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ABSTRACT

The aggregate server mecthod is an approximate, iterative method for
analyzing computer systems conlaining scrialization delays. Examples of
serializalion delays include delays encountered while waiting for entry
inlo critical sections, nen-reentrant subroutines, and locks. The method
involves inlroduction of aggregate servers into a queueing network to
represenl. the serialization delay. Service time requirements at all
servers are modified appropriately to account for the contention at physi-
cal devices among serialized and non-serialized cuslomers.

The algorithm is developed for single ¢lass closed queueing networks
of single load independent servers employing processor sharing schedul-
ing disciplicne. Results of validation based on comparison with exacl
numerical solution are presented. Some factors aflecting the accuracy of
the melhod are also discussed. Lxtensions Lo mulli-class queueing net-
works, variable rate servers and other scheduling disciplines are also sug-
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1. Background

When using queteing networks as models of computer systems, it is conventional
Lo represent programs as customers circulating in the network, and te represent phy-
sical devices such as CPUs, disks and drums as servers. This appreach is well suited for
analyzing queueing delays caused by contention among programs for the active physi-
cal devices in a system. If these device contention delays are computed correctly,

satisfactory models of overall system perlormance can be obtained in many cases,

There are, however, a large number of cases where satisfactory models must
include delays for passive resources, delays that are malterially different from active
device contention delays. (An eefive resource contains processor(s) that render ser-
vice. The delay per visit includes queueing and service from the processor(s). A passive
I‘E.'_éb:_ljl'.'l‘ce is cne that must be held as a precondition for helding active resources. The
delay is queueing plus delays at active devices.) An important example is the delay that
programs experience while waiting for main memory, or mounting of tapes and disk
packs.

Note that programs usually de not begin execution until all the passive rescurces

they require have been allocated. In addition, a program usually holds all its passive
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resources until it terminates. When these conditions hold, and if the passive resources
are indistinguishable, the technique of decomposition can be used to obtain a satisfac-
tery approximation for the delays due to passive rescurce contention. It should be
noted, however, that the extension of decornposition techniques from single class to
multi-class models is quite difficult in practice. Alse, the computation of auxiliary
parameters for the decomposition can sometimes be complex, as in the case where the

passive resource is permission to access granules in a database [14].

A second important categery of delay not treated by conventional queueing net-
work models is the strelchout of device service times {active servers) because of con-
tention for 1/0 subsystem components such as channels, control units, and heads of
string. A number of auxiliary meodels for approximating this stretchout factor have
bec;n developed for specific architectures [2]. The integration of such auxiliary models
into a higher level queueing network presents a number of practical difficulties, but the
use of auxiliary models to deal with service time stretchout in 170 subsystems appears,
in principle, Lo be sound. An alternative appreach based on the "method of surrogates”
has also been proposed [or this class of problems [12]. This approach has several
advantages and can be generalized te cther Lypes of simultaneous resource possession
problems. However, like decomposition technique, this method's generalization to

multi-class models appears difficulf.

A third category of delay that is not represented in conventlional queueing network
models is the serializalion deloy that arises because of contention for critical sectlions,
non-reentrant subroutines, and other software centroel structures thal cause process-
ing to become serialized. The most common sources of serialization delays are routines
that perform resource allocation, medify internal data structures, or update external

files and databases.

Note that programs experience serializalion delays afler Lhey have been allocated

their required passive resources and have begun aclive processing. Alse, programs
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pass in and out of serialized phases during their execution. These two factors distin-
guish serialization delays from delays for passive resources such as main memory, tape

drives, or the database granules discussed by Potier and Leblanc [14].

Serialization delays can often be neglected without affecting the accuracy of a
medel significantly. This is because the removal of serialization delays will generally
cause an increase in the queueing delays at the servers that are accessed within the
serialization phases; in eflect, part of the queue for entry inlo a serialization phase is
shifted to the original servers, and thus the net impact of ighoring serialization delays
may be small. In [act, if Lhe serialized precessing consists enly of a single processing
burst at a single server with FCFS scheduling, neglecting the serialization delays will
not introduce any error at all. However, if significant amount of processing is serial-

ized, serialization delays must be included explicitly in the model to yield satisfactory

_ results,
The literature on serialization delays is limited. Smith and Browne [15] have pro-
. posed an appreoach for treating this problem, but this approach was not subject to sys-
tematic validation. There was, however, a limiled validation based on measurements of
a real system. Unlortunately. the measurements were taken during interval when seri-
alization delay contributed only a small fraction of the overzll response time. Thus,
even though excellent response time validaltion were obtained, it is not pessible to
make conclusive statements about the validity of Smith and Browne's [15] serialization

delay model from the data that was presented.

Kumar and Gonsalves [13] present another method for modeling software struc-

tures in distributed systems and discuss an example of medeling of critical sections.

They consider sollware modules to be servers in the queucing network, and physical LG

resources circulate in the network as customers. When a customer (a device) visits a :

server (a sol[tware module), it means that the device wants to do processing on behalf
5{F-j'!‘_}”,_:.0f the software module. While their methoed is suitable for problems like modeling of
LA

o
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delays due to software locking, it does not seem to model different kinds of resources
(e.g.. CPU and 170 devices) adequately. For example, at any given time, a customer
usually can be queiled either at a CPU or at an 1/0 device, but not al both. Their

methodology does not appear to allow this constraint to be represented.

Another approach to analyzing serialization delays is the aggregate server method
originally developed by Buzen, Liu and Shum [8] [or use with BEST/1 modeling package
[1,4]. In this paper, we present a detailed discussion of the rationale and the concep-
tual basis for the aggregate server technique. We then present a new algorithm for
evaluating aggregate server models and a systematic validation of the aggregate server
method based on comparison with exact numerical solutions of detailed models that

incorporate serialization delays explicitly.

2. Terminology

Consider a critical section entry to which is controlled by using a semaphore S
[11]. A process wishing to enter this critical section performs a waif operation on the
semaphore. If the count of the semaphore is 0 {or negative), the process will have to
wait until the semaphore is signaled and this process is readied. After returning from
the wait, the process will be the only process executing in the critical section. When
the processing inside Lhe critical section is completed, the precess will exit the eritical
section by signaling Lthe semaphore S, and thereby, awakening a wailing process, il
any. |

The term sericlized phose will be used to denote single threaded processing, for
example, the critical section processing discussed above. That is, at most one custe-
mer may be actively executing in a serialized phase at any given time. When a custo-
mer {a process) is executing in a serialized phase, it will be called a serialized custo- (_}

mer. Processing serialized using different semaphores occurs in different serialization

« phases.
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The phase of processing in which different customers are not serialized will be
called a non-sericlized phase, and accordingly, a customer executing in the non-

serialized phase will be called a non-serialized customer.

3. Overview of the Aggregate Server Method

The basic idea behind the aggregate server method is quite simple, and general-
izes directly from consideration of the restricted case where there is a single customer
class and a single critical section (a serialized phase). Consider such a network con-
taining ¥ customers and K servers. Let I; be the total service time per job at server
%. In the notation of Denning and Buzen (1C], D; is equal to ¥;.S;, which is the product

of the number of visits per job to device © and Lhe service time per visit for device .

Note thal each D; can be regarded as consisting of two components: Dg;, which is
the total service time per job at server i that occurs outside critical section, and D,;,
which is the total service time per job at server ¢ that occurs inside the critical sec-
tion. The aggregate server technique is based on the idea of adding an additional
{aggregate) server to the network to represent the serialized processing in the critical
section, and then regarding the expandéd A +1 server network as having a conventional

product form solution.

Let Yx,, be the service time per job at the aggregale server; in other words, Yy,
represents the time spent per job in the critical section. As an initial approximation,
Yi+1 can be set equal te the sum D+ 23+ - - - + D4 since the processing in the criti-
cal section is serialized. Also, let the service time per job (excluding critical section
processing) at server 1 be ¥ =Dg. Thus, in its simplest form, the aggregate server
representation of Lhe original problem is a product form network with K+1 servers

where the service Limes per job are Y| Ya _ Yg.,- The queueing delay at the aggregate

server represents the queueing delay for the critical section, and the overall

Lthroughput of the network represenls the overall throughput of the original medel.
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in practice, the simple aggregate server model described above is too crude to

yield satisfactory results. There are twe main sources of error in this model:

(A) The service times per job at the original K servers (Y; at server i) are

(B)

that

1.

represented simply as Dgy, Dop.. Doxg. This ignores the fact that processing
within the critical section can place an additional lcad on the original servers,
and thus degrades their performance. To represent this degradation, assume
instead the service times per job at the original servers are represented as
Y, Y, _ Yy where

Y, = Do/ Hue i=12,...K (1)
and 0<Hy;<1.i=1,R....K. One of the intermediate objectives of the aggregate
server technique is to determine the values of service time edjusiment focfors,

Hyg;, that represent Lthe service time elongation (or server degradation) properly.

The service time per job at the aggregate server representing the critical sec-
tion is represented as Yg,, = D,;+Dp+...+D,x. Once again, this ighores the fact
that processing outside the critical section can place an additional load on the
servers that perform critical section processing, thus increasing the effective
value of service time required at server i while in the critical seclion to

Yy = D/ Hy. To represent this eflect, assume the service time per job al the

aggregate server is

K K
Ye1= 2, Y = 2, D/ Hu (®)

i=1 i=1

and 0<H;=<1,i=1,2,...K. Determining the values of the f/}; is another inter-

mediate objective of the aggregate server technique.

The overall flow of the aggregate server technique can be now be specified. Note

steps 3 and 4 below account for points A and B respectively.

Consider a queuecing network model that would satisfy preduct form condilions,

except [or the presence of 1 serialized phase (e.g.. a critical section).

(N
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2. Add 1 aggregate server to the network for the serialized phase.

3. Using equation (1) and an initial approximation of Hg;, i=1, - - - K, compute the
service time requirement at the original servers, accounting f{or contention from
serialized processing.

4. Using equation (2) and an initial approximation of Hy;, =1, - - - . K, compute the
service time at the aggregate server, accounting [or contention at the original
servers by non-serialized preocessing.

5. After computing the service times (as in steps 3 and 4), solve the network contain-
ing the original servers and the aggregate server using conventional product form
techniques.

6. Compute new approximation to H,'s (z=0,1} from the solution obtained above. If
there is no significant change in H;'s. we are done, otherwise, return to step 3
with new H_'s replacing old A,;’s.

The six steps identified above were first proposed, in a diffierent form, by Buzen,
Liu and Shum in their original paper on aggregate servers [B]. This paper presents a
new algorithm for implementing steps 3 and 4.

In our method, we first note that when there are n customers at a device {n#0),
on the average, each customer will be served at 1/n of the nominal rate. Using this
observation and the state probabilities, we determine the effective rate at which a dev-
ice serves nonserialized and serialized customers (i.e., we compute the service Lime
adjustment factors, H,;'s. where z is a serialized phase index}. "Correct” values of the

service time adjustment factors are computed iteratively.

4. Development of the Aggregate Server Melhod Delays

In this section, we will discuss development of the aggregate server method in an
informal and intuitive way. A more [ormal and rigorous developmenl of Lthe aggregale

server method in the framework of meta-modeling can be found in Buzen and Agrawal
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The previous section discussed the aggregate server technique for a single seriali-

zation phase. Generalization Lo Z serialization phases is straightforward. Simply add

Z agpgregate servers to the network, one [or each serialization phase. Figure 1

specifies the algorithm. Our notation has been summarized in Table 1.

Figure 1: Aggregate Server Algorilhm
Initialize
initial service titne requirements
Dy, z=01....2,i=12....K
initial service time adjustment factors

Hz:=1.0, 2=0.1,..72,i=12... . K

Compute stretched oul service times
Dy =2=0.1,...72
Yo = g is=12,...K
I'or non-serialized servers
Y=Y i=12,....K
For serialized servers
K
Yise = 20 Ya 2=0,1,....2
i=1

Fraction of time spent at a server while being processed in a phase
z=0

1
Fa={ y_

z =1I"'IZ
YKl—z

Solve following queueing network under produet form assumption
Y. Y2, - - - . Y Yger. * Yraz

Compute new service adjustment factors, A" from old H,; and Fy.

If there is no significant change in H;'s, STOP,
otherwise, return to step 1 with new H;;'s replacing old A ;'s.

The next step is Lo develop a procedure for computing "correct” values of the ser-

vice time adjustment factors, the H.;’s. We will first show how one can obtain service

time adjustment factors, given the exact solution of the network. Then, we will show
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how to approximate these service time adjustment factors using a solution of the

queueing network solved under product form assumption (steps 2 and 3 in figure 1).

4.1, Computation of /,;'s [rom an Exact Solution

Consider server i which is vigited during serialized and non-serialized phases of
processing. This leads Lo contention ameng customers in different phases of process-
ing for service at the server. Letn, {(i=1,2,....K and z=0,1,...,Z) be the number of cus-
tomers alt device i that are in the serialized phase z. The phase 0 is the index of the
nen-serialized processing phase. K is the number of devices and Z is the number of
serialized phases. Note thal at any given instant only one customer may be actively
receiving service in a serialized phase. Other customers wishing to enter the serialized
phase are blocked, and await their turn. Thus, number of customers in serialized phase
z i3 0 or 1. Therefore, il n,; represents the number of serialized phase z customers at
server i, n; s either 0 or 1, 2=1,2,....Z, ©=1, - - - K. Also note that at any given time,
if there are k&, 0=k <7, serialized customers at the server i, there cannot be more than
N —& non-serialized customers at this server since N is the number of custmers in the

neltwork.

Assuming a processor sharing scheduling at the server, at any instant all custo-

mers present receive service at an equal rate. Thus, if there are ¢ (c=ng) non-

=Z
serialized customers and &k (k =q2 Ty} serialized customers present at the server i, a
7=1

customer will receive service al a rate equal to 1/(c +k) times the nominal rate of the
server. This implies that ¢/ (e +&) is the fraction of the server capacily thal is provided
to the set of ¢ non-serialized customers. It also means that 1/ {c +k) is the fraction of
the server capacity that will be provided to each serialized phase customer present at

the server at that time.

Contenlion can thus be modeled as the allocation of a fraclion of server capacity

to cuslommers in a given phase. The reciprocal ol this [raction is the instantaneous
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Table 1: Notation

total number of customers in the network {i.e., MPL)
number of servers in the network

number ol serialized phases

index of servers under consideration

i=1,..K original devices
i=K+1,..,K+Z aggregate serialized servers

non-serialized phase customer index
phase index

z=0 nonserialized phase
z=1,....4 serialized phase

number of serialized phases in which a customer may visit
device i, 1=1,.... K

number of customers at device i while visiting phase z.
(ng; is the number of nonserialized customers receiving
service at device i, and if >0, n;€{0,11)

number of customers inside serialized phase z, z=1, i.e.,

X
m,=Y ny. mof0.1].
i=1

number of customers waiting for entry inte the serialized
phase 2z, z=1.

number of customers at serialized phase z. n,=r,+m,.
total service time requirement {(demand) at server i while
in phase 2

service Lime adjustment [actor for a phase 2 customer at
device 1

stretched oul service time requirement at server i for
phase z, i.e., service time modified to reflect the effect of
contention due to customers in other phases ¥.;;= P,/ H,
service time requirement at server i in the aggregate
server networlc

i=1l«k
Yikt i=K+1,....K+Z
=1
fraction of residency time of phase z (i.e., time spent in
phase z), z=1 spent at device 1, (i=1,....K)

z=0
=) 1
2Ty Y,
2 2=1....7
Yk

set of partially ordered Z +1-tuples such that first I+1 ele-
ments of the tuples are vg,v,, - - - , v, respectively. lLe.,
{(tety - - bzt =y, =0, 0; Ot <Z r=[+1,....2;

tr#lg ifr#s; L.t ifl<r<s=7 |
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value of the service time elongation factor. The fraction itsell is the instantaneous
value of the service time adjustment factor, H;;. We can obtain the average value of
the H.:'s by averaging over those periods of times when a phase z customer is present

at the server 1.

Thus, for phase 0, i.e., the non-serialized processing phase, the service lime

adjustment factor at server i is

N min{ZN-c) Z
by SN Cikiﬂ(ﬂoFC/\an-;:k)
g=1

Hoi= p(ng=1) ®

For serialized phase z, {(z=1) at server 4, the service time adjustment factor is:

miuf:Z.N) N=k 1 b4

3 Z_: p—y _’p(nzi:1/\n0i=c/\z_:nqi=k)

Hy= k=1 c¢=0 g=1 (4_)
B (ny21)

Note that the above expressions have been written in terms of the exact probabilities,

without approximations. We expand these expressions further in Appendix A.

4.2. Approximating the H's
We will now outline our method of computing approximations to H;'s [rom the

solution of the product form model, solved during the iteration of the Figure 1.

When expressions for service time adjustment factors, H,; (equations 3 and 4), are
reduced to a more amenable form, as shown in equation A-9 and A-10 (Appendix A), we

need p(ngi=c é\ Mg =1}, Tie ={t1.ta.....Lx {. the probability that among the customers
FET 1k

present at the server i, ¢ are nonserialized, and the other 4 customers are in
tta. ' -+ U serialized phases of processing. (£1,f2, - - - g, (£#0) are k unique serial-

ized phase indices). We give an approximation for Lhis probability term below.

First consider the probability that a customer in z* serialization phase is at

K
server i. p(n;=1). Assuming that a cuslomer spends Fy (Fn=Yan/ ), Ym, z21) frac-

i=l

tion of the time spent in the serialization phase z al server i, we have, using



-12 -

p(e.b)=p(a)p(t|ae)

p(n;=1) = p(n;=1/\n,>1)
=p(ng=1jn,=1) p (n,>1)
= Fp p(n,=1)
We note here that if we know correct values of F,;, no approximation is introduced

above,

Returning to the expression p(ng=c é\ Ngi=1), Tim = Ten =l .bra1.-.- Em ], we have,
TET 1k
p(rg=c N\ ng=1) = p(n,;=1) p(ng=c N\ ny=1n, ;=1)
FET& FET
= Fep plne 21) p(rgze N\ ng=1n, ;=1)
qETE.k

N Fpi p(ne=1) P(ﬂoi-:—'cqé\%ﬂqa:”nll?l) (@)

= F‘ i P (‘ngf_EC Antizlqé\%nq"‘ = 1)

~ ([ Fai) p(nuiach/f\mnqél) (5)

TET 1k
In the step marked with an @, Lhe following homogeneity assumption

P (nuiacqe/f\%“qt =1ln, =1} = p (nutacqé\%“m =1jn, >1). (6)
has been used. This is roughly equivalent of saying that when a serialized phase z is
busy (i.e., there is a customer in the serialized phase}, the long term behavior of custo-
mers in other phases is independent of this serialized customer's whereabouts. Equa-
tion 5 will be exact if this assumption holds and will be regarded as an approximation
otherwise. Using equation 5, approximate service time adjustment factors can be corn-
puted as shown in equations Bl and B2 in Appendix B. Equalions B3 and B4 (in Appen-
dix B) give the expressions which can be evaluated using the convolution algo-

rithm[5, 3].

5. Validation

The aggregate server approximation presented in this paper was tested by com-

paring it with exact numerical solulions obtained by a program that solved the “global
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(1) Keeping the ratio of load on various devices in each phase same, vary the ratio of

Z K Z K K
total serialized ()] )} D) to total activity (3} Y D, = 3, ;).
i=1

z=1i=1 z=01=1
(2) Given the ratio of total serialized to total activity and otherwise balanced system
(i.e., Lhe ratio D.;/ D,, is fixed for all 2}, vary the distribulion of load among vari-

ous serialized phases.

(3) In an otherwise balanced system, for given distribution of activity amongst phases,

vary the ratio of activity amongsl devices, in the same ratio in each phase.

{4) Vary Lhe distribution of load among devices in a phase keeping the distribution
among cther phases unchanged.

We believe that our approach has enabled us to study the effects of some relevant

parameters on the error in a systematic way.

Below we discuss the results of our experiments with a network consisting of two

servers, and two serialized phases (two critical sections). Total service time require-

2
ment in the serialized phase 1, CS1, equals », D|;. The total serialized service require-
i=1

2 2
ment CS equals )} >'D,. The tolal service time requirement per customer is the sum

z=] i=]

of its serialized and nonserialized service requirements at each device, and it equals

2
(3, D;). Thus, the ratio CS/TOTAL is the ralio of total serialized service time require-

i=1
ment per customer to the total service requirement, and the ratio CS1/CS is the ratio
of total service requirement for serialized phase CS1 to Lotal amount of serialized pro-

cessing per customer.

In the discussion below, by error we mean relative errer in throughput, which is

approximate throughpul - exact throughput) 100
exact throughput

Figure 2 illustrate Lhe effect ol customer population on the error. Figure 3 and 4 will

% ERROR = (

examine the effect of varying relalive loading between phases (steps 1 and 2 above).

L
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The network examined in figures 2, 3 and 4 is balanced in the sense that within a phase
service time requiremenls at all servers are equal. In figure 5 and 6, we will examine

the effect ol the relative loading of various devices (steps 3 and 4 above).

Figure 2 shows the relative error in throughput as a function of change in popula-
tion. Note that the error levels off as customer population increases. The error for the
unbalanced specific representative system (Lo be examined in later in Section 4.2) lev-
els of much earlier than for balanced systems. It, in fact, decreases slightly for the
specific case example. We allribute il to the unbalance in the network. We think it is
because an unbalanced system reaches saturation earlier than an equivalent balanced

system due to the presence of specific bettienecks which limit the throughput.

Figure 3 displays the relative error for Lhe balanced system examples as a func-
lion of the ratio CS/TOTAL. Note that the error peaks about C3/TOTAL = 0.5, i.e., when
the total serialized service time requirement approximately equal the total nonserial-
ized service requirement. This demonstrates that Lhe aggregate server method is

more accurate [or unbalanced systems. Fortunately, real systems are rarely balanced.

Figure 4 shows what happens to the relative error as the distribution of load
among various serialized phases is changed for Lhe balanced systems under considera-
tion. We note that the error again peaks when load is distributed equally between the
two serialized phases - a balance condition. However, the error is much less sensitive
Lo the distribution of activity among serialized phases as compared to the distribution

between Lite serialized and the nonserialized activity.

In Figure 5, we study the effect of changing the servers' relative speed (server 1's
speed/server 2's speed) only. This keeps everything else, except the relative utiliza-
tions of the lwo servers, unchanged. In particular, the network with CS/TOTAL=0.5,
CS1/C5=0.5, and with servers' relalive speed of ! (both servers are capable of serving
same number of customer-visits per unil Lime) is the "completely balanced case” con-

sidered earlier. We see that the error in throughput decreases dramaltically as the
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relalive speed {and the utilization) of servers deviates from 1. Equivalently, as the sys-
tem becomes more unbalanced, the accuracy of the aggregate server technique

improves,

Figure 6 illustrates the effect of changing the service requirements at two servers
in a serialized phase (phase CSR), keeping the total service requirement in each phase
constant. Once again, we note that the error decreases significantly as we depart from

the completely balanced configuration.

5.2. A Specific Representative Case

This seclion presents a specific example that is intended to be representative of
the load distribution found in real syslems. It consists of 1 CPU, 3 disks and 2 critical
sections (serialized phases), The network is depicted in figure 7, which also gives the
server speeds, routing probabilities and visil counts. The service time requirements at
each device in each phase and total service time requirements at each device are
shown in Table 2. These numbers were picked so that the total service time require-
ment for noncritical section processing, critical sections CS1 and CSZ processing will
be approximately 50, 20 and 30 percent of the total service requirement. Other details,
such as the percenl load for each device in each phase is given in Table 3. These
figures should help one place the network in the {rame work described in the previous

subsection. Note that for this example, CS/TOTAL~0.5.

Table 4 gives Llhe device and critical section utilizations and relative error in
throughput as population is varied [rom 1 through B. Notice that the error is zero for
population 1. This is expected of this method because it is exact for product form net-
works and the nelworks with critical sections do not violate product form when there is

only one custemer in the network.

We see that the error in throughput first rises with increase in population, then

decreases slightly after peaking. We also noticed that the error in individual server's
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stretched oul service times were negalive, and were about 1.5-2.0 times, in magnitude,
the error in throughput. These lower stretched oul service time requirernents result in
higher throughput, but error in over all throughput is much less than the error in indi-
vidual stretched out service times. This is due to a "negative feedback effect:
increased throughput results in more contention and therefore greater delays, and
hence reduces throughput. We alse used the stretched oul service times obtained
from global balance steady state solution to construct a product form aggregalte server
model and solved it using conventional techniques (i.e., we take the service time
adjustment [actors obtained from the global balance solution to be the "correct” ones
and do not iterate). This model's throughput wilh 4 customers in the network was 7.1%
less than the correct Lhroughput. (Recall, aggregate server method yielded B.0%
higher throughput.) As an aside, with these initial adjustment [actors, the iteration

converges {o the same values of adjustment factors as obtained with initial guess of 1.0.

To demonstrate that proper modeling of serialized phases when serialization
delays are significant is essential and that the aggregate server method provides a
good approximation, we once again consider the representative case considered above.
This time we model this situation using two other techniques: (a) NOCS: do not
represent serialized phases explicitly, i.e., the service requirement at a device is the
sum of serialized and non-serialized service requirement at that device: and (b) H1: use
the crude model developed in the Section 2, i.e., the service time adjustment factor
is uniformly considered to be 1.0. The results are shown in the Table 5. This dala

shows that H1 is a rather crude meodel (in fact, it is worse than ignoring Lhe serialized

- phases completely). The aggregate server method performs significantly beltler than

the eLher two methods.

5.3. Source(s) of Error

To investigale the source of error [urther, it is neccssary to look more closely at

the process of approximating the eflect of contenlion. So far, for each phase of

)
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Figure 7: Representative Case Description
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SERVER SPECIFICATIONS
Server | Speed | Service Time per Visit
CPU 50.0 .02
DISK1 25.0 0.04
DISK2 25.0 0.04
DISKR2 25.0 0.04
VISITS
Server Processing Phase
NCS Cs1 Cs2
CPU 10.0 | 1.00 *3.0=3.00 1444 *2.8 =404
DISK1 1.4 0.48 *3.0 = 1.44 0.00
DISKZ2 0.9 ¢.0Q | 1.083*2.8=23.03
DISK3 | 0.9 0.00 0.00
CS81 3.0 -- --
Ccs2 2.8 - --
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Table 2: Service Time Parameters for Typical Case Example

Typical Case Example - Service Time Requirements *
SERVER NCS C31 C32 TOTAL
CPU 0.200 0.080 0.081 0.341
DISK1 0.056 0.058 0.000 D.114
DISK2 0.036 0.000 0.121 0.15%
DISK3 0.036 0.000 0.0600 0.036
TOTAL 0.328 0.118 0.202 0.648

* NC3: nonserialized phase
C31: serialized phase 1
C32: scrialized phase 3

Table 3: Load Distribution for the Typical Case

distribution of load amongst phases for each device
SERVER NCS CS1 Ccs2 TOTAL
CFPU 58.7 17.6 23.8 100.0
DISK1 49.1 50.9 0.0 100.0
DISK?2 22,9 0.0 771 100.0
DISK3 100.0 0.0 0.0 100.0
TOTAL 0.6 18.2 31.2 100.0

processing, and each server, we are averaging the effect of contention over the whole
period during which there is a customer of Lhat phase present at the server. A
moment’s reflection will show that as the number of customers present at the server
increases, the contention among them increases, and thereby aflecting Lhe fraction of
server capacily used by customers of individual phases. Thus, from the point of the
view of an individual customer, the server behaves in a load dependent fashion. The

instantancous load dependent relative rate of Lhe server 4. as perceived by phase =z

Z
customers is equal o n,;/ ),n;. Since Lhis representation carries more information,
i=0

we expect Lhis methoed to yield better approximation.

To examine this hypothesis, using the "exact” steady state solution, we computed
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Typical Case - Device Utilizations and Throughput
Pop No. of ASM Exact Utilizations** Throughput o
Iterations* | CPU | DISK1 | DISK2 | DISKS | C31 | CS2 [ GBS | ASM | ERROR
1 1 0.63 G.18 0.24 0.06 0.18 | 0.31 | 1.54¢ | 1.54 0.00
g 7 0.72 0.24 .33 0.08 032 | 0.52 | 2.11 | BR.21 4.80
3 10 0.81 c.27 0.37 6.09 0.43 ) 0.68 | 2.37 } 2.51 5.89
4 14 0.85 0.28 0.39 0.09 051 [ 0.79 | 2.49 | 2.64 5.99
] 20 0.87 0.29 0.41 0.09 0.67 | 0.86 | 256 | 2.71 5.87
] Rgx*s D.88 0.29 0.41 0.09 061 { 0.91 | 260 | 2.75 5.78
T# R4ret 0.89 0.30 0.41 0.09 0683 | 0.95 | .62 | .77 5.72
8 24+ 0.90 0.30 0.41 0.09 0.65 ] 0.97 | 2.63 | 2.78 2.77

ASM - Aggregate Server Method
GBS - Glebal Balance Solution
# This case was run on a VAX 11/780. Other cases were run on a DEC 20.

Different precision of the machines explains the slight deviation from the

trend in the error.

* Maximum change between successive Hy < 1078,
** I'rom the steady state glebal balance solution

*** New estimate of H,;'s is average of old value and the one obtained from using

the equations 3 & 4. This averaging was done to speed up the convergence by

taking advantage of its oscillatory nature.

Table 5: Comparison of Aggregate Server Method With Other Methods

Does it make sense to use Agpregate Server Method?
p Throughput % Brror

°P- 'ces | asm | Hi | Nocs | asm | H1 | Nocs
1 1.54 | 1.84 | 1.54 1.54 0.0 0.0 0.0
2 2.11 | 2.21 | 2.48 2.25 4.6 18.0 6.6
3 237 ( 2,51 | 3.10 2.60 5.9 30.8 9.7
4 249 | 2.64 | 3.51 2.77 6.0 41.0 11.2
o 2.56 | 2.71 | 3.79 2.85 5.9 48.0 11.3
6 2.80 | 2.75 | 3.99 2.69 5.8 | 53.5 11.2
i 262 | 2.77 | 4.14 2.92 5.8 58.1 11.4
8 2.63 | 2.98 | 4.85 2.98 5.8 | 61.6 11.0

ASM - Aggrepgate Server Method
GBS - Global Balance Solution

H1 - Contention among serialized and nonserialized customers is not represented,

i.e., Hzi=1-0-

NQCS- Critical Sections are not explicitly represented

the cffective, relative rate ol the servers as shown below. Average relative rate of

server © when there are n nonserialized customers at device i is:

D
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min{¥N-n,Z)

c
Ki
=m/N\ ]
L nik p{ng=n qglnm k)

p(ng=n)

Similarly, average relative rate of the aggregated serialized phase server z+K, z=1

Rate;{n) = (7}

can be given as

K min(ZN-n+1)N -k 4 & K
), 2 2 ik p(n.=n N ng=c /\ﬂzi=1/\£2nu=k)£#i9’z-io 3 Dy
13 e=1 =1

2 ®

pl(n.=n) Vz

E=1 k=1

Foteg,,(n) =
In equation 8 above, y; is the processing rate of the server i in terms of number of
customer-visits per second, and g is the probability that a serialized phase z custo-

mer will depart from the serialized phase (for that visit only) after receiving service at

K
server 1. Note that EDR-/ V; is the nominal service time requirement per visit to the
i=l

K ]
serialized phase z. That is, 1/ (), J,;/ V;) is the nominal processing rate of the serial-
i=1

ized phase in terms of customer-visits per second.
Our test case is the representative system considered above with 4 customers in
the network. (Note that using the aggregate server technique, maximum relative error

occurs for this network population.) Parameters of this model are shown in Table 8.

Table 6: An aggregate server model with load dependent
service rates obtained from exact solution

Number of Custemers in the Network = 4
SERVER | SERVICE RATE(n)
TIME 1 2 3 4
CPU 0.200 0.602 |} 0.709 | 0.822 | 1.000
DISK1 0.056 0.878 | 0.905 | 0.939 | 1.000
DISK=2 0.036 0.764 | 0.B256 | 0.890 | 1.000
DISK3 0.036 1.000 | 1.000 { 1.000 { 1.000
CS1 0.118 0622 | 0.612 | 0.751 | 0.989
CsS2 D.202 C.50B | 0.623 | 0.775 | 1.02R2

As before the refined approximation is assumed to satisfy Lhe conditions for product
form soclution. The refined model proved to be remarkably accurate: approximate

throughput was within 0.5% of actual throughput, and wailing limes at individual
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servers were within 1.8%. This small residual error, we believe, results from the
assumption of product form - we have considered the rates to be a funclion of local

queue lengths only.

This refined analysis illustrates the power of the aggregate server method. The use
of mean slretched oul service times is for computational ease only. If we use load
dependent rales, significantly better results can be obtained. It is possible to develop
formulas to compute these load dependenl rates in aggregate server setting. However,
the cost of computation {especially that of solving the resulting medel which will con-
sist solely ol load dependent servers) may be prohibitive. Convergence may also be a
problermn. In mosl cases the additional computational effort may not be justified by the

resulting gain in accuracy.

To summarize, our empirical invesligations show the aggregate server method to
be reasonably accurate. The errorr is dependent on the customer population and dis-
tribution of load amongst various phases and devices. Main source of error appears Lo
be the use of mean stretched out service times, rather than load dependent service
rales. If accuracy is of utmost importance, one may revise the aggregate server

method to incorporate load dependent servers.

6. Computational Complexity and Convergence

As for any iterative method in queueing network modeling, it is very difficult to
prove convergence, and even more difficult to say anything about the point of conver-
gence. However, in all but one of the cases that we solved, Lhe algorithm converged
(see next paragraph). The convergence was oscillatory in nature, i.e, the service time
adjustment factors oscillated back and forth around the value to which they finally con-
verged.

However, in one case, we noticed oscillatory divergence. Ileration did converge

when we took the average of old f;’s (input [or iteralion) and new H.;'s (algorithm
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output) as the ;s for next iteration. Divergence can be detected by monitoring max-

imum change in the f;'s during successive iterations. If this increases, then the itera-
tion is likely to diverge. As already noted, averaging of successive values of the H,'s

appears to be effeclive in eliminating the divergence,

We also cannot say anything about number of iterations required except that it is
a complicated function of network population, number of servers and serialized phases,
and distribution of load. However, empirically we have noted that the iteration con-
verges linearly. Thus. we can apply some well-known techniques such as Aitken's A2

process [9] Lo speed up the convergence.

Computational requirements for the method using the convolution algorithm to
compute the service time adjustment factors are O(KZuﬁ,,g+5NK) computations per
iteration after the model has been solved. Zavg 15 the mean number of phases in which

a customer may visit a given device, i.e, mean number of phases sharing a device.

7. Extensions

We have presented a technique for modeling of serialization delays in queueing
network models of computer systems. We discussed and validated the technique
assuming a processor sharing scheduling diseipline and load independent servers.
Since, in a product form network PS, FCFS, and LCFS scheduling disciplines yield the
same steady state solution, we believe that same relations will hold for them. For IS

discipline {infinite servers) the H,; are always equal Lo 1 for all phases.

Variable rate servers do not pose any problem. Expressions for H's can be
derived by appropriately modifying equations 3 and 4 in section 4. Of course, computa-
tion ol H,; will be more exXpensive in this case.

Extension to multi-class networks in which various classes do not share a serial-

ized phase is straighlforward. The service time adjustment factors can be computed

relatively efficiently, by precomputing a table of numbers, which is independent of ser-
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vice time parameters of the network.

Though the underlying principle remains unchanged, extension to multiclass net-

works with shared serialized phases is computationally difficult.

8. Conclusion

We have presented the aggregate server method for modeling serialization delays
in computer systems. Examples ol serialization delays include waiting for entry into a
critical section or a lock, executing non-reentrant subroutines, etc. These delays are
normally encountered in operating system calls, database enquiry and updates, pro-
cess synchronization ete. The aggregate server methed involves including an addi-
tional server for each source of serialization delay. Service time requirements at these
serialization delay servers and physical servers are suitably slretched out to account
for the contention for service at a server amongst jobs inside and outside some seriali-
zation phase. Stretchout factors are iteratively obtained. For typical systeins, the
accuracy appears to be satisfactory. We found that the accuracy of the method
depends heavily on the evenness of distribution of load amongst various phases of pro-
cessing. Uniferm distribution of load results in poor accuracy. Fortunately, most real
systems are unbalanced.

In this paper, we have provided an intuitive explanation of the rationale behind the
aggregate server methed. Rigorous development of the methed in the framework of
meta-modeling is provided by Buzen and Agrawal {6].

We have developed the method for single class closed model consisting solely of
load independent, PS scheduled single servers. It can be readily extended to include
load dependent rates, other scheduling disciplines, as well as, multi-class closed net-

works.

o
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APPENDIX A

Service Time Adjustment Factors
In Section 3.1 (equations 3 and 4), we saw that service time adjustment factors,

Hz's, for 2=1,8,...,Z and i=1,2,..., K, are given by following expressions:

N min(ZN-c) Z
) ny C_T_k p(no=c/\ ) ng=k)
k=0 g=1 (Al)

p(no=1)

and

min(Z.N) N~k z
P(na=1\ng=cN\), ng=k)

= - (42)

k=1 c=l2l":-Hrc

H_.=

e P (nm=1)
In this appendix, we will develop a relation for an /,;, z=1. Development of the relation
for Hy's follows similar line of argument and will not be provided. Qur notation was

summarized in Table 1.

z
In the expression for Hj;, the basic term is p(r;=1A\ng=c A} n,=k), which is
g=1

- the probability that there are ¢ non-serialized and & serialized customers present at

device i, and one of serialized customers present is in serialized phase z. Since
ngu€§0,1},g=1,2.....Z, we see that this probability is simply the sum of all probabilities

P (noi=c Any =1/\ some other k —1 serialized customers are at device 1 A\
remaining Z—& serialized customers (if any) are not at device ).

Let S5(Z,k,]0,2) be the set of all tuples {£q,f,.....tz) such that £4=0, £,=2, and
tz, ... £ are other k-1 serialization phase indices out of {1.2.....Z2{-{z ] and remain-
ing fe+q.-...Lz are other Z—k indices. We will also denote the set {¢,....5,] by 7, or

Ti.wm- Lhen, we can express this relationship very precisely as

S

~ dblepY
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oA
_‘p(nm=n FAN an:k A'nzi'.=1)

g=1
= X plng=c Any=1 A ny=1 AN ny=0) (A3)
(tg.---tz)ES(Z.E]0.2) IETz TETk+1,7
We also note that given (fg,....t2).
plng=c Any=1 A T =1 At Ny =0} =
ETzk 9ETE 412
plng=c Ang=1 A T =1)
gETy,
z
~ 0 2. p(rg=c Nny=1 A\ =ny=1 A g =0) (A4)
m=k+1 (ugo..ug)e fu un ; . g€ ]
SZml0zd,, - - b) & Um mebler - - Z
where (ug,...uz)eS{Z,m|tgt L - by} satisfies u=£,1=0,1,...k and % ETr+iz.

l=k+1,..Z, and that u;#u, .l #m. Thus, using A3, we have,

min %N) N-—& 1

p{nu=c Nng=1 N ng=1 A ny=0)

k21 c=0 CrE (g 0)eB(Zk[02) T€T, TETL 417
pny=1)
Now, the prebability terms in the double summation in the right hand side of equation

Hy =

(A5)

A4 above also occur in equation A5 for larger values of k. We will use this observation
te obtain fellowing lemma.

Lemma Al: Using equation A4 to expand probability terms in the innermost sum in

equation A5 [or £=1,2,...,a (in that order), we get,

a N-k ¢ avk—lrp 1y
22(11 (k—1)!

Hy = pru=c Anyg=1 A ny=1)
S1em0 Tf{c+t)  la-tn)=5(2ki02) €72
i=1
'3
min(Z.N) N-m E(l—m)
+ 3 - h) plrg=c Ang=1 A ng=1 A\ 0)
m=a+l c=0 (c +m)H(C +£) (tg....dz)ES(Z.miD.2) T€Tam T€Tm+1.7
i=1
P(nzigl)
Prool:

This lemma can be proved by inducticn, beginning at a=1. It involves little com-
binatorial algebra. We will merely outline the procedure and leave the details Lo the

reader. We first note that
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sz mitat,. - b)) = [ff_kk] (46)

In particular, [or m =k,

lsz.xi0.07]) - [£]] o

Lquation A6 implies that expansion of probability term on the lelt hand side of A4
Z£—k

yields m —k| Probability terms on the right hand side for given m and k&, m>k. Let us

now focus our attention on the innermost sum in the equation A5 for some &. When the

probability terms are expanded, due to symmetry. we get

p(ng=c Any=1 A ny=1 A ny,=0)

(g....L2)ES(Z k]0.2) I€To L FE€TE, 1,2
= h) ('nm—c Nny=1 N\ ny=1) -
{!u.---.fz)ES(z.k"J z) 9ETa
Z
m=k+1 (tg.--.tz)ES (Z.m]0.2) 2CTam qETmH b4
where
Z—k||Z~-1
o m —k] Je—1 wz—l]
mk = 7 _ .
71 k-1
m —1

Completion of this expansion yields, for z=1,2,...,2,

min{N. ZIN -k —1)1 k~1)!
t ) ( l ( ) p(ng=c Any =1 E/_:_\ T =1)
k=l c=0 ].—[(C'H) {tg...tg)es(Z.£{0.2) TE Tz

(A8)

H. =
= P (nz=1)

Noting that

o(ng=c /\ Ng =1) —p(nmzc /\ gy =1) —p(ng=c+1 N g =1)
q9€ ETim

and physical conslraint that number of customers in the network is N, we have the fol-

lowing {heorem:.

Theorem Al: The service adjustmcent factor for serialization phase 2z, z=1,...,.Z at

serveri,1=1,2,... Kis:

e
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in{N.Z)[ ¢ _1 k-1
Hzi = i ‘(—IL 2 p(ﬂ.OiEO A 'n.q.,,=1)
qETl‘k

k=1 k(g ntg)e5(ZkI02)

+Nz_k.(_L £ k! h 2 (g Ec A Ngi=1)

e=1 ﬁ(c +!.) (tg.--Lz)eS(Z.k[0.2) 5Tk

' P (= 1) (49)

Similarly, for the non-serialized phase, we can have,

Theorem A2: The service adjustment factor for non-serialized activity at server %,

i=12,... K is:

min (N -1.2Z) e
Au= ) -1 % pnog>1 A ng=1)
k=0 (¢g...tz)E5{Z.K|0) TET &
"3 (—1)’“1 k k!
Y 5 plng=c AN ny=1)
6=1 H(C +1)  (Co-tz)eS(ZEI0) TETLE
i
) .-I-,"‘ o - P (mg>1)
e ® or,
min IZJ
(—1)F > p{ne=1 A ngy=1)

k=0 {tg.tz)ES(2.510) 7ET1£

N-1 mm(N—-c Z) !_12k+l k kl
+ Z > P plrg= f-‘ /\ g =1)

c=1 k=] H(C +£) (tg....12)ES(Z k(D) TLE

i=0
Al0
P(ng=1) (A10)
APPENDIX B

Obtaining Approximate Scrvice Time Adjustment Factors
from Producl Form Solution of Aggregate Server Model

In order to be able to compute service Lime adjustment [actors from the sclution

of a product form model, we use the following homogeneity assumption {equation 6):

b, P(‘nméc /\ ngi=1lny 3 =1) = (’"'0120 /\ nm—1|n; =1).
o "':'1 1
i
" Thus usmg equations 5, A9 and A10, we get, for 2=1,2,....Z and i=1,2,... K,
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min(N.Z)( ¢ _13k~1
H, = i {1—1L 3, ( IT i) P(ﬂuizoqé\knqal)
=1 71

k= ko (g tp)E5(2k102) gETy

N-k b
—1)F k!
rp GEEL s (T] Fa) plneze A nga1)
c=1 (c +£) (tg.-..t2)eS(2.k[0.2) gETy, FET 1
L=0

(=) (B1)

and

in (¥~1.2)
Hoy :[m ::Z_:Ol ("1)k( Y (]I #g) P(norielqé}lknqal)

‘0.....‘3)ES[Z.kID) qEle

N-tmun(N-c.Z) -1 E+1 k!
DI M O ) (I1~F

o) Plng=c EA ng=1)
c=1 k=1 H(C'H') (tg...-.tz)E5(Z.k0) gETy, TET 1%
i=0

B2
p(ngi=1) —1B2)

The necessary probabilit_ies required in the expressions above can be using the
conventional solution techniques for product form network, e.g. by using the G vector
in convolution[3], or by using prime-recursion formulas in the mean value analysis set-
ting[7]. Relations for H,;'s using convolution algorithm are given below.
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