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ABSTRACT 

Formulae for the mean and the mean square age of a neutral allele which 
is segregating with frequency x in a population of effective size Ne have been 
obtained using the diffusion equation method, for the case of 4N,u<l where U 
is the mutation rate. I t  has been shown that the average ages of neutral alleles, 
even if their frequencies are relatively low, are quite old. For example, a 
neutral mutant whose current frequency is 10% has the expected age roughly 
equal to the effective population size N, and the standard deviation 1.4Ne (in 
generations), assuming that this mutant has increased by random drift from 
a very low frequency. Also, formulae for  the mean “first arrival time” of a 
neutral mutant to a certain frequency 5 have been presented. In addition, a 
new, approximate method has been developed which enables us to obtain the 
condition under which frequencies of “rare” polymorphic alleles among local 
populations are expected to be uniform if the alleles are selectively neutral. 
-It was concluded that exchange of only a few individuals on the average 
between adjacent colonies per generation is enough to bring about such a uni- 
formity of frequencies. 

I N  one of our previous papers (KIMURA and OHTA 1969a), we presented a the- 
o r y  on the average number of generations until a mutant gene becomes fixed 

in a finite population (excluding the cases of loss). The theory can be extended, 
as outlined in MARUYAMA and KIMURA (1971), to obtain the average number of 
generations until a mutant gene reaches a certain frequency for the first time 
starting from a lower frequency (i.e., the mean first arrival time). We need such 
a theory when we try to understand the evolutionary process consisting of a se- 
quence of mutant substitutions in each of which an originally rare mutant in- 
creases its frequency and finally reaches fixation in the population. 

On the other hand, in order to understand the nature of extant variations, we 
need to know the ages of mutant alleles within a population. In other words, we 
have to consider the problem of how many generations a mutant allele has per- 
sisted in the population since it appeared by mutation. 

In the present paper, we present a solution to this problem for the case of selec- 
tively neutral alleles using the method of diffusion equations. It will be shown 
that the expected age of such a mutant is quite old; it is much older than one 
might suppose on the common-sense ground. We shall also discuss the bearing 
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of the present finding on our neutral mutation-random drift hypothesis of molec- 
ular polymorphisms (KIMURA and OHTA 1971). 

BASIC THEORY 

We use the diffusion model (KIMURA 1964; see also CROW and KIMURA 1970, 
p. 371), and denote by + ( p ,  r; t )  the probability density that the frequency of the 
mutant allele becomes z at time t (t-th generation) given that it is p at the start 
(t = 0). We first consider the case in which mutations are so rare that further 
mutations can be neglected. Such a treatment should be realistic if we consider 
mutants at the molecular level, that is, at each nucleotide site. If the mutant is 
selectively neutral and if the “variance effective size” of the population is Ne,  
then the transition probability density satisfies the partial differential equation 

with the initial condition +(p,x;O) = 6 (r - p ) ,  where 6 (.) stands for Dirac’s 
delta function. 

Our main aim is to evaluate the mean and the variance of the time interval in 
generations since an allele which now has intermediate frequency z had a lower 
frequency p .  

Let 

Ti = 1; ti+(p,x;t)dt 

be the i-th moment (i = 0,1 ,2 ,  . . .) of t, then the mean time interval is given by 

i ( p ,  x) = Ti/To, ( 3 )  

while the mean square time is given by 

from which the variance can readily be obtained. We first derive an equation for 
To  as follows: Integrating both sides of equation ( 1 )  with respect to t from t = 0 
to t = 00, we obtain 

where + stands for + (p,z;t) . This yields 

but the two terms on the left-hand side vanish if we assume 1 > x > p 2 0, be- 
cause + is asymptotically proportional to exp{-t/(2Ne)} for a large t (cf. 
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KIMURA 1955) while it is equal to 6 (x - p) for t = 0. Then, by integrating twice 
the resulting equation, i. e., 

{ ~ ( l  - s ) T , }  0, 1 d' 
4N, dx2 
__ __ 

with respect to x, we obtain 

To = 4Ne { (C, - 1)x + e,} , x(1 - 2 )  

where C ,  and C ,  are constants. These constants can be determined from the con- 
sideration that as x approaches unity, To, as defined by (2), must approach 4N,p, 
because + (p,l;t)J(4N,) represents the amount of fixation during the t-th genera- 
tion, and the s m  of this quantity over all generations must be equal to p ,  the 
probability of ultimate fixation. This leads to C, - 1 = -e, and C, = p .  

Thus we obtain 

To  = 4Nep/x. (7 )  

The equations for T 1  and T,  can be obtained in a similar way, so we shall de- 

Multiplying ti to both sides of equation (1 )  and then integrating them with 
rive a general equation for Ti (i = l, 2, . . .). 

respect to t from t = 0 to 00, we obtain 

The left-hand side of this equation yields 

[ ti+] t t= =o - i j; ti-'+&, 

the first term of which vanishes because ti+ vanishes both at t = 0 and t = W. 

Thus we obtain the ordinary differential equation for Ti as follows: 

where i 2 1. 
In the special case of i = 1, by putting To  = 4N,p/x, equation (9) reduces to 

4iVe~ - o. { ~ ( l  - x ) T 1 } , + - -  1 d2 
__I_ 

4N, dx' X 

Then, integrating this equation twice with respect to x, we obtain 

TI  = 4Nc { (C, + 4Nep) x - 4N,pxlog,x 4- C,} , 
x ( l  -z>  

where C1 and C, are constants. In determining these constants, we note that as 5 
approaches unity, T,JTo should approach 
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the average number of generations until fixation (KIMURA and OHTA 1969a). 
This leads to 

c, + 4Nep = -e, = 4Ne{ ( 1 - p) log, (1 - p)  + p}. 

Thus we obtain the formula for the mean time interval (in generations) 

X logex - l}. (11) - p  loge(l - p )  -- TI 

TO P l - x  
- 
t (p ,x)  = - = 4N,{- -- 

Note that this is different from the mean first arrival time which we denote by i, 
(p) and on which we later present a formula in the discussion. Whereas j , ( p )  
represents the average number of generations until a mutant allele happens to 
reach a certain frequency x for the first time starting from a lower frequency 
p ,  t(p,x) represents the average number of generations which an allele having 
frequency x at present has persisted in the population since it had a lower fre- 
quency p in the past. 

Similarly, we can obtain the following formula for the mean square age by 
solving equation (9) for the case of i = 2 under the condition that as x approaches 
unity T2/To should approach the mean square time until fixation as given by 
KIMURA and OHTA (1969b). 

d z + 2 ( 1  -p)log,(l -p)  - p  o z  
loge2 

The variance of the age is then given by 

at2 (P,X> = t2  (P,Z> - F(P,X) 12. 
For a mutant allele which is represented only once at the moment of appearance 
in a population consisting of N individuals, we may put p '= l/(2N) in the above 
formulae. As N gets large, p approaches zero, and at the limit we have 

1 t(0,x) = 4 N ,  (--- 1 - x  logex 
X - 

and 
X loge2 

l - x  1 - 2  
t2  (0,x) = 32Ne2 ( ___ logex - ___ dz)  

respectively for the mean and the mean square ages. These formulae should be 
valid for molecular mutants which are selectively neutral and which are subject 
to random frequency drift in a large population. 

However, when we consider each gene locus (cistron) as our basic unit, rather 
than each nucleotide site, we must take into account the possibility that further 
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mutation occurs before the mutant allele reaches a high frequency. In addition 
there is the possibility that a mutant allele that has once become fixed in the pop- 
ulation eventually has its frequency decreased by further mutation in conjunc- 
tion with random drift. Also it is possible if the mutation rate is sufficiently high 
that an allele can never reach complete fixation. 

Although the complete treatment taking all these possibilities into account is 
difficult, we have worked out the average age of the mutant for the case 4 N e ~  < 1, 
where U is the mutation rate per locus per generation. Following KIMURA and 
CROW (1964), we assume that the number of possible allelic states per locus is SO 

large that whenever mutation occurs it leads to a new (not a pre-existing) allele. 
The treatment using this model is more complicated than that without mutation, 
so that we shall only summarize the results. 

If 4N,v < 1, it can be shown that the probability of a mutant allele’s reaching 
fixation (x = 1) is 

u ( p )  = 1 - (1 - , ) , - 4 N P ,  

disregarding the possibility that its frequency later decreases by mutation and 
random drift. I t  can also be shown that for 4N,u < 1, the average age of a mutant 
having current frequency x is 

1 1 - (1 - z)1-4N,1) 
d z  

2 
4Ne { logex,+ J o  

- 
t ( 0 , x )  = t 1 - 4N,u 

1 5’ (1 - Z ) ~ - ~ ~ , V  dz } 
z (1 - x) 1-4Ne1) 8 

+ 
It is assumed that the mutant allele increased from a very low frequency some- 
time in the past rather than decreased from the fixed state. As 4N,v approaches 
0, equation (13a) reduces to (13), but in general, numerical integration will be 
required to compute? (0, x) fromthis equation. 

On the other hand, if the allele in question decreased from the fixed state-that 
is, from a frequency of lOO%-by mutation and random drift, rather than di- 
rectly increasing from a low frequency, then the corresponding formula becomes 

t 

This gives the expected “age” of the allele counted from p = 1 - lJ(2N) to the 
present frequency z assuming that N is large. When 4Nev = 0, this agrees with 
t (0, 1-x) , as it should. It does not include the length of time during which the 

allele remained fixed in the population before the frequency 1 - lJ(2N) was 
reached. In order to estimate this length of time (the waiting time), let uc(l - 
1/2N) be the probability that the allele frequency goes down to x from 1 - 1/ 
(2N) without previously going back to unity. Then, it can be shown that 

- 

t 
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U,( 1 - 1/2N) = { 2 N (  1 - z) }4Ne21-1. Also, the probability that one mutant is pro- 
duced during a short time interval of length At in the population of fixed state is 
2NuAt. Combining these two probabilities, we find that for the allele whose cur- 
rent frequency is z and which had once been fixed in the population, the average 
length of time during which it was fixed is 

- { 2 N (  1 - x) }14NP - __ 1 - 
2NUUX( 1 - 1/2N) 2Nu if%$ = 

Note that this is the waiting time until a successful mutation first occurs in the 
population leading to the downward journey reaching x. When 4N,u = 0 and 
T = 0, this reduces to tfix = l/u. 

Finally, we can show that if 4N,u 2 1, the probability is zero that a new mu- 
tant reaches complete fixation (assuming that N e  is large). In other words, com- 
plete fixation is prevented by the opposing mutation pressure. 

t Figure 1 illustrates for several values of 4N,u the relationship between x and? 

(0, x) with solid lines, and that between z and t (1,x) with dotted lines. They A 
were obtained by numerical integration of formulae (13a) and (13b) using a 
computer. Note that 4N,u = 0.2 corresponds to a heterozygosity of about 160/,, 
the value observed in man and Drosophila. Note also that with this level if  
4Neu, the expected age of the mutant is not much influenced by mutation. 

- 

4N.v I 0.6 
.... ...? N,w 0.6 

4N.v : 0.4 

4N.v :0.2 

4Ny .o.o 

. . . . . . . . . . .  . , . ,  ..;. . .  . . . .  . . . . . . . .  . . . . . . . . .  . . . .  . . . . . . . .  ............. . . .  ; 

t 
0.1 0.2 0.3 0.4 0.5 6.6 0.1 0.8 0.9 1.0 

X 

FIGURE 1 .-Relationship between z and t* (0,~) as shown by solid lines and that between z 
and;+ (1,  2) as shown by dotted lines for some values of 4iV,u. The abscissae represent the gene 
irequencies and the ordinates represent the corresponding ages in generations. 
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MONTE CARLO EXPERIMENTS 

In order to check the validity of the above treatment (especially, formulae 13, 
13a and 13b) , we performed Monte Carlo experiments using TOSBAC 3400 in 
our institute. The procedure of the experiments follows the one used by HILL and 
ROBERTSON (1966). Assuming no selection, sampling of gametes is carried out by 
generating pseudo-random numbers that follow the uniform distribution (RAND 
20 in TOSBAC 3400). Namely, if x is the frequency of the mutant allele and if a 
random number is less than x, one mutant gamete is sampled, while if it is larger 
than x, one gamete with normal allele is sampled. Sampling is repeated 2N, times 
to obtain the total of gametes to form the next generation. Each experiment starts 
by having a mutant allele represented only once in the population and whenever 
loss or  fixation of the mutant occurs, a new mutant is again supplied to continue 
the experiment. In each generation, the age and the frequency of the mutant 
allele are recorded. 

Figure 2 illustrates the results of the experiments to check formula 13 for the 
frequency classes up to 0.1. The abscissa represents frequencies of mutant alleles 
and the ordinate, the corresponding ages. The curve in the figure shows the theo- 
retical prediction for the mean age (assuming no mutation), while the two types 
o€ dots represent observed values; the square dots are for the case of N e  = 100 and 
the circular dots for N e  = 200. The observed values are the outcome of lo4 gen- 

* 

** 

FIGURE %-Results of Monte Carlo experiments on the average age of new, neutral mutants. 
The abscissae represent frequencies of mutant alleles, while the ordinates represent the cor- 
responding ages. In the figure, the curve gives the theoretical values, the square dots give the 
results for N e  = 100 and the circular dots the results for N e  = 200. 
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FIGURE 3.-Results of Monte Carlo experiments to check formula 13b for 4N,v = 0 and 
4N,u = 0.4. Circular dots represent the outcome of 10,000 runs assuming 4Nev = 0, while 
triangular dots represent the outcome of 50,000 runs assuming 4N,v = 0.4. The abscissae repre- 
sent the frequencies and the ordinates represent the corresponding ages. N e  = 201 is assumed. 

erations of simulation experiments for  the case of N e  = 100, but 3 x lo4 genera- 
tions for  Ne = 200. As seen from the figure, the agreement between the theoreti- 
cal and the experimental results is satisfactory. Figure 3 illustrates the results of 
the experiments to check formula 13b for the cases of 4Neu = 0 (circular dots) 
and 4Nev =.0.4 (triangular dots). The observed values are the outcomes of 
10,000 runs (rather than generations) for 4Neu = 0 and 50,000 runs for 4 N e ~  = 
0.4, assuming Ne = N = 20. They corroborate the theoretical prediction that the 
expected age gets older under mutation pressure irrespective of the direction of 
mutation. We should remark here that systematic deviation of experimental 
results from theoretical prediction for  4N,u = 0.4 must be due to a very small 
population number, i.e., 20, employed in the simulation experiments; the pressure 
of mutation in preventing fixation does not become sufficiently effective unless 
the population number becomes much larger. The diffusion treatment is really 
adequate for such larger numbers. 

DISCUSSION 

In the present paper we have derived, under the assumption of no further mu- 
tation, formula (11) which gives the average number of generations which a 
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neutral allele segregating in a population with frequency x has persisted in the 
population since it had the initial frequency p (< s) in the past. In this general 
form, it also gives the average number of generations which a neutral allele takes 
when its frequency increases from p to x through random genetic drift ( p  < x) . 
Therefore, t ( 0 ,  x) given by formula 13 is appropriate to express the expected 
age of a neutral allele with frequency x, if the allele has increased its frequency 
in the population since it first appeared by mutation. On the other hand, if the 
allele in question has decreased from the previously fixed state,? ( 1 ,  s) is appro- 

priate to express its age, where 7 (1, x) =? (0, 1 - s) for 4Neu = 0. When we 

try to apply these formulae to actual situations, one difficulty that we encounter 
is that we cannot know which of these two alternative events has actually oc- 
curred. However, we can attach a probability statement to them (as pointed out 
to us by the referee). Namely, the probabilities of these two alternative events 
(assuming no further mutation) are 1 - x and x, respectively. This follows from 
the consideration that probability is p / x  that a mutant allele with initial fre- 
quency p subsequently reaches a higher frequency x bdore it is either lost from 
the population or fixed in it. Similarly the probability is p / (  1 - s) that the fre- 
quency of the allele decreases to x. 

We have also studied the effect of further mutation on the age of neutral alleles 
and have found that the effect is relatively minor if 4Nev is small (see Figure 1 ) .  

These results should be compared with the mean first arrival time, that is, the 
average number of generations until a neutral allele reaches frequency x for the 
first time starting from a lower frequency p .  This is given by 

J 

1 T 

At the limit p .+ 0, this reduces to 

When s is much smaller than unity, we have 

$0) =: 4Nex.  (17) 

Equation (15) is a special case of a more general equation (Al)  which can 
hold when the mutant is selected as well as when it is neutral (see APPENDIX). 

In Figure 4, the mean age $0, s) and the mean first arrival time FE(0) are 
plotted for frequencies up to 0.1. From the figure it may be seen that expected age 
of a neutral mutant whose current frequency is 10% is roughly equal to the ef- 
fective population size, Ne,  and it is about five times the corresponding first ar- 
rival time. The standard deviation of the age is roughly 1.4Ne which is slightly 
larger than the mean. Since the expected age of a neutral mutant whose fre- 
quency is 50% is about 2.8Ne generations (see Figure l ) ,  this example suggests 
that even “rare” polymorphic alleles whose current frequencies are a few percent 
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FIGURE 4.-Comparison between the average age (solid line) and the 
time (broken line). The abscissae represent frequencies and the ordinates 
generations. 

average first arrival 
the ages or times in 

have quite old ages if they are neutral and if the population is very large. In fact, 
a neutral allele whose frequency is only 3.5 % has the expected age of about half 
the population size, i.e. 0.5Ne if it has increased from a very low frequency. 
Furthermore, if this allele happens to be the remnant of a previously fixed allele, 
expected age becomes still larger. In general, we can make the following probabil- 
ity statement regarding these alternative events (as suggested to us by DR. ALAN 
ROBERTSON) : If 4N,v is small so that there are never more than two alleles segre- 
gating simultaneously, the probability that the allele with frequency x has in- 
creased from a very small frequency is 1 - x, while that it has decreased from a 
previously fixed state is x. This means that if we combine these two alternative 
possibilities, the average age of the polymorphism with two alleles segregating 
with respective frequencies of x and 1 -xis 

-4Iv,{xlog,x + (1 - x) log, ( 1 - s) }. 

One additional property of neutral alleles which may be of interest from a 
mathematical standpoint is that the average age of a mutant allele having cur- 
rent frequency x (assuming p = 0) is equal to the average time until extinction 
of the same allele (excluding the cases of its eventual fixation). This may be evi- 
dent by comparing equation (1 3 )  of this paper with equation (1 6) of KIMURA 
and OHTA (1969a). The same applies to the mean square age, as may be seen 
by comparing equation (14) of this paper with equation (A7) of KIMURA and 
OHTA ( 196913). 

Let us now consider the bearing of the present findings on the spatial pattern 
of genetic variation. Here we are particularly concerned with the question: how 
much migration is required to keep the frequencies of a “rare” polymorphic al- 
lele essentially uniform among localities when the allele is selectively neutral? 
First, consider a one-dimensional habitat forming a circle of radius r. Let N T  be 
the total number of breeding individuals in one generation and assume that they 
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are distributed uniformly with density S so that N ,  = 2xrS. If we denote by u2 
the mean square distance of individual migration (assumed to be isotropic) in 
one generation, then the distance of migration during t generations should follow 
the normal distribution with mean zero and variance uZt = tu2 when t is large. If 
the abscissa of this distribution is wrapped around the circle of radius err, and if 
the resulting (superimposed) probability distribution on the circle is approxi- 
mately uniform, then the frequencies among localities of a mutant allele having 
age t will become essentially uniform. On the other hand, if the superimposed 
probability distribution on the circle markedly deviates from the uniform dis- 
tribution, clear local differentiation of allelic frequencies should result. Figure 5 
illustrates two such contrasting cases ( x r  = ut and Tr = 30,) together with an 
intermediate case ( x r  = 2ut). 

If we substitute t ( 0 ,  s) for t in the above reasoning and if we note that the 
superimposed distribution is essentially uniform when 

xr  5 u t ,  (18) 
then we obtain 

as a condition for the uniform distribution of allelic frequencies among localities. 
Next, we consider a two-dimensional habitat extending over a sphere of radius 

r.  Let us assume that the individuals are distributed uniformly with density 6. 
Let u2 be the mean square distance of individual migration in one generation, and 

ar = U 

o.oo 0*5* nr znr 

I 
lm 2nr 

0.0; 

FIGURE 5.-Diagrams illustrating the frequency distribution produced by wrapping one- 
dimensional normal distributior, around a circle of radius r for three cases ar = U, 2u and 3a. 
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assume that the migration is isotropic. Wrapping the sphere by the two-dimen- 
sional normal distribution for the distance of migration in t generations and con- 
sidering the resulting probability distribution on the sphere similar to the one 
considered above, the condition (1 8) leads to 

7 r N T  5 482t (20) 
for the two-dimensional case, since N r  = 48r28 in this case. 

For a mutant allele whose average frequency in the whole population happens 
to be 0.1, the condition for uniform distribution reduces roughly to 

2 6  2 1 (21 ) 
if we put t = t(0,o.l)  

If the total population is subdivided into colonies (subpopulations) in each of 
which the mating is at random, and migration in one generation is restricted to 
neighboring colonies (two-dimensional stepping stone model, cf. KIMURA and 
WEISS 1964), condition (21 ) becomes 

“ 2 - 1 ,  (22)  
where m is the rate at which each colony exchanges individuals with four sur- 
rounding colonies each generation and N is the effective size of each colony. How- 
ever, since the age t ( 0 ,  z) at x = 0.1 has a relatively large standard deviation, it 
may be safer to use the first arrival time (0) at x = 0.1 for t in (20) to derive 
the required condition. This leads approximately to 

“25, (23) 
These results agree essentially with those obtained by KIMURA and MARUYAMA 
(1971) based on an entirely different method. For a neutral mutant having 
x = 0.05, the corresponding formula becomes approximately 

N ,  in (20).  

” 2 IO. (24) 

This means that uniform distribution of frequencies among colonies can be at- 
tained if exchange of at least 2.5 individuals occurs on the average between two 
neighboring colonies per generation irrespective of the size of each colony. Thus 
we conclude that when the average frequency of a “rare” polymorphic allele is a 
few percent in the whole population, its frequencies among different localities are 
expected to be essentially uniform if the allele is selectively neutral and if there 
is migration of a few individuals on the average between adjacent colonies each 
generation. It is possible that in many Drosophila species, with their enormous 
population size and with their high individual mobility in addition to the pos- 
sibility of long range migration by airborne individuals, virtual panmixia are 
usually attained even if subpopulations are very far apart. 

In addition, the associative overdominance at a neutral locus caused by linked 
selected loci (cf. OHTA and KIMURA 1970, 1971; OHTA 1971) will contribute at 
least partly to keep the distribution of the neutral alleles uniform among locali- 
ties. The reason for this is that the associative overdominance creates a sort of 
inertia so that whenever a local frequency is temporarily disturbed it tends to go 
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back to the original frequency, although there are no definite equilibrium fre- 
quencies for the neutral allele to settle on the long term basis (OHTA 1973). 

PRAKASH, LEWONTIN and HUBBY (1969), in their studies on the pattern of 
genetic variation among subpopulations of Drosophila pseudoobscura, rejected 
the model of neutral isoalleles on the ground that frequencies of rarer alleles at 
several loci (such as malic dehydrogenase locus) are essentially identical among 
widely separated subpopulations, and that the isoallelic hypothesis cannot ex- 
plain such identical allelic configurations. We hope that the above treatment has 
made it clear that their observations are not incompatible with our neutral mu- 
tation-random drift hypothesis of molecular polymorphisms. 

Also we would like to point out that if the observed uniformity of the frequen- 
cies of rare alleles among localities is due to weak “balancing selection” rather 
than migration, the effective size of the local population (not the whole species) 
has to be probably at least the order of a million, not mentioning the fact that the 
selection coefficients have to be equal among localities. This is because, as first 
discovered by ROBERTSON (1962) for overdominant alleles, the balancing selec- 
tion actually accelerates fixation rather than retards it if the equilibrium frequen- 
cies lie outside the range 0.2-0.8 unless N e  (sl + sz) is very large, where s1 and 
sz are the selection coefficients against the two homozygotes. In fact, if the equi- 
librium frequency is 5%,  N e  (sl -I- s s )  has to be about 2100 in order to retard 
fixation by a factor of 100 as compared with the completely neutral case (see also 
CROW and KIMURA 1970, p. 414). 

We would like to thank DR. ALAN ROBERTSON for constructive criticism. 

APPENDIX 

A general formula for the auerage number of generations until a mutant 
allele first reaches a frequency x starting from a lower 

frequency p (the mean “first arriual time”) 

Let and V,$ be, respectively, the mean and the variance of the change in 
one generation of the frequency of a mutant allele having frequency x. We 
assume that the stochastic process of change in gene frequency is time homogen- 
ous-in other words, the selection coefficient of the mutant remains constant 
with time even if it may be frequency-dependent. 

Then it can be shown using the diffusion equation method that the average 
number of generations until the mutant reaches frequency x for the first time 
starting a lower frequency p is given by 

where 

2E G(h)dh  
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When x = 1, Ya(p) reduces to Y l ( p )  (the average time until fixation) given by 
KIMURA and OHTA (1969a). Also, in the special case of no selection (neutral 
allele), M 0 and V,?, = x ( 1 - x) / ( 2 N e ) ,  so that (A1 ) reduces to 

where N e  is the “variance” effective size of the population. 
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