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Abstract

The Conference Paper Assignment Problem (CPAP) is the
problem of assigning reviewers to conference paper submis-
sions in a manner intended to minimize whingeing. It is as-
sumed that papers are reviewed by members of a preset pro-
gram committee (PC), each of whom has the opportunity to
bid on papers prior to the assignment algorithm being run. In
this survey, we show that CPAP is in P if the only information
given is individual program committee members’ preferences
for individual papers. However, if both preferences and ex-
pertise (based on, say, keywords) are given, the problem is
potentially more complex.

Introduction
It is a well-known problem of program committee chairs
to assign papers to reviewers in such a way that the papers
get reasonable coverage by PC members who are both suffi-
ciently knowledgeable about the papers’ topics and are will-
ing to review those particular papers.

Some committees handle the Conference Paper Assign-
ment Problem (CPAP) by sloughing responsibility off on a
commercial or semi-commercial program; some write pro-
grams of their own. Others assign papers by hand, using
some sort of rough heuristic or a backtracking algorithm.

Anyone who has been on a reasonable number of PCs has
had the experience of being asked to review papers for which
s/he has no expertise and/or no interest. Such reviews may
end up perfunctory or may reflect the reviewer’s crankiness
at being asked to write the review.

Clearly, it is in the best interest of the PC and the research
community at large to optimize paper assignments. In this
paper, we discuss a variety of criteria for optimization, sev-
eral algorithms in use by individuals and programs, and give
an analysis of the complexity of the problems.

We assume that that PC members have the opportunity to
bid on papers before they assigned, and that part or all of the
bidding consists of rating papers on a scale of preferences,
from “I do not want this paper but am willing to review it”
up to “I really want to review this paper.” In addition, we
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assume there is an option of saying “I cannot review this
paper” (for instance, due to a conflict of interest). We will
assume that these ratings are integers in the range of 0, . . . , c
for some c ≥ 1, and that higher numbers indicate greater de-
sire, and that the lowest rating of 0 means that the reviewer
absolutely cannot review the paper, and that any higher rat-
ing indicates at least some miniscule willingness to rate the
paper.

In some bidding processes, PC members also give inde-
pendent ratings of their expertise for each paper. We will dis-
cuss the case with expertise ratings later; for now we simply
point out that if there is an expertise rating of “utterly in-
competent to review in this area,” (which, incidentally, there
usually is not), then for purposes of deciding whether there
is any feasible paper assignment at all, that rating can be
converted to an interest rating of “cannot review.” Notice
that here we are talking only of the use of expertise in the
bidding process; most conferences ask reviewers to rate their
expertise as part of their review, but that does not concern us
here.

As we discuss later, there is a straightforward algorithm,
essentially network flow, for checking whether there is a fea-
sible paper assignment, where each paper gets a sufficient
number of reviewers, each of which is at least marginally
interested in reviewing that paper. If not, it is up to the PC
chair to recruit new reviewers.

Except when we discuss how to use network flow to deter-
mine if there is a feasible paper, we will assume throughout
that the problem instances have feasible solutions. Our goal
is to find good solutions, for some measure of goodness.

Preferences without Expertise Ratings
Before we discuss optimality criteria, we will mention those
algorithms that we understand to be in use or to have been
used for recent conferences. We omit specific attribution to
protect our sources.

Techniques in Current Use
In several cases, the techniques used to assign papers reflect
the research community. For instance, a business-school
colleague tells us that he always uses Integer Linear Pro-
gramming (ILP). ILP is NP-complete, but there are some
very good ILP solvers, and our colleague claims that they
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work well for CPAP, even though they probably are not find-
ing optimal solutions.

Members of the constraint satisfaction community are
said to use straight constraint solvers or weighted-constraint
solvers. Again, this is not guaranteed to be fast—or
optimal—but it probably works well.

Several of our informants claimed to use “round robin”
assignments. We understand this to mean that they assign
one paper to each reviewer, and then begin again, perhaps
with some form of backtracking. Or perhaps they assign
one reviewer per paper, etc.

One informant told us that his system was “based on
graphs,” and referred us to a paper that contained no useful
details.

We did not receive an answer about the algorithm used
by ConfMaster, which is quite popular for computer science
conferences, and was used, for instance, for AAAI 2007.

One former PC chair told us that he had used a manual
method based on greedily choosing reviewer/paper pairs that
have the largest number of keywords in common, using bal-
ance as a secondary heuristic/backtracking guide. (We in-
terpret “balance” as a goal of assigning roughly the same
number of papers per reviewer.) Notice that this solution
is based on both preferences and expertise, and thus, tech-
nically, belongs later on with our discussion of CPAP with
expertise ratings in bidding.

In short, there are several methods being used. However,
none are guaranteed to be both polynomial-time computable
and to produce optimal assignments. First we will discuss
what it means for an assignment to be feasible, and then we
will discuss optimality criteria.

Feasible Solutions: Network Flow
In order to test whether a given instance of the Conference
Paper Assignment Problem (CPAP) has a feasible solution,
we reduce the problem to an instance of Network Flow, and
apply any polynomial-time algorithm to compute the maxi-
mum flow through the network.

Given a set of r reviewers and p papers, and given a func-
tion b(x, y) = v that takes as input a reviewer and a pa-
per and returns that reviewer’s bid for that paper, we create
an instance of Network Flow as follows. We assume that
each paper requires m reviews and each reviewer will re-
view no more than u papers. Furthermore, we assume that
m ∗ p ≤ u ∗ r.

The network consists of r + p + 2 nodes:
• A set of nodes with one node for each reviewer,
{x1, . . . , xr},

• A set of nodes with one node for each paper, {y1, . . . , yp},
• a source s, and a sink t.
Thus the node set is

V = {s} ∪ {x1, . . . , xr} ∪ {y1, . . . , yp} ∪ {t}.
There are the following edges:
• edges of capacity 1 from xi to yj if reviewer i is willing,

at least marginally, to review paper j;
• edges of capacity u from s to each xi;

• edges of capacity m from each yj to t.
We claim that there is a feasible solution for the CPAP in-

stance if and only if the maximum flow through this network
is exactly m · p.

Optimality Criteria
If there are only two ratings that a PC member can give when
she is bidding, “Absolutely will not review,” and “at least
marginally willing to review,” then optimality is identical
to feasibility. Henceforth, we implicitly assume that c, the
number of possible distinct bids excluding the “Absolutely
will not review,” is at least 2. In practice, relatively small
values, such as c = 3, seem to be popular.

We will also assume throughout that every paper is to get
exactly m reviews. In practice, this means that PC members
are only forced to do enough reviews to get all the papers
adequately reviewed. Any reviewer who has additional ca-
pacity and wants to volunteer to read an additional paper that
she is especially interested in is of course free to do so.

It is not clear what the appropriate optimality criterion
should be. We list several that seem to be obvious candi-
dates.
MAXIMUM TOTAL Maximize the total value of the bids.

More formally, an assignment meets the maximum total
criterion if it is a feasible assignment with exactly m re-
views per every paper that maximizes the sum∑

paper x assigned to reviewer y

b(x, y) .

MAXIMIZE AVERAGE REVIEWER ASSIGNMENT This
is equivalent to MAXIMUM TOTAL, since the average
reviewer assignment is simply the total divided by the
number of reviewers.

MAXIMIZE MOST WANTED Maximize the total number
of assignments of paper x to reviewer y where the bid
was b(x, y) = c (“I really want it.”).

MAXIMIZE WANTED A generalization of MAXIMIZE
MOST WANTED is to maximize the total number of as-
signments where the bid was at least some particular value
v ≤ c.

MINIMIZE LEAST WANTED Minimize the total number
of assignments of paper x to reviewer y where the bid
was b(x, y) = 1 (“I really don’t want it but could review
it if I absolutely have to.”).

MINIMIZE UNWANTED A generalization of MINIMIZE
LEAST WANTED is to minimize the total number of as-
signments where the bid was at least some particular value
v ≤ c.
We will consider primarily the six criteria we just listed,

but there are other possibilities. Note that these criteria all
focus on the quality of the reviews, not on individual happi-
ness. For example, one might maximize instead the number
of reviewers who have at least one “I really want it” paper,
or minimize the number that have any “I really don’t want
this” paper. Alternatively, one could maximize the number
of reviewers whose average value over the bid values on all
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papers assigned to them exceeds some threshold t. Yet an-
other possibility would be to assign weights to individual
members of the PC according to the general noisomeness
of their complaints. Algorithms that optimize the weighted
sum of the bid totals could be considered, but we do not so
so here. There are other, more complex options from the
literature of fair division, which we do not address here. In
particular, we are looking for polynomial-time computable
criteria, and most of the fair division criteria are computa-
tionally intensive.

How to Solve It
The Network Flow instance described earlier takes into ac-
count only whether the reviewer is willing to review each
paper. It does not take into account the level of willingness,
or preference, of the reviewer for each paper. That appears
to add a layer of complexity to the problem.

However, it is possible to state the CPAP with maximum-
total optimality criterion as a problem called the Minimum
Cost Flow Problem (MCFP) (see, e.g., (Cormen et al. 2001;
Jungnickel 2005)). MCFP generalizes the maximum flow
problem. An instance of MCFP is a flow problem plus a
cost on each directed edge, and a specified total flow amount.
The cost is the cost of shipping one unit over that edge. The
problem is to find a total flow of the specified amount that
minimizes the total cost while meeting the usual flow graph
constraints.

To solve the CPAP for the MAXIMUM TOTAL criterion,
we extend our reduction to network flow for feasibility to a
reduction to MCFP. We use the reviewers’ bids to define the
cost of the edges. However, normal encoding of bids assigns
higher numbers to higher desirability. For this reduction, we
require the inverse: as desirability rises, the (integer) value
should decrease. Thus we will assign cost c − b(xi, yj) to
the edge 〈xi, yj〉. We assign cost 0 to each edge from s and
each edge to t. We make the desired flow m · p.

We claim that the minimum cost maximum flow (which
will have flow m · p, by our assumption of feasibility) will
exactly correspond to the paper assignment that maximizes
the total bid values. Furthermore, there is a polynomial-time
algorithm to compute this flow. (See, e.g., (Jungnickel 2005,
Chapter 11).)

The MCFP approach can also be adapted for the four cri-
teria: MAXIMIZE MOST WANTED, MAXIMIZE WANTED,
MINIMIZE LEAST WANTED, and MINIMIZE UNWANTED.

For example, consider MAXIMIZE MOST WANTED,
where our goal is to maximize the total number of assigned
paper–reviewer pairs 〈xi, yj〉 where the bid b(xi, yj) was c,
i.e., “I really want that paper.” To maximize the number of
such assignments, we assign a cost of 0 to every edge cor-
responding to a bid of c, and a cost of 1 to all other edges
representing nonzero bids. This MCFP must maximize the
number of desired assignments.

Notice that there might be many different paper assign-
ments that all optimize the MAXIMIZE MOST WANTED cri-
terion. If we like, we can refine the algorithm for the MAXI-
MIZE MOST WANTED criterion so that it chooses, among
the solutions that optimize that criterion, a solution with
maximum total value. To obtain such a solution, we change

the cost of the edges corresponding to bids other than c.
Instead of making the cost of all those 〈xi, yj〉 edges with
b(xi, yj) < c be 1, we instead make the cost be a large
quantity that gets a little larger as the bid gets lower (less
desired). A cost of c ·m · p + c− b(xi, yj) gives the desired
paper assignment.

For the MAXIMIZE WANTED criterion, we assign the 0
cost to all edges 〈xi, yj〉 that have a bid b(xi, yj) of at least
the threshold, and the high cost to the other edges. MINI-
MIZE UNWANTED is similar.

Preferences and Expertise: Polyamory
It would seem that adding expertise to preferences in the bid-
ding process would further constrain solutions, and therefore
make the CPAP easier. However, that does not appear to be
the case.

Strictly from the mathematical modeling point of view,
we can again assume that the expertise of each reviewer for
each paper is given as some integer in a fixed range.

From a practical point of view, during bidding, one prob-
ably does not want to ask reviewers to bid an expertise for
each paper. The problem is that expertise ratings could be
used to game the system and strengthen or weaken bids. In-
stead, authors of papers can be required to choose keywords
from a preset list, and reviewers can be asked to rank their
expertise on the keywords, prior to considering the list of
submissions. One also needs some well-defined algorithm
for comparing a reviewer’s expertise with the paper’s key-
words and producing a number that represents the reviewer’s
expertise with respect to that paper.

In any event, one can consider that papers prefer review-
ers with higher expertise over reviewers with lower exper-
tise. This transforms the problem into a variant of a bipar-
tite matching problem, with two sets of optimization vari-
ables: the reviewers’ preferences and the papers’ prefer-
ences. There are therefore many possible optimization crite-
ria.

We can view this problem as a variant of the stable mar-
riage problem. In brief, in the classic stable marriage prob-
lem, there are two disjoint sets each of the same size, called
men and women and each element of each set has a total
preference over elements of the other set. The problem is to
find a matching, a set of pairs of one man and one woman
such that each person belongs to exactly one pair with the
stability property: there is no unmatched man–woman pair
who each prefer one another to the person they are matched
to. We refer the reader to their favorite algorithms text for a
longer and clearer definition of the problem, and a proof that
there is a linear-time algorithm, known as the Gale-Shapley
algorithm, for finding stable marriages in the classic stable
marriage problem’s setting (Gale & Shapley 1962).

Optimality criteria: stability?
Stability has long been taken to be the most important op-
timization criteria for such real-world applications of stable
marriage as medical resident–hospital matching. Stability,
suitably generalized to the CPAP setting, seems like a rea-
sonable criteria for goodness of assignments, but it is not
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clear whether “stability” is the one best optimization criteria
for the this setting. What makes instability so threatening to
human marriage is the potential for two people who are not
married to each other to run away together. Similarly, if a
medical resident and a hospital both prefer each other to the
result of the matching algorithm, then they may make a side
agreement to ignore the results of the matching algorithm. It
is, however, less likely that a conference submission and a
reviewer will elope. One can imagine, however, a reviewer
sighting a paper on a colleague’s desk and announcing, “I
know much more about this than she does. I will review
this paper, and she can review this paper on the semantics of
robot eschatology in my stead.”

Incidentally, in the classic Stable Marriage Problem, most
instances admit many different stable matches, and there are
several notions of optimality of a stable match, that maxi-
mize the overall happiness of the participants, though there
is a tradeoff concerning which set’s happiness is maximized.

Differences from classic stable marriage
There are three ways in which our problem differs from the
standard Stable Marriage Problem. All three variants have
been studied in the Stable Marriage literature. Unfortunately
while each individual variant can be solved in polynomial
time by an extension of the Gale-Shapely algorithm, the
combination of all three extensions together leads to an NP-
complete problem.

Monogamy versus Polyamory The original version of
the Stable Marriage Problem is monogamous: one man mar-
ries one woman. In our version, each paper has several re-
viewers and each reviewer covers several papers. This is the
problem considered by (Baı̈ou & Balinski 2000) in “Many-
to-many matching: stable polyandrous polygamy (or polyg-
amous polyandry)”. They showed that there is a polynomial-
time algorithm for this case. Incidentally, we are not match-
ing groups to groups, but individuals to many other indi-
viduals. That is, for example, even if Sloan and Goldsmith
both review the paper on robot eschatology, they may re-
view otherwise disjoint sets of papers. Therefore, we pre-
fer to describe these matchings not as “polygamous” or
“polyandrous”, but in keeping with modern terminology, as
polyamorous.

Many-one matchings have been studied in the context
of the Scottish residency assignment problem, the married-
doctors residency assignment problem, and the roommate
assignment problem. One amusing result is the following.
If there is a maximal stable matching such that x has fewer
than capacity many “mates” then x gets exactly that list of
mates in all maximal stable matchings (Gusfield & Irving
1989).

Complete versus Incomplete Lists
The next difference between our problem and the original
Stable Marriage Problem is that our reviewers refuse certain
papers, due to conflicts of interest. This is referred to in the
stable-marriage literature as incomplete lists.

It is known that the stable marriage problem with incom-
plete lists can still be solved, if a solution exists, by the Gale-

Shapley algorithm.
Baı̈ou and Balinski’s polynomial-time algorithm is for

polyamorous marriage with incomplete lists. There is a mi-
nor difference between their definition and our setting. They
assume that every person has a capacity for how many they
can be matched to, and prefers be matched to that many from
their list, as opposed to being matched to fewer. In our case,
reviewers probably do not prefer to maximize their number
of papers. However, it is the addition of the third difference
with the classic Stable Marriage Problem that really causes
us difficulty.
Total orders versus indifference The final difference be-
tween our problem and the original one is that our papers
and reviewers do not generate a totally ordered ranking of
their opposite numbers. Rather, they define a preset number
of preference equivalence classes. This is referred to in the
stable-marriage literature as either lists with ties or indiffer-
ence.

It is known that the stable marriage problem with indiffer-
ence can still be solved by the Gale-Shapley algorithm, sim-
ply by assigning arbitrary orderings within the equivalence
classes. However, Stable Marriage with both indifference
and incomplete lists is NP-complete even in the one-to-one
case (Manlove et al. 2002). The problem is that once we
have ties, two different ways of arbitrarily resolving the tie
can lead to two different sizes of maximum matching. In-
deed, Manlove et al. show that the one-to-one problem with
ties and incomplete list is NP-complete even if there is only
a single tie per preference list from one of the two sides (i.e.,
either the men/papers or women/reviewers), and no ties in
the preference lists of the other side.

For the many-one case, Manlove et al. give a polynomial
time 2-approximation algorithm finding either the smallest
or the largest stable matching, so the problem is in APX.1

Even the one-to-one problem is not in PTAS;2 that is, we
cannot improve the 2-approximation to an arbitrarily good
approximation ratio (Irving, Manlove, & O’Malley 2006).
However, Iwama et al. have polynomial-time algorithms
with approximation ratios better than 2 for the one-one case
(Iwama, Miyazaki, & Okamoto 2006; Iwama, Miyazak, &
Yamauchi 2007). No known approximation algorithms exist
for the many-many case.

1APX, which appears to be a contraction of “approximation,”
is the class of all optimization problems that have a polynomial-
time approximation algorithm giving some guaranteed approxima-
tion ratio. An approximation algorithm has an approximation ratio
of c if it can be proven that the solution that the algorithm finds is at
most c times worse than the optimal solution. See, e.g., (Wegener
2005).

2A PTAS, or Polynomial Time Approximation Scheme, is a
family of approximation algorithms 〈Ai〉 for a given optimiza-
tion problem such that Algorithm Ai has an approximation ratio
of 1 + (1/i); i.e., we can obtain an approximation ratio arbitrarily
close to 1. PTAS is also used for the class of all optimization prob-
lems that have such a family of approximation algorithms. See,
e.g., (Wegener 2005). It is obviously desirable if an NP-complete
problem one wants to solve is in PTAS.
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Conclusions
This survey describes work in progress, and is not intended
to fully cover the topic of optimal paper assignments. We
intend to expand this survey by the time of the workshop.

There are many open questions about the complexity of
paper assignment problems under various restrictions and
optimality conditions. For instance: How does the number
of preference options affect the complexity of optimal as-
signments? For instance, if the experience rankings were bi-
nary (“Yes, I have a clue,” or “No clue”), then we are back in
the case of only preferences. The computational complexity
only arises when there are at least two could-possibly-be-
assigned ranks in each of expertise and preference.

It is unclear what criteria should be used for comparing
different assignments in the expertise-plus-preference case.
Stability is one, and given stability, one can still compare,
say, rank maximality (i.e., minimize dissatisfaction over the
set of stable matchings).

Other criteria include maximizing the number of papers
with at least one expert, or the number of reviewers with at
least one (or at least r many) highly preferred papers, or min-
imizing the number of papers with no experts, or reviewers
with no highly preferred papers. These are more finely tuned
measures than rank optimality. One could also treat either
case (with or without expertise) as a multi-criteria optimiza-
tion problem, although that would raise the computational
complexity significantly.
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