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Abstract: Advanced glycation end products (AGEs) and the cognate receptor, named RAGE, are
involved in metabolic disorders characterized by hyperglycemia, type 2 diabetes mellitus (T2DM)
and obesity. Moreover, the AGEs/RAGE transduction pathway prompts a dysfunctional interaction
between breast cancer cells and tumor stroma toward the acquisition of malignant features. However,
the action of the AGEs/RAGE axis in the main players of the tumor microenvironment, named
breast cancer-associated fibroblasts (CAFs), remains to be fully explored. In the present study, by
chemokine array, we first assessed that interleukin-8 (IL-8) is the most up-regulated pro-inflammatory
chemokine upon AGEs/RAGE activation in primary CAFs, obtained from breast tumors. Thereafter,
we ascertained that the AGEs/RAGE signaling promotes a network cascade in CAFs, leading to the
c-Fos-dependent regulation of IL-8. Next, using a conditioned medium from AGEs-exposed CAFs,
we determined that IL-8/CXCR1/2 paracrine activation induces the acquisition of migratory and
invasive features in MDA-MB-231 breast cancer cells. Altogether, our data provide new insights on
the involvement of IL-8 in the AGEs/RAGE transduction pathway among the intricate connections
linking breast cancer cells to the surrounding stroma. Hence, our findings may pave the way for
further investigations to define the role of IL-8 as useful target for the better management of breast
cancer patients exhibiting metabolic disorders.
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1. Introduction

Breast cancer is the most commonly diagnosed type of tumor and the second leading
cause of cancer-related death among women worldwide [1]. The functional interactions
between cancer cells and the surrounding microenvironment have been involved in the
metastatic evolution, which is a main determinant of breast cancer mortality [2,3]. There-
fore, a better understanding of the mechanisms hidden behind breast cancer metastasis is
urgently needed, to disclose new effective therapeutic strategies. In this context, a growing
body of evidence has suggested a relationship between metabolic disorders, such as obesity,
hyperglycemia and type 2 diabetes mellitus (T2DM) and both increased breast cancer risk
and tumor-related mortality [4–11]. Previous studies, nicely supporting these observations,
have reported that the aforementioned chronic pathological conditions are characterized by
the release of various factors, prompting an inflammatory landscape toward breast cancer
development [12,13]. For instance, an increase in the advanced glycation end-products
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(AGEs) has been observed under inflammatory conditions in patients affected by metabolic
syndromes [14–16]. AGEs are heterogeneous and harmful compounds derived from
an irreversible nonenzymatic reaction between the carbonyl group of a reducing sugar
and a free amino group of proteins, lipids or nucleic acids [17,18]. AGEs can be gener-
ated endogenously or provided by exogenous sources in physiological and pathological
conditions [14,19,20]. The biological effects of AGEs are mainly mediated by the binding
to the receptor for advanced glycation end-products (RAGE), which is a transmembrane
protein belonging to the immunoglobulin superfamily expressed in both normal and cancer
cells [21–23]. For instance, in different types of tumors including breast cancer, RAGE acti-
vation may lead to proliferative, angiogenic, migratory and invasive responses associated
with malignant features and a worse prognosis [24–26]. By orchestrating a feed-forward
autocrine and/or paracrine loop that entails both the breast cancer cells and the surround-
ing stroma, RAGE acts as an important mediator, linking chronic inflammation to cancer
progression [23,27–29].

Pro-inflammatory mediators, such as IL-8, play an important role in stimulating pro-
metastatic effects in diverse types of tumors, including breast cancer [30–35]. IL-8 is a small
soluble protein that belongs to the CXC chemokine family [36]. Initially, IL-8 was recognized
as a modulator of neutrophil activity and a chemotactic agent released by monocytes and
macrophages upon diverse stimuli [37,38]. Nowadays, IL-8 is primarily acknowledged as
a potent mediator of tumor progression, due to its ability to induce angiogenesis, survival,
invasion and metastasis in both an autocrine and paracrine manner [39,40]. As it concerns
breast cancer, high IL-8 expression was assessed in breast tumors in relation to normal
breast tissues along with its ability to stimulate the malignant progression [41]. Nicely
fitting with these data, the inhibition of IL-8 blunted the invasiveness of breast cancer cells
either in vitro or in vivo model systems [42–47].

Compelling evidence has demonstrated that the main components of the tumor stroma,
named cancer-associated fibroblasts (CAFs), play an active role in breast cancer through the
secretion of cytokines, chemokines, growth factors and other mediators within the tumor
microenvironment [48–53]. This dynamic network may prompt the failure of therapeutics,
metastatic features and poor clinical outcomes [54–57]. Of note, recent studies have also
revealed that CAFs may facilitate the establishment of a supportive microenvironmental
niche for the recruitment and growth of disseminated tumor-initiating cells [58,59].

On the basis of these observations, we aimed to provide novel insights into the action
of the AGEs/RAGE axis within the tumor microenvironment toward the acquisition of
invasive and aggressive features of breast cancer cells.

2. Materials and Methods
2.1. Bioinformatics Analyses

The gene expression levels and clinical information were retrieved from 17 integrated
Affymetrix gene expression datasets, as previously described [60]. In brief, the Raw.cel
files from 17 Affymetrix U133A/plus two gene expression datasets of primary breast tu-
mors were retrieved from NCBI GEO (GSE12276, GSE21653, GSE3744, GSE5460, GSE2109,
GSE1561, GSE17907, GSE2990, GSE7390, GSE11121, GSE16716, GSE2034, GSE1456, GSE6532,
GSE3494), summarized with Ensembl alternative CDF [61], and then normalized with
RMA [62], before their integration using ComBat [63] to eliminate dataset-specific bias [64].
A comprehensive survival analysis was performed, using the Affymetrix gene expression
data of CXCR1 and CXCR2 along with the relapse-free survival (RFS) information of basal
breast-cancer patients, which were filtered for missing values. The survivALL package
was employed to examine the Cox proportional hazards for all of the possible points-of-
separation (low–high cut-points), selecting the cut-point with the lowest p-value [65] and
separating the patients into high (n = 254) and low (n = 38) CXCR1/2 expression levels.
The Kaplan–Meier survival curve was generated using the survival and the survminer
packages. All of the bioinformatics analyses were carried out using R Studio (Integrated
Development Environment for R. RStudio, PBC, Boston, MA, USA). The box plots were
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performed with the tidyverse package and the related statistical analysis was performed
using the Wilcoxon test. p-values < 0.05 were considered statistically significant.

2.2. Reagents

We purchased AGEs-BSA (AGEs) from Abcam (DBA, Milan, Italy); the FPS-ZM1, BSA
and N-acetyl-L-cysteine (NAC) from Merck Life Science (Milan, Italy). The Trametinib,
Alpelisib and Reparixin were obtained from MedChemExpress (DBA, Milan, Italy). The
anti-IL-8 neutralizing antibody (MAB208) was acquired from R&D Systems (Bio-Techne,
Milan, Italy). All of the compounds were solubilized in dimethyl sulfoxide (DMSO), except
for AGEs-BSA and BSA that were dissolved in phosphate-buffered saline (PBS), and NAC
that was solubilized in water.

2.3. Cell Cultures

The cancer-associated fibroblasts (CAFs) were isolated, cultured and characterized
as previously described [28,66] from 10 invasive ductal breast carcinomas and pooled
for the subsequent studies. Briefly, the specimens were cut into small pieces (1–2 mm
diameter), placed in a digestion solution (400 IU collagenase, 100 IU hyaluronidase and
10% FBS, containing antibiotics and antimycotics solution) and incubated overnight at
37 ◦C. The cells were then separated by differential centrifugation at 90× g for 2 min. The
supernatant containing fibroblasts was centrifuged at 485× g for 8 min, the pellet obtained
was suspended in fibroblasts’ growth medium (Medium 199 and Ham’s F12 mixed 1:1
and supplemented with 10% FBS and 1% penicillin/streptomycin) (Thermo Fisher Scien-
tific, Monza, Italy) and cultured at 37 ◦C, 5% CO2. The CAFs were then expanded into
two 15-cm Petri dishes and stored as the cells passaged for two to three population dou-
blings within a total of 7 to 10 days after tissue dissociation. The primary cell cultures of the
breast fibroblasts were characterized by immunofluorescence. In particular, the cells were
incubated with human anti-vimentin (V9, sc-6260) and human anti-cytokeratin 14 (LL001
sc-53,253), obtained from Santa Cruz Biotechnology (DBA, Milan, Italy) (data not shown).
To characterize the fibroblasts’ activation, we used anti-fibroblast activated protein α

(FAPα) antibody (H-56; Santa Cruz Biotechnology, DBA, Milan, Italy) (data not shown).
The MDA-MB-231 cells obtained from the ATCC cells (Manassas, VA, USA) were cultured
in DMEM/F12 (Dulbecco’s modified Eagle’s medium) with phenol red, 5% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (Thermo Fisher Scientific, Monza, Italy). The
cells were used less than 6 months after resuscitation and routinely tested for mycoplasma.
All of the cell lines were grown in a 37 ◦C incubator with 5% CO2.

2.4. Gene Expression Studies

The total RNA was extracted and cDNA was obtained by reverse transcription, as pre-
viously reported [67]. The expression of the selected genes was analyzed by real-time PCR
using platform Quant Studio7 Flex Real-Time PCR System (Thermo Fisher Scientific, Monza,
Italy). The following primers were used: 5′-AAGCCACCCCACTTCTCTCTAA-3′ (ACTB
Fwd.) and 5′-CACCTCCCCTGTGTGGACTT-3′ (ACTB Rev); 5′-TGTGGGTCTGTTGTAGG-
GTT-3′ (IL-8 Fwd.), 5′-TCGGATATTCTCTTGGCCCT-3′ (IL-8 Rev); 5′-CGAGCCCTTTGAT-
GACTTCCT-3′ (c-Fos Fwd.) and 5′-GGAGCGGGCTGTCTCAGA-3′ (c-Fos Rev); 5′-ACAG-
TGGCCACCTACAAAGG-3′ (N-cadherin Fwd.) and 5′-CCGAGATGGGGTTGATAATG-
3′(N-cadherin Rev); 5′-TCCGCACATTCGAGCAAAGA-3′(vimentin Fwd.) and 5′-ATTCA-
AGTCTCAGCGGGCTC-3′(vimentin Rev); 5′-CAGTGGGAGAACCTCGAGAAG-3′ (fi-
bronectin Fwd.) and 5′-TCCCTCGGAACATCAGAAAC-3′ (fibronectin Rev). The primers
were designed using Applied Biosystems Primer Express 2.0 software. The assays were
performed in triplicate and the results were normalized with control mRNA levels of
beta-actin (ACTB) and relative mRNA levels were calculated, using the comparative cycle
threshold (Ct) method (∆∆Ct).

The PCR arrays were carried out using a TaqMan™ Human Chemokines Array
(Thermo Fisher Scientific, Monza, Italy), according to the manufacturer’s instructions.
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The amplification reaction and the subsequent analysis were performed, using the platform
Quant Studio7 Flex Real-Time PCR System (Thermo Fisher Scientific, Monza, Italy). The
heatmaps were drawn on the log2 fold changes of gene expression using the
pheatmap package.

2.5. Luciferase Assays and Gene Silencing Experiments

The IL-8 promoter luciferase construct was a kind gift from Prof. Richard O.C. Oreffo,
Institute of Development Sciences, University of Southampton, Southampton (UK) [68].
The expression vector for the Renilla luciferase pRL-TK (Promega, Milan, Italy) was used
as an internal transfection control. The transfections were performed using X-treme GENE
9 DNA Transfection Reagent, according to the manufacturer’s instructions (Merck Life
Science, Milan, Italy), with a mixture containing 0.5 µg of IL-8 reporter plasmid and 5 ng of
pRL-TK. After 8 h, the cells were treated for 18 h, as indicated. Then, the luciferase activity
was normalized to the internal transfection control provided by the Renilla luciferase
activity. The normalized relative light-unit values obtained from the cells treated with the
vehicle were set as one-fold induction upon which the activity induced by the treatments
was calculated. For knocking down the RAGE expression, the cells were transiently
transfected with Lipofectamine RNAiMAX (Thermo Fisher Scientific, Monza, Italy), using
a pool of three unique 27mer siRNA duplexes for RAGE (AGER, #SR319295) targeting-
sequences (siRAGE) (10 nM) or a non-targeting scramble control (10 nM) for 24 h prior to
the treatments (OriGene Technologies, DBA, Milan, Italy). The plasmid DN/c-Fos, which
contains the sequence for a mutant form of the c-Fos protein that heterodimerizes with the
c-Fos dimerization partners but does not allow DNA binding, was generously gifted to us
by Dr C. Vinson (NIH, Bethesda, MD, USA).

2.6. Western Blot Analysis

Western blotting analyses were carried out, as previously described [69]. The pri-
mary antibodies used are as follow: IL-8 (27095-1-AP) (Proteintech, DBA, Milan, Italy);
p-AKT-(Ser473) (D9E) and RAGE (42544S) (Cell Signalling Technology, Euroclone, Milan,
Italy); β-actin (AC-15), p-ERK1/2 (E-4), ERK2 (C-14), AKT/1/2/3 (H-136) and c-Fos (E-8)
(Santa Cruz Biotechnology, DBA, Milan, Italy). The proteins were detected by horseradish
peroxidase-linked secondary antibodies (Bio-Rad, Milan, Italy) and revealed, using the
chemiluminescent substrate Clarity Western ECL Substrate (Bio-Rad, Milan, Italy).

2.7. DCFDA Fluorescence Measurement of ROS

The intracellular ROS production was evaluated, using the non-fluorescent
2′,7′-dichlorofluorescin diacetate (DCFDA) probe, which becomes highly fluorescent when
reacting with ROS. Briefly, the cells were treated as indicated, and then washed with PBS
and incubated at 37 ◦C for 30 min with 10 µM DCFDA (Sigma-Aldrich, Milan, Italy). Next,
the cells were washed with PBS, and the fluorescent intensity of DCF was measured with
excitation at 485 nm and emission at 530 nm, using the software Gen5 in Synergy H1
Hybrid Multi-Mode Microplate Reader (BioTek, AHSI, Milan Italy).

2.8. Immunofluorescence Microscopy

Fifty percent of the confluent-cultured cells grown on coverslips were serum de-
prived for 24 h and then treated for 6 h, as indicated. Thereafter, the cells were fixed with
4% paraformaldehyde (PFA) diluted in PBS for 10 min at room temperature. Then, after
a brief rinsing with PBS, the slides were incubated for 90 min with Phalloidin-Fluorescent
488 Conjugate (Santa Cruz Biotechnology, DBA, Milan, Italy). Next, the slides were exten-
sively washed with PBS and probed with 4, 6-diamidino-2-phenylindole dihydrochloride
(DAPI) (1:1000; Sigma-Aldrich, Milan, Italy). The images were acquired using the Cytation
3 Cell Imaging Multimode reader (BioTek, AHSI, Milan Italy) and analyzed by the software
Gen5 (BioTek, AHSI, Milan Italy).
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2.9. Chromatin Immunoprecipitation (ChIP) Assay

The ChIP experiments were carried out, normalized and analyzed as described [28].
The primers used to amplify a region containing an AP-1 site located in the
IL-8 promoter sequence were as follow: 5′-GTTCTAACACCTGCCACTCT-3′ (Fwd) and
5′-CCACGATTTGCAACTGATGG-3′ (Rev).

2.10. Conditioned Medium

The CAFs were seeded in regular medium in six-well multi-dishes and the next day
were switched to a medium without serum. After 24 h, the CAFs were treated for 6 h
with AGEs, as indicated; thereafter, the cells were washed twice with PBS and cultured
for an additional 12 h with fresh serum-free medium. The supernatants were collected,
centrifuged at 3500 rpm for 5 min to remove cellular debris and used as the conditioned
medium for the appropriate experiments.

2.11. Acetone Precipitation of Proteins

The protein precipitation from the conditioned medium derived from the CAFs was
performed by using the precipitation method with acetone, as previously reported [28,70,71].
Briefly, four volumes of ice-cold acetone (Sigma-Aldrich, Milan, Italy) were added to
one volume of sample, the mixture was then vortexed and incubated at -20 ◦C overnight.
This was followed by centrifugation at 10,000× g for 15 min at 4 ◦C. Thereafter, the super-
natants were discarded, the pellet was air dried, dissolved in Laemmli buffer 2× and used
in the appropriate experiments. In the Western blot analysis, the protein loading of the
conditioned medium samples was checked by Ponceau red staining (0.1% Ponceau S (w/v)
in 5% acetic acid) of the blotted membranes.

2.12. Polarization Assay

The MDA-MB-231 cells were serum deprived for 24 h and then exposed for 6 h to the
conditioned medium collected from the CAFs treated as indicated. Then, the cells were
processed as previously described [72,73].

2.13. Transwell Migration and Invasion Assays

Transwell Migration and Invasion Assays were carried out, as previously described [74].
Briefly, the transwell 8 µm polycarbonate membrane (Costar, Sigma-Aldrich, Milan, Italy)
was used to evaluate in vitro migration and invasion of MDA-MB-231 cells. A total of
5 × 104 cells in 300 µL serum-free medium were seeded in the upper chamber, coated
with (invasion assay) or without (migration assay) Corning® Matrigel® Growth Factor
Reduced (GFR) Basement Membrane Matrix (Biogenerica, Catania, Italy), diluted with
serum-free medium at a ratio of 1:3. Next, the conditioned medium from the CAFs, treated
as indicated, was added to the bottom chambers in the presence or absence of 300 ng/mL
Ab-IL-8 or the CXCR1/2 inhibitor reparixin, where required. On reaching 6 h after seeding,
the cells on the upper surface of the membrane were removed by wiping with a Q-tip, and
the invaded or migrated cells were fixed with 100% methanol and stained with Giemsa
(Sigma-Aldrich, Milan, Italy). The images were acquired using the Cytation 3 Cell Imaging
Multimode Reader (BioTek, AHSI, Milan Italy) and the cells were counted using the WCIF
ImageJ software (National Institutes of Health (NIH), Rockville Pike, Bethesda, MD, USA).

2.14. Statistical Analysis

The data were analyzed by one-way ANOVA with Dunnett’s multiple comparisons
where applicable, using GraphPad Prism version 6.01 (GraphPad Software, Inc., San Diego,
CA, USA). The Kaplan–Meier p-value is based on a log-rank test. (*) p < 0.05 was considered
statistically significant.
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3. Results
3.1. AGEs Induce ERK and AKT Phosphorylation in Breast CAFs

Previous studies have shown that the ERK1/2 and AKT transduction pathways act as
critical mediators involved in the AGEs-dependent responses in both normal and cancer
cells [75–77]. In order to provide novel insights into the AGEs-mediated signaling within
the tumor microenvironment, we sought to address whether AGEs may also activate
ERK1/2 and AKT in the CAFs obtained from breast tumor patients. Both ERK and AKT
phosphorylations were observed in a time-dependent manner upon AGEs exposure in the
CAFs (Figure 1a), whereas the incubation with BSA alone had no effect (Supplementary
Figure S1a, Supplementary Materials). Next, we verified whether RAGE is involved
in these stimulatory effects elicited by the AGEs in the CAFs. By pharmacological and
gene silencing approaches, we found that the activation of the ERK and AKT induced by
AGEs is prevented in the presence of the RAGE inhibitor, FPS-ZM1 (Figure 1b), as well as
transfecting the CAFs with siRNA sequences targeting RAGE (Figure 1c; Supplementary
Figure S1b, Supplementary Materials). Reminiscing from previous data on the ability of
AGEs to induce ROS levels in diverse cell contexts [21,78–80], we found that the AGEs
treatment triggers the generation of ROS, however, this response was no longer observed
either using the RAGE inhibitor FPS-ZM1 (Figure 1d) or the ROS scavenger NAC (Figure 1e).
Thereafter, we established that the phosphorylation of ERK and AKT upon AGEs exposure is
strictly dependent on ROS generation, as ascertained by the ROS scavenger, NAC (Figure 1f).

Figure 1. AGEs trigger rapid responses via RAGE in CAFs. (a) Phosphorylation of ERK1/2 and AKT
in CAFs exposed to vehicle (–) and 100 µg/mL AGEs for the indicated times; (b) Phosphorylation
of ERK1/2 and AKT in CAFs treated for 30 min with vehicle (–) or 100 µg/mL AGEs alone and
in the presence of 1 µM RAGE inhibitor FPS-ZM1; (c) Immunoblots of ERK1/2 and AKT in CAFs
transfected with scramble siRNA or siRAGE (10 nM) for 24 h and then treated for 30 min with
vehicle (–) and 100 µg/mL AGEs; (d,e) ROS generation in CAFs exposed to vehicle and 100 µg/mL
AGEs alone or in the presence of 1 µM RAGE inhibitor FPS-ZM1 and 300 µM free radical scavenger
N-acetyl-Lcysteine (NAC), as indicated. The values of fluorescent probe DCF-DA obtained in CAFs
treated with vehicle was set as one-fold induction upon which ROS levels induced by AGEs were
calculated. Values represent the mean± SD of three independent experiments performed in triplicate;
(f) The activation of ERK1/2 and AKT in CAFs upon 100 µg/mL AGEs exposure for 30 min was
abolished using 300 µM free radical scavenger NAC. ERK2 and AKT were used as loading control, as
indicated. Side panels show densitometric analysis of the blots normalized to the loading controls.
Values represent the mean ± SD of three independent experiments. (*) indicates p < 0.05.
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3.2. The Activation of AGEs/RAGE Transduction Pathway Up-Regulates IL-8 Levels in CAFs

A growing body of evidence pointed out that RAGE is an important mediator connect-
ing chronic inflammation to neoplastic progression through the various autocrine and/or
paracrine interactions, which occur between the cancer cells and the components of the sur-
rounding microenvironment [23,25,81]. Hence, in order to investigate the pro-inflammatory
gene expression profile elicited by the AGEs/RAGE activation within the breast tumor
stroma, we performed TaqMan™ gene expression experiments by Human Chemokine
Array. To this end, the CAFs were treated with AGEs in the presence or absence of the
RAGE inhibitor, FPS-ZM1 (Figure 2a). Thereafter, we focused our attention on the genes
displaying a CT < 32 along with at least 0.58 log2 fold change upon the AGEs exposure, in
relation to the vehicle-treated CAFs. IL-8 (also known as CXCL8) was the most upregulated
gene, whose expression was abrogated using the RAGE inhibitor, FPS-ZM1. The induc-
tion of IL-8 by AGEs and the repressive effects elicited by the RAGE inhibitor FPS-ZM1
were confirmed at both the mRNA and protein levels, respectively, by real-time PCR and
Western blotting assays (Figure 2b,c). Similar results were then obtained by silencing the
RAGE expression (Figure 2d; Figure S1c, Supplementary Materials). Furthermore, the
AGEs-mediated increase in IL-8 was abolished at both the mRNA and protein levels, using
the ROS scavenger, NAC (Figure 2e,f). Considering that the activation of the AGEs/RAGE
signaling triggers the phosphorylation of ERK and AKT, we assessed whether the IL-8
upregulation is no longer evident, using the MEK inhibitor trametinib as well as the PI3K
inhibitor alpelisib (Figure 2g). Next, the secretion of IL-8 upon AGEs exposure was evalu-
ated in the conditioned medium collected from CAFs. Of note, the upregulation of the IL-8
levels prompted by AGEs in the conditioned medium derived from CAFs was prevented by
the RAGE inhibitor, FPS-ZM1, and by knocking down the expression of RAGE (Figure 2h,i).
In addition, we ascertained that the ROS scavenger NAC abrogates the secretion of IL-8
elicited by AGEs in the CAFs medium (Figure 2j).

Figure 2. Cont.
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Figure 2. AGEs/RAGE activation upregulates IL-8 expression in CAFs. (a) CAFs were exposed for
8 h to 100 µg/mL AGEs alone and in the presence of 1 µM RAGE inhibitor FPS-ZM1. Gene expression
changes of chemokine and related genes were evaluated by TaqMan™ Human Chemokine Array.
Values were normalized to 18 S expression; the colors indicate the log2 fold changes of gene expres-
sion upon the indicated conditions in relation to the vehicle-treated CAFs. mRNA (b,e) and protein
(c,f) expression of IL-8 evaluated, respectively, by real-time PCR and immunoblotting in CAFs treated
for 8 h with vehicle (–) or 100 µg/mL AGEs alone and in the presence of 1 µM RAGE inhibitor FPS-
ZM1 or in combination with 300 µM free radical scavenger NAC. In RNA experiments, values were
normalized to the beta-actin (ACTB) expression and shown as fold changes of IL-8 mRNA expression
upon AGEs treatment compared to cells exposed to vehicle; (d) Immunoblots showing IL-8 protein
expression in CAFs transfected with scramble siRNA or siRAGE (10 nM) for 24 h and then exposed
for 8 h to vehicle (–) or 100 µg/mL AGEs; (g) IL-8 protein expression evaluated by immunoblot-
ting in CAFs treated for 8 h with vehicle (–) or 100 µg/mL AGEs alone and in combination with
100 nM MEK inhibitor trametinib or 1 µM PI3K inhibitor alpelisib. β-actin served as a loading control;
(h,j) Evaluation by immunoblotting of IL-8 protein levels in conditioned medium (CM) collected from
CAFs treated for 18 h with vehicle (–) or 100 µg/mL AGEs alone and in the presence of 1 µM RAGE
inhibitor FPS-ZM1 or in combination with 300 µM free radical scavenger NAC; (i) Immunoblots
showing IL-8 protein levels in CM derived from CAFs transfected with scramble siRNA or siRAGE
(10 nM) for 24 h and then exposed for 18 h to vehicle (–) or 100 µg/mL AGEs. Ponceau red staining
of the membrane was used as a loading control for the CM. Side panels show densitometric analysis
of the blots normalized to the loading controls. Values represent the mean ± SD of three independent
experiments. (*) indicates p < 0.05.

3.3. c-Fos Is Involved in the Up-Regulation of IL-8 Prompted by AGEs/RAGE Signaling in CAFs

Based on the above data, we aimed to provide mechanistic insights into the upreg-
ulation of IL-8 promoted by the AGEs/RAGE axis in CAFs. Of note, we found that the
transcriptional activation of the IL-8 promoter construct elicited by AGEs was no longer
evident using the RAGE inhibitor FPS-ZM1, the ROS scavenger NAC, the MEK inhibitor
trametinib and the PI3K inhibitor alpelisib (Figure 3a). Considering that the previous
investigations have highlighted the main role played by c-Fos in the regulation of the IL-8
expression upon exposure to diverse treatments [82–85], we ascertained that the transacti-
vation of the c-Fos promoter-construct upon AGEs treatment is abolished in the presence of
the RAGE inhibitor FPS-ZM1, the ROS scavenger NAC, the MEK inhibitor trametinib and
the PI3K inhibitor alpelisib (Figure 3b). Thereafter, performing real-time PCR and Western
blotting assays, we established that the AGEs trigger c-Fos expression at both the mRNA
and protein levels, however these responses were no longer evident in the presence of the
RAGE inhibitor FPS-ZM1, silencing RAGE expression and using the ROS scavenger NAC
(Figure 3c–g; Figure S1d, Supplementary Materials). Furthermore, the AGEs-mediated
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increase in the c-Fos expression was abrogated using the MEK inhibitor trametinib as well
as the PI3K inhibitor alpelisib (Figure 3h). Intriguingly, the chromatin immunoprecipitation
(ChIP) assays performed in the CAFs treated with AGEs revealed that c-Fos is recruited
to the AP-1 site located within the human IL-8 promoter sequence (Figure 3i,j). Further
supporting these results, the treatment with AGEs did not induce the transactivation of
IL-8 promoter construct in CAFs previously transfected with a dominant negative form
of c-Fos (DN/c-Fos) (Figure 3k). In accordance with these findings, the upregulation and
secretion of IL-8 elicited by AGEs were prevented from transfecting the CAFs with the
DN/c-Fos expression vector (Figure 3l,m).

Figure 3. Cont.
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Figure 3. c-Fos is involved in the upregulation of IL-8 induced by AGEs/RAGE signaling in CAFs.
(a) Luciferase activities of IL-8 promoter construct in CAFs treated for 18 h with vehicle or 100 µg/mL
AGEs in the presence or absence of 1 µM RAGE inhibitor FPS-ZM1, 300 µM free radical scavenger
NAC, 100 nM MEK inhibitor trametinib or 1 µM PI3K inhibitor alpelisib, as indicated; (b) Luciferase
activities of c-Fos promoter construct in CAFs upon exposure for 18 h to vehicle or 100 µg/mL
AGEs alone and in combination with 1 µM RAGE inhibitor FPS-ZM1, 300 µM free radical scavenger
NAC, 100 nM MEK inhibitor trametinib or 1 µM PI3K inhibitor alpelisib, as indicated. The luciferase
activities were normalized to the internal transfection control, and values of cells receiving vehicle
were set as 1-fold induction upon which the activity induced by AGEs was calculated. Each column
represents the mean ± SD of three independent experiments performed in triplicate. mRNA (c,f) and
protein (d,g) expression of c-Fos evaluated, respectively, by real-time PCR and immunoblotting in
CAFs treated for 4 h with vehicle (–) or 100 µg/mL AGEs alone and in the presence of 1 µM RAGE
inhibitor FPS-ZM1 or in combination with 300 µM free radical scavenger NAC. In RNA experiments,
values were normalized to the beta-actin (ACTB) expression and shown as fold changes of c-Fos
mRNA expression upon AGEs treatment compared to cells exposed to vehicle; (e) Immunoblots
showing c-Fos protein expression in CAFs transfected with non-targeting scramble siRNA or siRAGE
(10 nM) for 24 h and then exposed for 4 h with vehicle (–) or 100 µg/mL AGEs; (h) c-Fos protein
expression evaluated by immunoblotting in CAFs treated for 4 h with vehicle (–) or 100 µg/mL AGEs
alone and in combination with 100 nM MEK inhibitor trametinib or 1 µM PI3K inhibitor alpelisib;
(i,j) Recruitment of c-Fos to the AP-1 site located within the IL-8 promoter region upon treatment for
4 h with AGEs in CAFs, as assessed by Chromatin Immunoprecipitation (ChIP) assays. Data obtained
were normalized to the input and shown as fold changes in relation to nonspecific Immunoglobulin
G (IgG). Each column represents the mean ± SD of three independent experiments performed in
triplicate; (k) Luciferase activities of IL-8 promoter construct in CAFs transfected for 18 h with
an empty vector or a plasmid encoding for a dominant negative form of c-Fos (DN/c-Fos) and then
exposed for 18 h to vehicle or 100 µg/mL AGEs. The luciferase activities were normalized to the
internal transfection control and values of cells receiving vehicle were set as 1-fold induction upon
which the activity induced by treatment was calculated. Each column represents the mean ± SD
of three independent experiments performed in triplicate; (l) IL-8 protein expression evaluated by
immunoblotting in CAFs transfected with the empty vector or with the DN/c-Fos construct for 18 h
and then treated with vehicle (–) or 100 µg/mL AGEs for 8 h. β-actin served as a loading control;
(m) Immunoblotting of IL-8 in conditioned medium (CM) collected from CAFs transfected with
a vector or with the DN/c-Fos construct and then treated for 8 h with vehicle (–) or 100 µg/mL AGEs.
Ponceau red staining of the membrane was used as a loading control for the CM. Side panels show
densitometric analysis of the blots normalized to the loading controls. Data shown represent the
mean ± SD of three independent experiments. (*) indicates p < 0.05.

3.4. IL-8/CXCR1/2 Paracrine Activation Promotes the Acquisition of a Migratory and Invasive
Phenotype of MDA-MB-231 Breast Cancer Cells

Previous studies have revealed that the production and secretion of soluble fac-
tors by CAFs activate inflammatory responses, leading to the acquisition of aggressive
and pro-metastatic cancer phenotypes [86,87]. In this regard, chemokines and cytokines
have been shown to play a critical role in the migration and invasion of breast cancer
cells [53,55,88,89]. For instance, IL-8 binding to the cognate receptors, namely CXCR1 and
CXCR2, may promote a dysfunctional inflammatory microenvironment that contributes to
tumor progression [84,89–93]. On the basis of these observations, we performed an in silico
evaluation by querying the Affymetrix dataset, which supplies the clinical information and



Cells 2022, 11, 2402 11 of 21

mRNA expression data of a large cohort of breast tumor patients. Of note, a higher expres-
sion of the mRNA levels of CXCR1/2 was found in basal breast cancer subtype in relation
to the luminal A, luminal B, ERBB2 and normal-like molecular subgroups (Figure 4a). In
addition, the survival analysis performed on the basal breast cancer subtype revealed that
a worse relapse free survival (RFS) characterizes patients exhibiting a high expression of
CXCR1/2 (Figure 4b; Figure S2, Supplementary Materials). Next, we aimed to evaluate
whether IL-8 secreted by CAFs may promote a feed-forward loop that engages CXCR1/2
toward the acquisition of certain malignant features in the MDA-MB-231 breast cancer cells,
which express elevated CXCR1/2 levels [94,95]. Worthy, conditioned-medium collected
from the AGEs-stimulated CAFs triggered a spindle-like morphology in the MDA-MB-231
cells, which was prevented using the RAGE inhibitor FPS-ZM1 (Figure 4c). The abovemen-
tioned effects were also obtained by the neutralizing antibody anti-IL-8 (Figure 4b), as well
as the CXCR1/2 inhibitor reparixin (Figure 4c).

Figure 4. Cont.
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Figure 4. IL-8 mediates the acquisition of a spindle-like morphology in MDA-MB-231 cells triggered
by conditioned medium (CM) from AGEs-stimulated CAFs. (a) CXCR1/2 mRNA levels according
to breast cancer intrinsic molecular subtypes of the integrated Affymetrix cohort; (b) CXCR1/2
expression is associated with a worse relapse-free survival (RFS) of basal breast cancer patients in
the Affymetrix dataset. The patients were divided into high and low CXCR1/2 expression levels
on the basis of the established cut-point’ (c) MDA-MB-231 cells were incubated for 6 h with CM
collected from CAFs previously treated with vehicle or 100 µg/mL AGEs in the presence or absence
of 1 µM RAGE inhibitor FPS-ZM1’ (d) MDA-MB-231 cells were cultured for 6 h in CM derived
from CAFs previously treated with vehicle or 100 µg/mL AGEs with or without 300 ng/mL IL-8
neutralizing-antibody (Ab IL-8) as well as (e) using 5 µM CXCR1/2 inhibitor reparixin. The spindle-
like morphology was quantified as Polarity Index (PI). PI = 1.0 indicates a polygonal shape, conversely
a value > 1.0 identified ranges of migratory shapes. Images shown are representative of 10 random
fields acquired in three independent experiments. Scale bar = 100 µm. (*) indicates p < 0.05.

Accordingly, the RAGE inhibitor FPS-ZM1 prevented the formation of stress fibers
in the MDA-MB-231 cells exposed to the conditioned medium from the AGEs-stimulated
CAFs, as assessed through immunofluorescent staining of the polymerized actin (F-actin)
(Figure 5a). Similar results were obtained in the presence of the neutralizing IL-8 antibody
(Figure 5b), as well as the CXCR1/2 inhibitor reparixin (Figure 5c). To further appreciate
the biological significance of the paracrine action of IL-8 in breast malignancy, we demon-
strated that the RAGE inhibitor FPS-ZM1 (Figure 6a,b), the neutralizing anti-IL-8 antibody
(Figure 6c,d) and the CXCR1/2 inhibitor reparixin (Figure 6e,f) abrogate the migration and
invasion of the MDA-MB-231 cells cultured in the conditioned medium from the AGEs-
treated CAFs. Next, the mRNA expression of certain Epithelial-to-Mesenchymal Transition
(EMT) biomarkers, namely N-cadherin, vimentin and fibronectin, increased in the MDA-
MB-231 cells exposed to the conditioned medium collected from AGEs-stimulated CAFs.
However, these responses were no longer evident in the presence of the RAGE inhibitor
FPS-ZM1 (Figure S3, Supplementary Materials).

Figure 5. Cont.
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Figure 5. The paracrine action of IL-8 promotes the formation of actin stress fibers in MDA-MB-231
cells. (a) MDA-MB-231 cells, which were treated for 6 h with conditioned medium (CM) from CAFs
exposed to vehicle or 100 µg/mL AGEs alone and in the presence of 1 µM RAGE inhibitor FPS-ZM1,
were stained with FITC-conjugated phalloidin to visualize F-actin stress fibers (green) and DAPI
to detect nuclei (blue). The F-actin stress fibers formation in MDA-MB-231 cells promoted by CM
collected from CAFs previously treated with 100 µg/mL AGEs, was abrogated using 300 ng/mL IL-8
neutralizing-antibody (Ab IL-8) (b) or 5 µM CXCR1/2 inhibitor reparixin (c). Fluorescence intensities
of the number of fibers/cell was quantified by F-actin staining in 10 random fields for each condition;
results are expressed as fold change of relative fluorescence units (RFU). Data shown represent the
mean ± SD of three independent experiments performed in triplicate. (*) indicates p< 0.05. Enlarged
details are shown in the separate boxes. Scale bar 100 µM.
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Figure 6. The paracrine activation of IL-8/CXCR1/2 axis promotes cell migration and invasion of
MDA-MB-231 cells. Transwell assays were performed to evaluate cell migration (a) and invasion
(b) in MDA-MB-231 cells cultured for 6 h in conditioned medium (CM) from CAFs previously
treated with vehicle or 100 µg/mL AGEs alone and in combination with 1 µM RAGE inhibitor
FPS-ZM1. Cell migration (c) and invasion (d) were assessed in MDA-MB-231 cells cultured for 6 h in
conditioned medium (CM) from CAFs previously treated with vehicle or 100 µg/mL AGEs alone
and in combination with 300 ng/mL IL-8 neutralizing-antibody (Ab IL-8). The migration (e) and
invasion (f) of MDA-MB-231 cells observed upon exposure to CM from CAFs previously treated
with 100 µg/mL AGEs were abolished using 5 µM CXCR1/2 inhibitor reparixin. Scale bar = 200 µm.
Side panels show the mean ± SD of the number of cells counted in at least 10 random fields of
three independent experiments performed in triplicate. (*) indicates p < 0.05.

4. Discussion

In the current study, we investigated the role of the AGEs/RAGE transduction path-
way in the multifaceted interaction that occurs between breast cancer cells and the tumor
microenvironment. In this vein, we first assessed that the activation of the AGEs/RAGE
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axis induces rapid ERK and AKT phosphorylation via ROS generation in CAFs obtained
from breast cancer patients. Performing a PCR human chemokine array we then found
that IL-8 is the most upregulated gene in AGEs-stimulated CAFs. Mechanistically, we
ascertained that the AGEs/RAGE signaling cascade triggers IL-8 expression through the
induction of c-Fos, which was recruited within the IL-8 promoter sequence. Thereafter, we
assessed that IL-8, secreted in the conditioned medium collected from the AGEs-stimulated
CAFs, acts in a paracrine manner through the cognate receptors CXCR1/2, empowering
the acquisition of a spindle-like morphology and the actin polymerization in MDA-MB-231
breast cancer cells. Consequently, these cells acquire migratory and invasive properties, in
accordance with previous studies highlighting the role of IL-8 in stimulating pro-metastatic
effects in diverse types of tumors, including breast cancer [30–35].

An intricate signaling network coordinates the regulation and secretion of IL-8 in
both normal and tumor cells [96]. Cytokines, such as tumor necrosis factor-alpha (TNFα),
IL-6 and IL-1β, growth factors and hormones, were reported to upregulate the IL-8 ex-
pression [30,97,98]. The key components of the tumor stroma, such as CAFs, have been
also shown to promote the resistance to therapeutics and the acquisition of pro-metastatic
phenotypes ensuing the production and release of IL-8 within the tumor milieu [99–101].
In accordance with these findings, in the present study the AGEs, through the cognate
receptor RAGE and the subsequent activation of the ROS-ERK1/2-AKT-c-Fos transduction
pathway, triggered the expression of IL-8 and its release by the CAFs toward the acquisition
of malignant features in the breast cancer cells.

Impaired glucose tolerance and insulin resistance may increase the risk of breast
cancer [102–104]. For instance, diabetes in premenopausal women has been correlated
with a major risk of developing a breast tumor, mostly the aggressive subtype named
triple-negative breast cancer (TNBC) [105,106]. In addition, previous studies have indi-
cated that breast cancer mortality associated with distant metastasis is elevated in those
patients with co-occurring low-grade chronic inflammatory conditions, such as obesity and
T2DM [7,107–110]. Of note, the IL-8 serum levels were found markedly increased in the
T2DM patients in relation to the healthy subjects, and positively correlated with worse
metabolic control and an inflammatory state [111]. In this regard, it is worth mention-
ing that IL-8 levels were found elevated in serum of cancer patients and correlated with
a high tumor grade and an unfavorable clinical outcome [33,43,70]. Furthermore, elevated
levels of IL-8 were involved in the resistance to treatments in diverse types of cancers like
pancreatic, colorectal and breast tumors [112–114]. Likewise, pharmacological or genetic
inhibition of IL-8 were shown to sensitize breast cancer cells to the cytotoxic effects of
conventional chemotherapy agents [115]. The biological effects of IL-8 are mediated via
two rhodopsin-like G-protein-coupled receptors (GPCRs): CXCR1 and CXCR2, also known,
respectively, as IL-8RA and IL-8RB [116,117]. Similar to other GPCRs, CXCR1 and CXCR2
are composed of seven transmembrane domains, with extracellular N-terminus and in-
tracellular C-terminus portions [118,119]. The IL-8/CXCR1/2 axis has been involved in
the stimulation of diverse signaling pathways, including PI3K, MAPK, JAK/STAT and
RhoGTPase, which in turn mediate biological responses, such as proliferation, survival,
invasion, cytoskeletal dynamics and angiogenesis [40,120]. Moreover, the IL-8/CXCR1/2
system correlates with poor clinical prognosis in diverse types of tumor, including breast
cancer [121–125]. Moreover, a significant upregulation of the CXCR1/2 levels were detected
in the invasive breast carcinoma samples in relation to normal breast tissues [89]. Nicely
fitting with these data, the blockade of IL-8 by a neutralizing antibody or the inhibition
of CXCR1/2, blunted tumor growth and metastasis, and also reversed the resistance to
treatments in breast cancer [89,91,94,126]. In accordance with the aforementioned find-
ings, our in silico analysis of the Affymetrix dataset displayed higher expression levels
of CXCR1/2 in the basal subtype in relation to the other molecular subgroups of breast
tumors. Likewise, the evaluation of the Kaplan–Meier survival curves revealed a worse
clinical outcome in basal breast cancer patients showing high CXCR1/2 levels. Providing
further insights on the role of the IL-8/CXCR1/2 axis within the tumor microenvironment,
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we also assessed that the paracrine actions elicited by the conditioned medium collected
from the AGEs-stimulated CAFs are no longer evidently inhibiting this axis.

5. Conclusions

Our findings assessed for the first time the role of the AGEs/RAGE signaling pathway
in breast CAFs and its involvement in the paracrine stimulation of the IL-8/CXCR1/2 axis
toward the acquisition of malignant features of breast cancer cells. However, further studies
are needed to better characterize the transduction cascade triggered by the IL-8/CXCR1/2
paracrine activation in the MDA-MB-231 cells. Likewise, in vivo studies are warranted in
order to corroborate the present results and the usefulness of IL-8 as a therapeutic target in
comprehensive approaches halting breast cancer progression.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11152402/s1. Figure S1: Phosphorylation of ERK1/2
and AKT upon BSA exposure and efficacy of RAGE silencing in CAFs; Figure S2: The plotALL func-
tion of the survivALL package calculating hazard ratios (HR) for all possible CXCR1/2 cut-points to
be examined; Figure S3. Expression of Epithelial-to-Mesenchymal Transition (EMT) biomarkers in
MDA-MB-231 upon exposure to conditioned medium (CM) collected from CAFs.
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