

that affect the point (x, y). The wing-surface boundary condition is

q*B(x, y) + ns
7T OC

[ dS + [ X,n(c) dS \ = — cul
-Js-r JS'u J T

■(.X, y). (8)

This is an explicit formula for quB(x, y), involving only known quantities. It may

be noted that in the region S'n , qlT has been put equal to UXi/tt. Moreover, here X; is

a monoplane value unaffected by biplane interference, and is therefore known from

Eward's work. We now have

<t>uB{x, y) = - ?ubm(0) dS
J Si+SiiSii

(9)

- - [ *iMc) dS - — [ XlM(c) dS,
7r Js'i TT JS'II

where quB in S; is known from Eq. (8) and X, in S'n is known from monoplane theory.

Again the calculation of the diaphragm source distribution, quB in Sn , is postponed to

the next section.

For the lower wing there are formulas exactly analogous to Eqs. (7), (8) and (9),

which will not be written out here.

3. Calculation of diaphragm distributions. The conditions that insure that the tip

diaphragms will be stream surfaces are the conditions of equal slope and equal pressure

on top and bottom. Since, as Evvard has pointed out (Ref. 5), the diaphragms of a

rectangular wing tip are not vortex sheets, equal pressures imply equal values of <f>, the

perturbation velocity potential. We have, then, in region S//,

^ = ^ and 4>r = 4>s • (10)

The first of these equations leads to

(11)

— \u(x, y) = quT{x, y)
7r

= ~quB(x, y) $
7r oc

[ cith{c) dS + f X,/i(c) dS .
-Js'r Js-ii J

The second Eq. (10) states that, in Sn ,

f <Tuth(0) dS — — [ X„M(0) dS
7T J si it J sn

(12)

= - f <Z„bm(0) dS - - [ <rlTfi(c) dS - - [ XiM(c) dS,
JSi + Sn 7T JS'l 7T t' S' II
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where quB in St and Sn is given by Eqs. (8) and (11), respectively. We have now an

integral equation for the diaphragm slope \u : for points x, y in Sn ,

2 [ X.M(0) dS = [ (auB - <ruT)»(fl) dS
■> s,r J Si

[ <7iTf*(c) dS -f- f Xiju(c) dS (13)
Js'r Js'rr

- 1 [ f(°) r T f dS* + f dS* IdS-
T J Si+Sii OC \_J S'l JS'II J

There is an analogous equation for X; , which will not be written out.

Eq. (13) is to be satisfied for all points x, y on the upper-wing diaphragm. For some

areas, there is no biplane interaction, i.e., Si and S'ir vanish, so that the second and

third integrals on the right side of Eq. (13) disappear. It is clear that for these points

the third integral vanishes as well, since and Sn do not contain any points £, v affected

by interaction. Consequently, for non-interacting points x, y, Eq. (13) reduces to Evvard's

integral equation for the diaphragm slope of a monoplane (Ref. 4).

4. Solution of the integral equation. Eq. (13) can be written in the form

[ X„m(0) dS = F1(x, y) (14)
J Sn

for points x, y in Sn , where 2F1(x, y) denotes the entire right-hand side of Eq. (13),

and involves only known functions. We now introduce the new coordinates u, v, measured

along the two families of Mach lines on the wing in question:

U = |s ^ + ^" = f/3 ̂ ~~ ̂'

$ = ill (w + u), V = (u - v),

aft, v) = _2§_ (15)
d(u, v) M2'

/*(«) - K® - £)2 - P\y - v)2 -

= ^ {(Ui - u){v 1 - v) - MY/4} 1/2.

Our integral equation now takes the form

f <16)
for points ux , vx in Sn .

The solution can now be found by means of the following process:
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F{Ui , i>j) dux _ du! n du \(u, v) dv
Jo (u — Mi)1/2 J0 (u — J0 (ui — u)1/2 Ju (f, — v)1/2

f' du, H(u, vt) du .
Jo (u - m,)i/2 Jo 0*i ~ w)1/2' U7)

say,

Differentiating this result with respect to u', we have

d f' F(ut , v:) dui f* A(w', v) dv .
du' J0 («' - Ml)1/2" ~ x JU1 (Vl - v)u2>

We now multiply both sides of Eq. (18) by (v' — vx)-1/2, integrate with respect to

, and exchange order of integration in a manner similar to that just employed. The

result is

r / 3 r' Ffa, v,) du,\ 2 f\f, ^l WI (»' - «,)"■"/ - * I k("' •> * <l9'

which implies (dropping the primes)

(2°»

This solution can be used to calculate the slopes A„ in regions of interaction. This

completes Eq. (7) for </>uT , and, by use of Eq. (II), also completes Eq. (9) for <puB . Eq.

(20) constitutes a generalization of Eward's expression for the tip-diaphragm slope, to

which, in fact, it immediately reduces when u, v lie in a region free of biplane interaction.

5. Calculation of the potential. Although the biplane problem is now completely

solved in principle, the straightforward calculation of 4>, especially for regions of biplane

interference, by substitution in Eqs. (7) and (9), is extremely tedious. Fortunately, as

will now be shown, it is possible to eliminate entirely the integration involving A„ in

these two formulas.

In both Eqs. (7) and (9), the term involving A„ is

<2i)

where now u, , lie in region Sj.

We return to Eq. (13), which holds for points in Su , and write it in the form

where

So (Ml -uf> G(V> = ' v^' (Ul ~ v

ntu \ f"\u(u,v)dv 1 f {(Tub ~ <tut) dv

G(U'Vl) = l (v, - vr* ~ 2 J_„ (v, - ,)-2

J_ /"* dv ± f ,
2u J-u (», - v)l/2 dc * {~U'

(23)
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and
tt ( r r 1

(24)<t>'(ui , vj = — — I [ <TiTfi(c) dS + [
T IJj'j Js-n )

Actually, <p' is the potential contributed at m, , i\ by the lower wing.

The solution of Eq. (22) can be written down immediately (Ref. 6); viz.,

n, s M d f" <t>'(u', v,) du' , ^ s
G(u, »,) - 2 u &ujQ (u _ uy^> = "O- (25)

Since Eq. (22) is correct only for points ux , vx in Sn—i.e. for ux 5S «i—we must restrict

u in Eq. (25) as indicated.

Now for points outside of the interaction region, i.e., for u' ^ M2c2/4vl , the inter-

action potential i>,) is zero. Thus G(u, i>i) is also zero for u < MV/4v, .

We can now consider an integral involving G(u, i>i); i.e.,

c<«.»') = »').

where k ^ u, .

If k ^ Vi also, G(u, vt) can be taken from Eq. (25):

(26)

, Mr du / d r f(tt', v,) du']
' Vl ' K) 2U Jm'cW*,, (Ml - M)1/5 W Jm.c/4,, (« - u')1/2 j

= §-7r —WL-
2U Jiu'c'/i't XUi — K/ L K — U Ml — u J

after some manipulation. Recalling the meaning of G(u, i>i), (Eq. (23)), we can write

Eq. (26) as

f" du f" \u(u, v) dv
J„ («, - u)l/2 i (t/, - v)1/2

= r *>(u>, J^YT- -W| du' (27)
2£/ *'jl/2ca/4vi YWj /C/ [_ K M Mi m _]

.If" / f" (j„s — <r„r) efo 1 f'1 dv d
+ 2 i0 (Ul - W)1/5 \i_u («;, - V)1/2 + [/ J_u (®, - *)1/2 dc0 (M' "T

Since the only restrictions on Eq. (27) are k ^ Ui , and k ^ , it is exactly the result

we need for Eq. (21), in which k = ^ m, .

We are now prepared to write complete expressions for the potential on top and

bottom surfaces of the upper wing, by substitution in Eqs. (7) and (9). Let Sto be the

portion of Sj for which u ^ v, , as indicated in Fig. 3; then

<j>uT{x, y) = f o-uTm(0) dS - f (<ruB — <7ut)h(0) dS
it J si Atr Jsie

»(0)^-4>'(u,v)dS (28)
™ Jsio + sn uC

+ i nu'- " sr^v]du'■
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y) = [ auBn(o) dS - - f ju(0) J- 4>\u, v) cZS
7T Jsr X J Si + Su OC

+ f f {auB - auM0) dS + ± [ m(0) I *'(«, ») dS
Z7T J5/o Z7T JSjo + S/j CC

- J- r vjfc—-YT ~ / —
Z7T Jm'c'Mvi \Hl — Wl/ U>1 — u Ui — U J

(29)

+ $'(x, y).

Formulas (28) and (29) permit the calculation of the potential, and consequently

the pressure distribution, on the biplane. It is seen that, whereas we have succeeded in

eliminating the integrals involving X„ , for the upper wing, we are left with integrals

involving X, , to be taken over certain interaction-free areas. In fact, if interplane inter-

action of a higher order were encountered, such as an area of the lower wing influenced

by interacting regions of the upper wing, it would always be possible to eliminate the

X integral expressing the last stage of tip interaction.

5. Application of results: The wave drag of a finite Busemann biplane at zero lift. The

general results obtained here have been applied to one typical practical case, to date.

r'5~

■ IO

$

-s~

to i /-a va d
Y

Fig. 4. Spanwise distribution of wave drag near the tip of a rectangular supersonic biplane wing at

M = \/2. The distance y is measured from the tip, and the chord is equal to 20.

This is the case of the finite Busemann biplane, having isosceles-triangular profiles, at

zero lift, at a Mach number of y/2. The computations have been carried out on a com-

puting machine, and integrations have been done by planimeter. These are only pre-

liminary results of an investigation that is still in progress.
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These numerical results are shown in Fig. 4, where spanwise distribution of wave

drag is plotted. The average drag coefficient of the biplane has been computed from

Fig. 4 and found to be

_ Total wave d,.g _ „ 823J,/A_ (30)
pQU b

where 8 denotes the leading-edge angle of the profiles, S the area of one wing, and A

the aspect ratio of one wing. It is interesting to compare the wave drag coefficient of a

rectangular wing of double-wedge profile, which is

CD = 452 (31)

For the monoplane, 5 denotes the half-angle of the wedge. As would be expected, the

ratio of biplane to monoplane wave drags diminishes with increasing aspect ratio.

It is not difficult to show that the force coefficients calculated according to this

theory for any Mach number Mi , can be extended to any other value of M by means

of the following similarity rule

Cd(M) = Cd(Mj) (32)

The same correction would apply to the lift coefficient, CL{M). It is to be understood

here that the coefficients CD{M) and CL{M) do not apply to the same biplane as CD(M1)

and but to a new configuration proportioned as in Fig. 1 at the Mach number M.

In particular, the result of the present numerical work can be written

CD = 0.82352/(A/32). (33)
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