
M
any systems of primary interest

in biology and in engineering

can be seen as analog networks.

An analog network (figure 1) is composed

of a collection of nodes representing

devices and a collection of directed or

undirected links connecting the devices

and having a connection strength repre-

sented by a numerical value. To illustrate

the idea of analog networks and explain

the practical importance of their automat-

ed synthesis and reverse engineering, we

consider three examples: analog electron-

ic circuits, artificial neural networks, and

genetic regulatory networks.

An analog electronic circuit is a collec-

tion of interconnected electronic devices

such as transistors, diodes, capacitors, and

resistors (figure 2). The purpose of an ana-

log electronic circuit is the production and

processing of electrical signals whose

amplitude can vary continuously in time.

This is opposed to digital circuits, which

process signals whose amplitude is dis-

cretized. Despite a steady trend towards

the substitution of analog with digital sig-

nal processing, analog circuits maintain a

crucial role in electronic design. For exam-

ple, in many applications, analog elec-

tronic circuits are required in order to con-

nect digital circuits to continuous input

and output signals; these analog circuits

have a profound impact on overall system

performance. There is therefore a well-

founded interest in the automation of the

design of analog electronic circuits. How-

ever, analog design has proved much more

difficult to automate than digital design.

To understand the nature of this difficul-

ty, one must consider that the function

realized by an electronic circuit is deter-

mined by two aspects: its topology and its

sizing.

The topology of a circuit refers to the

nature of the devices that compose the

circuit and how they are connected

together. The sizing of a circuit refers to

the values of the numerical parameters

that characterize the devices and links. An

example of a numerical parameter of a

device is the capacitance of a capacitor. As

mentioned above, the numerical parame-

ter associated with a link corresponds to

the interaction strength between the

devices it connects. In the case of elec-

tronic circuits, the interaction strength

between two devices is inversely propor-

tional to the resistance between them. A

zero resistance value corresponds to a

direct connection and realizes the maxi-

mum connection strength. An infinite

resistance corresponds to the absence of a

link connecting the two devices. All other

resistance values correspond to the pres-

ence of a link with a resistor between the

devices and realize intermediate connec-

tion strengths. In digital circuits, only the

two extreme values of connection

strength are used to connect the devices

(for example, logic gates) that constitute

the circuit. In analog electronic circuits, in

contrast, a large variety of connection

strengths are typically required to achieve

the intended functionality. This means

that, compared to a digital designer, an

analog designer must take into account a

Articles

FALL 2008 63Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

The Age of

Analog Networks

Claudio Mattiussi, Daniel Marbach,

Peter Dürr, and Dario Floreano

� A large class of systems of biological

and technological relevance can be

described as analog networks, that is, col-

lections of dynamic devices interconnected

by links of varying strength. Some exam-

ples of analog networks are genetic regula-

tory networks, metabolic networks, neural

networks, analog electronic circuits, and

control systems. Analog networks are typ-

ically complex systems that include non-

linear feedback loops and possess tempo-

ral dynamics at different time scales. Both

the synthesis and reverse engineering of

analog networks are recognized as knowl-

edge-intensive activities, for which few

systematic techniques exist. In this paper

we will discuss the general relevance of the

analog network concept and describe an

evolutionary approach to the automatic

synthesis and the reverse engineering of

analog networks. The proposed approach

is called analog genetic encoding (AGE)

and realizes an implicit genetic encoding

of analog networks. AGE permits the evo-

lution of human-competitive solutions to

real-world analog network design and

identification problems. This is illustrated

by some examples of application to the

design of electronic circuits, control sys-

tems, learning neural architectures, and

the reverse engineering of biological net-

works.

much larger variety of possible interactions

between a larger variety of parameterized devices

that can potentially compose a circuit.

A similar situation holds in the field of artificial

neural networks (ANNs). An ANN is a collection of

interconnected nodes called artificial neurons,

which are loosely inspired by models of biological

neurons. Each artificial neuron realizes an input-

output function that depends on a set of numeri-

cal parameters called weights and, possibly, some

additional parameters (figure 3). Similarly to elec-

tronic circuits, the purpose of ANNs is the produc-

tion and processing of signals. For example, an

ANN might take as input the signal generated by a

set of biometric sensors and be required to produce

as output an estimate of the level of sleepiness of

the person wearing the sensors. ANNs find appli-

cation in numerous areas of great practical impor-

tance such as pattern recognition for medical

applications, robot learning, and industrial process

control. The difference between ANNs and analog

electronic circuits is that, in ANNs, the links

between devices are directed, and that artificial

neurons are typically abstract computational

devices implemented on a computer rather than

actual physical devices. Several kinds of artificial

neuron devices can be defined, including excitato-

ry, inhibitory, and neuromodulatory, with linear or

nonlinear input-output relationship, and with or

without internal memory.

The functionality of an ANN, like that of an elec-

tronic circuit, is determined by its topology (also

called its architecture)—that is, by the kind of artifi-

cial neurons that compose the network and their

connectivity—and by its sizing—that is, the values

of the parameters of the network. Apart from the

directed nature of the ANN links, the weights of an

ANN play a role that is analogous to the role of the

reciprocal of the resistance between the devices

that compose an electronic circuit. They define the

strength of the directed connection between the

outputs and the inputs of the neurons that com-

pose the network. A null weight corresponds to the

absence of a connection; larger weights correspond

to stronger connections between an output and an

input. For reasons similar to those mentioned for

analog electronic circuits, the design of ANNs is a

difficult task. To reduce this difficulty, the typical

approach is to consider the networks as composed

of just one kind of neuron and to assign a fixed

topology, thereby limiting the design to the choice

of the network sizing. However, these limitations

considerably reduce the learning power of ANNs

(Baum 1989).

Genetic regulatory networks (GRNs), which are

the basic control and computational systems of

biological cells (Bray 1995), are another example of

analog networks. They are composed of a collec-

tion of interacting genes. A gene can be loosely

defined as a fragment of the genome of a cell that

can be activated to initiate the production of mol-

ecules such as RNA and proteins. The rate of this

production activity is denoted as the level of expres-

sion of a gene. The rate of expression of a gene can

be controlled by molecules produced externally of

the cell and by the molecules produced by the

genes themselves. Thus, genes can be seen as

devices whose inputs are the concentrations of the

molecules that can influence the activation of the

Articles

64 AI MAGAZINE

links

devices

Figure 1. Analog Network.

An analog network is a collection of devices—represented here by the circles—

connected by links of varying strength—represented here as lines of varying

thickness between the devices.

Vdc

R2

C1
R6

R1

S

Vin

RLC3

C2

Q1

R5

R4

Figure 2. A Schematic Drawing Showing an
Example of an Analog Electronic Circuit.

The circuit can be seen as a network of nonresistive devices (represented here

with a shaded background) connected by resistive links.

gene and whose output is the level of expression

of the gene. Abstracting all the molecular details of

the production of the molecules and of their inter-

action with the genome, one can represent the col-

lection of interacting genes as a network whose

nodes are the genes. The influence of the level of

activation of a gene on that of another gene is rep-

resented by a numerical value associated with a

link connecting the two nodes representing the

genes (figure 4) (Stormo and Zhao 2007). Thus, in

this simplified view, the topology of a GRN is giv-

en by the kind of genes that compose the network

and their connectivity, and the sizing is defined by

the strength of the interaction between the genes

and possibly other numerical parameters defining

the dynamics of the genes.

To understand and control the working of a cell,

it is necessary to construct a model of its GRN, or

of subnetworks that control some specific func-

tions. Practical applications of GRN modeling

include the understanding of genetically related

diseases and drug design. The model can be

inferred from the data resulting from the observa-

tion (for example, using DNA microarray chips) of

the levels of activation of the genes in various cir-

cumstances, which can include the perturbation of

the network, of the external inputs, and of the sig-

nals exchanged by the nodes. The inference of the

topology and sizing of a GRN from these observa-

tions corresponds to a process of reverse engineering

of the network (figure 5). Given the complexity of

GRNs this process typically requires the help of a

computer-based reverse-engineering tool.

Reverse engineering has a long history in tradi-

tional engineering disciplines (Ljung 1999)—for

example, to understand a competitor’s products—

but has only recently become popular in biology

(Bolouri and Davidson 2002). Indeed, biologists

have typically applied a forward engineering

approach, where the components of a system are

studied in great detail and models are built bot-

tom-up, based on an understanding of the indi-

vidual parts and mechanisms (Lazebnik 2002).

This approach becomes increasingly difficult when

applied to complex analog networks such as gene

regulatory networks. Substantial advances in

experimental technology are currently boosting

research in reverse engineering of biological net-

works. Moreover, the advent of genetic engineering

and synthetic biology (Endy 2005) opened the way

to the alteration of existing functionality and to

the integration of new functionalities in GRNs.

This corresponds to an activity of design of GRNs

with complexity and potential impact analogous

to that described above for analog electronic cir-

cuits and ANNs.

Other examples, such as cellular metabolic net-

works and control systems, can be described

according to the same basic analog network

scheme that applies to analog electronic circuits,

ANNs, and GRNs. The preceding examples suggest

that, in general, the synthesis and reverse engi-

neering of analog networks are complex problems

of great practical relevance, for which few auto-

matic techniques exist. The identification of the

common structure of an analog network in these

systems means that we can adopt a common

approach to the automation of their synthesis and

reverse engineering.

Articles

FALL 2008 65

inputs

outputs

Figure 3. An Example of an Artificial Neural Network.

The network can be seen as a collection of nodes connected by directed links

whose strength is represented by numerical values called weights.

genes

......

regulatory
interactions

Figure 4. A Schematic Representation of a Genetic Regulatory Network.

The genes correspond to the nodes of a network and interact through links of

varying strength, which represent the regulatory interactions between the

genes.

Automatic Synthesis and Reverse
Engineering of Analog Networks

The effective automation of the design and reverse
engineering of analog networks requires a search
algorithm capable of exploring a solution space
composed of analog networks of arbitrary topolo-
gy and sizing. This means that the search algo-
rithm must be endowed with (1) a way to represent
the devices that enter the network, their connec-
tivity, and the values of the network parameters
and (2) a way to generate new tentative solutions
using the information represented by the networks
examined in the past search history. Evolutionary
algorithms appear to be good candidates for this
task, due to the flexibility of the representation

and their potential for exploring the search space

(see the Evolutionary Algorithms sidebar for a

short description).

The simplest approach to the genetic represen-

tation of analog networks is the explicit encoding

of all the devices, links, and parameters of the net-

work. This approach, known as direct encoding, has

the advantage of leading to genomes that are very

easy to decode into the corresponding analog net-

work (Yao 1999; Stanley and Miikkulainen 2002;

Zebulum, Vellasco, and Pacheco 2000). The draw-

back is the rapid growth of the length and com-

plexity of the genome with the size of the network,

due to the necessity of encoding explicitly all the

network connections and their strength, which

affects the evolvability.

Articles

66 AI MAGAZINE

a. Unknown GRN Regulatory interactions

genes

b. Experimental Data

microarray

c. Reverse engineered GRN

Figure 5. A Schematic Representation of the Process of Reverse Engineering for a Genetic Regulatory Network.

An alternative and potentially very compact

genetic representation of analog networks can be

obtained using a strategy called developmental

encoding. An example of developmental encoding

is constituted by genetic programming (Gruau 1994,

Miller and Thomson 2000, Koza et al. 2003).

Genetic programming uses as genetic representa-

tion a sequence of instructions that can be used to

build the network by performing a series of succes-

sive alterations of the network topology and sizing,

starting from an elementary network called an

embryo. One of the challenges of genetic pro-

gramming is the necessity for the user to define a

suitable set of network-modifying instructions.

This set must be rich enough that all possible net-

works of interest can be produced. At the same

time, one must craft the instructions and the

mutation operators so as to ensure that only valid

network-building programs are generated during

the search. This means that for each different kind

of analog network one must face the nontrivial

task of designing a suitable set of network-modify-

ing instructions. Note, however, that genetic pro-

gramming is a powerful general-purpose approach

to the representation and evolution of many kinds

of complex structures and is not especially target-

ed to analog networks. Thus, it cannot be expect-

ed to be particularly suited to the evolution of ana-

log networks.

In this article, we describe a new approach to the

genetic representation and artificial evolution of

analog networks and illustrate it with some exam-

ples taken from the domains considered in the

introduction. This new approach is called analog

genetic encoding (AGE) and realizes a compact and

highly evolvable implicit encoding of analog net-

works. AGE was developed having in mind the

whole class of analog networks. Thus, contrary to

existing techniques for the analysis and synthesis

of analog networks, which typically require a sub-

stantial effort of adaptation to each specific kind of

analog network, AGE can be applied effortlessly to

any kind of analog network. This means in partic-

ular that it is possible to realize a general automat-

ic synthesis and analysis tool for this whole class of

networks, and that the whole class can benefit

from the advances and experience gained with

each specific kind of network. As explained in

more detail below, besides the advantage consti-

tuted by its generality, AGE has the characteristic

of being very effective as a synthesis and analysis

tool, producing results that are comparable or bet-

ter than those produced by the existing specialized

techniques.

Articles

FALL 2008 67

a. Biological GRNs translation protein

molecular machine
regulation

binding
transcription

DNA

promoter coding region terminator regulatory region noncoding

AGE
Genome

tokens

interaction map

noncodingregulatory regionnoncodingcoding region

mRNA

b. The AGE Abstraction

Figure 6. AGE Abstracts the Mechanism of Interaction between Genes Observed in Biological GRNs.

a. In biological GRNs, the link between genes is realized by molecules that are synthesized from the coding region of one gene and inter-

act with the regulatory region of another gene. b. AGE abstracts this mechanism with an interaction map that transforms the coding and

regulatory regions into a numerical value that represents the strength of the link.

Analog Genetic Encoding

AGE is loosely inspired by the working of biologi-

cal GRNs. In biological GRNs, the interactions

between the genes is not explicitly encoded in the

genome but follows implicitly from the physical

and chemical environment in which the genome

is immersed. The activation of a biological gene

depends on the interaction of molecules present in

the vicinity of the gene with parts of the gene

called regulatory regions (figure 6a). These are

sequences of characters from the genetic alphabet

to which the molecules can bind to promote or

hinder the working of specialized molecular

machinery that is in charge of expressing the gene.

The expression of the gene corresponds to the

scanning of another sequence of genetic charac-

ters, called coding region, in order to synthesize the

molecules that are the products of the gene activa-

tion. The start and end of the coding region of a

gene are marked by special sequences of characters

from the genetic alphabet, called promoter and ter-

minator regions. The molecules produced by a gene

can in turn interact with the regulatory regions of

other genes and influence their activation.

AGE abstracts and extends these GRN concepts

to obtain a genetic representation that applies to

generic analog networks. The AGE genome is com-

posed of sequences of characters from a suitable

alphabet, for example, the uppercase ASCII set. As

in GRNs, devices are represented in the AGE

genome by assemblies composed of two kinds of

sequences of characters (figure 6b). The first kind of

sequences is called token. Tokens play the role of

markers and delimiters analogous to that played in

biological GRNs by promoter and terminator

regions. The second kind of sequences plays a role

analogous to that played in biological GRNs by

regulatory and coding regions. The strength of the

interaction between two devices is implicitly deter-

mined by the second kind of sequence through a

function called the interaction map. The interaction

map takes as arguments two sequences of charac-

ters and produces a numeric value representing the

strength of the interaction between two devices. In

summary, decoding the AGE genome involves the

identification of valid devices (which must be cor-

rectly delimited by the corresponding tokens) and

the subsequent application of the interaction map

to all pairs of coding and regulatory sequences. The

interaction strength between two sequences may

be zero, in which case there is no regulatory link

between the two devices. Hence, the size of the

decoded network is given by the number of devices

in the genome and the topology and sizing follow

from the computed interaction strengths. Further

details on the encoding and the interaction map

and a description of the method used to represent

parameter values can be found in our previous

work (Mattiussi 2005; Mattiussi and Floreano

2007; Mattiussi, Dürr, and Floreano 2007; Dürr,

Mattiussi, and Floreano 2006; Marbach, Mattiussi,

and Floreano 2007).

In general, an analog network performs its func-

tion by taking input signals from a predefined set

of external input and delivering output signals to

a predefined set of external outputs. For example,

an analog electronic circuit may be required to

amplify the signal produced by a signal source and

deliver the amplified signal to a loudspeaker. To let

evolution establish the connections between the

evolved analog network and the external input

and outputs, AGE uses a special kind of device

called a transducer (figure 7). A transducer is a

device that can be connected by the interaction

map both to devices of the evolved circuit and to

the external inputs and outputs. This establishes a

bridge between the external inputs and outputs

and the evolved analog network.

Some Properties of AGE

Let us briefly review some of the properties of AGE

as a representation for analog networks in an evo-

lutionary process.

First, AGE permits an easy adaptation of the evo-

lutionary environment to arbitrary kinds of analog

networks. To set up an evolutionary run, the user

Articles

68 AI MAGAZINE

external inputs

and outputs

transducer

Figure 7. The Connection between the Evolved Analog Network
and Inputs and Outputs.

In AGE, the connection between the evolved analog network and the prede-

fined external inputs and outputs is realized using specialized devices called

transducers, which can connect to the devices of the evolved network and to

the external inputs and outputs.

of AGE needs to define just the external inputs and

outputs and the characteristics of the various kinds

of devices that can appear in the network. There is

no need to tailor the genetic operators to the par-

ticular type of analog network of interest.

Mimicking biological GRNs, AGE encodes the

interaction between the devices that form the net-

work implicitly. This has the advantage of reducing

the number of elements that must be encoded in

the genome with respect to direct encodings. For

example, the resistors appearing in the circuit rep-

resented in figure 2 will not explicitly appear as

devices in an AGE encoding of this circuit. An

important feature of the implicit encoding is that

a single mutation can have several effects on the

network structure. This may provide an advantage

in terms of evolvability at the initial steps of the

search by letting the evolution probe simultane-

ously the effect of many interactions. However,

this may constitute a problem at later stages of the

search, because a single mutation that simultane-

ously perturbs many interactions may hinder their

separate optimization. To mitigate this potential

difficulty, the device interaction map has been

defined so as to allow a single sequence of charac-

ters to determine several noninterfering interac-

tions with several distinct devices. Moreover, it is

possible to implement a mechanism that lets evo-

lution selectively silence some interactions. For

further details on these points see Mattiussi (2005).

Most artificial genetic encodings constrain the

genomes to maintain a fixed structure and admit a

small number of genetic operators in order to

remain decodable. In AGE, the sequences that

define the interaction between devices can have

variable length, and the interaction map that is

used to establish the connection between devices is

defined so as to apply to sequences of arbitrary

length. The assemblies of sequences of characters

that represent a device can be located anywhere in

the genome and can be spaced by stretches of non-

coding genetic characters. In this way the structure

of the genome is not unduly constrained and tol-

erates a large class of genetic operators, which can

alter both the topology and the sizing of the

encoded network. In particular, the AGE genome

permits the insertion, deletion, and substitution of

single characters and the insertion, deletion, dupli-

cation, and transposition of whole genome frag-

ments. All these genetic mutations are known to

occur in biological genomes and to be instrumen-

tal to their evolution. In particular, gene duplica-

tion and the insertion of fragments of genome of

foreign organisms are deemed to be crucial mech-

anisms for the evolutionary increase of complexi-

ty of GRNs (Shapiro 2005). Finally, the interaction

map is defined so as to be highly redundant, so

that many different pairs of character sequences

produce the same numeric value. Thus, many

mutations have no effect, resulting potentially in a

high neutrality in the search space (see the Evolu-

tionary Algorithms sidebar).

With AGE, the number of devices that compose

the evolved networks is free to either increase or

decrease during evolution. Genetic operations

such as genome duplication can increase the num-

ber of devices, but operations such as substitution

and deletion of genome fragments can disrupt the

structure representing a device and thus remove it

from the encoded analog network. In the experi-

ments described below we have often observed

that a compact network realizing the required

functionality is obtained through intermediate

stages involving larger networks. Presumably, the

larger networks realize an easier evolutionary path

towards the solution network, which, once pro-

duced, is simplified by evolution in order to

increase its robustness to genetic mutations.

Another important feature of AGE is that it does

not assign the connections between the external

inputs and outputs and the evolved analog net-

work but lets evolution establish them. Thus, the

search process is free to discover the subset of

external inputs and outputs that are actually need-

ed to produce the required functionality. The iden-

tification of the subset of inputs and outputs that

are actually relevant to the task corresponds to a

process of automatic feature selection.

Although it does not require it, AGE permits the

incorporation of expert knowledge into the search

process. One way to do this is to seed the initial

population with networks that are known to solve

a problem or subproblem that is similar to the goal

of the search. Another way is to include in the set

of devices that can be used in the network, sub-

networks that are known to be useful in the con-

text of the given problem.

Applications and Examples

We now present a series of examples of synthesis

and reverse engineering of analog networks using

AGE. We will focus the discussion on the charac-

teristics and relevance of the problems considered

and on the properties of the evolved networks.

Detailed information about the working of the

evolved networks, the computational effort

required to obtain the solutions, and comparisons

with alternative techniques can be found in the

original papers cited in the context of each exam-

ple. For example, Mattiussi and Floreano (2007)

compare the computational effort, the circuit per-

formance, and the circuit complexity resulting

from the application of AGE and genetic program-

ming to three analog electronic design problems,

whereas Dürr, Mattiussi, and Floreano (2006) com-

pares the computational effort and generalization

properties resulting from the application of AGE

Articles

FALL 2008 69

and three other techniques for the automatic syn-

thesis of ANNs to the design of a neural controller

for the pole balancing problem described below.

Here we note just that the required computational

effort and the quality of the results compare well

with those of the best existing techniques for the

automatic synthesis and reverse engineering of

analog networks. The experiments described below

did not incorporate expert knowledge in the search

and started from a population of individuals whose

genomes contained a small collection of random-

ly generated device descriptors.

Synthesis of Electronic Circuits

To exemplify the automatic design of analog elec-

tronic circuits using AGE. we consider the synthe-

sis of a temperature sensing circuit (Mattiussi and

Floreano 2007). This is a problem of considerable

practical importance, as temperature management

is a critical issue in many applications and inte-

grated temperature sensors are embedded in a

growing number of systems.

To set up the search process, we have assigned

two voltage supplies and a load resistor as prede-

fined external devices (the devices drawn outside

of the dashed box in figure 8). We have also

assigned two types of bipolar transistors of oppo-

site polarity as the set of devices that can be used

to build the circuit. The goal of the synthesis is a

circuit producing across the 10kΩ external resis-

tor an output voltage that is proportional to the

circuit temperature T in the range 0 degrees Cel-

sius ≤ T ≤ 100 degrees Celsius, with null output

voltage for T = 0 degrees Celsius and an output

voltage of 10V for T = 100 degrees Celsius. The

quality of a circuit is defined as the sum of the

squared discrepancies between the actual and

desired output of the circuit for 21 equispaced

values of temperature in the range of interest. To

evaluate the quality of the circuits produced dur-

ing the evolutionary search we have used the cir-

cuit simulator SPICE, which is available in the

public domain (Vladimirescu 1994).

Figure 8 shows an example of a circuit found by

the evolutionary algorithm. The relationship

between temperature and output voltage of the cir-

cuit is shown in figure 9 and matches closely the

desired linear relationship in the whole tempera-

ture range, with just a small deviation at T = 0

degrees Celsius.

Synthesis of Neural Controllers

To illustrate the application of AGE to the design of

ANNs we describe now the synthesis of a neural

controller (Dürr, Mattiussi, and Floreano 2006).

The objective of the synthesis is a controller solv-

ing the double pole balancing problem without

velocity information (figure 10). This is a standard

benchmark problem used in the synthesis of neu-

rocontrollers (Gruau 1994; Stanley and Miikku-

lainen 2002). Despite its apparent simplicity, it is a

challenging problem that is related to interesting

real-world applications such as the control of rock-

et stability.

As neuron devices for the AGE synthesis, we

have chosen the dynamical neuron model

described in Beer (1995). The reason for this

choice is that, with suitable topology and sizing,

a network of these devices can approximate arbi-

trarily well the trajectories of any smooth

dynamic system for a finite interval of time. This

ensures that if there is a smooth dynamic system

that can solve the problem, the space of ANNs

having these devices as nodes also contains a

solution. To evaluate the quality of the solution,

we computed the time that the evolved con-

troller can keep the cart within given limits start-

ing from given initial conditions. In addition,

controllers that succeed in stabilizing the system

for a certain time are evaluated with a set of dif-

ferent initial conditions in order to test their abil-

ity to generalize.

Figure 11 shows an example of ANN synthe-

sized with AGE. Solutions found by AGE are typi-

cally very compact, display excellent generaliza-

tion properties, and are obtained with a small

number of evaluations when compared with oth-

er state-of-the art methods for the synthesis of

neurocontrollers (Dürr, Mattiussi, and Floreano

2006).

Articles

70 AI MAGAZINE

BC856

23.7k

BC846

1k

15V

5V

1k

3
4
5
k

3
9
.9

k
5
7
.2

k

6
.4

7
k

1
7
8
k

1
0
0
k

1
7
.8

k

1
0
k

Figure 8. An Example of a Temperature-Sensing Circuit Automatically
Designed Using AGE.

The predefined external devices are drawn outside of the dashed line.

Synthesis of Learning
Neural Architectures

Most biological organisms are able to cope with

complex and partially unpredictable environ-

ments. There is an obvious interest in the develop-

ment of artificial agents capable to operate with

the flexibility of biological organisms. Such agents

could find application, for example, as

autonomous robots for household and industrial

tasks.

To date, using sets of coordinated prewired

behavioral strategies, it has been possible to design

autonomous agents such as floor cleaners and lawn

mowers that are capable of dealing with tasks and

environments of limited complexity. More flexible

agents could be obtained using a learning mecha-

nism capable of improving the performance of the

agent based on the agent’s past experience of inter-

action with the environment. An approach that

looks particularly promising for the realization of

this idea is based on the integration of a value sys-
tem in the control system of the agent (Friston et

al. 1994, Pfeifer and Scheier 2001). The value sys-

tem would link the learning to the consequences

of the agent’s behavior judged according to its

Articles

FALL 2008 71

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

temperature °C()

O
u
tp

u
t

V
o
lt

ag
e
 (

V
)

Figure 9. Relationship between Temperature and Output Voltage.

The circles show the output voltage of the evolved circuit shown in figure 8

for the set of circuit temperatures at which the circuit was tested during evo-

lution. The background line represents the desired relationship.

l1

m1
θ1 l2

θ2

m2

mc

Fx

x

Figure 10. The Mechanical Setup of the Double Pole Balancing Problem without Velocity Information.

The setup consists of a cart with mass mc and one degree of freedom x. Two poles of different lengths l1 and l2 and masses m1 and m2 are

mounted on the cart with a rotational joint. The joint angles 1 and 2 as well as the position of the cart x are fed to a controller, which

computes a force Fx that is applied to the cart. The controller has to stabilize the system in order to keep the joint angles and the position

of the cart within given limits.

Articles

72 AI MAGAZINE

E
volutionary algorithms are a class
of population-based stochastic
search algorithms inspired by the

process of Darwinian evolution (Fogel,
Owens, and Walsh 1966; Holland
1975). An evolutionary algorithm
maintains a collection (population) of
tentative solutions called individuals.
The goal of the search is defined
through a user-defined measure of the
quality of the individuals. The algo-
rithm is required to find in the search
space an individual with maximum
quality or—in a more realistic engineer-
ing perspective—an individual satisfy-
ing a predefined criterion of quality.
Typically, an initial population is gener-
ated by randomly sampling the search
space. At each step of the algorithm the
quality of the individuals that form the
population is evaluated and a subset of
the population (the parents) is selected
for reproduction. The selection mecha-
nism establishes a positive correlation
between the quality of an individual
and the number of new individuals (off-
spring) that it produces. The reproduc-
tion is carried out with some stochastic
mutation and recombination of the
parents in order to explore new regions
the search space and combine the infor-
mation carried by each parent. The
probability distribution with which the
offspring are generated in the search
space is called the current exploratory
distribution (Toussaint 2003). In so-
called generational evolutionary algo-
rithms, the old population is replaced
by a new population composed of the
newly formed individuals.

One peculiarity of evolutionary
algorithms with respect to other sto-
chastic search algorithms such as sim-
ulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983) is that in evolution-
ary algorithms the individuals are rep-
resented in the form of a genome,
which defines their genotype. The geno-
type representation is, in general, dis-
tinct from the form in which the indi-
viduals are represented in order to
assess their quality. To evaluate the
quality of an individual, its genotype
must be decoded into a different repre-

sentation called the phenotype. The
mutations and recombinations applied
during the reproduction, however, are
applied to the genotype using a collec-
tion of probabilistically applied genetic
operators that alter the genotype. This
decouples the space in which the
exploratory distribution is defined (the
genotype space) from that in which
the quality of the individuals is
assessed (the phenotype space). Note,
however, that the exploratory distribu-
tion in genotype space induces a corre-
sponding exploratory distribution in
the phenotype space.

An interesting consequence of the
decoupling produced by the genotype-
phenotype distinction arises when
many different genotypes correspond
to phenotypes having approximately
the same quality. If the properties of
the exploratory distributions allow the
traversal of this set of genotypes, the set
is called a neutral network. The existence
of neutral networks permits continuing
the exploration of the search space by
random genetic drift when the current
exploratory distribution does not pro-
vide access to individuals of improved
quality with respect to the existing
population. The probability of a
stalling of the search is thus reduced
because the drift on the neutral net-
work can eventually give access to
regions of the search space that contain
individuals of higher quality.

Readers familiar with Monte Carlo
methods (Robert and Casella 2004)
might have found many resonating
aspects in this description of evolu-
tionary algorithms. In fact, evolution-
ary algorithms can be seen as a partic-
ular class of population Monte Carlo
methods (Cappe et al. 2004) and the
description of the former can be
rephrased using the terminology of the
latter. The individuals of evolutionary
algorithms correspond to the particles
of population Monte Carlo methods.
The exploratory distribution in the
phenotype space of evolutionary algo-
rithms corresponds to the proposal dis-
tribution of population Monte Carlo
methods (Robert and Casella 2004).

When evolutionary algorithms use so-
called proportional selection, the proba-
bility of reproduction of the individu-
als corresponds to the normalized
importance weights of population
Monte Carlo methods. The selection
mechanism of evolutionary computa-
tion corresponds to the resampling
mechanism of population Monte Car-
lo methods. The reproduction with
mutation of the parents in evolution-
ary algorithms corresponds to the gen-
eration of new particles by sampling
the proposal distribution of the resam-
pled particles in population Monte
Carlo methods. Finally, the genotype-
phenotype distinction and the defini-
tion of the mutation in the genotype
space can be interpreted as a particular
way—specific to evolutionary algo-
rithms—to define and parameterize
the proposal distribution.

When population-based search
methods are capable to maintain a suf-
ficient population diversity (Mattiussi,
Waibel, and Floreano 2004), the search
space is explored in parallel by the
individuals of the population. Typical-
ly, the quality of each individual can
be evaluated independently from that
of the other individuals of the popula-
tion. This means that it is very easy to
parallelize the evaluation of the quali-
ty of individuals, which is in general
the most computationally expensive
part of the search. Due to technologi-
cal limitations, the increase in per-
formance of single processors “came to
a grinding halt” some years ago (Butler
2007). Consequently, the current trend
in processor design is to increase the
number of processing cores integrated
on each chip and thus increase the
global parallel processing capability
rather than the processing power of
each core. In this technological sce-
nario, the easy parallelizability of pop-
ulation-based search methods like evo-
lutionary algorithms is an additional
bonus of these methods.

Evolutionary Algorithms

intended function. The learning would be activat-

ed to increase the probability of execution in a giv-

en context of actions that have produced favorable

consequences in that context and to decrease the

probability of execution of actions that led to unfa-

vorable consequences.

The challenge in applying value-based learning

to agents operating in realistic environments is to

define a system architecture capable of estimating

accurately contexts and values and to link them to

the activation of the elements of a suitable reper-

toire of actions. A popular approach is to use a pre-

defined set of actions controlled by a predefined

system structure such as the actor-critic architec-

ture inspired by the machine-learning technique

of reinforcement learning (Sutton and Barto 1998).

This approach is typically implemented using

ANNs with hand-designed fixed structure, which

realize the sensory preprocessing, the value system,

and the action-selection mechanism. This puts on

the designer most of the burden of guessing the

correct structure of the value and action-selection

systems for the problem at hand.

There is evidence that in biological organisms,

evolved value-based learning systems are realized

through the use of neuromodulation (Bailey et al.

2000). Specialized neuromodulatory neurons in

the brain control activity-dependent plastic

changes in the strength of the connections

between other neurons. Applying this idea in the

context of the automatic synthesis of ANNs, it is

possible to bypass the difficulty of crafting the sys-

tem architecture in value-based learning systems.

It is very easy to set up AGE for the synthesis of

neuromodulatory ANNs. To this end, it is sufficient

to include in the set of neuron devices a neuron

model that realizes a parametrized activity-depen-

dent Hebbian learning (Niv et al. 2002) and a neu-

romodulatory neuron model that can connect to the

standard neurons and modulate their learning (fig-

ure 12).

We have applied this approach to the synthesis

of a learning neural architecture in a simulated for-

aging experiment (Soltoggio et al. 2007). In this

experiment a simulated bee can collect nectar by

landing on a field that contains two kinds of flow-

ers (figure 13). The amount of nectar delivered by

the flowers changes stochastically during the life-

time of the simulated bee. To maximize the

amount of collected nectar the behavioral strategy

must thus be adapted to the prevailing yield statis-

tics of each flower. Using AGE we were able to

evolve networks capable of maximizing the total

amount of collected nectar in various scenarios.

Figure 14 shows an example of a successfully

evolved neuromodulatory architecture. The value-

based learning strategy implemented by this and

other ANNs evolved with AGE is quite general and

can generalize to scenarios different from those

Articles

FALL 2008 73

θ
1

θ
2

x 1

F
x

Figure 11. An Example of ANN Synthesized with AGE
to Solve the Double Pole Balancing Problem.

Continuous arrows correspond to links with positive weight and dashed

arrows to negative weights. The input denoted by 1 provides a fixed-value

input (bias) to the network.

n
1 n

2

mod

Figure 12. Neuromodulatory Neurons Permit the Implementation of a
Value-Based Learning Mechanism in ANNs.

The basic learning mechanism changes the weight of the link between the

two neurons n1 and n2 according to their activity. The neuromodulatory neu-

ron, mod, modulates the basic learning mechanism and permits the synthesis

of networks where the learning is activated only in particular circumstances.

used to assess the quality of the solution during

evolution, outperforming the results obtained

with hand-designed value-based learning architec-

tures (Soltoggio et al. 2007).

Reverse Engineering of GRNs

In the previous sections, we have exemplified the

application of AGE to the synthesis of different

analog networks with prespecified functionalities.

We shall now discuss the inverse problem, that is,

unraveling an existing network with unknown

topology and sizing given some data collected

from observations of the network activity. This is

the reverse engineering problem discussed in the

introduction (see figure 5).

Setting up a reverse engineering experiment

with AGE is straightforward. As for the synthesis of

analog networks, the user first specifies the types
of devices that can appear in the network. In the
experiments discussed here, the devices are genes,
and their dynamics are described by a standard
phenomenological model of gene regulation, the
so-called sigmoid model (Bolouri and Davidson
2002). Next, the AGE user has to define a measure
of the quality of the evolved networks. Whereas in
a synthesis experiment this measure is related to
the desired network functionality, in reverse engi-
neering it corresponds to the quality of the match
between the gene expression data derived by sim-
ulating the evolved network and the gene expres-
sion data observed on the target network.

As a test case, we chose a nine-gene subnetwork
of the SOS pathway of the bacterium Escherichia
Coli. Using synthetic gene expression data from
simulated gene perturbation experiments, we have
successfully reverse-engineered both topology and
sizing of this target network with high accuracy
(Marbach, Mattiussi, and Floreano 2007). The
evolved network that displays the best match with
the gene expression data is shown in figure 15. The
figure shows that AGE was able to determine 79 of
the 81 possible links of the target network and to
estimate correctly their enhancing or inhibitory
nature. The discrepancy between the reverse-engi-
neered network and the target network consists of
one missing link (false negative) and one incor-
rectly identified link (false positive). Note that
although in this example we have considered a
network composed of just one type of device, it is
possible to use AGE to reverse-engineer heteroge-
neous networks consisting of several different
device types, such as gene-protein networks.

Discussion and Conclusion

Analog networks can realize complex functionali-
ties using compact networks of relatively simple
devices. This property follows from the possibility
of effectively exploiting the rich nonlinear dynam-
ics that can be generated by the interaction
between the individual devices that form the net-
work. When implemented in silicon, analog net-
works can realize impressive computational feats
using a very small amount of power (Mead 1989).
The price to pay for the remarkable compactness
and efficiency of analog networks is in general a
severe limitation of their programmability with
respect to systems where the interactions and
dynamics are constrained in order to achieve pro-
grammability (Conrad 1988). This is not a fatal
limitation for analog networks, because there is a
wealth of applications for which programmability
is not required whereas power consumption and
device count are critical factors.

The examples described in the previous section
show that AGE is a powerful method for the syn-
thesis and reverse engineering of analog networks,

Articles

74 AI MAGAZINE

G dG dB dY 1

B Y R L

mod

Figure 14. An Example of Neuromodulatory ANN Evolved with
AGE, Which Solves the Foraging Task of Figure 13.

The G, B, and Y squares represent the color inputs of the visual system. The R

square represents the reward input that gives the amount of nectar found on

the flower on which the simulated bee has landed. The landing is signaled by

the activation of the input L. The square denoted by 1 represents a fixed val-

ue input (bias), and the dG, dB, dY inputs represent the memory of the color

observed just before landing. The dG, dB, and dY input signals were defined

because they were used in experiments with hand-designed neural architec-

tures for the same scenario (Niv et al. 2002). The figure shows that these

inputs were found by the algorithm to be not necessary to solve the task and

were thus left unconnected at the end of the evolutionary search. In the net-

work shown here, the neuromodulatory mod neuron modulates the learning

of all the connections between the inputs and the output neuron.

Figure 13. A Simulated Foraging Experiment.

In the experiment of synthesis of learning neural architectures, a simulated

bee with a simple vision system flies over a field containing patches of blue

and yellow flowers, represented here as dark and light squares. The quality of

the behavior of the simulated bee is judged from the amount of nectar that

the bee is able to collect in a series of landings.

which has the unique property of being easily

adapted to various kinds of problems. In all cases

where the criterion is applicable and a comparison

is possible, AGE either outperforms or produces

results comparable to those obtained with the best

domain-specific methods for the automatic syn-

thesis and reverse engineering of analog networks

documented in the literature, from the point of

view of the functionality of the networks, their

size, and the required computational effort.

So far, the widespread use of analog networks

has been limited by the difficulty of their synthe-

sis by hand and by the dearth of effective tools for

their automatic synthesis. Using evolutionary

search algorithms based on AGE it is possible to

overcome this design difficulty by automating the

synthesis of analog networks. Even if AGE was con-

ceived to optimize the representation and evolu-

tion of analog networks, the computational power

required to perform the synthesis is in general con-

siderable, and became available only recently.

Thus, ironically, the digital computers that led to

the demise of analog computers (Karplus 1958)

give us now the resources for a renaissance of ana-

log computation, in a new age of analog networks.

Acknowledgments

Many thanks to Simon Harding for reading and

commenting on the manuscript. This work was

supported by the Swiss National Science Founda-

tion, grant no. 200021-112060.

References
Bailey, C. H.; Giustetto, M.; Huang, Y.-Y.; Hawkins, R. D.;

and Kandel, E. R. 2000. Is Heterosynaptic Modulation

Essential for Stabilizing Hebbian Plasticity and Memory?

Nature Reviews Neuroscience 1(1): 11–20.

Baum, E. B. 1989. A Proposal for More Powerful Learning

Algorithms. Neural Computation 1: 201–207.

Beer, R. 1995. On the Dynamics of Small Continuous-

Time Recurrent Neural Networks. Adaptive Behavior 3(4):

469–509.

Bolouri, H., and Davidson, E. H. 2002. Modeling Tran-

scriptional Regulatory Networks. BioEssays 24(12): 1118–

1129.

Bray, D. 1995. Protein Molecules as Computational Ele-

ments in Living Cells. Nature 376: 307–312.

Butler, D. 2007. The Petaflop Challenge. Nature

448(7149): 6–7.

Cappe, O.; Guillin, A.; Marin, J. M.; and Robert, C. P.

2004. Population Monte Carlo. Journal of Computational

and Graphical Statistics 13(4): 907–929.

Conrad, M. 1988. The Price of Programmability. In The

Universal Turing Machine: A Fifty Year Survey, ed. R.

Herken, 285–307. Oxford: Oxford University Press.

Dürr, P.; Mattiussi, C.; and Floreano, D. 2006. Neuroevo-

lution with Analog Genetic Encoding. In Proceedings of

the 9th International Conference on Parallel Problem Solving

from Nature (PPSN IX), 671–680. Berlin: Springer-Verlag.

Endy, D. 2005. Foundations for Engineering Biology.

Nature 438(7067): 449–453.

Fogel, L. J.; Owens, A. J.; and Walsh, M. J. 1966. Artificial

Intelligence through Simulated Evolution. New York: Wiley.

Friston, K. J.; Tononi, G.; Reeke, Jr., G. N.; Sporns, O.; and

Edelman, G. M. 1994. Value-dependent Selection in the

Brain: Simulation in a Synthetic Neural Model. Neuro-

science 59(2): 229–243.

Gruau, F. 1994. Automatic Definition of Modular Neural

Networks. Adaptive Behaviour 3(2): 151–183.

Holland, J. H. 1975. Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to Biol-

ogy, Control, and Artificial Intelligence. Cambridge, MA:

The MIT Press.

Karplus, W. J. 1958. Analog Simulation: Solution of Field

Problems. New York: McGraw-Hill.

Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Opti-

mization by Simulated Annealing. Science 220(4598):

671–680.

Koza, J. R.; Keane, M. A.; Streeter, M. J.; Mydlowec, W.;

Yu, J.; and Lanza, G. 2003. Genetic Programming IV: Rou-

tine Human-Competitive Machine Intelligence. Norwell, MA:

Kluwer.

Lazebnik, Y. 2002. Can a Biologist Fix a Radio?—Or, What

Articles

FALL 2008 75

ssb

umu
DC

rpoS

lexA

rpoD

dinl

recF

rpoH

recA

Figure 15. Topology of the E. coli SOS Network
That Was Reverse-Engineered Using AGE.

The nodes of the network represent the genes. Arrows represent interactions

that enhance gene expression. T ends denote interactions that inhibit gene

expression. The network has been correctly reconstructed except for one miss-

ing link (thick arrow) and one incorrectly identified link (thick oval near the

ssb node).

I Learned while Studying Apoptosis. Cancer Cell 2(3):

179–182.

Ljung, L. 1999. System Identification: Theory for the User.

2nd ed. Upper Saddle River, NJ: Prentice Hall.

Marbach, D.; Mattiussi, C.; and Floreano, D. 2007. Bio-

mimetic Evolutionary Reverse Engineering of Genetic

Regulatory Networks. In Proceedings of the 5th European

Conference on Evolutionary Computation, Machine Learning

and Data Mining in Bioinformatics (EvoBIO 2007), 155–165.

Berlin: Springer-Verlag.

Mattiussi, C. 2005. Evolutionary Synthesis of Analog Net-

works. Ph.D. Dissertation, EPFL, Lausanne.

Mattiussi, C., and Floreano, D. 2007. Analog Genetic

Encoding for the Evolution of Circuits and Networks. IEEE

Transaction on Evolutionary Computation. 11(5): 596–607.

Mattiussi, C.; Dürr, P.; and Floreano, D. 2007. Center of

Mass Encoding: A Self-Adaptive Representation with

Adjustable Redundancy for Real-Valued Parameters. In

Proceedings of the 2007 Conference on Genetic and Evolu-

tionary Computation (GECCO 2007), 1304–1311. New

York: ACM Press.

Mattiussi, C.; Waibel, M.; and Floreano, D. 2004. Meas-

ures of Diversity for Populations and Distances between

Individuals with Highly Reorganizable Genomes. Evolu-

tionary Computation 12(4): 495–515.

Mead, C. 1989. Analog VLSI and Neural Systems. Reading,

MA: Addison-Wesley.

Miller, J. F., and Thomson, P. 2000. Cartesian Genetic Pro-

gramming. In Proceedings of EuroGP2000, 121–132. Berlin:

Springer-Verlag.

Niv, Y.; Joel, D.; Meilijson, I.; and Ruppin, E. 2002. Evo-

lution of Reinforcement Learning in Uncertain Environ-

ments: A Simple Explanation for Complex Foraging

Behaviors. Adaptive Behavior 10(1): 5–24.

Pfeifer, R., and Scheier, C. 2001. Understanding Intelligence.

Cambridge, MA: MIT Press.

Robert, C. P., and Casella, G. 2004. Monte Carlo Statistical

Methods. 2nd ed. New York: Springer-Verlag.

Shapiro, J. 2005. A 21st Century View of Evolution:

Genome System Architecture, Repetitive DNA, and Nat-

ural Genetic Engineering. Gene 345(1): 91–100.

Soltoggio, A.; Dürr, P.; Mattiussi, C.; and Floreano, D.

2007. Evolving Neuromodulatory Topologies for Rein-

forcement Learning-like Problems. In Proceedings of the

2007 IEEE Congress on Evolutionary Computation (CEC

2007), 2471–2478. Berlin: Springer-Verlag

Stanley, K., and Miikkulainen, R. 2002. Evolving Neural

Networks through Augmenting Topologies. Evolutionary

Computation 10(2): 99–127.

Stormo, G. D., and Zhao, Y. 2007. Putting Numbers on

the Network Connections. BioEssays 29(8): 717–721.

Sutton, R., and Barto, A. 1998. Reinforcement Learning: An

Introduction. Cambridge, MA: The MIT Press.

Toussaint, M. 2003. The Evolution of Genetic Represen-

tations and Modular Adaptation. Ph.D. Dissertation,

Institut fur Neuroinformatik, Ruhr-Universität Bochum,

Germany.

Vladimirescu, A. 1994. The SPICE Book. New York: Wiley.

Yao, X. 1999. Evolving Artificial Neural Networks. Pro-

ceedings of the Institute of Electrical and Electronics Engineers

(IEEE) 87(9): 1423–1447.

Zebulum, R.; Vellasco, M.; and Pacheco, M. 2000. Vari-

able Length Representation in Evolutionary Electronics.

Evolutionary Computation 8(1): 93–120.

Claudio Mattiussi (claudio.mattiussi

@epfl.ch) is a senior researcher at the Lab-

oratory of Intelligent Systems, Swiss Fed-

eral Institute of Technology in Lausanne

(EPFL), Switzerland. He conducts work

on evolutionary computation, neural

networks, and machine learning. His

research interests include bioinspired

artificial intelligence, systems biology, probabilistic engi-

neering, evolutionary robotics, and the numerical for-

mulation of physical field problems.

Daniel Marbach (daniel.marbach@

epfl.ch) is a Ph.D. student at the Swiss

Federal Institute of Technology in Lau-

sanne (EPFL), Switzerland, in the Lab-

oratory of Intelligent Systems. He is

currently developing novel approaches

for the modeling and reverse engineer-

ing of gene regulatory networks. Oth-

er research interests include systems biology, evolution-

ary computation, bioinspired artificial intelligence, and

evolutionary robotics.

Peter Dürr (peter.duerr@epfl.ch) is a

Ph.D. student at the Swiss Federal

Institute of Technology in Lausanne

(EPFL), Switzerland, in the Laboratory

of Intelligent Systems. His current

research focus is the evolution of

learning architectures in artificial neu-

ral networks. Other research interests

include evolutionary computation, reinforcement learn-

ing, bioinspired robotics, and evolutionary biology.

Dario Floreano (dario.floreano@epfl.

ch) is an associate professor in the

School of Engineering at the Swiss Fed-

eral Institute of Technology in Lau-

sanne (EPFL), Switzerland, where he is

director of the Laboratory of Intelli-

gent Systems. His research goals con-

sist in extracting the principles of bio-

logical evolution and organization to develop artificial

intelligence and robots that display novel or better func-

tionalities. He wrote and edited several books in robotics

and AI, the most recent one with Claudio Mattiussi, Bio-

inspired Artificial Intelligence. He is on the editorial board

of 10 international journals, senior member of several

professional societies, and cofounder of the Internation-

al Society for Artificial Life.

Articles

76 AI MAGAZINE

