THE AFFINE STRUCTURES ON THE REAL TWO-TORUS. I

BY T. NAGANO¹ AND K. YAGI Communicated by S. S. Chern, April 17, 1973

We wish to complete the study of the affine structures on the real affine 2-tori T^2 , following N. H. Kuiper [2], J. P. Benzecri [1] and others. The category of the affine manifolds is defined, as usual, by the manifolds equipped with maximal atlas whose coordinate transformations are affine transformations $y^i = \sum_i a_i^i x^j + b^i$, a_i^i , $b^i \in R$, in the cartesian space R^n , and by the maps which are expressed locally with affine transformations in terms of the affine charts.

Our main result asserts that the affine structures on T^2 are completely determined by the holonomy groups, in which, however, the concept of the holonomy group requires a slight modification as follows.

Given an affine manifold M, its universal covering manifold M^{\sim} with the induced affine structure is immersed equidimensionally into R^n by an affine map d. The map d gives rise to a homomorphism $\eta:\pi_1(M) \to \eta$ $A(\mathbb{R}^n)$ of the fundamental group into the affine group $A(\mathbb{R}^n)$ in such a way that d is $\pi_1(M)$ -equivariant with respect to the action of $\pi_1(M)$ on R^n through η . The image of η is called the holonomy group H of M, which is unique up to an inner automorphism of $A(\mathbb{R}^n)$. Here A(M), in general, denotes the affine automorphism group of the affine manifold M. When the image dM^{\sim} is not simply connected, we switch to its universal covering $(dM^{\sim})^{\sim}$ from R^{n} ; that is, we construct an affine immersion: $d^*: M^{\sim} \to (dM^{\sim})^{\sim}$ which covers d and a homomorphism $\eta^*: \pi_1 M \to \pi_1 M$ $A((dM^{\sim})^{\sim})$ accordingly. Now the modified holonomy group H* of M is by definition the image $\eta^*(\pi_1 M)$. When dM^{\sim} is simply connected, we simply put $H^* = H$. At any rate H^* can be regarded as a subgroup of the universal covering group $A(R^2)^{\sim}$ of $A(R^2)$.

THEOREM 1. Two affine structures on T^2 are isomorphic if and only if the modified holonomy groups are conjugate in $A(R^2)^{\sim}$.

The difficulty in the proof lies in establishing that d is a covering map onto dM^{\sim} . The difficulty may be illustrated by the fact that a surjective immersion of R^2 onto itself is not always a diffeomorphism. In any case, that d is a covering implies that T^2 is affine isomorphic with $(dM^{\sim})^{\sim}/H^*$. In order to describe the classification of H^* it is convenient to state the following theorem.

AMS(MOS) subject classifications (1970). Primary 53C05, 57D15.

¹ Partially supported by NSF GP-29662.

THEOREM 2. For any affine torus T^2 , the affine group $A(T^2)$ admits nonempty open orbits.

In the transitive case, H^* is characterized as a lattice subgroup $\cong Z^2$ of a maximal connected abelian subgroup $G^* \cong R^2$ of $A(R^2)^{\sim}$. The projection $G = \pi(G^*)$ of G^* in $A(R^2)$ is listed below. Since G^* acts on the affine plane R^2 almost effectively, G^* has the induced affine structure, and so G^*/H^* becomes an affine torus naturally. In the intransitive case, the situation is more complicated; the affine 2-torus T^2 is then partitioned into several, say n, isomorphic open cylinders and their boundaries (which are closed geodesics in one and the same homotopy class α in $\pi_1(T^2)$; those cylinders together constitute the open orbit of A(T²)). To be more precise, T^2 has a cylinder $R \times S^1$ as an affine (regular) covering space which admits the affine transformations $\beta(k):(x, y) \rightarrow \beta(k):(x, y)$ $(x + k, y), k \in \mathbb{Z}$, and the covering group is generated by $\beta(n)$. H* is contained in a 2-dimensional abelian subgroup G^* of $A(R^2)^{\sim}$ which is saturated (viz. $G^* = \pi^{-1}\pi(G^*)$) with respect to the projection $\pi: A(R^2)^{\sim} \to C$ $A(R^2)$ and whose image under π has the identity component G of type (I-1) or (I-2) in the list below. In particular $\pi(G^*)$ is a linear transformation group having no translation part. $\pi(G)$ is generated by G and the reflection, -1, with respect to the fixed point of G. G* is isomorphic with Ker $\pi \times \pi(G^*) \cong Z \times G$. Now H^* is generated by two members α^*, β^* such that we have $\alpha^* = (0, \alpha)$ and $\beta^* = \beta(n) = (n, \beta)$ in the above correspondence, and that α is expanding (viz. the eigenvalues of the linear map α are greater than one and this is a characterization of H^*).

A question yet to be answered would be: What is the whole picture of all the affine structure of T^2 ? We intend to answer this question in a forthcoming paper.

Finally we list the conjugate classes of the maximal abelian connected subgroups G of $A(R^2)$, writing $\begin{pmatrix} a & b & p \\ c & d & q \end{pmatrix}$ for the affine transformation $(x, y) \rightarrow (ax + by + p, cx + dy + q)$. G consists of

$(I-1): \begin{pmatrix} a & b & 0 \\ 0 & a & 0 \end{pmatrix},$	(III-1): $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	b 1	$\binom{p}{b}$,
$(\text{I-2}): \begin{pmatrix} a & 0 & 0 \\ 0 & d & 0 \end{pmatrix},$	(III-2): $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0 1	$\begin{pmatrix} p \\ q \end{pmatrix}$,
$(I-3): \begin{pmatrix} u & v & 0 \\ -v & u & 0 \end{pmatrix},$	(III-3): $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	b 1	$\begin{pmatrix} p\\ 0 \end{pmatrix}$,
(II): $\begin{pmatrix} 1 & 0 & p \\ 0 & d & 0 \end{pmatrix}$,			

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

where a > 0, d > 0, $(u, v) \neq (0, 0)$ and the others are arbitrary real numbers.

References

1. J. P. Benzecri, Variétés localement affines, Séminaire Ehresmann, May 1959.

2. N. H. Kuiper, *Sur les surfaces localement affines. Géométrie différentielle*, Colloq. Internat. Centre National de la Recherche Scientifique, Strasbourg; Centre National de la Recherche Scientifique, Paris, 1953, pp. 79–87. MR **15**, 648.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY, OSAKA, JAPAN