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1 Introduction

Understanding the dynamic evolution of interest rates and the yield curve is important for many

diverse tasks, such as pricing long-lived assets and their financial derivatives, managing financial

risk, allocating portfolios, conducting monetary policy, purchasing capital goods, and structuring

fiscal debt. To investigate yield-curve dynamics, researchers have produced a vast literature and

a wide variety of models. However, many of these models have tended to be either theoretically

rigorous but empirically disappointing or empirically appealing but not well grounded in theory.

In this paper, we introduce a hybrid model of the yield curve that displays theoretical consistency

as well as empirical tractability and fit.

Since nominal bonds trade in deep and well-organized markets, the theoretical restrictions that

rule out opportunities for riskless arbitrage across maturities and over time hold a powerful appeal,

and they provide the foundation for a large finance literature on arbitrage-free (AF) models that

started with Vasiček (1977) and Cox, Ingersoll, and Ross (1985). These models specify the risk-

neutral evolution of the underlying yield-curve factors as well as the dynamics of risk premiums.

Following Duffie and Kan (1996), the affine versions of these models are particularly popular

because yields are convenient linear functions of underlying latent factors (state variables that are

unobserved by the econometrician) with parameters, or “factor loadings,” that can be calculated

from a simple system of differential equations.

Unfortunately, the canonical affine AF models can exhibit poor empirical time series perfor-

mance, especially when forecasting future yields (Duffee, 2002). In addition, the estimation of

these models is known to be problematic, in large part because of the existence of numerous

model likelihood maxima that have essentially identical fit to the data but very different impli-

cations for economic behavior (Kim and Orphanides, 2005). These empirical problems appear

to reflect an underlying model over-parameterization, and as a solution, many researchers (e.g.,

Duffee, 2002, and Dai and Singleton, 2002) simply restrict to zero those parameters with small

t -statistics in a first round of estimation. The resulting more parsimonious structure is typically

somewhat easier to estimate and has a more robust economic interpretation (fewer troublesome

likelihood maxima). However, these additional restrictions on model structure are arbitrary from

both a theoretical and a statistical perspective. Furthermore, their arbitrary application, along

with the computational burden of estimation, effectively precludes thorough simulation studies

of the finite-sample properties of the estimators of the canonical affine model, thus, complicating

model validation. In part to overcome such problems, this paper considers the application of a

new, arguably less arbitrary, structure to the affine AF class of models.

Our new AF model structure is based on the workhorse yield-curve representation introduced

by Nelson and Siegel (1987). The Nelson-Siegel model is a flexible curve that provides a remarkably

good fit to the cross section of yields in many countries, and it is very popular among financial

market practitioners and central banks (e.g., Svensson, 1995, Bank for International Settlements,

2005, and Gürkaynak, Sack, and Wright, 2006). Moreover, Diebold and Li (2006) develop a

dynamic version of this model and show that it corresponds exactly to a modern factor model,

with yields that are affine in three latent factors, which have a standard interpretation of level,

slope, and curvature. Such a dynamic Nelson-Siegel (DNS) model is easy to estimate, and Diebold
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and Li (2006) show that it forecasts the yield curve quite well. Unfortunately, despite its good

empirical performance, the DNS model does not impose the desirable theoretical restrictions that

rule out opportunities for riskless arbitrage (e.g., Filipović, 1999, and Diebold, Piazzesi, and

Rudebusch, 2005).

In this paper, we show how to reconcile the Nelson-Siegel model with the absence of arbitrage

by deriving the class of AFDNS models, which are affine AF term structure models that maintain

the Nelson-Siegel factor-loading structure. These models combine the best of both yield-curve

modeling traditions. They maintain the AF theoretical restrictions of the canonical affine mod-

els but can be easily and robustly estimated because the Nelson-Siegel structure helps identify

the latent yield-curve factors. In particular, empirical implementation of the AFDNS models is

facilitated by the fact that zero-coupon bond prices have analytical solutions, which we provide.

After deriving the new class of AFDNS models, we examine their in-sample fit and out-of-

sample forecast performance relative to standard DNS models. For both the DNS and the AFDNS

models, we estimate parsimonious and flexible versions (with independent factors and more richly

parameterized correlated factors, respectively). We find that the flexible versions of both models

are preferred for in-sample fit; however, the parsimonious versions exhibit significantly better out-

of-sample forecast performance. Finally, and most importantly, we find that the parsimonious

AFDNS model outperforms its DNS counterpart in forecasting, which supports the imposition of

the AF restrictions.

We proceed as follows. Section 2 introduces the DNS model and derives the main theoretical

result of the paper, which defines the AFDNS class of models. Section 3 derives the relationship

between the AFDNS class of models and the canonical representation of affine AF models intro-

duced by Dai and Singleton (2000). For the four specific DNS and AFDNS models used in our

empirical analysis, Section 4 describes the estimation method, data, and in-sample fit, while Sec-

tion 5 examines out-of-sample forecast performance. Section 6 concludes, and appendices contain

additional technical details.

2 Nelson-Siegel term structure models

In this section, we review the DNS model and introduce the AFDNS class of arbitrage-free affine

term structure models that maintain the Nelson-Siegel factor loading structure.

2.1 The dynamic Nelson-Siegel model

The original Nelson-Siegel model fits the yield curve with the simple functional form

y(τ) = β0 + β1

(1 − e−λτ

λτ

)
+ β2

(1 − e−λτ

λτ
− e−λτ

)
, (1)

where y(τ) is the zero-coupon yield with τ years to maturity, and β0, β1, β2, and λ are model

parameters.

As noted earlier, this representation is commonly used by financial market practitioners to

fit the yield curve at a point in time. Although for some purposes such a static representation
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appears useful, a dynamic version is required to understand the evolution of the bond market over

time. Therefore, Diebold and Li (2006) reinterpret the β coefficients as time-varying factors Lt,

St, and Ct, so

yt(τ) = Lt + St

(1 − e−λτ

λτ

)
+ Ct

(1 − e−λτ

λτ
− e−λτ

)
. (2)

Given their Nelson-Siegel factor loadings, these factors can be interpreted as level, slope, and

curvature. Diebold and Li assume an autoregressive structure for these three factors, which yields

the DNS model—a fully dynamic Nelson-Siegel specification.

Empirically, the DNS model is very tractable and provides a good fit to the data; however, as

a theoretical matter, it does not require that the dynamic evolution of yields and the yield curve

at any point in time cohere such that arbitrage opportunities are precluded. Indeed, the results

of Filipović (1999) imply that whatever stochastic dynamics are chosen for the DNS factors,

it is impossible to rule out arbitrage at the bond prices implicit in the resulting Nelson-Siegel

yield curve. Hence, the discounted prices of zero-coupon bonds in the DNS model are not semi-

martingale processes under the pricing or Q-measure. The next subsection shows how to remedy

this theoretical weakness.

2.2 The AFDNS model

Our derivation of the AFDNS model starts from the standard continuous-time affine AF structure

(Duffie and Kan, 1996).1 To represent an affine diffusion process, define a filtered probability space

(Ω,F , (Ft), Q), where the filtration (Ft) = {Ft : t ≥ 0} satisfies the usual conditions (Williams,

1997). The state variable Xt is assumed to be a Markov process defined on a set M ⊂ Rn that

solves the following stochastic differential equation (SDE)2

dXt = KQ(t)[θQ(t) −Xt]dt+ Σ(t)D(Xt, t)dW
Q
t , (3)

where WQ is a standard Brownian motion in Rn, the information of which is contained in the

filtration (Ft). The drift terms θQ : [0, T ] → Rn and KQ : [0, T ] → Rn×n are bounded, continuous

functions.3 Similarly, the volatility matrix Σ : [0, T ] → Rn×n is assumed to be a bounded,

continuous function, while D : M × [0, T ] → Rn×n is assumed to have the following diagonal

structure




√
γ1(t) + δ11(t)X

1
t + . . .+ δ1n(t)Xn

t . . . 0
...

. . .
...

0 . . .
√
γn(t) + δn

1 (t)X1
t + . . .+ δn

n(t)Xn
t


 .

1Krippner (2006) derives a special case of the AFDNS model with constant risk premiums.
2The affine property applies to bond prices; therefore, affine models only impose structure on the factor dynamics

under the pricing measure.
3Stationarity of the state variables is ensured if all the eigenvalues of KQ(t) are positive (if complex, the real

component should be positive), see Ahn, Dittmar, and Gallant (2002). However, stationarity is not a necessary
requirement for the process to be well defined.
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To simplify the notation, γ(t) and δ(t) are defined as

γ(t) =




γ1(t)
...

γn(t)


 and δ(t) =




δ11(t) . . . δ1n(t)
...

. . .
...

δn
1 (t) . . . δn

n(t)


 ,

where γ : [0, T ] → Rn and δ : [0, T ] → Rn×n are bounded, continuous functions. Given this

notation, the SDE of the state variables can be written as

dXt = KQ(t)[θQ(t) −Xt]dt+ Σ(t)




√
γ1(t) + δ1(t)Xt . . . 0

...
. . .

...

0 . . .
√
γn(t) + δn(t)Xt


 dW

Q
t ,

where δi(t) denotes the ith row of the δ(t)-matrix. Finally, the instantaneous risk-free rate is

assumed to be an affine function of the state variables

rt = ρ0(t) + ρ1(t)
′Xt,

where ρ0 : [0, T ] → R and ρ1 : [0, T ] → Rn are bounded, continuous functions.

Duffie and Kan (1996) prove that zero-coupon bond prices in this framework are exponential-

affine functions of the state variables

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B(t, T )′Xt + C(t, T )

)
,

where B(t, T ) and C(t, T ) are the solutions to the following system of ordinary differential equa-

tions (ODEs)

dB(t, T )

dt
= ρ1 + (KQ)′B(t, T ) −

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,j(δ
j)′, B(T, T ) = 0 (4)

dC(t, T )

dt
= ρ0 −B(t, T )′KQθQ −

1

2

n∑

j=1

(Σ′B(t, T )B(t, T )′Σ)j,jγ
j , C(T, T ) = 0, (5)

and the possible time-dependence of the parameters is suppressed in the notation. These pricing

functions imply that the zero-coupon yields are given by

y(t, T ) = −
1

T − t
logP (t, T ) = −

B(t, T )′

T − t
Xt −

C(t, T )

T − t
.

Therefore, for a three-factor affine model with Xt = (X1
t , X

2
t , X

3
t ), the closest approximation to

the Nelson-Siegel yield function is a yield function of the form

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2

t +
[1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3

t −
C(t, T )

T − t
,
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so the ODEs for the B(t, T ) functions have these solutions:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) −
1 − e−λ(T−t)

λ
.

As described in the following proposition, there exists a unique class of affine AF models that

satisfy these ODEs.

Proposition 1:

Assume that the instantaneous risk-free rate is defined by

rt = X1
t +X2

t .

In addition, assume that the state variables Xt = (X1
t , X

2
t , X

3
t ) are described by the following

system of SDEs under the risk-neutral Q-measure




dX1
t

dX2
t

dX3
t


 =




0 0 0

0 λ −λ

0 0 λ










θ
Q
1

θ
Q
2

θ
Q
3


−




X1
t

X2
t

X3
t





 dt+ Σ




dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 , λ > 0.

Then, zero-coupon bond prices are given by

P (t, T ) = E
Q
t

[
exp

(
−

∫ T

t

rudu
)]

= exp
(
B1(t, T )X1

t +B2(t, T )X2
t +B3(t, T )X3

t + C(t, T )
)
,

where B1(t, T ), B2(t, T ), B3(t, T ), and C(t, T ) are the unique solutions to the following system of

ODEs: 


dB1(t,T )
dt

dB2(t,T )
dt

dB3(t,T )
dt


 =




1

1

0


+




0 0 0

0 λ 0

0 −λ λ







B1(t, T )

B2(t, T )

B3(t, T )


 (6)

and
dC(t, T )

dt
= −B(t, T )′KQθQ −

1

2

3∑

j=1

(
Σ′B(t, T )B(t, T )′Σ

)
j,j
, (7)

with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0. The unique solution
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for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −
1 − e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) −
1 − e−λ(T−t)

λ
,

and

C(t, T ) = (KQ
θ

Q)2

Z T

t

B
2(s, T )ds + (KQ

θ
Q)3

Z T

t

B
3(s, T )ds +

1

2

3
X

j=1

Z T

t

`

Σ′
B(s, T )B(s, T )′Σ

´

j,j
ds.

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t +

1 − e−λ(T−t)

λ(T − t)
X2

t +
[1 − e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3

t −
C(t, T )

T − t
.

Proof: See Appendix A.

This proposition defines the AFDNS model and has several interesting implications. First,

the three state variables are Gaussian Ornstein-Uhlenbeck processes with a constant volatility

matrix Σ.4 The instantaneous interest rate is the sum of level and slope factors (X1
t and X2

t ),

while the curvature factor (X3
t ) is a truly latent factor in the sense that its sole role is as a

stochastic time-varying mean for the slope factor under the Q-measure. Second, Proposition

1 only imposes structure on the dynamics of the AFDNS model under the Q-measure and is

silent about the dynamics under the P -measure. Still, the observation that curvature is a truly

latent factor generally accords with the empirical literature where it has been difficult to find

sensible interpretations of curvature under the P -measure (Diebold, Rudebusch, and Aruoba,

2006). Similarly, the level factor is a unit-root process under the Q-measure, which accords with

the usual finding that one or more of the interest rate factors are close to being nonstationary

processes under the P -measure.5 Third, Proposition 1 provides insight into the nature of the

parameter λ. Nelson and Siegel (1987) allowed λ to vary at each point in time, but subsequent

dynamic implementations of the Nelson-Siegel model tended to fix λ over the sample (e.g., Diebold

4Proposition 1 can be extended to include jumps in the state variables. As long as the jump arrival intensity is
state-independent, the Nelson-Siegel factor loading structure in the yield function is maintained since only C(t, T )
is affected by the inclusion of such jumps. See Duffie, Pan, and Singleton (2000) for the needed modification of the
ODEs for C(t, T ) in this case.

5With the unit root in the level factor, as maturity increases, −C(t,T )
T−t

→ −∞, which implies that, strictly

speaking, this model is not arbitrage-free. However, if we modify the mean-reversion matrix KQ to

KQ(ε) =

0

@

ε 0 0
0 λ −λ

0 0 λ

1

A

and consider a converging sequence εn > 0, εn ↓ 0, then there is a converging sequence of AF models with a limit
given by the result in Proposition 1. Thus, by choosing ε > 0 sufficiently small, we can obtain an AF model that
is indistinguishable from the AFDNS model in Proposition 1.
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and Li, 2006). In the AFDNS model, λ is indeed a constant, namely, the mean-reversion rate of

the curvature and slope factors as well as the scale by which a deviation of the curvature factor

from its mean affects the mean of the slope factor. Fourth, relative to the Nelson-Siegel model,

the AFDNS model contains an additional maturity-dependent term −C(t,T )
T−t

in the function for

the zero-coupon bond yields. The nature of this “yield-adjustment” term is crucial in assessing

differences between the AFDNS and DNS models, and we now turn to a theoretical analysis of

this term.

2.3 The AFDNS yield-adjustment term

The only parameters in the system of ODEs for the AFDNS B(t, T ) functions are ρ1 and KQ,

i.e., the factor loadings of rt and the mean-reversion structure for the state variables under the

Q-measure. The drift term θQ and the volatility matrix Σ do not appear in the ODEs but in

the yield-adjustment term −C(t,T )
T−t

. Therefore, in the AFDNS model, the choice of the volatility

matrix Σ affects both the P -dynamics and the yield function through the yield-adjustment term.

In contrast, the DNS model is silent about the real-world dynamics of the state variables, so the

choice of P -dynamics is irrelevant for the yield function.

As discussed in the next section, we identify the AFDNS models by fixing the mean levels of

the state variables under the Q-measure at 0, i.e., θQ = 0. This implies that the yield-adjustment

term will have the following form:

−
C(t, T )

T − t
= −

1

2

1

T − t

3∑

j=1

∫ T

t

(
Σ′B(s, T )B(s, T )′Σ

)
j,j
ds.

Given a general volatility matrix

Σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ,

the yield-adjustment term can be derived in analytical form (see Appendix B) as

C(t, T )

T − t
=

1

2

1

T − t

Z T

t

3
X

j=1

`

Σ′B(s, T )B(s, T )′Σ
´

j,j
ds

= A
(T − t)2

6
+ B

h 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

i

+ C
h 1

2λ2
+

1

λ2
e−λ(T−t) −

1

4λ
(T − t)e−2λ(T−t) −

3

4λ2
e−2λ(T−t) −

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

i

+ D
h 1

2λ
(T − t) +

1

λ2
e−λ(T−t) −

1

λ3

1 − e−λ(T−t)

T − t

i

+ E
h 3

λ2
e−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t

i

+ F
h 1

λ2
+

1

λ2
e−λ(T−t) −

1

2λ2
e−2λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t
+

3

4λ3

1 − e−2λ(T−t)

T − t

i

,

where
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• A = σ2
11 + σ2

12 + σ2
13,

• B = σ2
21 + σ2

22 + σ2
23,

• C = σ2
31 + σ2

32 + σ2
33,

• D = σ11σ21 + σ12σ22 + σ13σ23,

• E = σ11σ31 + σ12σ32 + σ13σ33,

• F = σ21σ31 + σ22σ32 + σ23σ33.

This result has two implications. First, the fact that zero-coupon bond yields in the AFDNS

class of models are given by an analytical formula will greatly facilitate empirical implementation

of these models. Second, the nine underlying volatility parameters are not identified. Indeed,

only the six terms A, B, C, D, E, and F can be identified; thus, the maximally flexible AFDNS

specification that can be identified has a triangular volatility matrix given by6

Σ =




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33


 .

In Section 4, we quantify the yield-adjustment term and examine how it affects the empirical

performance of two specific AFDNS models relative to their corresponding DNS models. These

models are introduced next.

2.4 Four specific Dynamic Nelson-Siegel models

In general, the DNS and AFDNS models are silent about the P -dynamics, so there are an infinite

number of possible specifications that could be used to match the data. However, for continuity

with the existing literature, our econometric analysis focuses on two specific versions of the DNS

model that have been estimated in recent studies, and, for consistency, we also examine the two

corresponding versions of the AFDNS model.

In the independent-factor DNS model, all three state variables are assumed to be independent

first-order autoregressions, as in Diebold and Li (2006). Using their notation, the state equation

is given by




Lt − µL

St − µS

Ct − µC


 =




a11 0 0

0 a22 0

0 0 a33







Lt−1 − µL

St−1 − µS

Ct−1 − µC


+




ηt(L)

ηt(S)

ηt(C)


 ,

where the error terms ηt(L), ηt(S), and ηt(C) have a conditional covariance matrix given by

Q =




q211 0 0

0 q222 0

0 0 q233


 .

6The choice of upper or lower triangular is irrelevant for the fit of the model.
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The correlated-factor DNS model has factor P -dynamics described by a first-order vector au-

toregression (VAR(1))




Lt − µL

St − µS

Ct − µC


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







Lt−1 − µL

St−1 − µS

Ct−1 − µC


+




ηt(L)

ηt(S)

ηt(C)


 ,

as in Diebold, Rudebusch, and Aruoba (2006). The innovations ηt(L), ηt(S), and ηt(C) are allowed

to be correlated with a conditional covariance matrix given by Q = qq′, where the Cholesky factor

q of the covariance matrix Q is

q =




q11 0 0

q21 q22 0

q31 q32 q33


 .

In both of these DNS models, the measurement equation takes the form




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λτ1

λτ1

1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN







Lt

St

Ct


+




εt(τ1)

εt(τ2)
...

εt(τN )



,

where the measurement errors εt(τi) are assumed to be i.i.d. white noise.

The corresponding AFDNS models are formulated in continuous time and the relationship

between the real-world dynamics under the P -measure and the risk-neutral dynamics under the

Q-measure is given by the measure change

dW
Q
t = dWP

t + Γtdt,

where Γt represents the risk premium specification. In order to preserve affine dynamics under the

P -measure, we limit our focus to essentially affine risk premium specifications (see Duffee, 2002).

Thus, Γt will take the form

Γt =




γ0
1

γ0
2

γ0
3


+




γ1
11 γ1

12 γ1
13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33







X1
t

X2
t

X3
t


 .

With this specification, the SDE for the state variables under the P -measure,

dXt = KP [θP −Xt]dt+ ΣdWP
t , (8)

remains affine. Due to the flexible specification of Γt, we are free to choose any mean vector θP

and mean-reversion matrix KP under the P -measure and still preserve the required Q-dynamic

structure described in Proposition 1. Therefore, we focus on two AFDNS models that correspond

to the specific two DNS models above.
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In the independent-factor AFDNS model, all three factors are assumed to be independent under

the P -measure




dX1
t

dX2
t

dX3
t


 =




κP
11 0 0

0 κP
22 0

0 0 κP
33










θP
1

θP
2

θP
3


−




X1
t

X2
t

X3
t





 dt+




σ1 0 0

0 σ2 0

0 0 σ3







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

This model is the AF equivalent of our first DNS model.

In the correlated-factor AFDNS model, the three shocks may be correlated, and there may be

full interaction among the factors as they adjust to the steady state




dX1
t

dX2
t

dX3
t


 =




κP
11 κP

12 κP
13

κP
21 κP

22 κP
23

κP
31 κP

32 κP
33










θP
1

θP
2

θP
3


−




X1
t

X2
t

X3
t





 dt+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

This is the most flexible version of the AFDNS models where all parameters are identified.

For both AFDNS models, the measurement equation takes the form




yt(τ1)

yt(τ2)
...

yt(τN )




=




1 1−e−λτ1

λτ1

1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2

1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN







X1
t

X2
t

X3
t


−




C(τ1)
τ1

C(τ2)
τ2

...
C(τN)

τN




+




εt(τ1)

εt(τ2)
...

εt(τN )



,

where, again, the measurement errors εt(τi) are assumed to be i.i.d. white noise.

3 The AFDNS subclass of canonical affine AF models

Before proceeding to an empirical analysis of the various DNS and AFDNS models, we first answer

a key theoretical question: What, precisely, are the restrictions that the AFDNS model imposes on

the canonical representation of three-factor affine AF models—the A0(3) representation (with three

state variables and zero square-root processes) as defined in Dai and Singleton (2000). Denoting

the state variables by Yt, the canonical A0(3) model is given by

rt = δY
0 + (δY

1 )′Yt

dYt = KP
Y [θP

Y − Yt]dt+ ΣY dW
P
t

dYt = K
Q
Y [θQ

Y − Yt]dt+ ΣY dW
Q
t ,

with δY
0 ∈ R, δY

1 , θ
P
Y , θ

Q
Y ∈ R3, and KP

Y ,K
Q
Y ,ΣY ∈ R3×3. If the essentially affine risk premium

specification Γt = γ0
Y + γ1

Y Yt is imposed on the model, the drift terms under the P -measure

(KP
Y , θ

P
Y ) can be chosen independently of the drift terms under the Q-measure (KQ

Y , θ
Q
Y ).

Because the latent state variables may rotate without changing the probability distribution of

bond yields, not all parameters in the above model can be identified. Dai and Singleton (2000)

impose identifying restrictions under the P -measure but not under the Q-measure. Specifically,
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they set the mean θP
Y = 0, the volatility matrix ΣY equal to the identity matrix, and the mean-

reversion matrix KP
Y equal to a triangular matrix.7 Thus, their canonical representation has

P -dynamics given by




dY 1
t

dY 2
t

dY 3
t


 = −




κ
Y,P
11 κ

Y,P
12 κ

Y,P
13

0 κ
Y,P
22 κ

Y,P
23

0 0 κ
Y,P
33







Y 1
t

Y 2
t

Y 3
t


 dt+




1 0 0

0 1 0

0 0 1







dW
1,P
t

dW
2,P
t

dW
3,P
t


 ,

and Q-dynamics given by




dY 1
t

dY 2
t

dY 3
t


 =




κ
Y,Q
11 κ

Y,Q
12 κ

Y,Q
13

κ
Y,Q
21 κ

Y,Q
22 κ

Y,Q
23

κ
Y,Q
31 κ

Y,Q
32 κ

Y,Q
33










θ
Y,Q
1

θ
Y,Q
2

θ
Y,Q
3


−




Y 1
t

Y 2
t

Y 3
t





 dt+




1 0 0

0 1 0

0 0 1







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 .

The instantaneous risk-free rate is given by

rt = δY
0 + δY

1,1Y
1
t + δY

1,2Y
2
t + δY

1,3Y
3
t .

Appealing to mathematical symmetry and the latent nature of the state variables, it seems

that the canonical identifying restrictions could have been imposed on the Q-dynamics instead

of the P -dynamics, namely fixing θQ
Y = 0 and requiring KQ

Y to be triangular. However, from an

economic point of view, these two identifications may not be equivalent, because the yield func-

tion being fit to the observed yields is determined solely by the dynamics under the Q-measure

so imposing restrictions on the Q-measure drift terms could limit the ability of the model to fit

observed yields. The following proposition provides a simple condition under which the two types

of identifying restrictions are indeed equivalent.8

Proposition 2:

Consider an A0(3) model with dynamics given by the canonical representation described in Dai

and Singleton (2000)

dYt = −KP
Y Ytdt+ IdWP

t

dYt = K
Q
Y [θQ

Y − Yt]dt+ IdW
Q
t ,

with the risk-free rate given by rt = δY
0 + (δY

1 )′Yt. If the eigenvalues of the 3 × 3 matrix KQ
Y are

all real, then there exists an equivalent representation of this model with dynamics given by

dZt = KP
Z [θP

Z − Zt]dt+ IdŴP
t

dZt = −KQ
ZZtdt+ IdŴ

Q
t ,

7Without loss of generality, we will take it to be upper triangular in the following.
8“Equivalent” representations generate the same distributions for the short-rate process and bond yields and,

in estimation, have identical fit (Dai and Singleton, 2000).
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where KQ
Z is an upper-triangular 3×3 matrix, and the risk-free rate is given by rt = δZ

0 +(δZ
1 )′Zt.

Proof: See Appendix C.9

Proposition 2 shows that if the eigenvalues of the mean-reversion matrix under the Q-measure

are real, then it does not matter under which measure we impose the identifying restrictions. This

is useful because Q-measure identification is imposed in Proposition 1 for the AFDNS model. The

AFDNS mean-reversion matrix under the Q-measure is




0 0 0

0 λ −λ

0 0 λ


 .

The eigenvalues of this matrix, 0 and λ, are both real numbers; thus, by construction, any canonical

representation equivalent of the AFDNS model must satisfy the requirement in Proposition 2.10

Hence there is no loss of generality when we fix the AFDNS model mean under the Q-measure at

0 and leave the mean under the P -measure, θP , to be estimated.

Proposition 2 also facilitates the identification of the restrictions on the canonical affine repre-

sentation that are required to obtain the class of AFDNS models. Indeed, we can, without loss of

generality, limit our focus to A0(3) models where the identifying restrictions have been imposed

under the Q-measure, namely




dZ1
t

dZ2
t

dZ3
t


 = −




κ
Z,Q
11 κ

Z,Q
12 κ

Z,Q
13

0 κ
Z,Q
22 κ

Z,Q
23

0 0 κ
Z,Q
33







Z1
t

Z2
t

Z3
t


 dt+




1 0 0

0 1 0

0 0 1







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 ,

while the P -dynamics are given by




dZ1
t

dZ2
t

dZ3
t


 =




κ
Z,P
11 κ

Z,P
12 κ

Z,P
13

κ
Z,P
21 κ

Z,P
22 κ

Z,P
23

κ
Z,P
31 κ

Z,P
32 κ

Z,P
33










θ
Z,P
1

θ
Z,P
2

θ
Z,P
3


−




Z1
t

Z2
t

Z3
t





 dt+




1 0 0

0 1 0

0 0 1







dW
1,P
t

dW
2,P
t

dW
3,P
t


 .

The procedure through which the restrictions are identified is based on so-called affine invari-

ant transformations. Appendix C describes such transformations, and Appendix D derives the

restrictions associated with the AFDNS model, which are summarized in Table 1.

Table 1 shows that for the correlated-factor AFDNS model, there are three key parameter

restrictions on the canonical affine model (which itself has a total of 22 free parameters). First,

9We are grateful to Peter Feldhütter for helpful discussions about this proof, which obviously generalizes to the
A0(n) model.

10This follows from the fact that the relationship between the mean-reversion matrix of a model and its trans-
formed equivalent is KZ = AKY A−1, where Y refers to the original model, Z refers to the transformed model, and
A is a nonsingular square matrix defining the transformation (see appendix C for more details). The eigenvalues
of the transformed mean-reversion matrix are given by the solutions to the characteristic equation

|KZ − γI| = |A−1KY A − γA−1A| = |A−1| · |KY − γI| · |A| = |KY − γI| = 0.

Hence KZ will have the same eigenvalues as KY .
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AFDNS Model δZ
0 , δZ

1 κ
Q
Z

κP
Z

θP
Z

No. restrictions

δZ
0 = 0, κ

Z,Q
1,1 = κ

Z,Q
1,2 = κ

Z,Q
1,3 = 0, κP

Z is No
Independent-factor

δZ
1,3 = 0 κ

Z,Q
2,2 = κ

Z,Q
3,3 diagonal restriction

12

κ
Z,Q
1,1 = 0, No No

Correlated-factor δZ
0 = 0

κ
Z,Q
2,2 = κ

Z,Q
3,3 restriction restriction

3

Table 1: AFDNS Model Parameter Restrictions on the Canonical Representation

These are the restrictions on the A0(3) model needed to obtain the independent-factor and
correlated-factor AFDNS specifications.

δZ
0 = 0, so there is no constant in the equation for the instantaneous risk-free rate. There is no

need for this constant because, with the second restriction κ
Z,Q
1,1 = 0, the first factor must be a

unit-root process under the Q-measure, which also implies that this factor can be identified as the

level factor. Finally, κZ,Q
2,2 = κ

Z,Q
3,3 , so the own mean-reversion rates of the second and third factors

under the Q-measure must be identical. The independent-factor AFDNS model maintains these

three parameter restrictions and adds nine others under both the P - and Q-measures. (For both

specifications, there is a further modest restriction described in Appendix D: κZ,Q
2,3 must have the

opposite sign of κZ,Q
2,2 and κZ,Q

3,3 , but its absolute numerical size can vary freely.)

The Nelson-Siegel parameter restrictions on the canonical affine AF model greatly facilitate

estimation.11 They allow a closed-form solution and, as described in the next section, eliminate

in an appealing way the surfeit of troublesome likelihood maxima in estimation.12

4 Estimation of the DNS and AFDNS models

Here we describe estimation methods and results for the DNS and AFDNS models.

4.1 Estimation methods

The Kalman filter is an efficient and consistent estimator for both the DNS and AFDNS models.

For the DNS models, the state equation is

Xt = (I −A)µ+AXt−1 + ηt, ηt ∼ N(0, Q),

where Xt = (Lt, St, Ct), while the measurement equation is given by

yt = BXt + εt.

Following Diebold, Rudebusch, and Aruoba (2006), we start the algorithm at the unconditional

mean and variance of the state variables. This assumes the stationarity of the state variables,

which is ensured by imposing that the eigenvalues of A are smaller than 1.

11Note that in the AFDNS model, the connection between the P -dynamics and the yield function is explicitly tied
to the yield adjustment term through the specification of the volatility matrix, while in the canonical representation

it is blurred by an interplay between the specifications of δZ
1 and K

Q
Z

.
12This contrasts with the common practice, mentioned earlier, of zeroing out an arbitrary set of individual

coefficients.
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For the continuous-time AFDNS models, the conditional mean vector and the conditional

covariance matrix are given by

EP [XT |Ft] = (I − exp(−KP ∆t))µP + exp(−KP ∆t)Xt

V P [XT |Ft] =

∫ ∆t

0

e−KP sΣΣ′e−(KP )′sds,

where ∆t = T − t. By discretizing the continuous dynamics under the P -measure, we obtain the

state equation

Xi = (I − exp(−KP ∆ti))µ
P + exp(−KP ∆ti)Xi−1 + ηt,

where ∆ti = ti − ti−1 is the time between observations. The conditional covariance matrix for the

shock terms is given by

Q =

∫ ∆ti

0

e−KP sΣΣ′e−(KP )′sds.

Stationarity of the system under the P -measure is ensured by restricting the real component of

each eigenvalue of KP to be positive. The Kalman filter for these models is also started at the

unconditional mean and covariance13

X̂0 = µP and Σ̂0 =

∫
∞

0

e−KP sΣΣ′e−(KP )′sds.

Finally, the AFDNS measurement equation is given by

yt = A+BXt + εt.

For both types of models, the error structure is

(
ηt

εt

)
∼ N

[(
0

0

)
,

(
Q 0

0 H

)]
,

where H is a diagonal matrix

H =




σ2(τ1) . . . 0
...

. . .
...

0 . . . σ2(τN )


 .

The linear least-squares optimality of the Kalman filter requires that the transition and measure-

ment errors are orthogonal to the initial state, i.e.,

E[f0η
′

t] = 0, E[f0ε
′

t] = 0.

13In the estimation
R ∞

0
e−KP sΣΣ′e−(KP )′sds is approximated by

R 10
0

e−KP sΣΣ′e−(KP )′sds.
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A Lt−1 St−1 Ct−1 µ

Lt 0.9827 0 0 0.06958
(0.0128) (0.0137)

St 0 0.9778 0 -0.02487
(0.0166) (0.0151)

Ct 0 0 0.9189 -0.01075
(0.0284) (0.00786)

q 1 2 3

1 0.002485 0 0
(0.000153)

2 0 0.003329 0
(0.000194)

3 0 0 0.007471
(0.000396)

Table 2: Parameter Estimates of the Independent-Factor DNS Model.

The left-hand panel contains the estimated A matrix and µ vector. The right-hand panel contains
the estimated q matrix. Estimated standard deviations of the parameter estimates are given
in parentheses. The associated estimated λ is 0.06040 (when yield maturities are measured in
months) with a standard deviation of 0.00100. The maximized log-likelihood value is 16332.94.

A Lt−1 St−1 Ct−1 µ

Lt 0.9874 0.0050 -0.0097 0.0723
(0.0165) (0.0183) (0.0157) (0.0145)

St 0.0066 0.9332 0.0819 -0.0294
(0.0228) (0.0229) (0.0202) (0.0159)

Ct 0.0152 0.0401 0.9011 -0.0120
(0.0526) (0.0418) (0.0377) (0.0126)

q 1 2 3

1 0.002457 0 0
(0.000147)

2 -0.002227 0.002265 0
(0.000255) (0.000110)

3 0.002752 0.000618 0.006554
(0.000706) (0.000610) (0.000441)

Table 3: Parameter Estimates of the Correlated-Factor DNS Model.

The left-hand panel contains the estimated A matrix and µ vector. The right-hand panel contains
the estimated q matrix. Estimated standard deviations of the parameter estimates are given
in parentheses. The associated estimated λ is 0.06248 (when yield maturities are measured in
months) with a standard deviation of 0.00109. The maximum log-likelihood value is 16415.36.

Finally, parameter standard deviations are calculated as

Σ(ψ̂) =
1

T

[ 1

T

T∑

t=1

∂ log lt(ψ̂)

∂ψ

∂ log lt(ψ̂)

∂ψ

′]
−1

,

where ψ̂ denotes the estimated model parameter set.

4.2 DNS model estimation results

In this subsection, we present estimation results for the two versions of the DNS model. These

specifications, along with the two AFDNS specifications described in the next subsection, are esti-

mated using monthly data on U.S. Treasury security yields from January 1987 to December 2002.

The data are end-of-month, unsmoothed Fama-Bliss (1987) zero-coupon yields at the following 16

maturities: 3, 6, 9, 12,18, 24, 36, 48, 60, 84, 96, 108, 120, 180, 240, and 360 months.

The estimates of the DNS models with independent and correlated factors are shown in Tables

2 and 3, respectively. In both models, the level factor is the most persistent factor, while the

curvature factor has the fastest rate of mean-reversion. Interestingly, for the correlated factors

DNS model, the only significant off-diagonal element (the 0.0819) in the estimated A-matrix is

ASt,Ct−1 , which is the key non-zero off-diagonal element required in Proposition 1 for the AFDNS

specification.

Volatility parameters will be most easily compared by using the one-month conditional covari-
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ance matrices for the independent-factor model

QDNS
indep = qq′ =




6.17 × 10−6 0 0

0 1.11 × 10−5 0

0 0 5.58 × 10−5


 (9)

and the correlated-factor model

QDNS
corr = qq′ =




6.03 × 10−6 −5.47× 10−6 6.76 × 10−6

−5.47 × 10−6 1.01 × 10−5 −4.73× 10−6

6.76 × 10−6 −4.73× 10−6 5.09 × 10−5


 . (10)

Across the two models, the variances of each state variable are similar, with the level factor the

least volatile and the curvature factor the most volatile. The covariance estimates obtained in

the correlated-factor DNS model translate into a correlation of -0.701 for innovations to the level

and slope factor, a correlation of 0.385 for innovations to the level and curvature factor, and a

correlation of -0.208 for innovations to the slope and curvature factor.

The two DNS models are nested, so we can test the independent-factor restricted parameter

set θindep. versus the correlated-factor unrestricted parameter set θcorr. with a likelihood ratio test

LR = 2[logL(θcorr) − logL(θindep)] = 164.8 ∼ χ2(q),

where q, the number of parameter restrictions, equals nine. The associated p-value is less than

.0001, so the restrictions imposed in the independent-factor DNS model are not supported by the

data.14 Still, the increased flexibility of the correlated-factor DNS model provides little advantage

in fitting the observed yields.15 Table 4 reports summary statistics for the fitted errors for each

of the four models considered in this study. For the two DNS models, the differences in RMSEs

at any maturity are not large (less than 0.58 basis points), and there is no consistent advantage

for the correlated factors model. Interestingly, both models have difficulty fitting yields beyond

the 10-year maturity, which suggests that a maturity-dependent yield adjustment term, as in the

AFDNS models that we turn to next, could improve fit.

4.3 AFDNS model estimation results

As many have noted, estimation of the canonical affine A0(3) term structure model is very difficult

and time-consuming and effectively prevents the kind of repetitive re-estimation required in a

comprehensive simulation study or out-of-sample forecast exercise, which we pursue with the

AFDNS model in the next section.16 By comparison, the estimation of the AFDNS model is

14This rejection reflects an elevated negative correlation between the innovations to the level and slope factor
and a significant positive correlation through the mean-reversion matrix between changes in the slope factor and
deviations of the curvature factor from its mean.

15The similarity in fit is not too surprising, since there is no direct connection in these DNS models between the
yield function and the assumed P -dynamics of the state variables. Indeed, across the two models, the level, slope,
and curvature factors are very highly correlated.

16For example, Rudebusch, Swanson, and Wu (2006) report being unable to replicate the published estimates
of a no-arbitrage model even though they use the same data and programs that generated the model’s parameter
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DNS DNS AFDNS AFDNS
Maturity

indep.-factor corr.-factor indep.-factor corr.-factor
in months

Mean RMSE Mean RMSE Mean RMSE Mean RMSE
3 -1.64 12.26 -1.84 11.96 -2.85 18.54 -2.47 11.53
6 -0.24 1.09 -0.29 1.34 -1.19 7.12 -0.04 0.75
9 -0.54 7.13 -0.51 6.92 -1.24 3.44 -0.35 6.86
12 4.04 11.19 4.11 10.86 3.58 9.60 3.69 10.11
18 7.22 10.76 7.28 10.42 7.15 10.44 5.49 8.31
24 1.18 5.83 1.19 5.29 1.37 5.94 -1.20 4.37
36 -0.07 1.51 -0.19 2.09 0.31 1.98 -1.10 3.16
48 -0.67 3.92 -0.85 4.03 -0.39 3.72 0.94 4.14
60 -5.33 7.13 -5.51 7.31 -5.27 6.82 -1.99 5.20
84 -1.22 4.25 -1.30 4.25 -1.50 4.29 0.90 3.83
96 1.31 2.10 1.29 2.02 1.02 2.11 1.05 1.83
108 0.03 2.94 0.07 3.11 -0.11 3.02 -3.24 5.28
120 -5.11 8.51 -5.01 8.53 -4.96 8.23 -11.67 14.02
180 24.11 29.44 24.40 29.66 27.86 32.66 3.76 16.50
240 25.61 34.99 26.00 35.33 35.95 42.61 4.20 23.93
360 -29.62 37.61 -29.12 37.18 1.37 22.04 -0.81 23.02

Table 4: Summary Statistics of In-Sample Fit.

The means and the root mean squared errors for 16 different maturities. All numbers are measured
in basis points.

straightforward and robust in large part because the role of each latent factor is not left unidentified

as in the maximally flexible A0(3) model. Even though the factors are latent in the AFDNS model,

with the Nelson-Siegel factor loading structure, they can be clearly identified as level, slope, and

curvature. This identification eliminates the troublesome local maxima reported by Kim and

Orphanides (2005), i.e. maxima with likelihood values very close to the global maximum but with

very different interpretations of the three factors and their dynamics.17

The estimated parameters of the independent-factor AFDNS model are reported in Table 5.

The factor means are close to those of the DNS model. To compare the mean-reversion parameters,

we translate the continuous-time matrix in Table 5 into the one-month conditional mean-reversion

matrix

exp
(
−KP 1

12

)
=




0.994 0 0

0 0.983 0

0 0 0.903


 . (11)

We also convert the volatility matrix into a one-month conditional covariance matrix

QAFDNS
indep =

∫ 1
12

0

e−KP sΣΣ′−(KP )′sds =




2.15 × 10−6 0 0

0 9.97 × 10−6 0

0 0 5.28 × 10−5


 . (12)

These too appear little different from the ones reported for the independent-factor DNS model.

estimates.
17Other strategies to facilitate estimation include adding survey information (Kim and Orphanides, 2005) or

assuming the latent yield-curve factors are observable (Ang, Piazzesi, and Wei, 2006).
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KP KP
·,1 KP

·,2 KP
·,3 µP

KP
1,· 0.06734 0 0 0.07243

(0.0623) (0.0148)
KP

2,· 0 0.2083 0 -0.02825
(0.179) (0.0173)

KP
3,· 0 0 1.230 -0.009266

(0.423) (0.00609)

Σ Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.005095 0 0
(0.000139)

Σ2,· 0 0.01103 0
(0.000580)

Σ3,· 0 0 0.02647
(0.00137)

Table 5: Parameter Estimates of the Independent-Factor AFDNS Model.

The left-hand panel contains the estimatedKP matrix and µ vector. The right-hand panel contains
the estimated Σ matrix. Estimated standard deviations of the parameter estimates are given in
parentheses. The associated estimated λ is 0.5971 with a standard deviation of 0.0115. The
maximum log-likelihood value is 16279.55.

KP KP
·,1 KP

·,2 KP
·,3 µP

KP
1,· 4.729 8.046 -9.730 0.07982

(1.14) (1.19) (1.23) (0.00738)

KP
2,· -0.8584 -0.3617 0.5775 -0.03798

(1.12) (1.96) (2.38) (0.0200)
KP

3,· -32.89 -59.34 72.49 -0.02636
(9.68) (1.01) (1.02) (0.0189)

Σ Σ·,1 Σ·,2 Σ·,3

Σ1,· 0.01542 0 0
(0.000364)

Σ2,· -0.003763 0.01088 0
(0.00480) (0.00174)

Σ3,· -0.1615 -0.05981 0.01457
(0.00658) (0.0102) (0.0430)

Table 6: Parameter Estimates of the Correlated-Factor AFDNS Model.

The left-hand panel contains the estimatedKP matrix and µ vector. The right-hand panel contains
the estimated Σ matrix. Estimated standard deviations of the parameter estimates are given in
parentheses. The associated estimated λ is 0.8219 with a standard deviation of 0.0122. The
maximum log-likelihood value is 16492.00.

Still, although the two independent-factor models are non-nested, they contain the same number

of parameters, and the lower log-likelihood value obtained for the AFDNS model (16279 vs. 16332)

suggests a slightly weaker in-sample performance for that model, which appears consistent with

the RMSEs in Table 4.

Similar fit to the data by the two models is not too surprising because they make identical

assumptions about the P -dynamics, so the only difference between the two models is the inclusion

of the yield-adjustment term in the AFDNS model yield function. For the independent-factor

AFDNS model, this term is given by

−
C(t, T )

T − t
= −

σ2
11

2

1

T − t

Z T

t

B1(s, T )2ds −
σ2
22

2

1

T − t

Z T

t

B2(s, T )2ds −
σ2
33

2

1

T − t

Z T

t

B3(s, T )2ds

= −σ2
11

(T − t)2

6
− σ2

22

h 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

i

− σ2
33

h 1

2λ2
+

1

λ2
e−λ(T−t) −

1

4λ
(T − t)e−2λ(T−t) −

3

4λ2
e−2λ(T−t) −

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

i

.

The estimated yield-adjustment term and its three components associated with the variances of

the three state variables are shown in Figure 1. All three components are negative, regardless of

the size of the volatility parameters. In general, the rather simple functional form of the yield-

adjustment term suggests that the lack of improvement in fit of this model is not too surprising.

Greater flexibility is allowed in the correlated-factor AFDNS model, and the estimated param-

eters of this model are reported in Table 6. Since this model nests the independent-factor version,
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Figure 1: The Yield-Adjustment Term for the Independent-Factor AFDNS Model.

The yield-adjustment term −C(τ)
τ

and its three components.

a standard likelihood ratio test can be performed,

LR = 2[logL(θcorr) − logL(θindep)] = 424.9 ∼ χ2(q),

where q, the number of parameter restrictions, equals nine. The associated p-value is again

minuscule, so the independent factor restrictions are not supported by the data in sample.

The greater flexibility is apparent in the complexity of the yield-adjustment term for this

model:

−
C(t, T )

T − t
= −σ2

11
(T − t)2

6
− (σ2

21 + σ2
22)

h 1

2λ2
−

1

λ3
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T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

i

− (σ2
31 + σ2

32 + σ2
33)

×
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2λ2
+

1
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e−λ(T−t) −

1

4λ
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3
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− σ11σ31
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1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t) −

3

λ3

1 − e−λ(T−t)
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− (σ21σ31 + σ22σ32)
h 1

λ2
+

1

λ2
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1

2λ2
e−2λ(T−t) −

3

λ3

1 − e−λ(T−t)
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+

3
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1 − e−2λ(T−t)
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.

Figure 2 displays this yield-adjustment term and its various components. This term has an in-

teresting hump with a peak in the 15- to 20-year maturity range, which appears to improve the

fit of those long-term yields in particular, but also of yields with fairly short maturities. This
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Figure 2: The Yield-Adjustment Term for the Correlated-Factor AFDNS Model.

The yield adjustment term −C(τ)
τ

and its six components.

added flexibility allows the level factor to become less persistent, as is evident in the estimated

one-month conditional mean-reversion matrix

exp
(
−KP 1

12

)
=




0.915 −0.170 0.124

0.0499 0.992 −0.00222

0.451 0.765 0.0556


 . (13)

It appears that to the extent long-term yields are fit through the yield-adjustment term, the level

factor becomes less persistent because it blends with slope and curvature in an effort to provide

an improved fit for maturities up to nine years.

The one-month conditional covariance matrix is given by

Q
AF DNS
corr =

Z 1
12

0

e
−KP sΣΣ′−(KP )′s

ds =

0

B

B

@

7.44 × 10−6
−6.37 × 10−6

−8.35 × 10−6

−6.37 × 10−6 1.09 × 10−5 2.80 × 10−6

−8.35 × 10−6 2.80 × 10−6 2.04 × 10−4

1

C

C

A

. (14)

The conditional variances in the diagonal are about the same for the level and slope factors as

those obtained in the correlated-factor DNS model, but the conditional variance for curvature is

much larger. In terms of covariances, the negative correlation between the innovations to level

and slope is maintained. For the correlations between shocks to curvature and shocks to level and

slope, the signs have changed relative to the unconstrained correlated-factor DNS model. This

suggests that the off-diagonal elements of Σ are heavily influenced by the required shape of the
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yield-adjustment term rather than the dynamics of the state variables. This interpretation will be

supported by our out-of-sample forecast exercise in the next section.

5 Forecast performance

In this section, we investigate whether the in-sample superiority of the flexible correlated-factor

models carries over to out-of-sample forecast accuracy. We first describe the recursive estimation

and forecasting procedure employed, and then we proceed to the results.

5.1 Construction of out-of-sample forecasts

We construct one-, six-, and twelve-month-ahead forecasts from the four DNS and AFDNS models

for six yields with maturities of 3 months and 1, 3, 5, 10, and 30 years. We use a recursive

procedure. For the first set of forecasts, the model is estimated from January 1987 to December

1996; then, one month of data is added, the models are reestimated, and another set of forecasts is

constructed. The largest estimation sample for the one-month-ahead forecasts ends in November

2002 (72 forecasts in all). For the six- and 12-month horizons, the largest samples end in June 2002

and December 2001 (67 and 61 forecasts), respectively. This recursive estimation strategy is greatly

facilitated for the AF model by the addition of the Nelson-Siegel factor loadings. For the usual

method of estimating the canonical A0(3) model, each additional month requires reexamination

of the zero exclusion restrictions, which is prohibitively time consuming.

For the DNS models, the period-t forecast of the τ -maturity yield h periods ahead is simply

the conditional expectation

ŷDNS
t+h (τ) ≡ EP

t [yt+h(τ)] = EP
t [Lt+h] + EP

t [St+h]
(1 − e−λτ

λτ

)
+ EP

t [Ct+h]
(1 − e−λτ

λτ
− e−λτ

)
.

Given parameter estimates for A and µ from a sample that ends in period t, the discrete-time

state equation for the DNS model can be written

Xt = (I −A)µ+AXt−1 + ηt,

where Xt = (Lt, St, Ct). Recursive iteration (and i.i.d. innovations) imply that the conditional

expectation of the state variables in period t+ h are

EP
t [Xt+h] =

( h−1∑

i=0

Ai
)
(I −A)µ +AhXt,

so it is straightforward to calculate forecasted yields.

For the AFDNS models, the forecast of the τ -maturity yield in period t+h based on information

available at time t is simply the conditional expectation

ŷAFDNS
t+h (τ) ≡ EP

t [yt+h(τ)] = EP
t [X1

t+h]+EP
t [X2

t+h]
(1 − e−λτ

λτ

)
+EP

t [X3
t+h]

(1 − e−λτ

λτ
−e−λτ

)
−
C(τ)

τ
.
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In this case, the requisite conditional expectations are given by

EP
0 [Xt] = (I − exp(−KP t))θP + exp(−KP t)X0,

where Xt = (X1
t , X

2
t , X

3
t ). Thus, with estimates for KP , θP , λ, and Σ along with the optimally

filtered paths of the three factors, it is easy to calculate future factor expected values and yields.

5.2 Evaluation of out-of-sample forecasts

Out-of-sample forecast accuracy has been a key metric to evaluate the adequacy of AF yield-curve

models.18 The forecast performances of the four models are compared using the root mean squared

error (RMSE) of the forecast error εt(τ, h) = ŷt+h(τ) − yt+h(τ), for τ = 3, 12, 36, 60, 120, 360, and

h = 1, 6, 12 (in months). These RMSEs are shown in Table 7. For each of the 18 combinations of

yield maturity and forecast horizon, the most accurate model’s RMSE is underlined. The results

are quite striking. In 14 of the 18 combinations, the most accurate model is the independent-factor

AFDNS model. In particular, the in-sample advantage of the correlated-factor AFDNS model

disappears out of sample. Evidently, the correlated-factor AFDNS model is prone to in-sample

overfitting, due to its complex yield-adjustment term and rich P -dynamics. Furthermore, the cases

in which the independent-factor AFDNS model is not the most accurate all pertain to shorter-

maturity yields. Specifically, it is only for the 3-month yield, that the correlated-factor models

have lower RMSEs. This advantage likely reflects idiosyncratic fluctuations in short-term Treasury

bill yields from institutional factors that are unrelated to yields on longer-maturity Treasuries, as

described by Duffee (1996). The more flexible models appear to have a slight advantage in fitting

these idiosyncratic movements.

In examining forecast performance, we are interested in two broad comparisons. First, how do

the correlated-factor models do against the independent-factor models, and second, how does the

imposition of the AF structure affect forecast performance. Table 8 brings these two questions into

sharper focus by showing the ratios of the forecast RMSEs of various models. The two columns

on the left divide the DNS and AFDNS independent-factor model RMSEs by their respective

correlated-factor model RMSEs. These are almost uniformly below one (outside of the 3-month

yield noted above), which supports the parsimonious versions of these models. These differences

in forecast accuracy are also generally statistically significant. For each maturity and horizon

combination, we use the Diebold-Mariano (1995) test to compare model performance.19 The

asterisks in Table 8 denote significant differences in out-of-sample model performance at the 1,

5, and 10 percent levels. For both the DNS and AFDNS models, the preponderance of evidence

supports the parsimonious models.20

The two columns on the right divide the RMSEs of the AF versions of the independent- and

18Recent analyses of the forecast performance of AF models include Ang and Piazzesi (2003), Hördahl, Tristani,
and Vestin (2005), Mönch (2006), De Pooter, Ravazzolo, and van Dijk (2007).

19We implement this test by regressing the differences between the squared forecast errors for two models on
an intercept and examining the significance of that intercept using standard errors that are corrected for possibly
heteroskedastic and autocorrelated residuals.

20We also examined model accuracy using the generalized Diebold-Mariano test proposed by Christensen et al.
(2007), which can pool observations across all maturities or horizons simultaneously. This test supported our
conclusions from the individual comparisons.
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Forecast horizon
Model One month Six months Twelve months

3-month yield
DNSindep 22.93 96.87 173.39
DNScorr 20.43 87.43 166.91

AFDNSindep 22.84 91.60 164.97
AFDNScorr 20.56 88.67 162.33

1-year yield
DNSindep 29.41 103.25 170.85
DNScorr 27.06 102.71 173.14

AFDNSindep 29.12 98.58 164.01
AFDNScorr 33.89 98.87 165.99

3-year yield
DNSindep 30.64 92.22 135.24
DNScorr 30.59 99.55 145.82

AFDNSindep 30.29 87.23 127.78
AFDNScorr 36.95 91.00 136.44

5-year yield
DNSindep 30.77 87.87 122.09
DNScorr 31.23 94.95 132.40

AFDNSindep 30.13 82.68 113.83
AFDNScorr 32.37 88.46 125.42

10-year yield
DNSindep 28.35 74.71 105.02
DNScorr 29.06 79.48 112.37

AFDNSindep 27.18 67.72 93.36
AFDNScorr 35.08 90.42 124.28

30-year yield
DNSindep 38.42 71.35 96.90
DNScorr 38.73 72.71 99.68

AFDNSindep 30.42 48.82 63.50
AFDNScorr 38.30 71.35 96.86

Table 7: Out-of-Sample Forecast RMSE for Four Models.

For each maturity and horizon, the most accurate model’s RMSE is underlined. All numbers are
measured in basis points.
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Ratios of out-of-sample forecast RMSEs
Forecast horizon DNSindep AFDNSindep AFDNSindep AFDNScorr

(in months) DNScorr AFDNScorr DNSindep DNScorr

3-month yield
1 1.12∗ 1.11∗∗ 1.00 1.01
6 1.11 1.03∗∗ 0.95∗ 1.01
12 1.04 1.02 0.95∗ 0.97

12-month yield
1 1.09∗∗ 0.86∗∗ 0.99 1.25∗∗

6 1.01 1.00 0.95 0.96
12 0.99 0.99 0.96 0.96

36-month yield
1 1.00 0.82∗∗∗ 0.99 1.21∗∗

6 0.93∗∗ 0.96 0.95 0.91
12 0.93∗∗ 0.94 0.94 0.94∗∗

60-month yield
1 0.99 0.93∗ 0.98∗∗ 1.04
6 0.93∗∗∗ 0.93 0.94∗ 0.93∗∗

12 0.92∗∗ 0.91 0.93 0.95∗∗∗

120-month yield
1 0.98∗∗∗ 0.77∗∗∗ 0.96∗∗∗ 1.21∗∗∗

6 0.94∗∗∗ 0.75∗∗∗ 0.91∗∗ 1.14∗∗∗

12 0.93∗∗∗ 0.75∗∗∗ 0.89∗ 1.11∗∗∗

360-month yield
1 0.99 0.79∗ 0.79 0.99
6 0.98∗∗ 0.68∗∗∗ 0.68∗∗∗ 0.98
12 0.97∗∗∗ 0.66∗∗∗ 0.66∗∗∗ 0.97

Table 8: RMSE Ratios for Out-of-Sample Forecast Errors.

The ratios of the RMSEs for two different models are shown for each forecast horizon and yield
maturity. The statistical significance of these forecast comparisons (based on tests of equal forecast
accuracy using quadratic loss) are denoted by ∗ at the 10% level, ∗∗ at the 5% level, and ∗∗∗ at
the 1% level.
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correlated-factor models by their non-AF counterparts. Here the story is more mixed, but for the

independent-factor case, which is arguably the one of interest given the generally poor performance

and overparameterization of the correlated-factor models, the AF version dominates. The bottom

line is that out-of-sample forecast performance is improved by imposing the AF restrictions—

especially at longer horizons and for longer maturities.

6 Concluding Remarks

Asset pricing, portfolio allocation, and risk management are the fundamental tasks in financial

asset markets. For fixed income securities, superior yield-curve modeling translates into superior

pricing, portfolio returns, and risk management. Accordingly, we have focused on two important

and successful yield curve literatures: the Nelson-Siegel empirically based one and the no-arbitrage

theoretically based one. Yield-curve models in both of these traditions are impressive successes,

albeit for very different reasons. Ironically, both approaches are equally impressive failures, and

for the same reasons, swapped. That is, models in the Nelson-Siegel tradition fit and forecast well,

but they lack theoretical rigor insofar as they admit arbitrage possibilities. Conversely, models in

the arbitrage-free tradition are theoretically rigorous insofar as they enforce absence of arbitrage,

but they fit and forecast poorly.

In this paper we have bridged this divide, proposing hybrid Nelson-Siegel-inspired models that

simultaneously enforce absence of arbitrage. We analyzed our models theoretically and empirically,

relating them to the canonical Dai-Singleton representation of three-factor arbitrage-free affine

models and documenting that predictive gains may be achieved by imposing absence of arbitrage,

particularly for moderate to long maturities and forecast horizons.
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Appendix A: Proof of Proposition 1

Start the analysis by limiting the volatility to be constant. Then the system of ODEs for

B(t, T ) is given by
dB(t, T )

dt
= ρ1 + (KQ)′B(t, T ), B(T, T ) = 0.

Because

d

dt

[
e(K

Q)′(T−t)B(t, T )
]

= e(K
Q)′(T−t) dB(t, T )

dt
− (KQ)′(K

Q)′(T−t)B(t, T ),

it follows from the system of ODEs that

∫ T

t

d

ds

[
e(K

Q)′(T−s)B(s, T )
]
ds =

∫ T

t

e(K
Q)′(T−s)ρ1ds

or, equivalently, using the boundary conditions

B(t, T ) = −e−(KQ)′(T−t)

∫ T

t

e(K
Q)′(T−s)ρ1ds.

Now impose the following structure on (KQ)′ and ρ1:

(KQ)′ =




0 0 0

0 λ 0

0 −λ λ


 and ρ1 =




1

1

0


 .

It is then easy to show that
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0
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Inserting this in the ODE, we obtain

B(t, T ) = −

0

B

B

@

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)

1

C

C

A

Z T

t

0

B

B

@

1 0 0

0 eλ(T−s) 0

0 −λ(T − s)eλ(T−s) eλ(T−s)

1

C

C

A

0

B

B

@

1

1

0

1

C

C

A

ds

= −

0

B

B

@

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)

1

C

C

A

Z T

t

0

B

B

@

1

eλ(T−s)

−λ(T − s)eλ(T−s)

1

C

C

A

ds.

Because ∫ T

t

ds = T − t,

and ∫ T

t

eλ(T−s)ds =
[−1

λ
eλ(T−s)

]T
t

= −
1 − eλ(T−t)

λ
,

and
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Z T

t

−λ(T−s)eλ(T−s)
ds =

1

λ

Z 0

λ(T−t)

xe
x
dx =

1

λ
[xe

x]0λ(T−t)−
1

λ

Z 0

λ(T−t)

e
x
dx = −(T−t)eλ(T−t)

−

1 − eλ(T−t)

λ
,

the system of ODEs can be reduced to

B(t, T ) = −

0

B

@

1 0 0

0 e−λ(T−t) 0

0 λ(T − t)e−λ(T−t) e−λ(T−t)

1

C

A

0

B

B

@

T − t

− 1−eλ(T−t)

λ

−(T − t)eλ(T−t) − 1−eλ(T−t)

λ

1

C

C

A

=

0

B

B

@

−(T − t)

− 1−e−λ(T−t)

λ

(T − t)e−λ(T−t) − 1−e−λ(T−t)

λ

1

C

C

A

,

which is identical to the claim in Proposition 1. QED

Appendix B: The AFDNS yield-adjustment term

In the AFDNS models the yield-adjustment term is in general given by

C(t, T )

T − t
=

1

2

1

T − t

Z T

t

3
X

j=1

`

Σ′B(s, T )B(s, T )′Σ
´

j,j
ds

=
1

2

1

T − t

Z T

t

3
X

j=1

2

6

4

0

B

@

σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

1

C

A

0

B

@

B1(t, T )

B2(t, T )

B3(t, T )

1

C

A

“

B1(t, T ) B2(t, T ) B3(t, T )
”

0

B

@

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

1

C

A

3

7

5

j,j

=
A

2

1

T − t

Z T

t

B1(s, T )2ds +
B

2

1

T − t

Z T

t

B2(s, T )2ds +
C

2

1

T − t

Z T

t

B3(s, T )2ds

+ D
1

T − t

Z T

t

B1(s, T )B2(s, T )ds + E
1

T − t

Z T

t

B1(s, T )B3(s, T )ds + F
1

T − t

Z T

t

B2(s, T )B3(s, T )ds,

where

• A = σ2
11 + σ2

12 + σ2
13,

• B = σ2
21 + σ2

22 + σ2
23,

• C = σ2
31 + σ2

32 + σ2
33,

• D = σ11σ21 + σ12σ22 + σ13σ23,

• E = σ11σ31 + σ12σ32 + σ13σ33,

• F = σ21σ31 + σ22σ32 + σ23σ33.

To derive the analytical formula for C(t,T )
T−t

, six integrals need to be solved:

I1 =
A

2

1

T − t

∫ T

t

B1(s, T )2ds =
A

2

1

T − t

∫ T

t

(T − s)2ds =
A

6
(T − t)2.

I2 =
B

2

1

T − t

Z T

t

B
2(s, T )ds =

B

2

1

T − t

Z T

t

h

−

1 − e−λ(T−s)

λ

i2

ds = B
h 1

2λ2
−

1

λ3

1 − e−λ(T−t)

T − t
+

1

4λ3

1 − e−2λ(T−t)

T − t

i

.
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I3 =
C

2

1

T − t

Z T

t

B3(s, T )ds =
C

2

1

T − t

Z T

t

n

(T − s)e−λ(T−s) −
1 − e−λ(T−s)

λ

o2
ds

= C
h 1

2λ2
+

1

λ2
e−λ(T−t) −

1

4λ
(T − t)e−2λ(T−t) −

3

4λ2
e−2λ(T−t) −

2

λ3

1 − e−λ(T−t)

T − t
+

5

8λ3

1 − e−2λ(T−t)

T − t

i

.

I4 =
D

T − t

Z T

t

B1(s, T )B2(s, T )ds =
D

T − t

Z T

t

h

−(T−s)
ih

−
1 − e−λ(T−s)

λ

i

ds = D
h 1

2λ
(T−t)+

1

λ2
e−λ(T−t)−

1

λ3

1 − e−λ(T−t)

T − t

i

.

I5 = E
1

T − t

∫ T

t

B1(s, T )B3(s, T )ds = E
1

T − t

∫ T

t

[
− (T − s)

][
(T − s)e−λ(T−s) −

1 − e−λ(T−s)

λ

]
ds

= E
[ 3

λ2
e−λ(T−t) +

1

2λ
(T − t) +

1

λ
(T − t)e−λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t

]
.

I6 = F
1

T − t

∫ T

t

B2(s, T )B3(s, T )ds = F
1

T − t

∫ T

t

[
−

1 − e−λ(T−s)

λ

][
(T − s)e−λ(T−s) −

1 − e−λ(T−s)

λ

]
ds

= F
[ 1

λ2
+

1

λ2
e−λ(T−t) −

1

2λ2
e−2λ(T−t) −

3

λ3

1 − e−λ(T−t)

T − t
+

3

4λ3

1 − e−2λ(T−t)

T − t

]
.

Combining the six integrals, the analytical formula reported in subsection 2.3 is obtained.

Appendix C: Proof of Proposition 2

Before we can turn to the proof of Proposition 2 and the subsequent derivation of the restric-

tions that need to be imposed on the canonical representation of the A0(3) class of affine models

to arrive at the models equivalent to the AFDNS model, we need to introduce the concept of

so-called affine invariant transformations.

Consider an arbitrary affine diffusion process represented by

dYt = K
Q
Y [θQ

Y − Yt]dt+ ΣY dW
Q
t .

Now consider the affine transformation TY : AYt + η, where A is a nonsingular square matrix of

the same dimension as Yt while η is a vector of constants of the same dimension as Yt. Denote

the transformed process by Xt = AYt + η. By Ito’s lemma it follows that

dXt = AdYt = [AKQ
Y θ

Q
Y −AK

Q
Y Yt]dt+AΣY dW

Q
t = AK

Q
Y A

−1[AθQ
Y −AYt − η + η]dt+AΣY dW

Q
t

= AK
Q
Y A

−1[AθQ
Y + η −Xt]dt+AΣY dW

Q
t = K

Q
X [θQ

X −Xt]dt+ ΣXdW
Q
t .

Thus, Xt is itself an affine diffusion process with the following parameter specification:

K
Q
X = AK

Q
Y A

−1, θ
Q
X = Aθ

Q
Y + η, and ΣX = AΣY .
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A similar result holds for the dynamics under the P -measure.

In terms of the short rate process there exists the following relationship:

rt = δY
0 + (δY

1 )′Yt = δY
0 + (δY

1 )′A−1AYt = δY
0 + (δY

1 )′A−1[AYt + η − η]

= δY
0 − (δY

1 )′A−1η + (δY
1 )′A−1Xt.

Thus, defining δX
0 = δY

0 − (δY
1 )′A−1η and δX

1 = (δY
1 )′A−1, the short rate process is left unchanged

and may be represented in either way

rt = δY
0 + (δY

1 )′Yt = δX
0 + (δX

1 )′Xt.

Because both Yt and Xt are affine latent factor processes that deliver the same distribution for

the short rate process rt, they are equivalent representations of the same fundamental model.

The upshot is that the canonical representation provided by Dai and Singleton (2000) is just

one way of representing this model. There are an infinite number of representations of the same

model that all share the property that the risk-free short rate process and, by consequence, all

bond yields will have the same distribution independent of the choice of representation. Hence TX

is called an affine invariant transformation.

We now proceed to a proof of Proposition 2. Consider the canonical representation of maximal

flexibility under the Q-measure, namely that with identifying restrictions imposed under the P -

measure with θP
Y = 0, ΣY = I, KP

Y upper triangular, and KQ
Y any 3 × 3 matrix:

dYt = −KP
Y Ytdt+ IdWP

t

dYt = K
Q
Y [θQ

Y − Yt]dt+ IdW
Q
t .

By Schur’s decomposition, the KQ
Y -matrix can be written as

K
Q
Y = A′[D +N ]A,

where A is an orthogonal matrix, D is a diagonal matrix containing the eigenvalues of KQ
Y , and

N is an upper-triangular matrix. Although the Schur decomposition is not unique, the argument

below only relies on the existence of such matrices. If the eigenvalues of KQ
Y are real (as assumed

in Proposition 2), then D + N and A are real matrices and, in particular, T = D + N is an

upper-triangular matrix.

Now consider the invariant affine transformation given by TA(Yt) = AYt. Given the transformed

process Xt = AYt, the factor loadings in the risk-free rate are given by

δX
0 = δY

0 , δX
1 = (δY

1 )′A−1 = (δY
1 )′A′,

and the volatility matrix is given by

ΣX = A,

while the P - and Q-dynamics are given by
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K
P
X = AK

P
Y A

−1 = AK
P
Y A

′
, θ

P
X = Aθ

P
Y = 0, K

Q
X = AK

Q
Y A

−1 = AK
Q
Y A

′
, θ

Q
X = Aθ

Q
Y .

However, because KQ
Y = A′TA by the Schur decomposition, it follows that

K
Q
X = AK

Q
Y A

′ = A[A′TA]A′ = T.

Hence we have obtained an upper-triangular mean-reversion matrix under the Q-measure.

The next step in the proof is to transform the volatility matrix ΣX = A into the identity

matrix without affecting any of the drift terms. This can be done through a so-called Brownian

Motion Rotation.21 This consists in defining an affine transformation of the Brownian motion

TO(Wt) = OWt,

where O must be an orthogonal matrix. The orthogonality of O maintains the independence of the

transformed Brownian motions and thereby makes the transformation invariant. In the current

case the rotation is performed with the orthogonal matrix A and the rotated Brownian motion is

given by ŴP
t = AWP

t and ŴQ
t = AW

Q
t . Applied to the Xt-process, it follows that

dXt = −KP
XXtdt+AdWP

t = −KP
XXtdt+A[A′A]dWP

t = −KP
XXtdt+ IdŴP

t ,

dXt = T [θQ
X −Xt]dt+AdW

Q
t = T [θQ

X −Xt]dt+A[A′A]dWQ
t = T [θQ

X −Xt]dt+ IdŴ
Q
t .

The only remaining problem is to eliminate the mean vector under the Q-measure, θQ
X . To that end

apply the invariant affine transformation TA(Xt) = Xt−θ
Q
X . The transformed process Zt = Xt−θ

Q
X

is characterized by the following vectors and matrices:

δZ
0 = δX

0 + (δX
1 )′θQ

X = δY
0 + [AδY

1 ]′AθQ
Y = δY

0 + (δY
1 )′θQ

Y ,

δZ
1 = δX

1 = AδY
1 .

ΣZ = ΣX = I

KP
Z = KP

X = AKP
Y A

′

θP
Z = θP

X − θ
Q
X = −AθQ

Y

K
Q
Z = K

Q
X = T

θ
Q
Z = θ

Q
X − θ

Q
X = 0,

or equivalently,

dZt = AKP
Y A

′[−AθQ
Y − Zt]dt+ IdŴP

t

dZt = −TZtdt+ IdŴ
Q
t ,

21See Appendix A in Dai and Singleton (2000) for details.
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with the instantaneous risk-free rate given by

rt = δY
0 + (δY

1 )′θQ
Y + (δY

1 )′A′Zt.

Hence the dynamics of the Zt-process are identical to the canonical representation with the identi-

fying restrictions imposed under the Q-measure, and since all the transformations that converted

the original Yt-process into the Zt-process have been invariant transformations, Yt and Zt are

equivalent representations of the same underlying model. QED

Appendix D: Parameter restrictions imposed in AFDNS

This appendix derives the connection between the AFDNS models and the canonical represen-

tation of the A0(3) class of affine term structure models. In the canonical representation of the

subset of A0(3) affine term structure models considered here, the dynamics under the Q-measure

are given by




dZ1
t

dZ2
t

dZ3
t


 = −




κ
Z,Q
11 κ

Z,Q
12 κ

Z,Q
13

0 κ
Z,Q
22 κ

Z,Q
23

0 0 κ
Z,Q
33







Z1
t

Z2
t

Z3
t


 dt+




1 0 0

0 1 0

0 0 1







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 ,

and the P -dynamics are given by

0

B

@

dZ1
t

dZ2
t

dZ3
t

1

C

A
=

0

B

@

κ
Z,P
11 κ

Z,P
12 κ

Z,P
13

κ
Z,P
21 κ

Z,P
22 κ

Z,P
23

κ
Z,P
31 κ

Z,P
32 κ

Z,P
33

1

C

A

2

6

4

0

B

@

θ
Z,P
1

θ
Z,P
2

θ
Z,P
3

1

C

A
−

0

B

@

Z1
t

Z2
t

Z3
t

1

C

A

3

7

5
dt +

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

0

B

@

dW
1,P
t

dW
2,P
t

dW
3,P
t

1

C

A
.

Finally, the instantaneous risk-free rate is given by

rt = δZ
0 + δZ

1,1Z
1
t + δZ

1,2Z
2
t + δZ

1,3Z
3
t .

There are 22 parameters in this maximally flexible canonical representation of the A3(0) class

of models. We seek to find the parameter restrictions that need to be imposed on the canonical

representation of this maximally flexible A0(3) model to arrive at a model equivalent to the affine

AFDNS models considered in this paper. We first consider the independent-factor case, and then

we examine correlated factors.

(1) The AFDNS model with independent factors

The independent-factor AFDNS model has P -dynamics given by

0

B

@

dX1
t

dX2
t

dX3
t

1

C

A
=

0

B

@

κ
X,P
11 0 0

0 κ
X,P
22 0

0 0 κ
X,P
33

1

C

A

2

6

4

0

B

@

θ
X,P
1

θ
X,P
2

θ
X,P
3

1

C

A
−

0

B

@

X1
t

X2
t

X3
t

1

C

A

3

7

5
dt +

0

B

@

σX
11 0 0

0 σX
22 0

0 0 σX
33

1

C

A

0

B

@

dW
1,P
t

dW
2,P
t

dW
3,P
t

1

C

A
,
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and the Q-dynamics are given by Proposition 1 as




dX1
t

dX2
t

dX3
t


 = −




0 0 0

0 λ −λ

0 0 λ







X1
t

X2
t

X3
t


 dt+




σX
11 0 0

0 σX
22 0

0 0 σX
33







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 .

Finally, the short rate process is rt = X1
t +X2

t . This model has a total of 10 parameters. Thus,

the task is to determine the 12 parameter restrictions that need to be imposed on the canonical

A0(3) model to arrive at this model.

It is easy to verify that the affine invariant transformation TA(Zt) = AZt + η with

A =




σX
11 0 0

0 σX
22 0

0 0 σX
33


 η =




0

0

0




will convert the canonical representation into the independent-factor AFDNS model. For the

mean-reversion matrices, the relationship between the two representations is

KP
X = AKP

ZA
−1 ⇐⇒ KP

Z = A−1KP
XA

K
Q
X = AK

Q
ZA

−1 ⇐⇒ K
Q
Z = A−1K

Q
XA.

The equivalent mean-reversion matrix under the Q-measure is then given by

K
Q
Z =




1
σX
11

0 0

0 1
σX
22

0

0 0 1
σX
33







0 0 0

0 λ −λ

0 0 λ







σX
11 0 0

0 σX
22 0

0 0 σX
33


 =




0 0 0

0 λ −λ
σX
33

σX
22

0 0 λ


 .

Thus, four restrictions need to be imposed on the upper triangular mean-reversion matrix KQ
Z :

K
Z,Q
11 = 0, K

Z,Q
12 = 0, K

Z,Q
13 = 0 and K

Z,Q
33 = KZ

22.

Furthermore, notice that KZ,Q
23 will always have the opposite sign of KZ,Q

22 and K
Z,Q
33 , but its

absolute size can vary independently of these two parameters. Since KP
X , A, and A−1 are all

diagonal matrices, KP
Z is a diagonal matrix, too. This gives another six restrictions.

Finally, we can study the factor loadings in the affine function for the short rate process. In

all AFDNS models, rt = X1
t +X2

t , which is equivalent to fixing

δX
0 = 0, δX

1 =




1

1

0


 .
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From the relation (δX
1 )′ = (δZ

1 )′A−1 it follows that

(δZ
1 )′ = (δX

1 )′A =
(

1 1 0
)



σX
11 0 0

0 σX
22 0

0 0 σX
33


 =

(
σX

11 σX
22 0

)
.

For the constant term it holds that

δX
0 = δZ

0 − (δZ
1 )′A−1η ⇐⇒ δZ

0 = δX
0 = 0.

Thus, we have obtained two additional parameter restrictions

δZ
0 = 0 and δZ

1,3 = 0.

(2) The AFDNS model with correlated factors

In the correlated-factor AFDNS model, the P -dynamics are given by

0

B
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@

dX1
t

dX2
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dX3
t
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C

C

A
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0

B

B

@

κ
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11 κ

X,P
12 κ

X,P
13

κ
X,P
21 κ

X,P
22 κ

X,P
23

κ
X,P
31 κ

X,P
32 κ

X,P
33

1

C

C

A

2

6

6

4

0

B

B

@

θ
X,P
1

θ
X,P
2

θ
X,P
3

1

C

C

A

−

0

B

B

@

X1
t

X2
t

X3
t

1

C

C

A

3

7

7

5

dt+

0

B

B

@

σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33

1

C

C

A

0

B

B

@

dW
1,P
t

dW
2,P
t

dW
3,P
t

1

C

C

A

,

and the Q-dynamics are given by Proposition 1 as




dX1
t

dX2
t

dX3
t


 = −




0 0 0

0 λ −λ

0 0 λ







X1
t

X2
t

X3
t


 dt+




σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33







dW
1,Q
t

dW
2,Q
t

dW
3,Q
t


 .

This model has a total of 19 parameters. Thus, there are three parameter restrictions to be

determined as compared to the maximally flexible canonical representation of the A0(3) class.

It is easy to verify that the affine invariant transformation TA(Zt) = AZt + η with

A =




σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33


 and η =




0

0

0




will convert the canonical representation into the correlated-factor AFDNS model. For the mean-

reversion matrices the relationship between the two representations is

KP
X = AKP

ZA
−1 ⇐⇒ KP

Z = A−1KP
XA

K
Q
X = AK

Q
ZA

−1 ⇐⇒ K
Q
Z = A−1K

Q
XA.
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The equivalent mean-reversion matrix under the Q-measure is then given by

K
Q
Z =




1
σX
11

−
σX
12

σX
11σX

22
−
(

σX
13

σX
11σX

33
−

σX
12σX

23

σX
11σX

22σX
33

)

0 1
σX
22

−
σX
23

σX
22σX

33

0 0 1
σX
33







0 0 0

0 λ −λ

0 0 λ







σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33




=




0 −λ
σX
12

σX
11

λ
σX
12σX

33−σX
22σX

13

σX
11σX

22

0 λ −λ
(σX

23)2

σX
22σX

33

0 0 λ


 .

Thus, two restrictions need to be imposed on the upper triangular mean-reversion matrix KQ
Z :

K
Z,Q
11 = 0, K

Z,Q
33 = KZ

22.

Furthermore, notice that KZ,Q
23 will always have the opposite sign of KZ,Q

22 and K
Z,Q
33 , but its

absolute size can vary independently of the two other parameters.

Next we study the factor loadings in the affine function for the short rate process. In the

AFDNS models, rt = X1
t +X2

t , which is equivalent to fixing

δX
0 = 0, δX

1 =




1

1

0


 .

From the relation (δX
1 )′ = (δZ

1 )′A−1, it follows that

(δZ
1 )′ = (δX

1 )′A =
(

1 1 0
)



σX
11 σX

12 σX
13

0 σX
22 σX

23

0 0 σX
33


 =

(
σX

11 σX
21 + σX

22 σX
13 + σX

23

)
.

This shows that there are no restrictions on δZ
1 . For the constant term, we have

δX
0 = δZ

0 − (δZ
1 )′A−1η ⇐⇒ δZ

0 = δX
0 = 0.

Thus, we have obtained one additional parameter restriction,

δZ
0 = 0.

Finally, for the mean-reversion matrix under the P -measure, we have

KP
X = AKP

ZA
−1 ⇐⇒ KP

Z = A−1KP
XA.

Since KP
X is a free 3× 3 matrix, KP

Z is also a free 3× 3 matrix. Thus, no restrictions are imposed

on the P -dynamics in the equivalent canonical representation of this model.
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