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Abstract. We investigate the magnetoresistance of a side-gated ring structure

etched out of single-layer graphene. We observe Aharonov–Bohm oscillations

with about 5% visibility. We are able to change the relative phases of the

wave functions in the interfering paths and induce phase jumps of π in the

Aharonov–Bohm oscillations by changing the voltage applied to the side gate

or the back gate. The observed data can be interpreted within existing models for

‘dirty metals’.
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1. Introduction

Less than a decade ago, single-layer graphene sheets were isolated for the first time [1]. Since

then, amazing progress in the fabrication of increasingly more complex nanostructures has

been made. While the earlier research interests were focused on the most basic nanostructures,

e.g. graphene constrictions or nanoribbons [2]–[7], soon different groups were able to form

increasingly complex structures such as quantum dots [8]–[11] and double dots [12]. Despite

this increasing control over very complex nanostructures, only one experimental publication on

graphene rings is available [13]. Predominantly, the theoretical aspects of the Aharonov–Bohm

effect [14, 15] in graphene have been addressed in the literature [16, 17]. One consequence of

interference (weak localization) has been studied in graphene flakes [18]–[20] with the outcome

that weak localization can only be observed in the presence of intervalley scattering.

Nanoscale rings have been studied in nanostructures of a variety of different

materials including carbon materials such as carbon nanotubes [21, 22]. Only recently, the

Aharanov–Bohm effect has been observed for the first time in a two-terminal graphene ring

structure [13]. In this experiment, the visibility of the Aharonov–Bohm oscillations was found

to be less than 1% at low magnetic fields. It was speculated that this small value might be

due to inhomogeneities in the two interferometer arms, leading to a tunneling constriction that

suppressed the oscillations.

In this paper, we present four-terminal magnetotransport through a graphene ring of smaller

size than the devices studied in [13]. We demonstrate h/e-periodic Aharonov–Bohm oscillations

with a visibility that is increased by a factor of up to 10 compared to the two-terminal case [13].

In addition, our graphene ring has better tunability as it is equipped not only with a back gate,

which allows us to change the charge carrier density in the complete sample, but also with

side gates, allowing a local tuning of the charge carrier density in one of the arms. This added

tunability allows us to demonstrate that a π -phase shift of the oscillations can be achieved by

changing a gate voltage. The observed data can be interpreted within existing models for dirty

metals.

2. Sample and setup

Figure 1(a) displays a scanning force micrograph of the graphene ring studied in this work. The

graphene flakes are produced by mechanical exfoliation of natural graphite, and deposited on

a highly doped Si wafer covered by 295 nm of silicon dioxide [1]. Thin flakes are detected by

optical microscopy, and Raman spectroscopy is used to confirm the single-layer nature of the

selected graphitic flakes [23, 24]. In figure 1(b), we show the Raman spectrum of the graphene

flake used for the fabrication of the investigated graphene ring device (figure 1(a)). The spectrum

has been recorded before structuring the flake and the narrow, single Lorentzian shape of the 2D

line is proof of the single-layer nature [23, 24]. Electron beam lithography followed by reactive

ion etching is used to define the structure. The contacts are added in a second electron beam

lithography step, followed by the evaporation of Cr/Au (2 nm/40 nm) [9].

All the measurements presented in this work were performed in an He3 cryostat at a base

temperature of T ≈ 500 mK. Standard low-frequency lock-in techniques are used to measure

the resistance by applying a constant current. A magnetic field is applied perpendicular to the

sample plane.
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Figure 1. (a) Scanning force micrograph of the ring structure studied in this

work. The ring has an inner radius of about 200 nm and an outer radius of

about 350 nm. On each end of the ring structure, there are two graphene contact

pads labeled S1/2 and D1/2, allowing us to perform four-terminal resistance

measurements. The side gates labeled SG1 and SG2 are located 100 nm away

from the structure. (b) The Raman spectrum of the same flake before processing.

The spectrum was recorded using a laser excitation wavelength of 532 nm.

(c) Four-terminal resistance across the ring structure as a function of back

gate voltage, with both side gates grounded. The measurement is recorded at

a temperature of 500 mK with a constant current of 10 nA.

3. Results and discussion

3.1. Characterization at zero magnetic field

Figure 1(c) displays the resistance of the ring as a function of applied back gate voltage VBG

measured in a four-terminal configuration. The ring itself is connected via two graphene ribbons

of 150 × 350 nm size (graphene leads) to a branching that ends in larger graphene areas, where

four gold contacts are used to measure the resistance. The measured resistance is composed of

the ring resistance itself and the resistance of the graphene leads.

The measured resistance Rmeas consists of the following parts: Rmeas = 2Rgl + Rring, where

Rgl is the resistance of one graphene lead and Rring is the resistance of the ring itself. In a

semiclassical Drude picture, these resistances can be calculated from the geometric aspect

ratios (i.e. the length L and the width W ) of the graphene lead (gl) and one arm of the

graphene ring (aring) as follows: Rmeas = (2(Lgl/Wgl) + 1

2
(Laring)/(Waring))

1

σ
= 7.5 1

σ
, where σ

is the conductivity at a given density. Hence, the ring contributes about 38% to the measured

resistance and the graphene leads about 62%.

As seen in figure 1(c), the charge neutrality point occurs at VBG ≈ 10 V. The high resistance

observed at the charge neutrality point is related to the small width W = 150 nm of the ring

arms [6]. However, this width was chosen large enough so that strong localization of charge

carriers leading to Coulomb-blockade-dominated transport in narrow ribbons [6, 7] is not

dominant. A rough estimate of the mobility taking into account the geometry of the structure

and using the parallel plate capacitor model leads to µ6 5000 cm2 Vs−1, comparable to the
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Figure 2. Four-terminal resistance across the ring as a function of magnetic field,

recorded at VBG = −5.789 V with a constant current of 5 nA. In (a), the raw data

are shown. For (b) the background resistance has been subtracted as described in

the text. (c) Fourier transform of the trace.

value quoted for the material used in [13]. For the typical back gate voltage VBG = −5.8 V used

for most of the measurements presented in this paper, the parallel plate capacitor model gives

the sheet carrier density ps = 1.2 × 1012 cm−2.

We identify the relevant transport regime in terms of appropriate length scales. The Fermi

wavelength corresponding to the carrier density mentioned above is λF =
√

4π/ps = 33 nm. For

comparison, at the same density, the mean free path is l = h̄µ
√

πps/e ≈ 65 nm. This is less than

half of the width W of the arms and much smaller than the mean ring radius r0 = 275 nm and its

corresponding circumference L = 1.7 µm. Therefore, the presented measurements are all close

to the diffusive (dirty metal) regime, and carrier scattering at the sample boundaries alone cannot

fully account for the value of the mean free path. The relevance of thermal averaging of phase-

coherent effects can be judged from the thermal length lth =
√

h̄vFl/2kBT = 700 nm, which is

significantly smaller than L . This indicates that thermal averaging of interference contributions

to the conductance is expected to be relevant.

3.2. Aharonov–Bohm measurements

Figure 2(a) displays the four-terminal resistance of the ring as a function of magnetic field at

VBG = −5.789 V. The raw data trace shows a strong modulation of the background resistance

on a magnetic field scale of about 100 mT. Clear periodic oscillations can be seen on top

of this background. They have a period in magnetic field 1BAB = 17.9 mT, indicated by the

vertical lines. This period corresponds to the h/e-periodic Aharonov–Bohm oscillations of a

ring structure of 271 nm radius, in good agreement with the mean radius r0 of the ring.

Figure 2(b) shows the same data with the background resistance subtracted. The

background was determined by performing a running average over one Aharonov–Bohm

period 1BAB. This method was found to lead to no relevant distortion of the oscillations after

background subtraction (with some exception in figure 3 around B = 0 T, which is of minor

importance for this paper). The amplitude of the Aharonov–Bohm oscillations is modulated as
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Figure 3. Four-terminal resistance as a function of magnetic field B and voltage

applied to SG1 (VSG), measured with a constant current I = 1 nA. ((a) and

(c)) The raw data, recorded at VBG = −10 V and −5.789 V. ((b) and (d)) The

corresponding data where the background has been removed for each individual

trace by averaging over one Aharonov–Bohm period in the magnetic field.

a function of magnetic field on the same scale as the background resistance, indicating that a

finite number of paths enclosing a range of different areas contribute to the oscillations. This

observation is compatible with the finite width W of the ring [25].

In figure 2(c), the fast Fourier transform (FFT) of the data in figure 2(a) is plotted.

The peak seen at 60 mT −1 corresponds to the h/e-periodic Aharonov–Bohm effect. The

width of this peak is significantly smaller than the range of frequencies expected from

the range of possible enclosed areas in our geometry (indicated as a gray-shaded region

in figure 2(c)).

Geometrically, the sample has an aspect ratio of length L to width W of about L/W = 7.5

as discussed above. When evaluating the resistance of the sample at the Dirac point (figure 1(c)),

we find it to be eighteen times h/4e2, which yields an aspect ratio of L/W = 18, given that most

graphene samples have a resistivity of h/4e2 at the charge neutrality point. The geometrical

aspect ratio is roughly one-third of this aspect ratio estimated from the sample resistance at the

charge neutrality point. Similarly, the FFT-peak width of one R(B)-trace is only one-third of the

peak width expected from the geometry sample dimensions.

We therefore speculate that the paths contributing to transport, in general, and to the

Aharonov–Bohm effect, in particular, may not cover the entire geometric area of the ring arms.

One possible interpretation is that the sample has rough unordered edges leading to a region

along the edges that does not contribute to the electrical transport.
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In this four-contact measurement, the oscillations have a relative amplitude 1RAB/Rtotal

of more than 5%. Considering that the resistance of the ring is only about 40% of the total

measured resistance Rtotal, this corresponds to a relative change of 12% of the ring resistance.

In general, the observed Aharonov–Bohm oscillations become more pronounced for

smaller current levels, as expected. The current level of 5 nA was chosen as a good compromise

between the signal-to-noise ratio of the voltage measurement and the visibility of the

Aharonov–Bohm oscillations. However, due to limited sample stability, the visibility of the

oscillations at a given back gate voltage depends on the back gate voltage history. Therefore

measurements presented here were taken over only small ranges of back gate voltage after

having allowed the sample to stabilize in this range.

Higher harmonics, especially h/2e-periodic oscillations, are not visible in the

magnetoresistance traces, nor do they lead to a clear peak in the Fourier spectrum (<1% of

the h/e-oscillation amplitude). This indicates that the phase coherence length lϕ < 2L , i.e. it is

(significantly) smaller than twice the circumference of the ring. Given the temperature of our

experiment, this estimate is very well compatible with the phase-coherence lengths reported

in [13], [26]–[28].

The measurements were taken in a magnetic field range where the classical cyclotron radius

Rc = h̄kF/eB > 640 nm is bigger than the mean free path l, the ring width W and even the ring

diameter. At the same time, Landau level quantization effects are negligible, because the sample

is studied in the low-field regime µB ≪ 1. The only relevant effect of the magnetic field on the

charge carrier dynamics is therefore caused by the field-induced Aharonov–Bohm phase.

In diffusive ring-shaped systems, conductance fluctuations can coexist with

Aharonov–Bohm oscillations. However, the relevant magnetic field scale of the conduc-

tance fluctuations 1BCF ∼ φ0/Wlϕ (φ0 = h/e) can be forced to be well separated from

1BAB = φ0/πr 2
0 by choosing a sufficiently large aspect ratio r0/W . Judging the situation from

the measurement traces in figure 2(a), the only candidates for conductance fluctuations are the

magnetic field-dependent variations of the background resistance, which occur on a magnetic

field scale that is at least a factor of five larger than 1BAB. As far as the amplitude of modulation

of the background can be estimated from figure 2(a), it is of the order of the conductance

quantum e2/h, which is reasonable, since the condition lϕ ∼ L implies the absence of strong

self-averaging over the ring circumference L .

3.3. Side-gate-induced phase-shifts

Figure 3 displays the four-terminal resistance of the ring as a function of magnetic field

and voltage VSG applied to the side gate SG1, for two different back gate voltages without

(figures 3(a) and (c)) and with (figures 3(b) and (d)) background subtraction.

In the raw data (figures 3(a) and (c)), a modulation of the background resistance on

a magnetic field scale, similar to that in figure 2(a), can be observed. The subtraction

of the background (extracted as described before) makes the Aharonov–Bohm oscillations

visible (figures 3(b) and (d)). Aharonov–Bohm oscillations at different VSG values display

either a minimum or a maximum at B = 0 T, with abrupt changes between the two cases at

certain side gate voltage values. This behavior is compatible with the generalized Onsager

symmetry requirement for two-terminal resistance measurements, R(B) = R(−B). Although

our measurement has been performed in four-terminal configuration, the contact arrangement

with respect to the ring and the fact that the contacts are separated by distances > lφ from the
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ring lead to a setup where the two-terminal symmetry is still very strong (cf figure 1(a)). Closer

inspection shows that the antisymmetric part in the magnetic field of each trace (not shown) is

more than a factor of 10 smaller than the symmetric part.

In previous studies on metal rings, the effect of electric fields on the Aharonov–Bohm

oscillations has been investigated, and two possible scenarios were discussed: [29] on the one

hand, the electric field may shift electron paths in space and thereby change the interference.

On the other hand, the electric field may change the electron density and thereby the Fermi

wavelength of the carriers. We discuss the latter effect in more detail below, since the relative

change in the Fermi wavelength is expected to be more pronounced in graphene compared to

conventional metals.

In order to estimate which phase change 1ϕ an electronic wave picks up on the scale of

the side gate voltage change 1VSG on which Aharonov–Bohm maxima switch to minima, we

use the relation 1ϕ = 1kFLeff, where Leff, being the effective length of a characteristic diffusive

path, is assumed to be independent of the side gate voltage4, whereas the change in wave number

1kF is assumed to be caused by 1VSG. The quantity 1kF is found from the density change 1ps

using 1kF =
√

π/4ps1ps. The density change is related via a parallel plate capacitor model

to a change in back gate voltage, i.e. 1ps = 1VBGǫǫ0/ed (where ǫ is the relative dielectric

constant of the silicon dioxide substrate and d is the thickness of the oxide layer), leading to

1ps/1VBG ≈ 7.5 × 1010 cm−2 V−1. Finally, 1VBG is related to 1VSG via the lever arm ratio

αSG/αBG.

In order to determine this lever arm ratio, we have performed measurements of conductance

fluctuations in the plane of the back gate voltage VBG and the side gate voltage VSG (not shown).

The characteristic slope of fluctuation minima and maxima in this parameter plane allows us

to estimate the lever arm ratio αSG/αBG ≈ 0.2. In previous experiments on side-gated graphene

Hall bars [30], we found a similar lever arm for regions close to the edge of the Hall bar whose

width is roughly comparable to the width of the arms of the ring investigated here.

Using the numbers given above and using the density ps = 1.2 × 1012 cm−2 for figure 3(b),

we find 1kF ≈ 1.2 × 106 m−1V−11VSG. In ballistic systems, the effective length of a path is

given by Leff ∼ L , giving 1ϕ ≈ 1VSGπ/1.5 V. A phase change of π would imply a change

of side gate voltage on the scale of 1.5 V, which is large compared with the measurement

in figure 3(b), where this scale is of the order of 100 mV. However, in the diffusive regime,

a characteristic path contributing to Aharonov–Bohm oscillations is longer by a factor of

L/ l ≈ 27 due to multiple scattering [31] (determined using µ= 5000 cm2/Vs), giving 1ϕ ≈
1VSGπ/55 mV. A change of the side gate voltage of typically 55 mV would cause a switch of

the Aharonov–Bohm phase by π , in better agreement with the observation than the ballistic

estimate. The same calculation could be used to estimate the correlation voltage of the

conductance fluctuations of the background resistance, in agreement with the observation in

figures 2 and 3. This correlation voltage is on the same scale as the phase jumps of the

Aharonov–Bohm oscillations.

4 We remark here that this assumption, and the reasoning based on it as given in the main text, corresponds to the

usual argument made for dirty metals. However, in graphene, the typical length Leff = L2/ l of a diffusive path [31]

is proportional to k−1
F , such that the phase kFLeff accumulated along such a path is independent of kF and therefore

independent of carrier density and gate voltage. It therefore remains unclear to us how the concept of the Thouless

energy as an energy scale for wave function correlations can be transferred to the graphene system. We nevertheless

discuss the estimate based on the assumption of a kF-independent Leff (1) in the absence of any better theory and

(2) in accordance with [13].
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Figure 4. Four-terminal resistance as a function of magnetic field and back gate

voltage measured with a constant current of 1 nA. In (a), the raw data are shown,

while for (b), the background has been removed.

3.4. Back-gate-induced phase shifts

Figure 4 shows magnetoresistance data for varying back gate voltages and VSG = 0 V. Similar

to the case where the side gate was tuned, we observe variations of the oscillation patterns as

well as π -phase shifts. The raw data displayed in figure 4(a) show background fluctuations with

h/e-periodic Aharonov–Bohm oscillations superimposed. In figure 4(b), the background has

been removed. Again, alternating minima and maxima at B = 0 T can be observed.

The larger visibility of Aharonov–Bohm oscillations observed in our sample, compared

with the work in [13], is unlikely to be caused by better material or sample quality. Also, our

measurement temperature is about a factor of 4 higher than the lowest temperatures reported

there. We therefore believe that the smaller ring dimensions in combination with the four-

terminal arrangement may be responsible for the larger value of the visibility observed in our

experiment. In [13], the expression [25] 1G ∝ lth/ lϕ exp(−πr0/ lϕ) was invoked to explain the

observed T −1/2-dependence of the oscillation amplitude. The exponential term on the right-hand

side contains the radius of the ring r0. A smaller radius will lead to a larger oscillation amplitude,

which may explain the improved amplitude in our measurements. However, trying to relate

the visibilities observed in the two experiments quantitatively (assuming that all experimental

parameters except the ring radius are the same) would lead to a phase-coherence length lϕ
smaller than the ring circumference L and only slightly larger than the ring radius r0. As our

experiment demonstrates, a separation of h/e-periodic oscillations from background variations

due to magnetoconductance fluctuations is still possible in our device despite the aspect ratio

r0/W, which is reduced in our device compared to [13]. A phase-coherence length between L

and r0 is also compatible with the observation 1BCF/1BAB ≈ 5.

We also note that the diffusive regime investigated in our device is quite extended in back

gate voltage. Assuming diffusive scattering at the edges to become dominant as soon as l ≈ W ,

we estimate that this does not occur (for transport in the valence band) until VBG becomes more

negative than −80 V. Transport may also enter a different regime, when the Fermi wavelength

becomes larger than l, which is expected to happen (again for transport in the valence band

and assuming µ = 5000 cm2/Vs) at back gate voltages larger than +2 V in our sample. An

even different regime may be entered at a back gate voltage of +9.3 V, where λF ≈ W . As

a consequence, the ‘dirty metal’ description of the Aharonov–Bohm oscillations should be
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applicable in the whole range of back gate voltages shown in figure 1(c), except for a region

of ±8 V around the charge neutrality point, where the resistance is maximum.

4. Conclusion

Even though graphene rings have been analyzed in detail theoretically, there has been only one

experimental study until now [13]. In this work, we have studied the Aharonov–Bohm effect in

graphene in a two-terminal ring, but using a four-contact geometry. This increases the relative

contribution of the ring resistance to the total measured resistance, and together with the smaller

ring radius, it allows us to achieve a higher visibility of the oscillations of about 5%. The data

are analyzed by a simple dirty metal model justified by a comparison of the different length

scales characterizing the system.

The main advantage of graphene compared to metals for Aharonov–Bohm studies is the

reduced screening. This makes it possible to use external gates for locally tuning the density and

the Fermi wave vector in one of the arms and therefore allows us to observe the electrostatic

Aharonov–Bohm effect without the use of tunnel barriers in the arms of the ring. We have shown

that by changing the voltage applied to one of the side gates, we can induce a phase jump in the

oscillations by changing the phase accumulated along this path.

We have observed Aharonov–Bohm oscillations in four-terminal measurements on a side-

gated graphene ring structure. The visibility of the oscillations is found to be about 5%. By

changing the voltage applied to the lateral side gate, or the back gate, we observe phase jumps

of π compatible with the generalized Onsager relations for two-terminal measurements. The

observations are in good agreement with an interpretation in terms of diffusive metallic transport

in a ring geometry.
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