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Background: Maintaining skeletal muscle mass and function in aging is crucial for

preserving the quality of life and health. An experimental bed rest (BR) protocol is a

suitable model to explore muscle decline on aging during inactivity.

Objective: The purpose of this systematic review and meta-analysis was, therefore, to

carry out an up-to-date evaluation of bed rest, with a specific focus on the magnitude

of effects on muscle mass, strength, power, and functional capacity changes as well as

the mechanisms, molecules, and pathways involved in muscle decay.

Design: This was a systematic review and meta-analysis study.

Data sources: We used PubMed, Medline; Web of Science, Google Scholar, and the

Cochrane library, all of which were searched prior to April 23, 2020. A manual search was

performed to cover bed rest experimental protocols using the following key terms, either

singly or in combination: “Elderly Bed rest,” “Older Bed rest,” “Old Bed rest,” “Aging

Bed rest,” “Aging Bed rest,” “Bed-rest,” and “Bedrest”. Eligibility criteria for selecting

studies: The inclusion criteria were divided into four sections: type of study, participants,

interventions, and outcome measures. The primary outcome measures were: body

mass index, fat mass, fat-free mass, leg lean mass, cross-sectional area, knee

extension power, cytokine pattern, IGF signaling biomarkers, FOXO signaling biomarkers,

mitochondrial modulation biomarkers, and muscle protein kinetics biomarkers.

Results: A total of 25 studies were included in the qualitative synthesis, while 17 of them

were included in the meta-analysis. In total, 118 healthy elderly volunteers underwent

5-, 7-, 10-, or 14-days of BR and provided a brief sketch on the possible mechanisms

involved. In the very early phase of BR, important changes occurred in the skeletal

muscle, with significant loss of performance associated with a lesser grade reduction

of the total body and muscle mass. Meta-analysis of the effect of bed rest on total

body mass was determined to be small but statistically significant (ES = −0.45, 95%

CI: −0.72 to −0.19, P < 0.001). Moderate, statistically significant effects were observed

for total lean body mass (ES=−0.67, 95% CI:−0.95 to−0.40, P< 0.001) after bed rest

intervention. Overall, total lean body mass was decreased by 1.5 kg, while there was no
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relationship between bed rest duration and outcomes (Z = 0.423, p = 672). The

meta-analyzed effect showed that bed rest produced large, statistically significant, effects

(ES=−1.06, 95% CI:−1.37 to−0.75, P < 0.001) in terms of the knee extension power.

Knee extension power was decreased by 14.65 N/s. In contrast, to other measures,

meta-regression showed a significant relationship between bed rest duration and knee

extension power (Z = 4.219, p < 0.001). Moderate, statistically significant, effects were

observed after bed rest intervention for leg muscle mass in both old (ES = −0.68, 95%

CI: −0.96 to −0.40, P < 0.001) and young (ES = −0.51, 95% CI: −0.80 to −0.22, P <

0.001) adults. However, the magnitude of change was higher in older (MD = −0.86 kg)

compared to younger (MD = −0.24 kg) adults.

Conclusion: Experimental BR is a suitable model to explore the detrimental effects of

inactivity in young adults, old adults, and hospitalized people. Changes in muscle mass

and function are the two most investigated variables, and they allow for a consistent

trend in the BR-induced changes. Mechanisms underlying the greater loss of muscle

mass and function in aging, following inactivity, need to be thoroughly investigated.

Keywords: bed rest, aging, muscle mass, muscle physiopathology, muscle function

INTRODUCTION

Preserving skeletal muscle mass and strength throughout the
lifespan is recognized as a primary factor to maintain an adequate
quality of life and survival. After the age of 50, about 0.5–1% of
muscle mass can be lost, even after considering inter-individual
genetic and lifestyle differences (1). This para-pathological status,
called sarcopenia of aging, can worsen the quality of life and
lead to premature death (2). Recently, an increase in the
so-called “intrinsic capacity” (i.e., the composite combination
of physical and mental capacities of an individual) has been
identified as the main step to promote healthy aging (3). As a
result, physical inactivity, to the extreme of being confined to
bed, is a key factor in contributing to the onset of functional
ability decline in the elderly (4). Several studies demonstrate
that, especially in the elderly, physical inactivity increases the
risk of fractures, due to falling (5), and worsens their general
health conditions including protein and glucose metabolism (6),
cardiovascular function (7), and cognitive capacity (8). Inactivity
also seems to exacerbate motor unit denervation associated with
aging (9) and neuromuscular junction degeneration (NMJ) (10).
On the contrary, an active lifestyle seems to protect against
these neurodegenerative changes associated with aging and
inactivity (11).

In this perspective, the negative health effect of hospitalization
(or institutionalization) could be, at least partially, explained by
the sudden reduction in physical activity (12) causing muscle
loss not only through unloading per se but also by triggering
muscle denervation (13, 14) and NMJ damage (15, 16). NMJ
damage is considered a key driver of sarcopenia (17). Recent
studies consider physical inactivity (or bed rest, BR) during
hospitalization, as a primary factor contributing to the functional
and cognitive decline of older patients (8). Hospitalized patients,
including those able to walk independently, spend most of their

time in bed (18). This is an important factor in healthcare
planning as most hospitalized patients are elderly and their
prevalence is expected to double by 2030 (19). In fact, 75%
of hospitalized elderly patients stand or walk only for an
average of 5.5 min/day (20) and, in general, for no more than
5% of the entire daytime. Moreover, during hospitalization,
their ambulatory function and daily living activities decline
by 30–55 and 65%, respectively (21–26). This often leads to
the institutionalization in a nursing home after discharge (27).
Almost 50% of elderly patients hospitalized for a non-disabling
condition suffer a long-term (1 month or more) functional
decline at discharge (28). In addition, lower muscle mass and
strength are more likely to prolong the length of stay, increase
the risk of readmission after discharge, and eventually boost the
hospitalization costs (29).

Due to these clinical implications, the effects of physical
inactivity in older participants (and the possibility to prevent
and/or counteract them) have been widely investigated in the
past years utilizing different approaches and research protocols.
Experimental BR is one of the most suitable approaches in
studying consequences of physical inactivity in a controlled,
standardized and realistic environment.

Investigators have recognized the potential clinical relevance
of the BR model to mimic the physical inactivity experienced
during hospitalization, illness, and injury while allowing to
differentiate the catabolic, disease-related effects from the
intrinsic consequences of skeletal muscle disuse. A small
number of experimental immobilization studies have been
carried out in older volunteers during the last 10 years (30–49).
Considering the risk of thromboembolic complications (50–52)
in older subjects, less hazardous, alternative approaches, such
as unilateral leg immobilization (50), unilateral leg suspension
(51), or step reduction (53), have been recommended. Although
these approaches are very useful in the assessment of muscle
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physiology or single muscle fiber properties, they are not suitable
for the investigation of the metabolic and systemic changes
occurring during prolonged inactivity or BR (46), which are
allegedly responsible for the reduced survival rate. The use of
specific precautions, like compression leg stockings and/or strict
monitoring of coagulation parameter (i.e., D-Dimer levels) (46),
to prevent thromboembolic events could increase trust in the
BR approach, which so far, is considered as a valid approach to
explore the effects of physical inactivity in humans. Experimental
BR in older participants provides, therefore, unique results,
and the present systematic review and meta-analysis focuses
on clinical metabolic and pathophysiological events occurring
during 5, 7, 10, and 14 days of BR.

This systematic review and meta-analysis evaluates the
published studies on the effects of experimental bed rest on
muscle mass and function in aging populations as compared
to young controls. Moreover, this work also focuses on the
different effects of rehabilitation protocols both in young and old
subjects. This is an emerging topic. In fact, physical inactivity and
immobilization have a great clinical impact on health and disease
progression, and rehabilitation therapies are not frequently and
efficiently implemented. Such scenarios dramatically worsened
during the covid-19 pandemic (54).

MATERIALS AND METHODS

Search Strategy and Study Selection
The systematic review and meta-analysis were performed in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (55).

Computerized literature searches were conducted for articles
in the following electronic databases: PubMED, Medline; Web
of Science, Google Scholar, and Cochrane library. The search
strategy was designed in PubMED and subsequently applied to
Cochrane library, Medline, Web of Science, and Google Scholar.
The final reference lists of the included studies were reviewed for
additional relevant studies. A structured search included papers
published prior to March 1, 2021. A manual database search
was performed using the following key terms, either singly or
in combination: “Elderly Bed rest” and “Bed-rest” and “Bedrest”;
OR “Older Bed rest” and “Bed-rest” and “Bedrest”; OR “Old Bed
rest” and “Bed-rest” and “Bedrest”; OR “Aging Bed rest” and
“Bed-rest” and “Bedrest”; OR “Aging Bed rest” and “Bed-rest”
and “Bedrest.”

The study selection process is presented in Figure 1. Initially,
two independent reviewers performed the following steps:
literature search, identification, screening, quality assessment,
and data extraction. First, all titles were screened during
database searches to assess the suitability of publications. After
that, abstracts were screened using predetermined inclusion
and exclusion criteria. Then, full texts were reviewed by the
two reviewers to reach a final decision. Apart from those
steps, reference lists from retrieved papers were examined for
additional potentially eligible papers. Consensus or arbitration
by a third reviewer were used in cases of any disagreement
between reviewers.

The Cochrane risk of bias assessment, including the following
items random sequence generation, allocation concealment,
blinding of participants and personnel, blinding of outcome
assessment, incomplete outcome data, selective reporting, and
other bias, was used.

Inclusion criteria were as follows: the PICO (participants,
intervention, comparison, and outcomes) standard was followed
for inclusion and exclusion criteria. The type of participants
were healthy adults (>60 years) included in systematic review
and meta-analysis. No publication data or publication status
restrictions were imposed. Types of interventions were bed rest
experimental protocols, which should not allow any deviation
from lying in bed and had to last at least 1 day, with
participants assigned to either the experimental or the control
group. Types of outcome measure were that the primary
outcome measures for systematic review and meta-analysis were
as follows: body mass index, fat mass, fat-free mass, lower
limb lean mass, cross-sectional area, knee extension power,
cytokine pattern, IGF signaling biomarkers, FOXO signaling
biomarkers, mitochondrial modulation biomarkers, and muscle
protein kinetics biomarkers.

Exclusion criteria were as follows: non-experimental studies
(i.e., hospital stay), studies written in languages other than
English, and duplication publications. These were excluded.
Studies with additional interventions, unbalanced diets, or
missing relevant data necessary for meta-analysis were also
excluded from the analysis.

Data Extraction
Standardized protocol for data extraction was used to extract:
(I) study characteristics with appropriate information regarding
author(s), title and year of publication; (II) participant
information, such as sample size, age, health status and
gender; (III) a description of the bed rest experimental protocols,
duration and frequency; (IV) study outcomes including the
following measurements: Body Mass Index; Fat Mass; Fat-Free
Mass; Leg Lean Mass; Cross Sectional Area; Knee extension
power; Cytokine pattern; IGF signaling biomarkers; FOXO
Signaling biomarkers; Mitochondrial modulation biomarkers;
and Muscle protein kinetics biomarkers. When numeric data
were not reported in the text, they were extracted from charts
and figures using Graph digitizer software (DigitizeIt, Germany).
In most of the studies, mean and SD were reported, while
correlation was not: in these instances, the correlation value
was set at 0.5, as previously suggested. Data extraction from the
included studies was performed independently by two reviewers
(N.F. and B.Š.) and checked for accuracy and completeness.
Disagreements were resolved by consensus. The entire procedure
was not blinded to authors, journals or institutions.

Quality of the Included Studies
Several tools are available to estimate the quality of randomized,
controlled (56), and non-randomized trials or observational
studies (57). Our strategy was to include all randomized and non-
randomized, observational and interventional studies depending
on the risk of confounding internal validity. Each included study
has been scored based on the following criteria:
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FIGURE 1 | PRISMA flow diagram.

(1) confinement at the test facilities before bed rest (controlled
ambulatory restriction); (2) controlled energy intake diet during
bed rest; (3) controlled macronutrient intake during bed rest; (4)
clearly defined restrictions and permitted deviations from bed
rest; (5) clearly defined and objective criteria for the assessment
of Body mass measurement; (6) clearly defined and objective
criteria for the assessment of Body composition (FFM, FM)
measurement; and (7) clearly defined and objective criteria for
the assessment of muscle performance.

Statistical Analysis
Data has been collected from the published versions and online
supplementary materials of the manuscript and the effects of
BR have been reported by absolute difference or percent change
between baseline and end of BR values. Correlation between
these changes and the duration of BR has been calculated by
Spearman’s Rank Correlation. Statistical significance, correlation

coefficient, and the best fitting linear association equation have
been obtained by SPSS (Statistical Package for Social Sciences,
IL, version 21.0). Comprehensive Meta-analysis V.2 software
(Biostat, Englewood, New Jersey, USA) was used for the meta-
analyses. The standardized difference in means (SDM) and mean
difference (MD) with appropriate 95% confidence intervals
(CIs) were calculated for all outcome measures. Publication
bias was checked using Egger’s test and asymmetry of funnel
plots. Significant bias was noted if p < 0.10. The I2 statistic
was used to investigate between-study heterogeneity; where
values of 25, 50, and 75% represent low, moderate, and high
statistical heterogeneity, respectively (45). Pooled estimates of
the effect of BR on total body mass, total fat body mass, total
lean body mass, knee extension power, and leg muscle mass
using effect size (ES), were obtained using fixed (I2 < 75%) or
random (I2 > 75%) effects models. ES was classified as: very
small (<0.20), small (0.21–0.50), moderate (0.51–0.80), large
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TABLE 1 | Experimental bed rest protocols involving healthy elderly participants.

Study group Comparison group

References Days of bed

rest

No. of

volunteers

Age (years) BMI (kg/m2) No. of volunteers Age (years) BMI (kg/m2) Rehabilitation

program

Bed rest protocols

Reidy et al. (26)

Reidy et al. (27)

5 10 69 ± 2 25.3 ± 1 NMES+PRO (10) 70 ± 2 25.7 ± 0.8 NA

Tanner et al. (29)

Reidy et al. (30)

5 9 66 ± 1 25.0 ± 1.0 Young (14) 23 ± 1 22.0 ± 1 8 weeks:

resistance exercise

+ BCAA protein

supplementation

Arentson-Lantz et al. (32) 7 10 68 ± 2 25.2 ± 0.7 2,000 steps/day (7) 68 ± 2 27.1 ± 1.4 NA

Arentson-Lantz et al. (33) 7 10 68 ± 2 25.2 ± 0.7 WHEY (5) 69 ± 1 27.4 ± 0.8 5-day rehabilitation

Arentson-Lantz et al. (34) 7 10 68 ± 2 25.2 ± 0.7 Leucine (7) 68 ± 1 28.0 ± 1.0 NA

Drummond et al. (30)

Drummond et al. (31)

7 6 67 ± 2 24.7 ± 0.9 No (–) – – NA

Kortebein et al. (23)

Kortebein et al. (36)

10 12 67 ± 5 29.0 ± 3.0 No (–) – – NA

Coker et al. (37) 10 8 64+3 28.1 ± 1.7 No (-) – – NA

Ferrando et al. (35) 10 11 68 ± 5 ** EAA (10) 71 ± 6 $$ NA

Deutz et al. (38)

Standley et al. (39)

Standley et al. (40)

10 8 67 ± 1 26.5 ± 1.2 HMB (11) 67 ± 1 24.9 ± 1.0
8 weeks: strength

training

+ placebo or HMB

supplementation

Jurdana et al. (43)

Pišot et al. (42)

Rejc et al. (44)

Buso et al. (45)

14 16 60 ± 3 26.6 ± 4.4 Young (7) 23 ± 3 24.0 ± 2.4
2 weeks:

resistance training

Biolo et al. (41) 14 8 60 ± 3 26.8+4.2 Young (7) 23.1+2.9 24+2.4 NA

Table reports main data of the volunteers included in the bed rest protocols. Study group: Healthy aging volunteers performing a bed rest protocol without any intervention. Comparison
group: healthy volunteers performing a bed rest protocol either elderly people having a countermeasure or younger counterparts.
The “Rehabilitation program” column reports “Not applicable (NA)” when the article stated that a rehabilitation protocol was conducted but no data were reported. **83 ± 19 (kg). We
report here body weight of the volunteers since neither body height nor body mass index (BMI) was available. $$72 ± 8 (kg). We report here the body weight of the volunteers since
neither body height nor body mass index (BMI) was available.

(0.81–1.20), very large (1.21–2.00), and extremely large (>2.01)
(58). Furthermore, meta-regression was performed to examine
whether the effects of BR duration on body composition
and skeletal muscle performance. Significance was set
at p < 0.05.

RESULTS

Study Selection
The literature search yielded 6,527 studies. During the
study selection process, 4,300 duplicates were removed and
2,222 unique study reports remained for title and abstract
screening. Following the initial screening of titles, 148 full-
text articles were retrieved and assessed for eligibility. The
screening of abstracts excluded 109 records. A total of 39
studies met the inclusion criteria. However, the full-text
examination identified further 10 studies not meeting the
inclusion criteria. A total of 29 studies were included in
the qualitative synthesis, while 17 of them were included in
the meta-analysis. The PRISMA flow diagram is shown in
Figure 1.

Study Characteristics: Bed Rest Protocols
and List of Publications
Nine BR protocols have been conducted in elderly volunteers
yielding a total of 29 different publications (30–49). All
the protocols were consistent in volunteer recruitment,
exclusion criteria, immobilization design, nurse monitoring,
and caloric intake, while countermeasures during BR,
rehabilitation procedures, and the presence of a control
group were heterogeneous.

The studies published so far lasted 5, 7, 10, or 14 days, with the
most frequent BR duration of 10 days. Data is available for pre-
and post-BR, without intermediate evaluations (Table 1).

Meta-Analysis
Based on Egger’s test and funnel plot asymmetry,
all observed measures indicated publications
bias (p < 0.10).

Effects of Bed Rest on Body Composition
A meta-analysis of the effects of bed rest on body composition
is reported in Figure 2. Total body mass was determined as
small but statistically significant (ES = −0.45, 95% CI: −0.72 to

Frontiers in Nutrition | www.frontiersin.org 5 August 2021 | Volume 8 | Article 633987

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Di Girolamo et al. Bed Rest in Aging

FIGURE 2 | Effects of bed rest on body composition. The results are displayed separately for total, fat, and lean body mass and data expressed as percent

differences from the baseline. Mean values and 95% CI are reported for each study as squares and thin line, respectively. Summary results for each parameter are

described as solid diamond and thin lines on the gray background. The figures, with P-values, are reported on the right part of the plot.

TABLE 2 | Meta-regression for bed rest duration and observed outcomes.

Coefficient Standard

error

95%

lower CI

95%

upper CI

Z-value P-value

Body composition

Total body mass −0.040 0.043 −0.124 0.045 −0.913 0.361

Total fat body mass 0.023 0.036 −0.047 0.094 0.648 0.517

Total lean body mass 0.016 0.039 −0.059 0.092 0.423 0.672

Skeletal muscle performance

Knee extension power 0.213 0.050 0.114 0.312 4.219 <0.001

Leg muscle mass—old −0.031 0.046 −0.122 0.060 −0.673 0.501

Leg muscle mass—young −0.040 0.043 −0.124 0.045 −0.913 0.361

Bolded values refer to statistical significance of the observed result (p < 0.05), CI, confidence interval.

−0.19, P < 0.001). Overall, the total body mass was decreased
by 1.2 kg after bed rest interventions. There was no significant
relationship between bed rest duration and total body mass
(Z = −0.913, P = 0.361). The heterogeneity of the effect
of bed rest on the total body mass was 70%. In contrast,
bed rest produced a non-significant effect on the total fat
body mass (ES = 0.235, 95% CI: −0.01 to 0.48, P = 0.06).
Differences in mean values showed that bed rest interventions
decreased the total fat body mass by 0.30 kg. Similar to the

total body mass, meta-regression (Table 2) did not show a
significant relationship between bed rest duration and the
total fat body mass (Z = 0.648, P = 0.517). A low level of
heterogeneity was observed for the total body fat mass (I2 =

15%). Moderate, statistically significant, effects were observed for
total lean body mass (ES = −0.67, 95% CI: −0.95 to −0.40,
P < 0.001) after a bed rest intervention. Overall, the total
lean body mass was decreased by 1.5 kg while there was no
relationship between bed rest duration and outcomes (Z = 0.423,
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FIGURE 3 | Effects of bed rest on skeletal muscle performance. The results are displayed separately for knee extension power, leg muscle mass in old adults and

muscle mass in young adults and data expressed as percent differences from the baseline. Mean values and 95% CI are reported for each study as squares and thin

lines, respectively. Summary results for each investigated parameter are described as solid diamond and thin lines on the gray background. The figures, with P-values,
are reported on the right part of the plot.

p = 672). Heterogeneity among included studies was rated as
moderate (I2 = 65%).

Effects of Bed Rest on Skeletal Muscle Performance
Meta-analysis of the effect of bed rest on muscle performance is
reported in Figure 3. The meta-analyzed effect showed that bed
rest produced a large, statistically significant, effect (ES = −1.06,
95% CI: −1.37 to −0.75, P < 0.001) on knee extension power.
Knee extension power was decreased by 14.65 N/s. In contrast to
other measures, meta- regression (Table 2) showed a significant
relationship between bed rest duration and knee extension power
(Z = 4.219, p < 0.001). The heterogeneity of the effect of bed
rest on the total body mass was 63%. Moderate, statistically
significant, effects were observed after bed rest intervention for
legmusclemass in both old (ES=−0.68, 95%CI:−0.96 to−0.40,
P < 0.001) and young (ES = −0.51, 95% CI: −0.80 to −0.22, P
< 0.001) adults. However, the magnitude of change was higher
in old (MD = −0.86 kg) compared to young (MD = −0.24 kg)
adults. There was no significant relationship between bed rest
duration and leg muscle mass in old (Z = −0.673, P = 0.501)
and young (Z = −0.913, P = 0.361) adults. Heterogeneity was
equal to zero for both sub-groups. All 11 trials are at a high risk of
bias due to random sequence generation, blinding of participants
and personnel, blinding of outcome assessment. In contrast there
is no risk of bias in all studies regarding allocation concealment
and other bias. Four of twelve studies are at an unclear risk of bias
from incomplete outcome data while one of them is at high risk
of bias due to selective reporting.

DISCUSSION

Effects of Bed Rest
Body Composition
Compared to the ambulatory phase, 5 days of BR determine a 2%
loss in body mass and a 3% reduction of both total lean mass, as
well as of leg leanmass (30–33). Consistently, 7 days of BR induce
a−1.6 kg loss (3.2%) of total body leanmass. Notably, 50% of this
loss (800 g) came from lower limbs (Pre BR: 18.3 ± 1.1; Post BR:
17.5± 1.0 kg). Such a trend is also confirmed after 10 days of BR,
with a substantial reduction in total lean mass (∼4%) and, to a
lesser extent, of whole body mass (−2%) when compared to the
baseline. Finally, a similar pattern can be observed also after 14
days of BR with a body mass decrease by 3% and fat-free mass by
5.2%.

The resulting picture is of an early sharp loss of both lean and
total body mass within the first 5 days, followed (7–14 days) by a
smoother, but persistent reduction in lean body mass associated
with a minor loss in whole body mass (Table 3). Several studies
demonstrated that changes in fat mass (either loss or deposition)
during BR can accelerate muscle atrophy (59, 60). Therefore,
eucaloric diet was maintained in almost all studies lasting from
5 to 10 days and has prevented changes in fat mass; consequently,
body mass is less influenced by BR as compared to the muscle
mass or leg lean mass (Tables 2, 3). Indeed, after 14 days of BR
a 5% gain of fat mass has been reported, despite maintenance of
a eucaloric diet. Different methodologies for body composition
evaluation can play a role in the interpretation of this latter
data, with all studies of 5–10-days of BR using Dual Energy
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TABLE 3 | Time-related bed rest induced body composition relative change (%) in healthy older adults.

References Participants (n.) Days of

bed rest

Method Whole-body mass change

(%)

Total fat body mass change

(%)

Total lean body

mass change

(%)

Reidy et al. (26)

Reidy et al. (27)

9 5 DXA −1.5* 0.4 −2.3*

Reidy et al. (30)

Tanner et al. (29)

10 5 DXA −2.5* 0.4 −4.4*

Drummond et al. (30)

Drummond et al. (31)

6 7 DXA −1.8* 1.9 −3.2*

Arentson-Lantz et al. (32)

Arentson-Lantz et al. (33)

Arentson-Lantz et al. (34)

10 7 DXA −1.9* −0.4 −2.8*

Ferrando et al. (35) 12 10 DXA −2.0* 0.0 −3.2*

Deutz et al. (38)

Standley et al. (39)

Standley et al. (40)

8 10 DXA −1.9* 1.1 −4.7*

Jurdana et al. (43)

Pišot et al. (42)

Rejc et al. (44)

Buso et al. (45)

Biolo et al. (41)

16 14 BIA −3.1* 5.0 −5.2*

*All changes from baseline are statistically significant (0.01< p < 0.05). DXA, Dual energy X-ray Absorptiometry; BIA, Bioimpedance.

FIGURE 4 | Relative changes of body mass, muscle mass and muscle

performance after different periods of bed rest in 59 pooled participants. Data

are reported as percent differences from the baseline. Solid black line = total

body weight; Dotted black line = muscle mass; dashed black line = leg

muscle mass; Solid gray line = muscle efficiency; total n = 59 grouped by the

duration of bed rest.

X-ray Absorptiometry (DXA) while the 14-day BR study relied
on bioimpedance (BIA) technique.

Muscle mass and leg lean mass adapt differently to BR
(Figure 4). After the first 5 days of BR these two parameters
equally declined by around 4%; afterward, leg lean mass
continued to decrease by 0.5%/day until reaching −8.5% loss
after 14 days of BR, and muscle mass decreased at a much slower
rate, reaching−5.5% after 14 days of BR. This discrepancy could

at least be partly explained by fluid shifts toward the upper
body within the first few days and disproportional body segment
usage during the BR where BR induced highest muscle mass
declines in those segments with the highest habitual loads before
BR (legs).

Skeletal Muscle Performance
Evidence indicates that loss of muscular performance
(strength and power) often precedes a loss of mass (61).
This derangement is probably more important than changes
in lean muscle mass alone (62). Indeed, derangement in
muscle quality may includes metabolism disorder, loss of
aerobic capacity, insulin resistance, fat infiltration, fibrosis, and
reduced neural activation, all factors playing a role in muscle
efficiency decline (61). These alterations may lead to functional
disability (63).

In older adults, different tests have been conducted to
evaluate changes in muscle performance following BR. Among
them, the two most utilized methods were the Knee Extension
Power (KEP), to evaluate muscle power and the Short Physical
Performance Battery (SPPB), a group of measures that combines
the results of gait speed, chair-stand, and balance tests, as a
predictive tool for monitoring muscle function and disability
in older people (64). Muscle power is defined as the ability to
generate force rapidly (i.e., the product of force and velocity
of muscle contraction), while functional capacity is a reliable
marker of self-management in daily life living.

The two 5-day BR studies (30–33) showed consistent
reduction in KEP of about 14–16% over the experiments
(Table 4). This reduction in KEP is confirmed also in strength
declines after 7, 10, and 14 days of BR being between 9 and
15% (36–42, 46). SPPB was not reported in the 5 and 7-day BR
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TABLE 4 | Time-related bed rest induced delta change (%) in Knee Extension

Power of healthy older participants.

References Participants (n.) Days of bed

rest

Knee extension

power change

(%)

Reidy et al. (26)

Reidy et al. (27)

10 5 −16*

Reidy et al. (30)

Tanner et al. (29)

9 5 −14*

Arentson-Lantz et al. (32)

Arentson-Lantz et al. (33)

Arentson-Lantz et al. (34)

10 7 −12*

Coker et al. (37) 8 10 −11*

Deutz et al. (38)

Standley et al. (39)

Standley et al. (40)

8 10 −9*

Kortebein et al. (23)

Kortebein et al. (36)

12 10 −16*

Jurdana et al. (43)

Pišot et al. (42)

Rejc et al. (44)

Buso et al. (45)

Biolo et al. (41)

16 14 −12*

*All changes from baseline are statistically significant (0.01< p < 0.05).

studies; however, after 10- and 14-day BR SPPB did not change
(39–41, 48).

Besides KEP and SPPB, other tests of functional capacity
(i.e., 6-min walking test, timed “up and go” and gait speed,
Stair Climbing Power Test) were executed, with a more complex
pattern of response to BR. After 5 days of BR, 6-min walking tests,
timed “up and go,” and gait speed were unchanged; however, after
10 days of BR, all studies [except one (41)] showed a decrease
of 12–14% from the stair-climbing power test (39–42), −7%
reduction in 5-mi walk, −8% reduction in walking speed, and
a 12% increase in chair-stand time. Although these measures of
performance (6-min walk, step-up and go, functional reach, etc.)
may not be sensitive enough to detect changes in small groups
of volunteers following very short BR periods (61), significant
changes were identified after 10 days of BR. They were consistent
with studies in bed-ridden hospitalized elders demonstrating a
clear negative relationship between BR and functional capacity
(23, 26, 65). The association between the amount of time spent
in bed at home and the extent of functional decline in social,
instrumental, domestic, and physical activities were also observed
in a community setting over a time period of 18 months (24).

The loss of muscle performance, followed a different pattern
when compared to the muscle mass decline (Figure 5). Muscle
performance showed a reduction of 3%/day during the first
5 days of BR and then stabilizes until the 14th day of BR,
reaching −13%. These latter results are consistent with several
other cross-sectional studies in ambulatory conditions, reporting
a disproportionate decrease in muscle mass and strength in
elderly participants (66–70). The discrepancy between the loss of
muscle quantity and function in <14 days of BR must be further
explained by a decrease in “muscle quality,” tendon alterations,

FIGURE 5 | Comparison of lower limb muscle change in young and old during

bed rests of different duration. Data are reported as percent differences from a

baseline. Solid black round = muscle leg loss in healthy young volunteers (total

n = 46 grouped by duration of bed rest). Solid gray round = muscle leg loss in

healthy elderly volunteers (total n = 59 grouped by duration of bed rest).

and neural factors: muscle architecture change (71), reduced
neural drive (72, 73), muscle denervation and NMJ damage (10,
74, 75), alterations in tendon mechanical properties (74), muscle
fiber atrophy and force reduction (76), and more. Another
possibility is that the physical performance tests are not sensitive
enough for changes observed during BR. We can also speculate
that skeletal muscle anabolic compensatory pathways require
some days to be activated, or that some breakdown/remodeling
ones have a time dependent regulation, with broad-spectrum
breakdown taking place in the first days, followed by a more
selective degradation (possibly ubiquitin-proteasome mediated)
toward less active/effective fibers. The actual available literature
does not provide serial measurements of these parameters.

Skeletal muscle cross-sectional area and myosin heavy chain
myofibers composition. A direct comparison among the different
studies (14, 30, 33, 36, 44, 46, 48) must consider some
methodological issues, such as manual vs. computerized reading
of the CSA areas, the assessment of potential pre-BR physical
activity, or sport training, and intrinsic variability in CSA within
the same muscle. This leads to highly variable results in the CSA
which are somehow discussed: not all papers report the absolute
data and when absolute values are shown, CSA variability is
described as the standard error (which, given the number of
observations, is typically one-third of the standard deviation).
Such a variability, higher than that observed in other markers,
probably reflects intrinsic heterogeneity within the same muscle
(77) and questions the parametric statistical approach used in
these studies.

Two studies reported a ∼20% decrease in CSA after 5-days of
BR (30, 31, 33). Similarly, a 15% decrease in CSA was observed
after 14 days BR, in middle-aged (14) and older adults (46, 48).
Oddly, in the 7- and 10-day BR studies, no difference from
baseline could be observed, with even a trend toward an increase
in CSA (27, 36–44). It is impossible to determine whether these
conflicting results are related to differences in population type
(active vs. non-active) and size, in protocol design (recruitment
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or selection), or on the above-mentioned methodological issues.
Similar contrasting results can be observed also for myosin heavy
chain myofibers (MHC) composition changes. After 5 days of BR
elderly adults showed a strong decrease in myofibers of vastus
lateralis, mostly driven largely by MHC I fiber types (30, 31, 33).
Nonetheless, after 10 and 14 days of BR, no significant changes
were observed (43, 44, 48).

Comparison of Younger and Older
Participants
Body Composition, Muscle Performance, and Muscle

CSA/Volume
The comparison between elderly and young participants is useful
in evaluating the combined effects of the age groups and BR
duration on muscle mass and function. So far, only three BR
studies (lasting 5 and 14 days) report a direct comparison
between young and elderly participants (32, 33, 46). The missing
comparisons (at 7 and 10 days) were filled from matching data
from BR performed only on elderly participants (27, 34, 35,
40, 41) and matching data from BR performed only in young
participants (78, 79). It is known that BR mostly affects lower
limb muscles, thus leg lean mass changes are considered a better
index in estimating muscle mass loss during BR. In the two 5-
day BR studies, leg lean mass decreased only in old (−3.6%) as
compared to young (−0.3%). In longer BR studies we found a
linear trend in decreased lower limb muscle mass with the BR
duration (Figure 5). Specifically, data from 7-days of BR show
that leg lean mass decreased more in older (34, 35) than in
younger participants (78, 79) by −4.4 and −3.1%, respectively.
That was confirmed also after 10 days of BR when the decline
in older participants was 6% (22, 40, 42) and in young 4% (78) as
well as after 14 days of BR, when younger participants declined by
6.1% and older participants by 8.3% (46). As expected, a eucaloric
diet that was incorporated in all reported studies must have
prevented higher muscle declines (59, 60) and also significant
body fat mass changed both in young and older participants. Data
from BR studies reported a non-significant body fat variation
between 0 and 5% without interaction, of an age group of
participants (30–34, 36–38, 43, 44, 46–48, 61, 78, 79).

Age-related differences in muscle volume have been
investigated in both young and old volunteers after 5 and 14 days
of BR (30, 31, 46). Quadriceps CSA declined only in older subjects
after 5 days of BR by −3%, while quadriceps volume continued
to decline up to 14 days of BR by 8.3%. Such a reduction being
more important in older than in younger counterparts, that
declined by 6.1%. It should be noted that, in both studies,
younger participants had 11 and 23% higher baseline muscle
volume and CSA than older ones, respectively. One of the most
important triggers of muscle decline during inactivity could
be resistance to post-prandial anabolic stimulation of protein
synthesis. Biolo et al. (45) demonstrate that anabolic resistance
induced by experimental bed rest is much greater in the elderly,
as compared to a younger population.

It is also evident that muscle performance deteriorates more
in older than in younger volunteers. Specifically, 5 days of
BR lowered leg strength more in older (12%) than in younger
(9%) (32, 33) with a significant interaction effect. After 14

days of BR, two parameters expressing the contractile function
(maximal voluntary isometric force and lower body explosive
power) declined only in old for 13 and 15.2%, respectively
(46). Both parameters show a declining trend also in younger
subjects (11% for both parameters), although these differences
were not significant (p < 0.100) due to the small size (N = 7)
of the population.

Effect of Rehabilitation
Body Composition Muscle Efficiency and

Cross-Sectional Area
Only three BR studies reported results of a rehabilitation
program. Reidy et al. (33) and Tanner et al. (32) combined a
3 week exercise rehabilitation protocol with a BCAA enriched
whey protein supplement to recover from the effects of 5 days of
BR. Authors found that, independent of age group, rehabilitation
restored leg lean mass (Young: + 2.63 ± 1.09%; Old: + 3.78 ±

1.40%) and KEP (Young: 42.66 ± 11.05%; Old: 25.16 ± 6.67%).
As for LEU supplementation (34), even if it confers a moderate
protective effect on lean leg mass during 10 days of BR, following
rehabilitation, leg lean mass in both intervention and control
groups returned to the baseline values.

In the second study, Deutz et al. (42) and Standley et al. (43,
44) prescribed 8 weeks of rehabilitation to all participants (both
controls and HMB supplementation group). After rehabilitation,
muscle mass gain did not differ between the two groups.
However, the HMB group showed an improvement in KEP
from the baseline (+11.15 Nm/s, p = 0.03) while the control
subjects only regained their baseline level (+5.90 Nm/s, p =

0.4). Moreover, the HMB group showed an increase in muscle
functionality (Timed Get-Up-&-Go) during the rehabilitation
period that was not evident in the control group.

In the third study (46), 14-days of BR were followed by 2
weeks of supervised, multimodal rehabilitation exercise program
in young and old volunteers. Rehabilitation increased body mass
more in young than in old (Old: +2.4; Young: +3.9%; p <

0.001). However, only older participants showed an increase in
total body fat-free mass (4.4%, P < 0.006) and quadriceps muscle
volume (5.7%, p < 0.001). Notably, rehabilitation did not restore
the baseline muscle volume in older subjects (−3.1%, p = 0.048)
but it did in younger ones (−1.7%, p= 0.428). It is also important
to remember that, after 14 days of BR, knee extension maximal
voluntary isometric force and maximal explosive power declined
only in old people; however only knee extension force recovered
completely after the rehabilitation.

As for CSA, the rehabilitation protocols seem more effective
(+42%) in the elderly after 5 days of BR, compared to the younger
volunteers, who show no effects. By increasing the BR period,
such effects seems less obvious within each comparison (slow vs.
fast fibers, young vs. old participants).

Muscle Protein Kinetics
Physio-pathological conditions (e.g., sarcopenia of aging and
disuse) are characterized by reduced efficacy of an anabolic agent
to stimulate protein synthesis. This condition, commonly defined
as anabolic resistance, is considered a mechanism contributing to
muscle atrophy following prolonged physical inactivity (80–82).
Therefore, evaluation of the skeletal muscle protein turnover is
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critical to assess the negative effects of BR, its mechanism(s), and
the efficacy of possible countermeasures and/or rehabilitation
programs. Anabolic resistance is evaluated through complex and
invasive methodologies based on intravenous infusion of stable
isotopes of amino acids (76, 83). Only three studies explored bed
rest-induced changes in protein kinetics.

Drummond et al. (34) showed that, in ambulatory conditions,
elderly muscle protein synthesis rate increased by 40% following
acute ingestion of EAA, but not after 7 days of BR. Consistently,
Ferrando et al. (39) found that 10 days of BR determined a
30% decrease in muscle protein fractional synthesis rate in
healthy elderly volunteers, but not in subjects having a daily
supplementation of EAA. Finally, Biolo et al. (45) showed that
2 weeks of BR reduce post- prandial protein kinetics more
in elderly participants (−33%) than in the younger (−11%)
adults. Unfortunately, the resulting data was not comparable due
to the different methodologies applied. Nonetheless, all three
studies corroborate the concept of anabolic resistance in elderly
bedridden volunteers.

CONCLUSION

Experimental BR is a suitable model to study detrimental effects
on body composition, physical performance, and biochemical
changes induced by inactivity in young, old, and hospitalized
people. This experimental approach allows for splitting of the
intrinsic effects of skeletal muscle inactivity from the disease-
related changes in structure, activity, and pathophysiology.

The different studies show a remarkable consistency for
some investigated variables, particularly considering the different
duration of the protocols. Changes in muscle mass and function
are the two most investigated variables and allow for a consistent
trend of the BR-induced changes. It remains to be seen the
exact mechanisms of the discrepancy between muscle mass and
performance decline after BR.

Facing a BR period, young and elderly adults react
differently. Older adults lose more promptly muscle mass

than younger, while muscle efficiency declines only in older
adults at 14 days of BR. Countermeasures during BR and
rehabilitation after BR have different efficacy in muscle mass
and strength maintenance and/or recovery. Apparently, all
the nutritional and physical (i.e., NMES and 2000 steps/day)
countermeasures carried out during BR are not fully effective
in blunting muscle mass loss, although they seem able to
counteract the inactivity-related anabolic resistance. On
the contrary, all the rehabilitation programs conducted
(from 2 to 8 weeks) after BR, restored (in older adults) or
even improved (in younger adults) the pre-test levels of
muscle mass and function. All these studies are important
to corroborate early clinical evidence that muscle loss in old
age is more rapid during the early stages of hospitalization
(52) and highlight the importance of countermeasures
combined with a rehabilitation protocol to promote complete
recovery afterward.

Further BR studies are needed to investigate the mechanism
and comparative time course of the processes occurring in
muscle reduction during BR in the elderly to fully understand
discrepancies between the age groups, as well as the link between
muscle mass and performance declines.
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