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g CIRAD, INRAE, Université de Montpellier, ASTRE, 34398 Montpellier, France 
h Centre for Emerging, Endemic and Exotic Diseases, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, United 
Kingdom 
i Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom 
j School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand   

A R T I C L E  I N F O   

Keywords: 
Forecast 
Wild boar 
Swine 
Ensemble model 
Spatio-temporal epidemiological model 
Control measures 

A B S T R A C T   

Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, 
such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, mul-
tiple modelling approaches can be used during an epidemic to support effective decision making in a timely 
manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to 
fostering technical dialogue between modellers. In this paper, we present the results of the first modelling 
challenge in animal health – the ASF Challenge – which focused on a synthetic epidemic of African swine fever 
(ASF) on an island. The modelling approaches proposed by five independent international teams were compared. 
We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic 
pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their 
qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the 
challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host 
species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions out-
performed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the 
interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal 
diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. 
Finally, we discuss the lessons learnt from model comparison to guide decision making.   

1. Introduction 

Mathematical epidemiological models are key decision support sys-
tems for policy and decision making in public health, as recently 

illustrated by the SARS-CoV-2 pandemic (McCabe and Donnelly, 2021; 
James et al., 2021), but also in animal health, with key examples on 
regulated diseases such as foot-and-mouth disease (Ferguson et al., 
2001; Kao, 2002; Keeling et al., 2001; Probert et al., 2016), avian 
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influenza (Andronico et al., 2019; Benincà et al., 2020; Stegeman et al., 
2010), African swine fever (ASF; Hayes et al., 2021; Lange and Thulke, 
2017; Yoo et al., 2021), as well as on endemic diseases (Ezanno et al., 
2020). Solid epidemiological knowledge and predictive modelling tools 
are required to fulfil challenging objectives, including: understanding 
epidemic drivers, forecasting epidemics and prioritising control mea-
sures. However, disentangling which modelling approaches best support 
decision making is a sensitive task. Favouring a first-choice approach, 
without fully assessing the behaviour of the model and its predictive 
ability is a common pitfall (Kao, 2002). In addition, models that fit re-
ported epidemic data well potentially fail at adapting to the wide range 
of possible intervention scenarios, while models capable of comparing 
various control strategies often are too complex for their many param-
eters to be estimated accurately and precisely. Moreover, when model-
ling during an epidemic, data availability may be limited, especially 
early in the epidemic. Therefore, there is a crucial need to fill knowledge 
gaps in our understanding of the pros and cons of different approaches 
under various outbreak and data availability scenarios. 

Modelling challenges can help to address such issues by providing a 
controlled and standardised environment, as has been highlighted in 
public health where such challenges have been organised for seasonal 
flu (Viboud and Vespignani, 2019), Ebola (Viboud et al., 2018) and 
vector-borne diseases (Del Valle et al., 2018; Johansson et al., 2019). 
These competitions were organised for specific infectious diseases. They 
aimed to improve the ability of the scientific community to make judi-
cious use of models for forecasting epidemics. The basic idea behind 
such challenges is to go beyond traditional competing settings. They are 
avenues to open the door to international collaborations, or even 
cooperation, by making the best out of incomplete data and knowledge 
on the transmission dynamics and highlighting other remaining un-
certainties and priorities. In addition, multi-model analyses allow the 
exploration of the performance of ensemble models. Given that the 
predictions of individual models generally differ, basing a management 
decision on the results of a single model is risky and may not be the most 
robust approach (Probert et al., 2016). Considering all models together 
in ensemble models can lead to more robust predictions, thereby 
reducing the risk taken by decision makers, so long as a sufficient 
number of models are included (Webb et al., 2017). This property is 
known as “collective intelligence”. Examples of successful multi-model 
analyses include: forecasting seasonal flu dynamics in the USA (Reich 
et al., 2019); simulating Ebola outbreaks resembling those of West Africa 
(Viboud et al., 2018); guiding decision-making for foot-and-mouth dis-
ease control (Probert et al., 2016); and also very different frameworks 
such as weather forecasting (Leutbecher and Palmer, 2008), protein 3D 
structure prediction (Jamroz et al., 2016), and gene regulatory network 
reconstruction (Marbach et al., 2012). 

In epidemiology, such modelling challenges have so far only 
addressed public health problems. However, beyond generic model 
structures and inference methods shared within the epidemiological 
modelling framework irrespective of the application, infectious diseases 
involving animals raise specific issues. An important issue is that several 
host species may be involved, and these hosts may exhibit specific 
mobility patterns as well as heterogeneous spatial distributions. In 
addition, control measures used to prevent the spread of animal diseases 
(e.g., fencing, test-and-culling, preventive culling) largely differ from 
those used in public health, and might need specific modelling ap-
proaches to be accounted for, as demonstrated in the comparison made 
between different models developed to assess intervention to control 
foot-and-mouth disease (Probert et al., 2016; Webb et al., 2017). Such 
key features for animal diseases were, by definition, not considered in 
previous modelling challenges, highlighting the need for specific chal-
lenges dedicated to animal health. 

The current African swine fever (ASF) pandemic (2007 – today) 
provides a perfect context to develop the first modelling challenge in 
animal health. ASF is an emerging animal disease that spreads in Europe 
and Asia at the interface between domestic pigs and their various 

wildlife counterparts (Sánchez-Cordón et al., 2019). Due to the high 
mortality rate and the drastic control measures that have to be imple-
mented, ASF and its control have a large global impact on animal health 
and welfare, farmer livelihoods, food security and the economy of the 
livestock sector (Dixon et al., 2020). ASF also threatens biodiversity of 
wild suids in certain regions of the world (Luskin et al., 2021). The virus 
spreads internationally because of human and animal mobility, making 
ASF a major threat for most countries with a swine industry (Vergne 
et al., 2017). 

To enhance the ability of modellers to advise policy makers in a 
timely manner and promote international collaboration, we have 
organised the first modelling challenge in animal health (ASF Chal-
lenge), using synthetic data from an ASF epidemic simulated at the 
interface between domestic pigs and wild boar in an industrial farming 
context similar to western Europe (Picault et al., 2022). The five teams 
that succeeded in completing the competition were asked to develop a 
model to fit the synthetic data at three different stages of the epidemic, 
to predict the spatio-temporal development of the epidemic and to assess 
the effectiveness of a limited number of management strategies. The 
approaches developed by four of the five teams are described in dedi-
cated papers of this special issue (Muñoz et al., 2022; Beaunée et al., 
2022; Dankwa et al., 2022; Han and Vignes, 2022). 

In this paper, we compare the modelling approaches proposed by the 
five independent international teams. We assess their ability to predict 
the temporal and spatial epidemic spread and to rank the proposed 
alternative control strategies. From these models, we built different 
ensemble models (for temporal and spatial predictions), whose perfor-
mance is compared to each team’s model. Finally, we discuss the lessons 
learnt from this model comparison, to guide decision making and 
improve our preparedness to face real ASF epidemics. 

2. Methods 

2.1. Brief overview of the ASF Challenge 

The ASF Challenge was launched on 27 August 2020 and lasted until 
13 January 2021. A new mechanistic stochastic metapopulation and 
multi-host spatial model of ASF transmission (named model M0 here-
after) was used to generate synthetic data mimicking an ASF-like 
epidemic detected at the interface between pig farms and wild boar in 
an isolated territory (an island) representative of a south-western Eu-
ropean context with regards to livestock and wildlife interactions (Pic-
ault et al., 2022). Land use, size and location of farms, trade movement 
between farms, as well as wild boar hunting bags per administrative unit 
(the best available data related to actual wild boar densities) were either 
derived from real French data in two adjacent administrative regions 
(Occitanie and Auvergne-Rhônes-Alpes), or simulated (details available 
in Picault et al., 2022). These were used as input data in model M0 to 
produce a single synthetic epidemic, and were also provided to the 
modelling teams. The ASF-like epidemic was chosen on the basis of the 
following selection criteria (none of which were communicated to 
participating teams). The selected epidemic had the characteristics that 
data collection started after a first outbreak had been reported in a do-
mestic pig farm, in the vicinity of a forest area and less than 200 days 
after the introduction of the virus in wild boar. Such a situation was 
assumed to be both realistic and to lead to a (at least partially) 
manageable epidemic. A further selection criteria was that more than 
250 wild boar were to be infected (but not detected) when the disease 
was first reported so that the epidemic did not spontaneously fade-out. 
Thus, the observed epidemic had to last for more than 100 days, with 
a progressive diffusion through a forest area with a high density of wild 
boar and an apparently successful control of the disease (i.e., decrease in 
the number of detected cases) by the end of the ASF Challenge. ASF 
incidence data (detected cases) for both pig farms and wild boar were 
provided to the modelling teams while the epidemic developed, dividing 
the challenge into three phases, which started 50, 80 and 110 days after 
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the first detection, respectively. Detection of cases was not perfect, its 
sensitivity varying between host populations and over time (Picault 
et al., 2022). 

At the start of the challenge, three presentations were made: (1) to 
give information on ASF, the concerned area, and ASF control; (2) to 
describe the provided data; and (3) to outline the challenge rules 
(SI1–3). In addition to this initial information session, teams could ask 
questions on a shared platform (https://app.slack.com), and of course 
had access to published literature via their own initiative. At the 
beginning of each phase, the ASF Challenge teams were provided with 
identical surveillance outputs and an identical situation report. The 
objectives for challenge teams were to model the dynamics of the 
selected synthetic epidemic assuming a set of control strategies, predict 
the expansion of the epidemic and prioritise a set of defined alternative 
interventions. This is described in more detail in Picault et al., 2022. 

2.2. Qualitative and quantitative comparison of teams’ approaches and 
predictions 

First, we qualitatively compared the modelling approaches proposed 
by each team. This comparison was helpful for highlighting the di-
versity, and similarity, of approaches used to predict ASF virus spread 
under various control scenarios. As teams were free to choose their own 
approach and the format in which they provided their feedback to the 
challenge organisers, this step was also useful for characterising teams’ 
model outputs and identifying what was comparable between them. At 
the end of the challenge, all teams were asked to describe their models in 
detail using a common template, and to make a video presenting their 
modelling assumptions to other teams and to the organisers. Hereafter, 
we describe how teams modelled transmission within each host species, 
the epidemiological unit chosen for each species, the way they coped 
with the interface between wild boar populations and pig farms and its 
consequence on ASF virus transmission at large scale, and finally the 
spatial units chosen. We also describe the format chosen by teams to 
provide us feedback. 

Second, we compared the performance of team models to predict the 
synthetic temporal spread of ASF virus, over the different challenge 
phases. More specifically, we assessed how close their predictions were 
to the selected synthetic data produced by model M0 when all the as-
sumptions made for the “observed” period were fixed and maintained 
throughout the prediction period (e.g., no alternative or additional 
control measures). We relied on predictions from each repetition r of 
team model k of the cumulative number of detected pig farm outbreaks, 
PFk(t,r), and the cumulative number of detected wild boar cases, WBk(t, 
r) as key outputs. For each of these two variables, we compared the 
median provided by each team and the 80% credibility intervals (i.e., 
10th to 90th percentiles) when available, to the predictions of model 
M0. 

Third, we compared spatial predictions arising from the models 
produced by the challenge teams. Based on their outcomes, we sum-
marised spatial predictions for detected outbreaks in pig farms. We 
calculated the probability of detecting ASF at a given farm as the pro-
portion of stochastic repetitions in which it was the case. To quantita-
tively compare predictions, we built, for each team’s model k, a 
detection index, Dk, calculated as the proportion of pig farms (among a 
total of NPF farms) predicted to be detected as infected with a probability 
pk

i higher than a cut-off value, c, given that they were truly detected as 
infected (i.e., farm i belong to D, the ensemble of detected infected 
farms) in the selected synthetic trajectory of model M0 (Eq. (1)). For 
team k, the probability pk

i of ASF being detected on farm i was calculated 
as the number of repetitions in which this was the case over the total 
number of repetitions performed by team k. This helped identify which 
team models were able to predict the location of detected infected farms 
with high accuracy. Considering the stochasticity of infection events and 
the radius used in the definition of the surveillance zone (a 15-km-radius 

area with an elevated probability of detection), we also allowed for a 
tolerance in location predictions to assess the abilities of models to 
predict spatial hotspots or risk areas. Hence, predictions of detected ASF 
infections on pig farms were classified as correct if those farms were 
located within 15 km from a farm that was detected as infected in model 
M0. For wild boar, team k predicted the probability of detecting infected 
spatial unit s, pk

s , calculated as the number of repetitions in which the 
spatial unit s was detected as infected over the total number of repeti-
tions performed by team k. Since various spatial scales (i.e., tile sizes) 
were used by teams to model infection dynamics in wild boar, spatial 
predictions of these dynamics were compared visually. 

Dk =
∑i=NPF

i=1

(
pk

i ≥ c&i ∈ D
)
/

NPF (1) 

Fourth, we built ensemble models, separately for each combination 
of (1) temporal or spatial dynamics, and (2) pig farms or wild boar hosts. 
For temporal forecasts, we built the following two ensemble models for 
detecting ASF (1) on pig farms, and (2) among wild boar:  

• the mean of the expected values predicted by each team at each time 
t, i.e., 

∑
k∈T (PFk(t) )/NT and 

∑
k∈T (WBk(t) )/NT , with Xk(t) =

Xk(t, r),X ∈ {PF,WB} and NT the number of teams having produced 
the used output;  

• the worst-case predictions at each time t, i.e., the highest number of 
detected cases among the expected values predicted by teams: 
max(PFk(t) ) and max(WBk(t) ). 

For spatial predictions, we first recalculated, per team, the prob-
ability to detect ASF among wild boar in a given infected spatial unit, 
utilising the spatial unit of model M0 (squares of 25 km2) to ease 
comparisons with the selected synthetic data. For teams that used a 
larger spatial unit, we assumed that the detection probability was 
uniform across the whole unit, thus we attributed the same value to 
all sub-units with centroids contained within the larger unit. For 
teams that used a smaller spatial unit, we assumed the tile was 
detected as soon as part of it was. We then built the four following 
ensemble models:  

• the mean of teams’ predicted expected values for the probability of 
detecting ASF on pig farm i, i.e., 

∑
k∈T pk

i /NT and, for wild boar, of 
detecting ASF within spatial unit s, i.e., 

∑
k∈T pk

s /NT ;  
• the worst-case predictions at each time t, i.e., the highest predicted 

probability of detecting ASF: max
(
pk

i
)

and max
(
pk

s
)
;  

• the weighted average, where the weight wk for team k equals the 
number of repetitions performed by team k: 

∑
k∈T pk

i wk/NT and 
∑

k∈T pk
s wk/NT ;  

• the threshold-average, defined as the mean of teams’ prediction 
unless one or more teams predicted a probability higher than a 
threshold c, in which case the highest of these probabilities was used: 

max
(

max
(
pk

x
⃒
⃒pk

x ≥ c
)

k∈T
,
∑

k∈T pk
x/NT

)
, x ∈ {i, s}. Threshold- 

average ensemble models are hybrid models that aim to share the 
properties of average and worst-case ensemble models. Three values 
were used for the probability threshold c: 0.5, 0.7, and 0.9, with 0.9 
corresponding to the most precise, but least sensitive detection 
threshold, and 0.5 being the least precise, but the most sensitive 
detection threshold. 

Finally, we compared team predictions for the effectiveness of the 
various control measures assessed in addition to regulated measures. In 
phase 1, teams were asked to assess the effectiveness of implementing 
fences around the forest near the first detected case, combined (or not) 
with intensive hunting of wild boar. In phase 2, teams were asked to 
assess the effectiveness of five alternative measures: (1) depopulating 
pig farms located less than 3 km from a known infected pig farm (this 
area was a protection zone); (2) depopulating pig farms known to have 
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had contact with an infected pig farm within the three weeks prior to 
detection; (3) depopulating pig farms located less than 3 km away from 
a known infected wild boar carcass; (4) extending the surveillance zone 
radius from 10 km to 15 km; and (5) extending the radius of the area of 
active search around found wild boar infected carcasses from 1 km to 
2 km (see Picault et al., 2022). To assess the effectiveness of each 
measure, we calculated the differences between the predicted results 
with and without the implementation of each measure within the same 
model, and then compared the absolute and relative differences ob-
tained by the teams that tested the measures. 

2.3. Feedback from the participants 

Following completion of the ASF Challenge, a series of internal 
workshops were organised to collectively gain knowledge on the ap-
proaches used by each team and most importantly to obtain feedback 
from the teams on several topics. An online feedback questionnaire was 
administered to the participants to investigate several questions related 
to the relevance of the data and documents provided before and during 
the challenge, the feasibility of the challenge in relation to the time 
available, the skills used or missing in the modelling teams, the orga-
nisation of the challenge itself, and the knowledge gained by teams 
during the ASF Challenge. 

3. Results 

3.1. Qualitative comparison of the teams’ approaches 

All teams used stochastic compartmental models. All but one team 
took this approach for both host species (wild boar and pigs; Table 1). In 
one case, the risk of infection on pig farms was estimated independently 
from simulations of spread among wild boar and was modelled using a 
probabilistic approach (CIRAD, Muñoz et al., 2022). The dynamics of 
the two host populations were either described by two distinct models 
(three teams), or as a single model (two teams). In addition, most teams 
chose similar epidemiological units. In all but one team, wild boar hosts 
were modelled individually. The WUR team was the only team to not 
consider individual animals, choosing instead to use several animals 
located in a given spatial area as a basic epidemiological unit. In all but 
one team, infection status in pig farms was defined at farm scale. The UK 
team however defined the health status of individual pigs within farms 
(Dankwa et al., 2022). Finally, all teams modelled both the temporal and 
the spatial infection dynamics. Most models were in discrete time with a 
time step of one day, except the INRAE and CIRAD models, which used 
continuous time for at least one of the two modules (pig farms or wild 
boar). The chosen spatial units and shapes for modelling transmission 

among wild boar largely differed among teams. Two teams used hexa-
gons, two teams used squares, and one team used rectangles. Moreover, 
these units ranged from very small (1 km2) to very large (195 km2) tiles. 
Most teams provided outputs at the individual scale (i.e., a single wild 
boar or pig farm), except the WUR team, who’s outputs indicated the 
presence or absence of ASF within small patches. The role of the spatial 
unit was difficult to assess as none of the teams has tested different units. 
UK and Massey teams have chosen tile size according to the typical home 
range size for wild boar, with the force of infection due to wild boar 
being defined per tile. The UK team also accounted for a maximum 
infection range for transmission between tiles, which was not the case in 
the Massey model in which transmission occurred within tiles. The WUR 
team chose a much smaller unit, inspired by Hayama et al. (2020) who 
estimated the classical swine fever infection risk for pig farms located in 
infected wild boar areas. Finally, the CIRAD and INRAE teams chose 
much larger spatial units, for reducing computing times while keeping 
sufficient resolution for characterising spatial heterogeneity (e.g., a 
5-km distance between centroids of neighbouring tiles in the CIRAD 
model). As the units chosen were large compared to the vital domain of 
wild boar, a simplifying hypothesis was made that transmission only 
took place with directly neighbouring tiles. Such modelling choices 
especially impacted the inference of model parameters, as well as 
carcass discovery. 

With regards to virus transmission, heterogeneity arose in the 
choices made by teams for modelling transmission between wild boar 
and pig farms: the CIRAD team did not link their models for the two host 
species and simply modelled risk in pig farms as a function of smoothed 
wild boar case data (Muñoz et al., 2022); the UK (Dankwa et al., 2022) 
and the WUR teams modelled the force of infection from wild boar to pig 
farms but not from pig farms to wild boar as they found no strong evi-
dence, based on the synthetic data provided, of transmission from pig 
farms to wild boar; finally, the INRAE (Beaunée et al., 2022) and Massey 
(Han and Vignes, 2022) teams defined a force of infection in both di-
rections, from wild boar to pig farms and from pig farms to wild boar. 
Assuming no transmission from pigs to wild boar (three teams) implies 
that control measures targeting pig farms had, by definition, no impact 
on wild boar. Also, pig farms can get infected by other transmission 
pathways: proximity to other farms (CIRAD, UK and INRAE teams) and 
by animal trade movements between farms (all but WUR team). Due to 
the limited number of pig farm outbreaks and the dominant role of 
boar-to-farm transmission in disease introduction into pig farms, the 
power of data was considered insufficient by the WUR team for esti-
mating a non-zero between-farm transmission kernel (Boender et al., 
2014). Trade movements of pigs were generally modelled based on the 
historical data that were provided to teams, except the UK team who 
used historical data for observed period and fitted exponential random 

Table 1 
Main team-model characteristics. Modelling approaches and epidemiological units for wild boar (WB) and pig farm (PF) components, transmission assumptions at the 
interface between WB and PF, and the spatial units adopted by each team during the ASF Challenge.  

Team Wild boar (WB)  Pig farms (PF) Number of models Interface WB / PF 

Approach Epid. unit Spatial unit Approach Epid. unit 

CIRADa SCMb Individual Hexagon (86.6 km2) Probability Farm  2 WB to PFc 

UKd SCM Individual Rectangle 
(7.5 km2) 

SCM Individual  2 WB to PF 

INRAEe SCM Individual Hexagon (195 km2) SCM Farm  2 Both directions 
Masseyf SCM Individual Square 

(10 km2) 
SCM Farm  1 Both directions 

WUR SCM Spatial area Square 
(1 km2) 

SCM Farm  1 WB to PF  

a Muñoz et al., 2022. 
b SCM: stochastic compartmental model. 
c Link made via smoothing of observed cases, not via stochastic model output. 
d Dankwa et al., 2022. 
e Beaunée et al., 2022. 
f Han and Vignes, 2022. 
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graph model (ERGM) to historical data to predict future movements. No 
team explicitly simulated wild boar movements, nor how movement 
patterns could be affected by intensive hunting. To model transmission 
between two distant epidemiological units, some teams (UK, WUR, and, 
for transmission via fomites, CIRAD teams) used distance-based kernels 
whilst others assumed (for speed) that the virus could only move to 
adjoining tiles and no further (INRAE, Massey and, for wild boar, CIRAD 
teams). A speed limit for between-boar transmission of no more than 
(approximately) 10 km per day was adopted by most teams, with some 
models imposing a maximum distance and some not. Such a speed limit 
is in agreement with estimates of spatial spread due to wild boar terri-
toriality which informed the construction of model M0 (Froehly et al., 
2020). 

To calibrate their models, teams used various inference approaches. 
The fastest methods corresponded to optimisation methods (INRAE, 
Massey, and WUR teams): likelihood maximisation, Jaccard index 
maximisation, and least squares minimisation. Bayesian methods, 
although more demanding in terms of computing time, were also used 
(UK and CIRAD teams): Markov chain Monte Carlo (MCMC) and 
Approximate Bayesian Computation (ABC). To increase the speed of 
their analyses, these two teams (CIRAD and UK teams) restricted their 
models to the part of the island where infection had been detected. 

Teams were requested by the organisers to provide information 
about their models at various stages during the challenge. First, teams 
were asked for a textual description of their predictions, to ease quali-
tative comparisons. Second, teams were asked to provide the organisers 
with quantitative model predictions that should be “as precise as 
possible”. Teams were free to choose the epidemiological unit, the 
spatial unit and the format that they desired for submitting their pre-
dictions. As a result, a large variety of ouput types was received, which 
made comparisons somewhat difficult. With regards to file format, most 
teams chose the csv format, also some teams also provided data in Rdata 
files. Some teams provided output means and confidence intervals, 
others provided full details of every stochastic repetition. Some provided 
aggregated outputs, others provided the exact time and/or location of 
case detection. Finally, some teams provided code for simulating with 
their models, and/or, for visualising their model outputs. 

3.2. Model ability to forecast the temporal dynamics over four weeks 

Phases 1 and 2 of the challenge exhibited the largest changes in the 
number of detected cases in both pig farms and wild boar. As such, they 
were the most interesting phases for comparing temporal forecasts, thus, 
we focus on these phases in the subsequent analyses. 

3.2.1. Detected pig farm cases 
Most teams provided very good forecasts of the cumulative incidence 

of detected infected pig farms (Fig. 1). They fixed control measures for 
the duration of the prediction period, assuming measures remained 
similar to those of the observed period, i.e., for phase 1: regulatory 
measures only; for phase 2: fences installed 60 days after the detection of 
the first case and intensive hunting within the fenced area and a 15-km 
buffer around it. See teams’ papers for more details (Muñoz et al., 2022; 
Beaunée et al., 2022; Dankwa et al., 2022; Han and Vignes, 2022). To 
compare their predictions to the dynamics that could have been 
observed with model M0 under these conditions, we ran 500 stochastic 
repetitions keeping control measures similar to just before the predic-
tion period (i.e., measures already implemented on day 50 for pre-
dictions during phase 1, and on day 80 for predictions during phase 2; 
Fig. 1). Complementary scenarios were also examined by the teams (see 
companion papers of the special issue), but their heterogeneity made 
them difficult to compare. 

3.2.2. Detected wild boar infections 
The temporal dynamics of detected wild boar cases appeared more 

difficult to predict (Fig. 2). First, the heterogeneity in model predictions 
was much greater than for pig farms. Second, the biases associated with 
model predictions were not the same from one phase to the other: during 
phase 1, most models tended to underestimate the incidence of detected 
wild boar infections, whereas most models tended to overestimate it 
during phase 2. The difficulty in phase 2 was to represent the installation 
of fences and the intensive hunting within the fenced area and in the 15- 
km-radius buffer zone around the fences. Bayesian approaches (UK and 
CIRAD teams) outperformed other methods here (Fig. 2, Phase 2). The 
UK team also selected simulations whose epidemic amplitude was in 
agreement with the selected synthetic data from model M0 at the end of 
the observation period, while other teams started their predictions from 
the day of first detection. 

Ensemble models can generate leverage from heterogeneous model 
predictions. Fig. 3 presents the two ensemble models for temporal pre-
dictions: an average of all team-predictions and a worst-case ensemble 
taking the largest number of detected wild boar cases among all team- 
predictions. The top-performing ensemble model (i.e., the closest to 
model M0 predictions) was not the same in phase 1 (worst-case) and in 
phase 2 (average). 

3.3. Model ability to predict the spatial spread of ASF 

Concerning spatial predictions, the most interesting challenge phases 
were phase 1 for pig farms (initial ASF spread) and phase 2 for wild boar 
(once fences had been implemented). Thus, we focused our analyses on 

Fig. 1. Predicted cumulative numbers (line: 
median; shaded area: 10th to 90th percentiles) 
of detected infected pig farms according to 
teams’ models, between days 50 and 80 (“Phase 
1′′) or between days 80 and 110 (“Phase 2′′). 
The dotted line delimits the prediction period 
for each phase of the challenge. The dashed line 
shows when fences were implemented and 
intensive hunting started. Projections assumed 
similar control measures during the prediction 
period and the observed period. Model M0 was 
used to produce synthetic data up to the 
beginning of the prediction period (using the 
stochastic repeat selected for the challenge – 
black line in the figure), then 500 stochastic 
repetitions were run to show possible vari-
ability over the prediction period. No values 
were provided from INRAE team for phase 1, 
nor from WUR team for phase 2. No variability 

was provided by WUR and CIRAD teams for these outputs.   
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these phases. 

3.3.1. Spatial distribution of detected pig farm cases 
Fig. 4 provides the spatial predictions, i.e., the probabilities of ASF 

being detected on farms over the prediction period. Only the CIRAD 
team successfully predicted the detection of an infected farm far away 
from the primary case (Fig. 4A), despite the use of a non-stochastic 
approach. Other teams were better at predicting detection of infected 
farms in the vicinity of the primary case. In addition, a relatively low 
probability cut-off value should be used for the detection index to be 
high enough (Fig. 5). The Massey and UK teams had more sensitive 
spatial predictions when we assessed the ability of models to predict the 
exact location of future outbreaks (Fig. 5A). Such models could help 
prioritise areas to survey, instead of relying only on back-tracing to 
identify at-risk contacts. Models were much better at predicting 
approximate outbreak locations (i.e., identifying hotspots), as indicated 
by the greater sensitivity of predictions made by most teams under this 
scenario (Fig. 5B). Specificity of teams’ model predictions was high 
(>99% for a cut-off > 0.03), due to the huge number of uninfected pig 
farms, thus was not shown. 

We also explored spatial predictions through ensemble models 
(Fig. 6) and assessed the associated detection index (Fig. 7). Average and 
weighted average ensemble models were less sensitive than the UK and 
Massey models, especially for high cut-off values. In contrast, the worst- 
case and the threshold-average ensemble models had a better detection 
index than all team-models, even for predicting the exact locations of 
future cases. 

3.3.2. Spatial distribution of detected wild boar infections 
Three teams (INRAE, CIRAD, Massey) provided spatial predictions 

for the number of infected wild boar detected in a spatial location for 
phase 2 (days 80–110; Fig. 8). Those simulations were used to calculate 
the probability of detecting infected wild boar in specific tiles (hexagons 
in the INRAE and CIRAD models vs. squares in the Massey model). The 
INRAE model was the most sensitive here, probably due to the larger tile 
size. However, the INRAE model predicted the occurrence of a second 
cluster in the south-west of the area with a probability of 0.5 (Fig. 8). 
Such a cluster did not occur in the selected synthetic data produced by 
model M0. Teams’ models agreed that the virus had a high probability of 
escaping from the fenced zone by its south-west corner. 

Despite the low number of models included, we compared the results 
of ensemble models to the selected trajectory in model M0 (Fig. 9). All 
ensemble models were largely influenced by INRAE predictions. As a 
result, the shape of the first predicted cluster in the worst-case model 
looked similar to INRAE predictions, and a second cluster was also 
predicted, but with a lower probability in the average model than in the 
individual INRAE model. By definition, the worst-case model was the 
most sensitive. However, the threshold-average ensemble models were 
as sensitive as the worst-case and the INRAE models, even for the highest 
tested probability threshold (Fig. 10). 

3.4. Effectiveness of alternative control measures 

Table 2 summarises the control measures modelled by all teams 
during the challenge. Choices made in phase 1 sometimes limited a 
team’s ability to test measures in phase 2. Some teams thus had to 
choose between adapting their models to make the requested 

Fig. 2. Predicted cumulative numbers (line: 
median; shaded area: 10th to 90th percentiles) 
of detected infected wild boar according to 
teams’ models, between days 50 and 80 (“Phase 
1′′), and between days 80 and 110 (“Phase 2′′). 
The dotted line delimits the prediction period 
for each phase of the challenge. The dashed line 
shows when fences were implemented and 
intensive hunting started. Projections assumed 
similar control measures during the prediction 
period and the observed period. Model M0 was 
used to produce synthetic data up to the 
beginning of the prediction period (using the 
stochastic repeat selected for the challenge), 
then 500 stochastic repetitions were simulated 
to show possible variability over the prediction 
period (very low during Phase 2). No values 
were provided from the WUR team for phase 2.   

Fig. 3. Predicted cumulative numbers of 
detected wild boar cases according to two 
ensemble models (average and worst-case) 
compared to model M0 trajectories, between 
days 50 and 80 (“Phase 1′′), and between days 
80 and 110 (“Phase 2′′), including the four team 
models providing dynamic predictions (CIRAD, 
INRAE, Massey, UK). The dotted line delimits 
the prediction period for each phase of the 
challenge. The dashed line shows when fences 
were implemented and intensive hunting star-
ted. Projections assumed similar control mea-
sures during the prediction period and the 
observed period. Model M0 was used to pro-
duce synthetic data up to the beginning of the 
prediction period (using the stochastic repeat 
selected for the challenge), then 500 stochastic 
repetitions were simulated to show possible 

variability over the prediction period (very low during Phase 2).   
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calculations, or not testing all the proposed measures. In addition, teams 
did not interpret control measures in comparable ways, which limits 
comparisons. Heterogeneity in control measure implementation and the 
format of model outputs did not allow quantitative comparisons, in most 
cases, thus teams’ findings were compared qualitatively. 

In phase 1, the control measures concerned only wild boar. Tested 
measures showed no effect on pig farms, except the CIRAD team who 
showed that (if effective) fences could limit virus spread to the east and 
north of the island, thus pig farms in those areas would receive a degree 
of protection by not being in direct contact with infected wild boar. In 
line with results from model M0, the teams agreed that fences alone had 
no significant effect on the total number of detections of infected wild 
boar within the prediction period. When hunting pressure was increased 
in model M0, the number of detections by carcass discovery over the 
prediction period decreased by 50%, while the number of detections by 
hunting increased by 1660%. The Massey team quantified the latter at 

almost 1000%, while the INRAE team estimated it at 120%. The INRAE 
team did not include the increased test rate among hunted wild boar, 
which explains the discrepancy. The outputs of the other teams did not 
allow for such an assessment. Here, the number of detected cases is not a 
relevant marker of effectiveness of control measures - reducing the total 
number of cases (detected and not detected) is the actual objective of 
control strategies. Spatio-temporal discontinuities in the intensity of 
both active searches and hunting lead to temporal changes in the 
detection rate, thus the total number of detected cases does not provide a 
reliable proxy for the total number of cases. Only the INRAE team 
quantified the variation in the total number of cases, predicting a 
reduction in cases in the intensive hunting scenario. Despite under- 
estimating the absolute number of cases (1100 vs. 2500 with model 
M0), the relative reduction in cases over the prediction period proved to 
be fair (both predicting a decrease of 13%). The INRAE model predicted 
a similar effectiveness of fences with and without intensive hunting, 

Fig. 4. Probability of detecting ASF outbreaks on pig farms between days 50 and 80 without additional control measures, as calculated by each team. Black circles 
indicate farms that would have been detected in model M0 with the selected trajectory in the absence of additional control measures. Teams that provided spatial 
predictions for phase 1 were: CIRAD (A); UK (B); Massey (C); WUR (D). 

Fig. 5. Detection indexes of teams’ model pre-
dictions regarding the location of detected 
infected pig farms between days 50 and 80, 
without additional control measures. The 
detection index Dk for team k was calculated as 
the proportion of pig farms (among a total of 
NPF farms) predicted to be detected as infected 
with a probability above the cut-off value (x- 
axis), given that they were truly detected as 
infected in the selected synthetic data. A: based 
on exact locations of pig farm outbreaks. B: 
with a 15-km tolerance on the locations of pig 
farm outbreaks, i.e., predictions of detected ASF 
infections on pig farms were classified as cor-
rect if those farms were located within 15 km 
from a farm that was detected as infected in the 
selected synthetic data.   
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whereas a scenario with fences but no intensive hunting was inefficient 
with model M0. The impact of the measures on the spatial distribution of 
cases in wild boar can be seen visually on the incidence maps provided 
by teams and the detection probability maps produced by the ensemble 
models. In phase 1, with model M0, fences with or without intensive 
hunting did not trigger a change in the distribution area of detected wild 
boar cases. The Massey and the INRAE teams reached the same 
conclusion. The CIRAD team only tested the implementation of fences 
and concluded that, given its location, the fence could not completely 
contain the epidemic, since ASF was already spreading to the south-west 
of the fence. The CIRAD team predicted that fences could have been 
effective had they been implemented seven days earlier and if very few 
wild boar escaped through the fences. Only the UK team predicted a 
reduction in the area detected as infected when fences were in place 
with intensive hunting from day 60. 

In phase 2, most of the measures concerned pig farms, except the 
extension of the area for active search around detected infected wild 
boar carcasses, which increased the capacity to detect infected wild boar 
(Fig. 11). All teams (including Massey and INRAE teams that modelled 
transmission from pig farms to wild boar) concluded that the alternative 

control measures in pig farms had little or no effect on the spread of the 
epidemic among wild boar compared to the baseline scenario, with 
relative differences in detected cases of at most about 10% (Fig. 11A). 
The measures had a slightly stronger effect on the number of detected 
infected pig farms, although results were heterogeneous between teams 
(Fig. 11B). The measures that reduced the number of detected cases in 
pig farms by more than 25% in model M0 were: (1) the elimination of 
pig farms located near a detected wild boar infected carcass (effect found 
by the CIRAD and UK teams), and (2) the elimination of pig farms 
located in the protection zone (effect found by INRAE). However, as the 
number of infected pig farms was small, the absolute difference in 
detected cases remained small. Furthermore, the number of exposed but 
uninfected farms that would have been culled if this measure had been 
implemented was not explicitly requested and thus was not provided by 
the teams, but was likely to be high and should be taken into account 
when evaluating such a measure. Finally, all teams concluded that the 
alternative measures did not have a sufficient effect to prevent the 
spread of the epidemic - particularly among wild boar - and to justify 
their implementation. 

In phase 3, the teams were asked to predict how likely it was that the 

Fig. 6. Probability of detecting ASF outbreaks on pig farms between days 50 and 80 without additional control measures, as calculated with ensemble models based 
on the four available team models for this output. Black circles indicate farms that would have been detected in model M0 with the selected trajectory in the absence 
of additional control measures. The ensemble models shown are: average (A); weighted average (B); worst-case (C); and threshold-average with threshold values of 
0.5 (D), 0.7 (E) and 0.9 (F). 

Fig. 7. Detection indexes of ensemble model 
predictions regarding the location of detected 
infected pig farms between days 50 and 80, 
with no additional control measures during the 
prediction period. A: based on exact locations of 
pig farm outbreaks. B: with a 15-km tolerance 
on the locations of pig farm outbreaks, i.e., 
predictions of detected ASF infections on pig 
farms were classified as correct if those farms 
were located within 15 km from a farm that was 
detected as infected in the selected synthetic 
data.   
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epidemic would fade out over the following four months if intensive 
hunting ceased at day 110. Only the INRAE team considered it could be 
stopped, while other teams advised to continue this measure. This was in 
line with model M0′s predictions, which showed a high number of 
infected wild boar carcasses despite a very low number of detected wild 
boar cases 230 days after the first detection, thus indicating a low 
probability of extinction (Picault et al., 2022). The CIRAD team advised 
that the buffer zone should be extended to prevent spread towards the 

south-west. 

3.5. Participants’ feedback 

Eleven participants out of 46 from 10 teams (including those that did 
not finish the challenge) provided feedback on the organisation of the 
ASF Challenge. Overall, respondents found that it was extremely useful 
to receive test data before the start of the challenge and that the data 

Fig. 8. Predicted probability of detecting infected wild boar between days 80 and 110, without additional control measures after day 80, as calculated by three teams 
that provided spatial predictions for phase 2: INRAE (A, 195 km2 tiles), Massey (B, 1 km2 tiles), CIRAD (C, 86.6 km2 tiles). 

Fig. 9. Predicted probability of detecting infected wild boar between days 80 and 110 without additional control measures after day 80, calculated with ensemble 
models on 5 × 5 km2 tiles. Marked tiles: tiles where infected wild boar were detected in model M0 with the selected trajectory made in the absence of additional 
control measures after day 80. A: average, B: worst-case. 
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format and the documentation provided were appropriate and relevant. 
Respondents were less consensual on the calendar of the challenge. 
Indeed, some raised the issue that keeping pace with all other activities 
running at the same time, especially when some team forces were par-
allelly devoted to COVID-19 pandemic modelling, was difficult. Indeed, 
the ASF Challenge was a voluntary exercise and not a real-time problem- 
solving exercise during a health crisis when all efforts would have been 
devoted to providing policy recommendations. All teams had strong 
expertise in mechanistic modelling and programming. Some teams re-
ported that they lacked some prior understanding of ASF epidemiology 

and expertise in wild boar ecology. Eight and nine participants consid-
ered that the ASF Challenge improved their modelling skills and their 
ability to provide real-time support to policy-making, respectively. It 
was also highlighted that the ASF Challenge was useful to improve team 
management skills and enhance remote collaborations in a timely 
fashion. Nine respondents indicated they would be interested in 
participating in another modelling challenge, either on ASF or another 
infectious disease of livestock such as avian influenza. Ten of the eleven 
respondents indicated they would recommend to other colleagues to 
participate in such modelling challenges. Expectedly, it was regularly 
highlighted that the COVID-19 pandemic and associated restrictions 
limited the opportunity to meet other people in the field of infectious 
disease modelling, which was one of the main objectives of the ASF 
Challenge. 

4. Discussion 

4.1. Key results and novelty 

The ASF Challenge was the first modelling challenge in animal 
epidemiology. During this challenge, five international research teams 
developed models predicting the evolution of ASF over six months 
following its emergence in an isolated territory. This epidemic dynamic 
was simulated by the organising team and was therefore entirely ficti-
tious, even though the model used was calibrated with plausible 
parameter values and informed by expert knowledge (Picault et al., 
2022). 

The study of a multi-species disease allowed us to address the 
problem of integrating the interface between two interacting and dy-
namic biological components in an epidemiological model. To effec-
tively integrate this interface, teams mainly developed stochastic 
mechanistic compartmental models. On one hand, stochastic frame-
works could be preferred because at epidemic onset, the effect of chance 
is high (small number effects), and because of the occurrence of rare 

Fig. 10. Detection indexes of predictions, from teams’ models (A) and ensemble models (B), regarding the probability of detecting wild boar cases within 5 × 5 km2 

tiles between days 80 and 110, assuming that no additional control measures were introduced after day 80. 

Table 2 
Alternative control measures modelled by teams. Control measures imposed by 
ASF regulation were accounted for in all models. No alternative measure was 
tested in phase 3.  

Control measuresa CIRAD UK INRAE Massey WUR 

Phase 1      
Fences xb x x x  
Fences + intensive hunting  x x x  
Phase 2      
Fences + intensive hunting 

(included in baseline) 
x x x x x 

Culling on pig farms (PF) in 
protection zone 

x x x x x 

Culling on traced PF x x x x  
Culling on PF located ≤ 3 km from 

detected WB cases 
x x  x x 

Extend surveillance zone radius 
from 10 to 15 km  

x x x  

Extend radius of active search 
around detected WB cases from 1 
to 2 km 

x  x x   

a Protection zone has a radius of 3 km around detected PF; traced PF have 
exchanged animals with a detected PF in the 3 weeks before detection. 

b Various dates and fence efficacy values were tested. 

Fig. 11. Effectiveness of alternative control 
measures in phase 2. Five measures were tested: 
the culling of pigs in farms located in the pro-
tection zone (square); the culling of pigs in 
farms traced as having had contact with a 
detected farm (inverted triangle); the culling of 
pigs in farms located in the vicinity of a detec-
ted infected wild boar (star); the extension of 
the active search zone around detected infected 
wild boar carcasses (circle); and the extension 
of the surveillance zone (rhombus). For each 
control measure, and for each model, effec-
tiveness was calculated as the absolute and 
relative differences in the number of detected 
wild boar cases (A) and detected pig farm out-
breaks (B) during the prediction period be-
tween simulations with and without the control 
measure.   
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events in a complex biological system involving multiple interacting 
host species (e.g., long distance ASF dispersion, indirect infectious 
contact between farms, infectious contact between livestock and wild-
life). On the other hand, compartmental models provide a relevant 
balance between parsimony (not only individual-based processes) and 
accuracy (accounting for within-population dynamics when necessary). 
Originally, a probabilistic model for pig farms was used by one team. 
Although that model was not integrated with a dynamic simulation 
model, it still displayed a good predictive ability. No black-box models 
(e.g., based on machine learning) were used. Overall, the explicit 
modelling of epidemiological events, particularly at the interface be-
tween wild and domestic fauna, was deemed necessary by the re-
searchers to accurately predict the epidemiological extent of the disease 
and to test the control measures requested by the organisers. 

The course of the epidemic was in general predicted well by the 
teams. The temporal predictive ability was better for domestic animals 
than for wildlife. During the course of the ASF Challenge, the predictions 
of the situation on farms, although already good during phase 1, 
improved with each successive phase, thanks to the modellers’ hindsight 
and the increased quantity of available data. In contrast, several factors 
– including uncertainty regarding host distribution, the implementation 
of fences, intensive hunting, the greater number of hidden compart-
ments and a lower detection probability – made the modelling of the 
wildlife situation more complex and thus limited the predictability of 
ASF dynamics among wild boar. The same conclusions applied to the 
spatial performance of the models, which were evaluated for the first 
time in the context of an epidemiological challenge. Small spatial units 
were considered necessary by most of the teams in order to assess local 
management strategies for a virus that essentially spreads in wildlife via 
proximity contacts. An interesting result was that, despite heterogeneity 
among teams in the predicted temporal trajectories of wild boar cases, 
there was relative homogeneity in the predicted temporal trajectories of 
pig farm cases. This paradoxical result suggests that the methods used to 
model risk in pig farms were relatively insensitive to systematic biases 
within the wild boar models. This is reassuring from a risk management 
point of view, given that there are typically large uncertainties regarding 
the density, distribution, and dynamics of sylvatic reservoir host 
populations. 

No single model developed by any one team was better than all other 
models on every aspect of the challenge, confirming the value of 
considering multiple approaches when advising policy makers, as was 
also highlighted for controlling foot-and-mouth disease in a multi-model 
framework (Probert et al., 2016; Webb et al., 2017). Multiple model 
approaches can add weight to conclusions when models are in agree-
ment, overcoming limits to inferential power that arise when there are 
large uncertainties in the predictions of a single model. Indeed, 
ensemble models can be constructed, by integrating the predictions of 
all models, allowing the complementary predictions of each model to be 
exploited. The temporal ensemble models showed very good predictive 
ability. To the best of our knowledge, this is the first time that 
small-scale spatio-temporal ensemble models have been developed 
during a challenge. For this, homogenisation of spatial units was per-
formed, followed by aggregation of the results from different teams. One 
limit of the proposed ensemble models was not to account explicitly for 
teams’ prediction uncertainty. Since teams did not provide similar 
numbers of repetitions (ranged from one to 10,000 repetitions, 
depending on challenge phase and team) it was difficult to integrate 
output variability in the ensemble models. We thus chose to build 
several simpler ensemble models (teams’ average; weighting average 
with weights proportional to the number of repetitions; choosing 
worse-case predictions). Another approach would have been to require a 
minimum number of repetitions per output per team to facilitate the 
calculation of prediction intervals, or to have a sufficient number of 
teams involved in the challenge to assess confidence interval of 
ensemble models (which was not relevant here as we included only a 
few models). 

4.2. Main issues encountered during the ASF Challenge 

Incomplete knowledge regarding the wildlife component, especially 
the population size and ecology of wild boar (Giménez-Anaya et al., 
2020), presented a key difficulty for both the teams and the organisers of 
the ASF Challenge. Knowledge on livestock is typically much more 
complete than data related to wildlife, even more so than for human 
populations in many respects. Indeed, legislation governing the decla-
ration of farm animals in Europe provides detailed knowledge of their 
distribution and movements (Brooks-Pollock et al., 2015). This, in 
combination with greater detection probabilities and lower un-
certainties, can help explain the greater predictive performance of 
teams’ models for the domestic part as opposed to the sylvatic part of the 
biological system. This situation illustrates a difficulty faced by mod-
ellers when confronted with real-life emergence or re-emergence of in-
fectious diseases in wildlife, and emphasises the need to improve 
wildlife disease surveillance and wildlife population monitoring to 
improve preparedness (Cardoso et al., 2022). 

The freedom given to teams allowed the development of several 
models with different assumptions and scales, as well as the genesis of a 
few new ideas for control measures. This freedom helped foster diversity 
in modellers’ choices regarding how to characterise the spatial or tem-
poral aspects of the epidemic in order to answer the posed management 
questions. In contrast, it was not possible to assess in this challenge the 
specific role of the spatial unit as only one unit was implemented for 
each method. Team models differ by many other confounding factors. 
Thus, performance indicators cannot be defined as a function of the 
spatial unit size. The choice of the spatial unit could have important 
impacts in guiding decision making. Evaluating the effect of the spatial 
resolution of epidemiological models on their performance is thus an 
interesting perspective for future modelling challenges. 

The freedom given to teams also led to heterogeneity in the type and 
format of model outputs, which made it difficult to compare models and 
their predictions. Teams provided results using various forms of tem-
poral and spatial aggregation, often without providing output from all 
epidemiological compartments needed for comparison. They chose 
which outputs to provide among all those generated by their respective 
models: some favoured infection events (the UK and INRAE teams), 
others the distribution of some sub-set of epidemiological states (the 
CIRAD and Massey teams), and some limited the provided model output 
to the quantities strictly needed for answering the questions, i.e., 
detected infections (the WUR team). Finally, some teams provided 
model code. Although open source code is important for transparency 
and reproducibility and allows opportunities for interaction with 
external examiners, in practice it is an inferior substitute for stand-
ardised format prediction data files. Particularly during a real health 
crisis, health managers would not have the time to read, understand, and 
re-run each model code, nor to communicate extensively with modelling 
teams. 

The suite of different models allowed the evaluation, by at least three 
different teams (see Table 2), of the effectiveness of each of the control 
measures envisaged by the organisers. The links made between wildlife 
and livestock conditioned the evaluation of some control measures. To 
simulate these measures, teams adapted their models, especially the 
details of spatial representation, but without modifying their basic 
modelling frameworks, because of time constraints. The implementation 
of intensive hunting, a key management measure of ASF, was one of the 
most problematic issues for both teams and organisers. For example, the 
effects of an intensive hunting campaign on wild boar ecology and 
movement patterns were not taken into account in model M0, because 
they remain largely unknown. Indeed, intensive hunting could increase 
the home range (Lange, 2015) and contacts between wild boar, and also 
induce stress-related immunosuppression, and therefore risk intensi-
fying viral transmission (Miguel et al., 2020). Such effects of hunting 
have been reported for badgers in the case of bovine tuberculosis control 
(Donnelly et al., 2003; Riordan et al., 2011; Woodroffe et al., 2006). 
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4.3. Lessons learned 

The complementarity of several proposed approaches is interesting 
in the case of a real health crisis. Indeed, ensemble models of the tem-
poral and spatial dynamics of an epidemic take advantage of all the 
predictions made by the different approaches within a framework that 
allows a great level of freedom. In our framework, they did not always 
achieve better predictive ability than all teams’ models, contrary to 
what was achieved in past challenges (Johansson et al., 2019; McGowan 
et al., 2019; Viboud et al., 2018). One explanation is the low number of 
models integrated in the ensemble models. In particular, heterogeneity 
in the format of outputs sent by teams only allowed for three models to 
be integrated into the spatial ensemble models for wildlife. Moreover, 
the proposed models were not extremely different in essence. In future 
challenges, or real outbreaks, giving teams greater and earlier guidance 
regarding the required format of submitted model outputs could greatly 
facilitate the building of ensemble models. Despite these limitations, the 
methodology for building these ensemble models with high spatial 
resolution was developed for the first time in a challenge, which rep-
resents a major step forward. This is certainly an avenue to be pursued to 
further improve the predictive ability of epidemiological models. 
Nevertheless, we noted that, if one of the individual models already 
provided accurate predictions of a given output, incorporating less ac-
curate predictions from another model into an ensemble model resulted 
in signal degradation. During a real health crisis, to minimise this risk, 
when building ensemble models higher weight could be given to team 
models that had outperformed other models over the previous predic-
tion period once observations were available to assess the models’ 
predictive abilities. One option would be to weight a model propor-
tionally to the likelihood of observations given that model’s predictions 
in the previous phase. Such a weighting should nevertheless be imple-
mented with caution, because top-performing models may differ during 
the course of an epidemic, as was observed in this challenge. During 
future challenges, and in contrast to what has been done so far in 
existing challenges, organisers could also consider making this step an 
open-source endeavour, through a shared platform, to facilitate coop-
eration, task sharing, communication, and homogenisation of formats. 

If the aim of a challenge is to rank the performance of the different 
models and establish ensemble models, a stricter framework should be 
favoured. This was achieved in the seasonal influenza (Biggerstaff et al., 
2016; Reich et al., 2019) and dengue (Johansson et al., 2019) chal-
lenges, where teams had to provide probability distributions over 
pre-defined intervals of strictly defined outputs. It was also the case in 
the consortium built to assess control measures of foot-and-mouth dis-
ease in a multi-model framework, using existing models in a collabo-
rative way (Webb et al., 2017). More evaluation tools are then 
applicable to analyse team outputs (Gneiting and Raftery, 2007). Or-
ganisers thus should be aware of possible limitations that can arise when 
lots of freedom is granted to teams, and balance the flexibility that this 
freedom offers against the time required to collate and analyse all teams’ 
outputs. An alternative option would be to make greater use of indi-
vidual strengths and experience within teams by enabling the collabo-
rative analysis of teams’ results. The added dynamism of such a 
collaboration would be particularly useful during a real outbreak. 

The objective of the challenge was not to generate recommendations 
for ASF control but rather to improve our preparedness. However, 
stakeholders could have been engaged more in the challenge, to advise 
on when and how models could be useful, and also to improve 
communication between scientists and disease managers. During a real 
health crisis, science-based models need to support timely policy and 
decision making. Thus, decision makers need to be consulted on choices 
about the level of freedom granted to modelling teams, whilst recog-
nising that independent modelling teams may take completely different 
complementary approaches, which can reveal different aspects of the 
epidemics. Clarity of communication with modellers is key, in both di-
rections, as communication issues can lead to a misunderstanding of the 

control measures to be tested, and thus inappropriate representation 
within models, possibly altering conclusions, as has sometimes been the 
case during this challenge (where the organisers played the role of de-
cision makers). The provision of clear metadata by the teams during the 
challenge also seems to be a required improvement, especially if some 
freedom is given to the teams. This would improve the comparability of 
outputs and figures provided by the teams. Communication issues, 
already lamented elsewhere (Metcalf et al., 2015; Webb et al., 2017), are 
crucial, and particular vigilance is required on behalf of modellers and 
public animal health managers. In addition, despite time constraints, 
most teams also tested for additional scenarios not defined in the chal-
lenge, highlighting that modellers could be a driving force behind 
innovative proposals during epidemics. Also, in phase 3, teams were 
asked to advise about other alternative measures that could be consid-
ered (without testing them with their model), which resulted both in 
proposals to modify existing measures (e.g., build new fences, enlarge 
the buffer zone around fences) or to new ideas (e.g., restrictions in 
movement distances, sequestration of domestic pigs). 

In our study, the epidemic was fictitious, as was the case during the 
Ebola challenge (Viboud et al., 2018). An important advantage of using 
synthetic data is providing complete control and knowledge of the 
epidemiological situation, mechanisms and parameters, whilst main-
taining a realistic course of the epidemiological dynamics (Ajelli et al., 
2018). It enables the control of noise within the data. It also enables the 
assessment of control measures for which decision makers seek advice, 
in addition to the implemented control measures. The synthetic aspect of 
the challenge was appreciated by participating teams, as it allowed a 
complete exercise in a non-emergency animal-health context. The 
omniscience obtained by the synthetic aspect of the epidemic allowed 
for many additional comparisons that would not be possible during a 
real crisis. Thus, while the analysis focused mainly on predictions of the 
observed situation (via case detections) to mimic a real situation, it 
could be complemented by the analysis of total cases (including unde-
tected cases, e.g., to assess interventions) when such information is 
provided by the participants. This approach was not taken in previous 
challenges, nor was it taken here, since most teams chosen not to record 
total cases in order to economise computational resources. Moreover, 
total infections can be more difficult to predict than case detections, 
especially when detection effectiveness is imperfect and heterogeneous 
in space or time, as was the case for wild boar in this challenge. This 
should be an important consideration in future modelling challenges 
based on synthetic epidemics. Finally, a mechanism that has not been 
accounted for to date, that would clearly be interesting for future 
challenges, are the evolutionary dynamics of pathogens and the 
important impacts that they can have on epidemics. The importance of 
pathogen evolution has been highlighted all too clearly in the recent 
COVID 19 crisis with SARS-CoV-2 (Dyson et al., 2021; Koopman et al., 
2021). However, teams would need genetic sequence data, in which case 
using data from a real epidemic may be a more convenient option than 
using synthetic data. 

The model built to generate the synthetic data utilised current 
knowledge of ASF (Korennoy et al., 2014; Nigsch et al., 2013; Vergne 
et al., 2016) and interactions with ASF experts helped us define model 
assumptions. However, model predictions have not been compared with 
real historical disease data. This would have enabled an assessment of 
the model’s ability to predict the evolution of a real epidemic as was 
done during the Ebola challenge (Viboud et al., 2018). Another aspect 
that could be improved, when relying on synthetic data, is to consider 
different epidemic trajectories (repetitions of model M0) as alternative 
sets of observed data. Indeed, using a trajectory close to the mean/-
median of the generative process or a more "atypical" trajectory having, 
a priori, a lower probability of occurring, could lead to different results 
by the different models of the challenge. 

In the current challenge, there was no need for immediate real-time 
analysis and comparison of team-results, since this was not a real animal 
health crisis. The comparative analyses were therefore all carried out 
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after the completion of the challenge. In addition to the lack of feedback 
to the teams, this also limited the early identification of problems in 
understanding the exact definition of the measures, as well as the 
anticipation of problems arising from the reporting of aggregated data 
by the teams. Future challenges will have much to gain from analysing 
results during the course of the challenge. If, as here, the challenge is 
based on synthetic data, our experience shows that providing test data to 
teams prior to the challenge allows teams to anticipate the format of 
their inputs. Extending this to include example predictions, if teams are 
expected to provide homogenised outputs, would greatly facilitate 
comparison and the building of ensemble models. 

Open international challenges in epidemiology are time-consuming 
and require a significant involvement of organising and participating 
teams. Yet, they demonstrate a great potential, because they contribute 
to improving the preparation of the scientific community for future in-
fectious disease emergence events. In particular, the study of infectious 
diseases emerging at the interface between wildlife and humans seems 
necessary in view of the increasing frequency of their occurrence (Bengis 
et al., 2004) and the dramatic consequences they may have. 
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