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ABSTRACT

The aggregate server method is an approximate. iterative method for
analyzing computer systems contai.ning serialization delays. EKamples of
serialization delays include delays encountered while walling for entry
inLo critical sections, non-reentrant subroutines, and locks. The method
involves inLroduction of aggregate servers into a queueing network to
represent the serialization delay. Service time requirements at aU
servers are modified appropriately to account for the contention at physi"
cal devices among serialized and non-serialized cuslomers.

The algorithm is developed for single class closed queueing networks
or single load independent servers employing processor sharing schedul­
i.ng disciplicne. Hesults o( validation based on comparLson with exac L
numerical solution are presented. Some factors affecting Lhe accuracy oE
the meLhod are also discussed. Extensions La mulU-class queueing net­
works, variable rate servers and other scheduling disciplines are also sug­
gested.
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L Background

When using queueing networks as models of computer systems. it is conventional

to represent programs as customers circulating in the network. and to represent phy-

sieal devices such as CPUs, disks and drums as servers. This approach is well suited for

analyZing queueing delays caused by contention among programs for the active physi-

cal devices in a system. 1f these device contention delays are computed correctly,

satisfactory models of overall system performance can be obtained in many cases.

There are, however. a large number of cases where satisfactory models must

include delays for passive resources. delays that are materially different from active

device contention delays. (An active resource contains processor(s) that render ser-

vice. The delay per visit includes queueing and service from the processor(s). Apassive

resource is one that must be held as a precondition for holding active resources. The. ;' I"
delay is queueing plus delays at active devices.) An important example is the delay that

programs experience while waiting for main memory. or mounting or tapes and disk

pacl~s.

Note that programs usually do not begin execution until all the passive resources

.~they reqUire have been allocated. In addition, a program usually holds all its passive
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resources until it terminates. When these conditions hold. and if the passive resources

are indistinguishable, the technique of decomposition can be used to obtain a satisfac~

tory approximation for the delays due to passive resource contention. It should be

noted. however, that the extension of decomposition techniques from single class Lo

multi-class models is quite difficult in practice. Also, the computation of auxiliary

parameters [or the decomposition can sometimes be complex, as in the case where the

passive resource is permission to access granules in a database [14].

A second important category of delay not treated by conventional queueing net­

work models is the streLchout of device service times (active servers) because of con­

tention for I/O subsystem components such as channels, control units, and heads of

string. A number of auxiliary models for approximating this stretchout factor have

been developed for specific architectures (2]. The integration of such auxiliary models

into a higher level queueing network presents a number of practical difficulties, but the

use of auxiliary models to deal with service time stretchout in 110 subsystems appears,

in principle, Lo be sound. An alternative approach based on the "method of surrogates"

has also been proposed for this class of problems (12]. This approach has several

advantages and can be generalized to other types of simultaneous resource possession

problems. However, like decomposition technique, this method's generalization to

multi-class models appears difIicult.

A third category of delay that is not represented in conventional queueing network

models is the seriuJ.ization delay that arises because of contention for critical sections,

non-reentrant subroutines, and other software control structures that cause process­

ing to become serialized. The most common sources of serialization delays are routines

that perform resource allocation, modify internal data structures, or update external

files and databases.

Note that programs experience serializaLion delays afler they have been allocated

their reqUired passive resources and have begun acLive processing. Also, programs

c::,
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pass in and out of serialized phases during their execution. These two factors disUn-

guish serialization delays from delays for passive resources such as main memory. tape

drives, or the database granules discussed by Potier and Leblanc [14].

Serialization delays can often be neglected without affecting the accuracy of a

model significantly. This is because the removal of serialization delays will generally

cause an increase in the queueing delays at the servers that are accessed within the

serialization phases; in effect, part of the queue for entry into a serialization phase is

shifted to the original servers, and thus the net impact of ignoring serialization delays

may be small. In fact. if the serialized processing consists only of a single processing

burst at a slngle server with F'eFS scheduling, neglecting the serialization delays wilt

not introduce any. error at all. However, if significant amount of processing is serial-

ized, serialization delays must be induded explicitly in the model to yield satisfactory

results.

The literature on serialization delays is limited. Smith and Browne [15] have pro-

posed an approach for treating this problem, but this approach was not subject to sys-

tematic validation. There was. however, a limiled validation based on measurements of

a real system. Unfortunately. the measurements were taken durlng interval when seri-

alization delay contributed only a small fraction of the overall response time. Thus,

even though excellent response time validation were obtained, it is not possible to

make conclusive statements about the validity of Smith and Browne's [15] serialization

delay model from the data that was presented.

Kumar and Gonsalves [13] present another method for modeling software struc-

tures in distributed systems and discuss an example of modeling of critical sections.

They consider software modules to be servers in the queueing network. and physical

resources circulate in the network as customers. When a customer (a device) visits a

server (a software modUle), It means that the device wants to do processing on behalf

!.l " of the software module. While their method is suitable for problems like modeling of
,f~; I , .

. ,'~t ~_~.", ,,.
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delays due to software locking, it does not seem to model different kinds of resources

(e.g., CPU and I/O devices) adequately. For example, at any given time, a customer

usually can be queued either at a CPU or at an I/O device, but not aL both. Their

methodology does not appear to allow this constraint to be represented.

Another approach to analyzing serialization delays is the aggregate server method

originally developed by Buzen, Liu and Shum [8] Cor use with BEST/! modeling package

[1,4]. In this paper, we present a detailed discussion of the rationale and the concep~

tual basis for the aggregate server technique. We then present a new algorithm for

evaluating aggregate server models and a systematic validation of the aggregate server

method based on comparison with exact numerical solutions of detailed models that

incorporate serialization delays explicitly.

2. Terminology

Consider a critical section entry to which is controlled by using a semaphore S

[11]. A process wishing to enter this critical section performs a wait operation on the

semaphore. If the count of the semaphore is 0 (or negative), the process will have to

wait until the semaphore is signaled and this process is readied. After returning from

the walt, the process will be the only process executing in the critical section. When

the processing inside the crltical section is completed, the process will exit the critical

section by signaling Lhe semaphore S, and thereby, awakening a waiting process, if

any.

The term serialized phase will be used to denote single threaded processing, for

example, the critical section processing discussed above. That is, at most one custo~

mer may be actively executing in a serialized phase at any given time. When a custo-

mer (a process) is executing in a serialized phase, it will be called a serialized custo-

mer. Processing serialized using different semaphores occurs in different serialization

phases.

",' -'
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The phase of processing in which different customers are not serialized will be

called a non~seTialized phase, and accordingly, a customer executing in the oon-

serialized phase will be called a non-serialized customer.

3. Overview of the Aggregate Server Method

The baslc idea behind the aggregate server method is quite simple, and general-

izes directly from consideration of the restricted case where there is a single customer

class and a single critical section (a serialized phase). Consider such a network coo-

taining N customers and K servers. Let Di be the total service time per job at server

i. In the notation of Denning and Buzen (10]. Di. is equal to f/iSj" which is the product

of the number of visits per job to device i and the service time per visit for device i.

Note that each Di, can be regarded as consisting of two components: Do!. which is

the total service time per job at server i that occurs outside critical section, and D1i"

which is the total service time per job at server i that occurs inside the critical sec-

tion. The aggregate server technique is based on the idea of adding an additional

(aggregate) server to the network to represent the serialized processing in the critical

section, and then regarding the expanded K +1 server network as having a conventional

produc t form solution.

Let YK +1 be the service time per job at the aggregate server; in other words. YK +1

represents the time spent per job tn the critical section. As an initial approximation,

YK + 1 can be set equal to the sum DlI +D I2+· . +D 1K since the processing in the crill-

cal section is serialized. Also, let the service time per job (excluding critical section

processlng) at server i be fi=Doi,. Thus, in its simplest form, the aggregate server

representation of Lhe original problem is a product form network with K +1 servers

where the service Limes per job are YI. y2...., YK+l' The queueing delay at the aggregate

server represents the queueing delay for the critical section. and the overall

Lhroughput of the network represenLs the overall throughput of the original model.

..-:
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In practice, the simple aggregate server model described above is too crude to

yield satisfactory results. There are two main sources of error in this model:

(A) The service times per job at the original K servers (Yi at server i) are

represented simply as Dol. Doz..... flox- This ignores the fact that processing

within the critical section can place an addLtional load on the original servers.

and thus degrades their performance. To represent this degradation, assume

instead the service times per job at the original servers are represented as

i=1,2, ... ,K (1)

and O<HOi"";;l, i=1,2....K. One of the intermediate objectives of the aggregate

server technique is to delermine the values of service time adjustment factors,

HOi' that represent the service time elongation (or server degradation) properly.

(B) The service time per job at the aggregate server representing the critical sec-

tion is represented as YK+I =DlI+D12+ ... +D1K' Once again, this ignores the fact

that processing outside the critical section can place an additional load on the

servers that perform critical section processing, thus increasing the effective

value of service time required at server i while in the critical section to

Yh ;:; D 1i / H Ii, To represent this eITect, assume the service time per job at the

aggregate server is

K

YK+l = ~ Y1i
i=1

K
~DIi./Hli
i=l

(2)

and O<Hli~l, i=1,2, ... ,K. Determining the values of the H li is another inter-

mediate objective of the aggregate server technique.

The overall flow of the aggregate server technique can be now be specified. Note

that steps 3 and 4 below account for points A and B respectively.

1. Consider a queueing network model that would satisfy product form conditions,

except (or the presence of 1 serialized phase (e.g., a critical section).
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2. Add 1 aggregate server to the network for the serialized phase.

3. Using equation (1) and an initial approximation of H o', i=l," . ,K, compute the

service time requirement at the original servers, accounting [or contention from

serialized processing.

4. Using equation (2) and an initial approximation of H li , i=l, ... ,K, compute the

service time at the aggregate server, accounting for contention at the original

servers by non-serialized processing.

5. After computing the service times (as in steps 3 and 4), solve the network contain­

ing the original servers and the aggregate server using conventional product form

techniques.

6. Compute new approximation to H~~'s (z =0,1) from the solution obtained above. If

there is no significant change in Hn's. we are done, otherwise, return to step 3

with new Hn's replacing old Hzi's.

The six steps identified above were first proposed. in a different form, by Buzen.

Liu and Shum in their original paper on aggregate servers [6]. This paper presents a

new algorithm for implementing steps 3 and 4.

In our method, we first note that when there are n customers at a device (n ,eO).

on the average. each customer will be served at lin of the nominal rate. Using this

observalion and the state probabiliUes, we determine the effective rate at which a dev­

ice serves nonserialized and serialized customers (Le., we compute the service time

adjustment (actors, Hn·s. where z is a serialized phase index). "Correct" values of the

service time adjustment factors are computed iteratively.

4-. Development of the Aggregate Server Melhod Delays

In this section, we will discuss development of the aggregate server method in an

informal and intuitive way. A more formal and rigorous deve lopmenl o( the aggregaLe

server method in the framework o( meta-modeling can be found in Buzen and Agrawal
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The previous section discussed Lhe aggregate server technique for a single seriali-

zation phase. Generalization Lo Z serialization phases is straightforward. Simply add

Z aggregate servers to the network, one for each serialization phase. Figure 1

specifies the algorithm. Our notation has been summarized in Table 1.

Figure 1: Aggregate Server Algori.lhm

0: Initialize

initial service time requirements

Dri , z=O,l, .... Z. i=1,2 .... ,K

initial service time adjustment factors

H zi =1.0. z=O,1, ... ,Z.i=1,2.... ,K

L Compute stretched out service times

Dn z =0,1, ....Z
Y;ri = ---_HZi '1..-1,2.... ,K

For non-serialized servers

ii = YOi i=1,2.... ,K

For serialized servers
K

YK +z = ~ YZl z=O,l, ... ,Z
i=l

Fraction of time spent at a server while being processed in a phase

[

Z =0
F _= 1

n 1':
Y

K
:

Z
Z =1, ... ,Z

2: Solve following queueing network under product form assumption

Yt , Y2, ... ,YK ,YK+I . ... ,YK+Z

3: Compute new service adjustment factors, H~tW from old En and Fjt •

4: If there is no significant change in Hti,'s. STOP,
otherwise, return to step 1 with new H;ri.'s replacing old Hzi·S.

The next step is Lo develop a procedure for computing "correct" values of the ser-

vice time adjustment factors, the Hzis. We will first show how one can obtain service

time adjustment factors. given the exact solutlon o[ the network. Then. we will show
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how to approximate these service time adjustment factors using a solution of the

queueing network solved under product form assumption (steps 2 and 3 in figure 1).

4. L Computation of H::f. 's from an Exact Solution

Consider server i which is visited during serialized and non-serialized phases of

processing. This leads to contention among customers in different phases of process-

ing for service at the server. Letnzi (i=1,2, ... ,K and z=O,l, ....Z) be the number of CtiS-

tomers at device i that are in the serialized phase z. The phase a is the index of the

non-serialized processing phase. K is the number of devices and Z is the number of

serialized phases. Note that at any given instant only one customer may be actively

receiving service in a serialized phase. Other customers wishing to enter the serialized

phase are blocked. and await their turn. Thus, number of customers in serialized phase

z is 0 or 1. Therefore, if nzi represents the number of serialized phase z customers at

server i, nzi is either 0 or 1, z=1,2, .... Z, i=l,· ".K. Also note that at any given time,

if there are k, O~k;5;Z. serialized customers at the serveri. there cannot be more than

N -k non-serialized customers at this server since N is the number of cllstmers in the

network.

Assuming a processor sharing scheduling at the server, at any instant all custo-

mers present receive service at an equal rate. Thus, if there are c (c =no~) non­

serialized customers and k (k =~Znrci) serialized customers present at the server i. a
q=1

customer will receive service at a rate equal to lI(c +k) times the nominal rate of thc

server. This impHes that c / (c +k) is the fraction of the server capacity that is provided

to the set of c non-serialized customers. It also means that 11 (c +k) is the fraction of

the server capacity that will be provided to each serialized phase customer present at

the server at that time.

Contention can thus be modeled as the allocation of a fracLion of server capacity

to customers in a given phase. The reciprocal of this fraction [s the instantaneous



i=l,. ...K

i=K+l, ....K+Z

N
K
Z
i

c
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Table 1: Notation

total number of customers in the network (Le., MPL)
number of servers in the network
number of serialized phases
index of servers under consideration

i =1,.. ..K original devices
i=K+l, ....K+Z aggregate serialized servers

non-serialized phase customer index
phase index

z =0 nonserialized phase
2: =l, ... ,Z serialized phase

number of serialized phases in which a customer may visit
device i, i=l, ... ,K
number of customers at device i while visiting phase z.
(nOi is the number of nonserialized customers receiving
service at device i, and if z>O, nziE~O,1n
number of customers inside serialized phase z, z~l, Le"

K
mz=~n.;i' mzE:~O,l~.

i=l

number of customers waiting for entry into the serialized
phase z, z~l.

number of customers at serialized phase 2. nz=Tz+mz .

total service time requirement (demand) at server i while
in phase 2

service time adjustment factor for a phase 2 customer at
device i
stretched out service time requirement at server i for
phase 2, Le., service time modified to reflect the effect of
contention due to customers in other phases Yzi= Dzi/ Hzi
service time requirement at server i in the aggregate
server network:

Yi = (K Y
Oi

2..: li-K.I
1=1

fraction of residency time of phase 2 (Le., time spent in
phase 2), 2~1 spent at device i, (i=l, ... ,K)

(

2=0

F.,=~
y: 2=1, ...• Z

<:I-K

set of partially ordered Z +1~tupLes such that first l +1 ele­
ments of the tuples are VO,'U1' ... ,Vt, respectively. I.e.,

~(to.tL.· .. ,lz)ltr=vr r=O, ...• l; Q5;lr5;Z T=l+l, ... ,Z:

lrr"ls ifr#-s; lr<ts if l<r<s5;Z ~

cc.'
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value of the service time elongation factor. The fraction itself is the instantaneous

value of the service time adjustment factor. Hzi.- We can obtain the average value of

the Hzi.'s by averaging over those periods of times when a phase z customer is present

at the server i.

Thus, for phase 0, i.e., the non-serialized processing phase, the service time

adjustment fac tor at server i is

N mm(~-r;) C Z
L; L; --p(n,,=cl\L;n,,=k)
.,~=~,~---,.~=~o,-__C_+_k.,------,--c ---,q~=~,,- _

H o'=-
L p(noi.~l)

For serialized phase z. (z?::l) at server i, the service time adjustment factor is:

(3)

(4)

mi.n~.N) N-k 1 Z
L; L; --p(nzi=ll\nOi.=c/\.~nqi=k)

"i .1:=1 1:=0 c +k q=l
I ri =-='----...:..:"-----p---,-(n-~-.c-"-oI')----'-="----

Note that the above expressions have been written in terms or the exact probabilities.

without approxirnaUons. We expand these expressions further in AppendiX A.

4.2. Approximating the I-J.-;j,·s

We will now outline our method of computing approximations to H~'s from the

solution of the product form model. solved during the iteration of the Figure 1.

When expressions for service time adjustment factors. H~ (equations 3 and 4), are

reduced to a more amenable form, as shown in equation A-9 and A-lO (Appendix A). we

need p(nor:~c 1\ n llr:=l), Tu;;;:UI.t2, .... t,d. the probability that among the customers
Il ETlk

present at the server i. care nonserialized, and the other k customers are in

t l ,[2.· .. • ll; serialized phases of processing. (tl,t 2,' . ,t1;" (tz;;!'O) are k unique serial-

ized phase indices). We give an approximation for this probability term below.

First consider the probability that a customer in zCh. serialization phase is at

K
server i. p(nzi;;:l). Assuming that a cusLomer spends Fzi (Fzi;;:Yril L; Yri, z~l) frac­

i:::1

lion of the time spent in the serialization phase z at server i. we have, using

1 -
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p(a,b)=p(a)p(b la),

p(nzi=l) =p(nzi=lI\nz~l)

= p (nzi =11nz'21) p (nz'21)

= Fzi P (nz'21)

We note here that if we know correct values of Fri , no approximation is introduced

above.

Returning to the expressionp(nOi'2C /\ nqi=l), Tlm ;; Tt,m=Ut,tt+I, ... ,tmL we have,
qE:7"lk

p(nm2:C /\ nqi=l) = p(nc
t
l=1) p(nOi~c /\ '1tqi=l]nl t i=l)

qE:T!A; qETZk

=F t . pent '21) p(nOi'2C /\ 7tqi=l!nc \=1)
lL I qETl!J: 1

R:l Fe' pent ;;:::1) p(nOi?:c /\ nq~=lln, '21) (@)
1\ I q ET2k I

=Flli p(nOi'2cl\nc 2:1 J\ 7Lqi::::l)
1 qET;!k

(5)

In the step marked with an @, the following homogeneity assumption

p(nOi 2:C /\ 7Lqi=1lnt \=1) = p(nO(C>:c A 7Lqt=1lnt '21). (6)
qETz,l: 1 qET2I; I

has been used. This is roughly equivalent of saying that when a serialized phase z is

busy (Le., there is a customer in the serialized phase), the long term behavior of custo-

mers in other phases is independent of this serialized customer's whereabouts. Equa-

lion 5 will be exact if this assumption holds and will be regarded as an approximation

otherwise. Using equation 5, apprOXimate service time adjustment factors can be com-

puted as shown in equations Bl and H2 in Appendix B. Equations B3 and B4 (in Appen-

dix B) give the expressions which can be evaluated using the convolution algo-

rithm[5,3].

5. Validation

The aggregate server approximation presented in this paper was tested by com-

paring it with exact numerical solutions obtained by a program that solved the "global

c-:
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(1) Keeping the ratio of load on various devices in each phase same, vary the ratio of

Z K 7, K K
total serialized (l:: l:: Dzi) to total activity (l:: l:: Dzi = l:: D,).

:::=1 i::1 z=O i=l i=l

(2) Given the ratio of total serialized to total activity and otherwise balanced system

(i.e" the ratio Dzi / Dzt is fixed for all z), vary the distribution of load among vari-

aus serialized phases.

(3) In an otherwise balanced system, for given distribution of activity amongst phases.

vary the ratio of activity amongsL devices, in the same ratio in each phase.

(-1.) Vary Lhe distribution of load among devices in a phase keeping the distribution

among other phases unchanged.

We believe that our approach has enabled us to study the effects of some relevant

parameters on the error in a systematic way.

Below we discuss the results of our experiments with a network consisting of two

servers, and two serialized phases (two critical sections). Total service time require-

,
ment in the serialized phase 1. CS1. equals L; D 1i . The total serialized service require­

i=1

, 2

ment CS equals L; L; D;ri,. The toLal service time requirement per customer is the sum
:;:=1 i=l

of its ser[a1[zed and nonserialized service requirements at each device, and it equals

,
(L; Dd· Thus, the ratio CS/TOTAL is the raLlo of total serialized service time require­
i=1

ment per customer to the total service requirement, and the ratio CSI/CS is the ratio

of total service requirement for serialized phase CSl to total amount of serialized pro-

cessing per customer.

In the discussion below, by error we mean relative error in throughput. which is

% ERROR = (approximate throughpuL - exact throughput) ""100
cxact throughput

Figure 2 illustrate the eITect or customer population on the error. Figure 3 and 4 will

examine the effect of varying relaLive loading between phases (steps 1 and 2 above).
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The ne twork examined in figures 2, 3 and 4 is balanced in the sense that within a phase

service Ume requirements at all servers are equal. In figure 5 and 6, we will examine

the erreel of the relative loading of various devices (steps 3 and 4 above).

Figure 2 shows the relative error in throughput as a function of change in popula-

tion. Note that the error levels off as customer population increases. The error for the

unbalanced specific representative system (La be examined in later in Section 4.2) lev-

els of much earlier than for balanced systems. It, in fact, decreases slightly for the

specific case example. We aLLribule il to the unbalance in the network. We think it is

because an unbalanced system reaches saturation carlier than an equivalent balanced

system due to the presence of specific bottlenecks which limit the throughput.

Figure 3 displays the relative error for the balanced system examples as a func-

lion of the ratio CS/TOTAL. Note that the error peaks about CS/TOTAL:::::l 0.5, Le., when

the total serialized service time requirement approximately equal the total nonserial-

ized servlce requirement. This demonstrates that the aggregate server method is

more accurate [or unbalanced systems. }i'ortunately, real systems arc rarely balanced.

Figure 4 shows what happens to the relative error as the distribution of load

among various serialized phases is changed for the balanced systems under considera-

tion. We note that the error again peaks when load is distributed equally between the

two serialized phases - a balance condition. However, the error is much less sensitive

to the distribution of activity among serialized phases as compared to the distribution

between tte serialized and the nonserialized activity.

In Figure 5, we study the effect of changing the servers' relative speed (server l's

speed/server 2's speed) only. This keeps everything else, except the relative utiliza-

tions of the two servers, unchanged. In particular, the network with CS/TOTAL=0.5,

CSlICS=0.5, and with servers' relative speed of 1 (both servers are capable of serving

same number of customer-visits per uniL Lime) is the "completely balanced case" con-

sidered earlier. We see that the error in throughput decreases dramatically as the

\.

\.
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relaLive speed (and the ulilization) of servers deviates from 1. Equivalently, as the sys­

tem becomes more unbalanced, the accuracy of the aggregate server technique

improves.

Figure 6 illustrates the effect of changing the service requirements at two servers

in a serialized phase (phase CS2). keeping the total service requirement in each phase

constant. Once again. we note that the error decreases significantly as we depart from

the completely balanced configuration.

5.2. A Specific Representative Case

This section presents a specific example that is intended to be representative of

the load distribution found in real sysLems. It consists of 1 CPU, 3 disks and 2 critical

sections (serialized phases). The network is depicted in figure 7, which also gives the

server speeds, routing probabilities and visiL counts. The service time reqUirements at

each device in each phase and total service time reqUirements at each device are

shown in Table 2. These numbers were picked so that the total service time require­

ment for noncritical section processing, critical sections CSl and CS2 processing will

be approximately 50, 20 and 30 percent of the total service requirement. Other details,

such as the percent load for each device in each phase is given in 'fable 3. These

figures should help one place the network in the frame work described in the previous
'1\·

subsection. Note that for this example, CS/TOTALRlO.5.

Table 4 gives lhe device and critical section utilizations and relative error in

throughput as population is varied from 1 through 8. Notice that the error is zero for

population 1. This is expected of this method because it is exact for product form net­

works and the networks with critical sections do not violate product form when there is

only one customer in the network.

We see that the error in throughput first rises with increase in population, then

decreases slightly after peaking. We also noticed that the error in individual server's
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stretched out service times were negative, and were about 1.5-2.0 times, in magnitude,

the error in throughput. These lower stretched out service time requirements result in

higher throughput, but error in over all throughput is much less than the error in indi-

vidual stretched out service times. This is due to a "negative feedback effect":

increased throughput results in more contention and therefore greater delays, and

hence reduces throughput. We also used the stretched out service times obtained

from global balance steady state solution to construct a product form aggregate server

model and solved it using conventional techniques (1.13 .• we take the service time

adjustment factors obtained Crom the global balance solution to be the "correct" ones

and do not iterate). This model's throughput wiLh 4 customers in the network was 7.1%

less than the correct lhroughput. (Recall, aggregate server method yielded 6.0%

higher throughput.) As an aside, with these initial adjustment factors, the iteration

converges to the same values of adjustment factors as obtained with initial guess of 1.0.

To demonstrate that proper modeling of serialized phases when serialization

delays are significant is essential and that the aggregate server method prOVides a

good approximation, we once again consider the representative case considered above.

This time we model this situation using two other techniques: (a) NOeS: do not

represent serialized phases explicitly, Le., the service requirement at a device is the

sum of serialized and non-serialized service requirement at that device; and (b) Hi: use

the crude model developed in the Section 2, Le., the service time adjustment factor H

is uniformly considered to be 1.0. The results are shown in the Table 5. This daLa

shows that Hi is a rather crude model (in fact, it is worse than ignoring the serialized

phases completely). The aggregate server method performs significantly betLer than

the other two methods.

5.3. Source(s) or Error

To investigale the source of error further, it is necessary to look more closely at

the process of approximating the eITed of contenLion. So far, for each phase of
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Figure 7: Representative Case Description
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NCS CS1 CS2
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Table 2: Service Time Parameters for Typical Case Example

TU"'ical Case Exam....le - Service Time Renuirements ....
SERVER NCS CSI CS2 TOTAL
CPU 0.200 0.060 0.081 0.341
DISKI 0.056 0.058 0.000 0.114
DISK2 0.036 0.000 0.121 0.157
DISK3 0.036 0.000 0.000 0.036
TOTAL 0.328 0.118 0.202 0.648

• NCS: nonserialized phase
CSl: serialized phase 1
CS2: serialized phase 3

Table 3: Load Distribution for the Typical Case

distribution of load amonrrst nhases for each device
SERVER NCS CSI CS2 TOTAL
CPU 58.7 17.6 23.8 100.0
DISKI 49.1 50.9 0.0 100.0
DISK2 22.9 0.0 77.1 100.0
DISK3 100.0 0.0 0.0 100.0
TOTAL 50.6 18.2 31.2 100.0

processing, and each server, we are averaging the effect of contention over the whole

period during which there is a customer of that phase present at the server. A

moment's reflection will show that as the number of customers present at the server

increases, the contention among them increases, and thereby affecting the fraction of

server capacity used by customers of individual phases. Thus, from the point of the

view of an individual customer, the server behaves in a load dependent fashion. The

instantaneous load dependent relative rate of the server i, as perceived by phase z

z
customers is equal to nzil L.;nli' Since Lhis representation carries more information,

l=O

we expect this method to yield better approximation.

To examine this hypothesis, using the "exact" steady state solution, we computed

L'
\ "
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Table 4: Typical Case System Solution - a Performance Measures' Summary

Tvoical Case - Devi.ce Utilizations and Throul!h ut

No. of ASM Exact Utilizations"'· Throughput
%Pop.

Iterations· epu DISK1 DISK2 DISK3 eS1 eS2 GBS ASM ERROR
1 1 0.53 0.18 0.24 0.06 0.18 0.31 1.54 1.54 0.00
2 7 0.72 0.24 0.33 0.08 0.32 0.52 2.11 2.21 4.60
3 10 0.81 0.27 0.37 0.09 0.43 0.68 2.37 2.51 5.89
4 14 0.85 0.28 0.39 0.09 0.51 0.79 2.49 2.64 5.99
5 20 0.87 0.29 0.41 0.09 0.57 0.86 2.56 2.71 5.87
6 24"''' 0.88 0.29 0.41 0.09 0.61 0.91 2.60 2.75 5.78
7# 24·" 0.89 0.30 0.41 0.09 0.63 0.95 2.62 2.77 5.75
8 24·" 0.90 0.30 0.4-1 0.09 0.65 0.97 2.63 2.78 5.77

ASM - Aggregate Server Method
GBS - Global Balance Solution

# This case was run on a VAX. 11/780. Other cases were run on a DEC 20.
Different precision of the machines explains the slight deviation from the
trend in the error .

... Maximum change between successive H~ ~ 10-6 .

•• From the steady stale global balance solution
••• New estimate of Hri,'s is average of old value and the one obtained from using

the equations 3 & 4. This averaging was done to speed up the convergence by
taking advantage of its oscillatory nature.

Table 5: Comparison of Aggregate Server Method With Other Methods

Does it make sense to use Al!l!re ate Server Method?

Pop.
Throuf7hnut % Error

GBS ASM H1 Noes ASM H1 Noes
1 1.54 1.54 1.54 1.54 0.0 0.0 0.0
2 2.11 2.21 2.49 2.25 4.6 18.0 6.6
3 2.37 2.51 3.10 2.60 5.9 30.8 9.7
4 2.49 2.64 3.51 2.77 6.0 41.0 11.2
5 2.56 2.71 3.79 2.85 5.9 48.0 11.3
6 2.60 2.75 3.99 2.89 5.8 53.5 11.2
? 2.62 2.77 4.14 2.92 5.8 58.1 11.4
8 2.63 2.78 4.25 2.92 5.8 61.6 11.0

ASM R Aggregate Server Method
GBS - Global Balance Solution

HI - Contention among serialized and nonseriaLized customers is not represented.
Le., H::i.=1.0.

NOCS- Critical Sections are not expHcitly represented

the effective, relative rate of the servers as shown below. Average relative rate of

server i when there are n nonserialized customers at device i is:

CD
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min(N-n,Z) n C

L; --p(n,,=n/\L;n,,=k)
,1;;-0 n +k '1""1

(7)

Similarly, average relative rate of the aggregated serialized phase server z+K, z~l

can be given as

In equation 8 above, f.4. is the processing rate of the server i in terms of number of

customer-visits per second, and qzi.O is the probability that a serialized phase Z ellS to-

mer will depart from the serialized phase (for that visit only) after receiving service at

f(

server i. Note that L: DzJ v". is the nominal service time requirement per visit to the
i=1

f( •

serialized phase z. That is, 1/ (L.; Dzi / Vo:) is the nominal processing rate of the serial­
i=1

ized phase in terms of customer-visits per second.

Our test case is the representative system considered above with 4 customers in

the network. (Note that using the aggregate server technique. maximum relative error

occurs for this network population.) Parameters of this model are shown in Table 6.

Table 6: An aggregate server model with load dependent
service rates obtained from exact solution

Number of Customers in the Network = 4

SERVER SERVICE RATE(n\
TIME I 2 3 4

CPU 0.200 0.602 0.709 0.622 1.000
DISKI 0.056 0.676 0.905 0.939 1.000
DISK2 0.036 0.764 0.625 0.690 1.000
DISK3 0.036 1.000 1.000 1.000 1.000
CSI 0.118 0.522 0.612 0.751 0.969
CS2 0.202 0.506 0.623 0.775 1.022

As before the refined approximation is assumed to satisfy the conditions Cor product

form solution. The refined model proved to be remarkably accurate: approximate

throughput was within 0.5% of actual throughput. and wailing Limes at individual

(8)



- 27-

servers were within 1.5%. This small residual error, we believe, results from the

assumption of product form ~ we have considered the rates to be a function of local

queue lengths only.

This refined analysis illustrates the power of the aggregate server method. The use

of mean slretched ouL service times is for computational ease only. If we use load

dependent rates. significantly better results can be obtained. It is possible to develop

formulas to compute these load dependenL rates in aggregate server setting. However.

the cost of computation (especially that of solving the resulting model which will con-

sist solely of load dependent servers) may be prohibitive. Convergence may also be a

problem. In most cases the additional computational effort may not be jus titled by the

resulting gain in accuracy.

To summarize, our empirical invesligations show the aggregate server method to

be reasonably accurate. The errorr is dependent on the customer population and dis-

tribution of load amongst various phases and devices. Main source of error appears Lo

be the use of mean stretched out service times, rather than load dependent service

raLes. If accuracy is of utmost importance, one may revise the aggregate serVer

method to incorporate load dependent servers.

6. Computational Complexity and Convergence

As for any iterative method in queueing network modeling, it is very difficult to

.. prove convergence, and even more difficult to say anything about the point of conver~

gence. However, in all but one of the cases that we solved, the algorithm converged

(see next paragraph). The convergence was oscillatory in nature, Le, the service time

adjustment factors oscillated back and forth around the value to which they finally con-

verged.

However. in one case, we noticed oscillatory divergence. ILeration did converge

when we took the average of old Hzi.'s (input [or iteraLion) and new H;;i's (algorithm
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output) as the H;ri's for next iteration. Divergence can be detected by monitoring max-

imum change in the H;ri's during successive iterations. I[ this increases, then the itera-

lion is likely to diverge. As already noted, averaging of successive values of the Hzi.'s

appears to be effecLive in eliminating the divergence.

We also cannot say anything about number of iterations required except that it is

a complicated function of network population. number of servers and serialized phases,

and distribution of load. However, empirically we have noted that the iteration con-

verges linearly. Thus. we can apply some well-known techniques such as Aitken's tJ,2

process [9J to speed up the convergence.

Computational requirements for the method using the convolution algorithm to

compute the service time adjustment factors are O(KZa'tg +5NK) computations per

iteration aIter the model has been solved. Zavg is the mean number of phases in which

a customer may visit a given device. Le, mean number of phases sharing a device.

7. Extensions

We have presented a technique for modeling of serialization delays in queueing

network models of computer systems. We discussed and validated the technique

assuming a processor sharing scheduling discipline and load independent servers.

Since, in a product form network PS. FCFS, and LCFS scheduling disciplines yield the

same steady state solution, we believe that same relations will hold for them. For IS

disClplinc (infinlte servers) the H:ri, are always equal Lo 1 for all phases.

Variable rate servers do not pose any problem. Expressions for H:ri,'s can be

derived by appropriately modifying equations 3 and 4 in section 4. Of course, computa-

lion o[ H:ri, will be more expensive in this case.

Extension to multi-class networks in which various classes do noL share a serial-

ized phase is straightforward. The service time adjustment factors can be computed

relatively efficiently, by precomputing a table of numbers, which [s independent of ser-

C'I
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vice time parameters of the network.

Though the underlying principle remains unchanged, extension to multiclass net-

works with shared serialized phases is computationally difficult.

8. Conclusion

We have presented the aggregate server method for modeling serialization delays

in computer systems. Examples of serialization delays include waiting for entry into a

critical section or a lock, executing non-reentrant subroutines, etc. These delays are

normally encountered in operating system calls, database enquiry and updates, pro-

cess synchronization etc. The aggregate server method involves including an addi-

lional server for each source of serialization delay. Service ti.me requirements at these

serialization delay servers and physical servers are suitably sLretched out to account

for the contention for service at a server amongst jobs inside and outside some seriali-

zation phase. Stretchout factors are iteratively obtained. For typical systems, the
"..

\' accuracy appears to be satisfactory. We found that the accuracy of the method

depends heavily on the evenness of distribution of load amongst various phases of pro-

cessing. Uniform distribution of load results in poor accuracy. Fortunately, most real

systems are unbalanced.

In this paper, we have provided an intuitive explanation of the rationale behind the

aggregate server method. Rigorous development of the method in the framework of

meta-modeling is provided by Buzen and Agrawal {6].

We have developed the method for single class closed model consisting solely of

load independent, PS scheduled single servers. It can be readily extended to include

load dependent rates. other scheduling disciplines. as well as, multi-class closed net-

works.
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APPENDIX A

Service Time Adjustment Factors

In Section 3.1 (equations 3 and 4), we saw that service time adjustment factors,

En's. for z =1,2..... Z and i=1,2, ... ,K, are given by foHowing expressions:

~ mmCU-c) C Z
'-' L; -k-P (nOi =c /\ L; 'Ttqi '=k)
"'."-'.!'_--"-.=-,"---_-=c_+~-,.__:"'----""-O!'~-­HOi,=-

p (n"", I)
and

min.~.N) N-k 1 Z
L; ~ -k-p(nri=l/\n,,=c/\~n,,=k)__.~-=-'O-_,,"=O!,,-c::....:+.::..._-,-_,.__:",--_!!.'=--'-'__~H .=

:n ", p (nzi~l)

(AI)

(A2)

~ ..,.,

In this appendix, we will develop a relation for an Hri , z~1. Development of the relation

for HOi's follows similar line of argument and will not be provided. Our notation was

summarized in Table 1.

z
In the expression for Hri,. the basic term is p (nzi =lAnOi=c A L; nqi =k), which is

q=1

. ' the probability that there are c non-serialized and k serialized customers present at

device i, and one of serialized customers present is in serialized phase z. Since

nqi e:~O, 1 j,q =1,2.... ,Z. we see that this probability is simply the sum of all probabilities

p(noi=cATlzi=lA some other k -1 serialized customers are at device i A
remaining Z-k serialized customers (if any) are not at device i).

Let S(Z,k,IO,z) be the set of all tuples (to.t1 .... ,tz ) such that tc=O. t.=z, and

t 2 , ... ,tt. are other k -1 serialization phase indices out of ~ 1,2, .... Z j-!z J and remain-

ing thl,· .. ,tz are other Z-k indices. We will also denote the set UI, ... ,tmf by Tim or

Tt.m· Then, we can express this relationship very precisely as

(I "

- ','{,~.~

,,-;
': -'
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z
p(n,,=c A En,,=k Anz<=l)

q=l

= L; p(no'=c An:n=1 1\ nqi=1 1\ nqi=O)
(tc ....•tz)E:S(z.k:!o.z) qE:T~ qe:Tk+1.Z

We also note that given (to, ... ,tz ),

(A3)

(A4)n,,=1 A n,,=O).<
fUm +1· .... uzl

p(nOl:=c I\nn=1 /\.<
!Uii!.··· .urnl

E
(Uc·····Uz)E:

S(Z.mIO.z .tii!' ... •tj;)

p(nOi=c An;ti=1 A n qi=l /\ nqi=O) =
qE:Tii!,k q E:T.t:+1.2"

p(nOi=c A n;ti=l A nqi=l)
qE:Tl!•.t:

Z

E
m=k:+l

l=k+l, ... ,Z, and that ul7'um,l~m. Thus, using A3, we have,

minJ1(.N) N-k: 1
L; E -- L; p(nOi=c I\nzi=l /\ n qi=1 1\ '71.gi=O)

/;;=1 c=O c +k (tc•...•tz)E:S(z./;;jo.z) qE:Tl!..l: qE:Tk+1.Z

Hz< = p (nz<;"l) (A5)

Now, the probability terms in the double summation in the right hand side of equation

A4 above also occur in equation A5 for larger values of k. We will use this observation

to obtain following lemma.

Lemma A1: Using equation A4 to expand probability terms in the innermost sum in

equation A5 [or k =1,2, ... ,a (in that order), we get,

'1-'

Proo[;

This lemma can be proved by induction, beginning at a=l. It involves little com-

binatorial algebra. We will merely outline the procedure and leave the details to the

reader. We first note that
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In particular. for m =k ,

(AB)

(A7)

Equation A6 implies that expansion of probability term on the left hand side of A4

fZ - k ]
yields lm -k probability terms on the right hand side for given m and k. m>k. Let us

now focus our attention on the innermosL sum in the equation A5 for some k. When the

probability terms are expanded, due to symmetry. we get

L.: p(nOi=t:: Ann =! /\ n qi=l /\ nqi=O)
(lo.....lg)E:S(Z,klo.z) qET2.k qET.lH \,Z

= L p(nOi=c /\ nzi=l /\. nqi=1}-
(lo.... ,IZle:S(Z.I:IO,z) _ qE7"2,k

Z
L.: em.< L.: p(nOi~c

m=k+l (lo .....tz)ES(Z,m!O.z)

where

~ [~~:] ~~~] ~ [m-l]
[~~\] k-1

Completion of this expansion yields, for z =1,2... .,Z,

Noting that

(AS)

and physical consLraint that number of customers in the network is N, we have the fo1-

lowing lheorem.

Theorem Ai: The service adjustment factor for serialization phase z, z =1, .. .. Z at

server i, i = 1,2, ... ,K is:
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Similarly, for the non-serialized phase, we can have.

(A9)

'" "

Theorem A2: The service adjustment factor for non-serialized activity at server i,

i=1,2..... K is:

or,

APPENDIXB

(AiD)

Obtaining Approximate Service Time Adjustment Factors
(rom Product Form Solution of Aggregate Server Model

In order to be able to compute service time adjustment [actors from the solution

of a product form model. we use the following homogeneity assumption (equation 6):

'};.- ;. p(nOi~c /\ nqi=lln, i=l) =p(nOi~c 1\ nqi=llnt ~1).
" ,-.,' qETek I qET2k I_, ,it- .r

J, J .. ;'.-' ••
. '-.!, Thus, using equations 5, A9 and A10, we get. for z =1,2 .... ,Z and i= 1,2, ... ,K,
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'. \'
-, '. '

(B1)

and

+ Ni;lmin(~-C'Z) (_~)k+l k k!

c=l k=l IICc+l)
t=o

------------p'(n-o-'=-"71)c------------jB2)

The necessary probabilities required in the expressions above can be using the

conventional solution techniques for product form network. e.g. by using the G vector

in convolution[3]. or by using prime-recursion formulas in the mean value analysis set-

ting[7]. Relations for Hzi.·s using convolution algorithm are given below.

G(N-C-k))

G(N 1) (B3)

and

LO(B4)G(N-I)

G(N-k -1) -

(

min(N-I.Z)
HOi = G(N-I)+ L: (-I)k ( L: IT y,,). -

k=1 (lo..... 'z)l::S(Z.kIO) qE'T!A:

k k!N..cI' Yo\ G(N-C-k))
~. LJ k
o~ c=l TI(c+l)

t=o
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