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Abstract 

In this article we analyse the role that artificial intelligence (AI) could play, and is playing, 

to combat global climate change. We identify two crucial opportunities that AI offers in 

this domain: it can help improve and expand current understanding of climate change and 

it contribute to combatting the climate crisis effectively. However, the development of AI 

also raises two sets of problems when considering climate change: the possible 

exacerbation of social and ethical challenges already associated with AI, and the 

contribution to climate change of the greenhouse gases emitted by training data and 

computation-intensive AI systems. We assess the carbon footprint of AI research, and the 

factors that influence AI’s greenhouse gas (GHG) emissions in this domain. We find that 

the carbon footprint of AI research may be significant and highlight the need for more 

evidence concerning the trade-off between the GHG emissions generated by AI research 

and the energy and resource efficiency gains that AI can offer. In light of our analysis, we 

argue that leveraging the opportunities offered by AI for global climate change whilst 

limiting its risks is a gambit which requires responsive, evidence-based and effective 

governance to become a winning strategy. We conclude by identifying the European 

Union as being especially well-placed to play a leading role in this policy response and 

provide 13 recommendations that are designed to identify and harness the opportunities 

of AI for combatting climate change, while reducing its impact on the environment. 
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Introduction 

In this article we analyse the role that artificial intelligence (AI) could play, and is already 

playing, as a technology to combat global climate change. The Intergovernmental Panel 

on Climate Change (IPCC) has repeatedly emphasised the need for large-scale responses 

to human-induced climate change to prevent avoidable warming and to mitigate the effects 

of unavoidable warming as well as that which has already occurred (Masson-Delmotte et 

al. 2018; Pachauri et al. 2014).  

Leveraging the opportunities offered by AI for global climate change is both 

feasible and desirable, but it involves a sacrifice (ethical risks and potentially an increased 

carbon footprint) in view of a very significant gain (a more effective response to climate 

change). It is, in other words, a gambit, which requires responsive and effective 

governance to become a winning strategy. The overall aim of this article is to contribute 

to the development of such a strategy. We begin in section 1 by exploring the opportunities 

that AI affords for combatting climate change, identifying two crucial opportunities: AI 

can help improve and expand current understanding of climate change; and AI is 

increasingly part of a package of responses that are essential to combatting the climate 

crisis effectively, by delivering much greener, more sustainable and effective solutions. 

However, as we argue, the introduction of AI into the climate domain risks amplifying 

several social and ethical challenges already associated with AI more generally, such as 

unfair bias, discrimination, or opacity in decision making.  

In section 2 we address the flipside of AI in the context of climate change: the 

contribution to global climate change of the greenhouse gases emitted by developing 

computation-intensive AI systems. We focus on the carbon footprint of AI research, and 

assess the factors that influence AI’s greenhouse gas (GHG) emissions in this context, 
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finding that the carbon footprint of AI research can be significant, and highlighting the 

need for more scientific evidence concerning the trade-off between the GHG emissions 

generated by AI research and the energy and resource efficiency gains that AI offers when 

applied to various tasks and industries.  

In section 3, we turn to the wider policy context, and identify the European Union 

is especially well-placed to adopt effective policy response to the opportunities and 

challenges presented. Thus in section 4 we provide 13 recommendations for European 

policymakers and AI researchers that are designed to identify and harness the 

opportunities of AI for combatting climate change, while reducing the impact of its 

development on the environment. We conclude our analysis by stressing that risks and 

benefits of the uses of AI to fight climate change are distinct yet intertwined, and that 

effective policies and strategies are required to both leverage the potential of AI and 

minimise the harms it poses in order to protect the environment. 

 

 

1. AI against climate change 

AI is already having a significant positive impact in the fight against climate change. Yet 

exactly how significant, and precisely what sort of impact, are challenging questions to 

answer. This section provides an overview of initiatives and projects that rely on AI to 

fight climate change (1.1), notes work done to capture the nature and scale of the 

phenomenon (1.2), and identifies a set of obstacles to be overcome to ensure that the use 

of AI to combat climate change is not only effective but also ethically sound (1.3).  

 

1.1 How AI is used against climate change  

AI may be characterised as a set of multipurpose tools and techniques designed to simulate 

and/or improve upon processes that would have seemed intelligent had a human 

performed them (McCarthy et al. 2006). At a high level, key cognitive capabilities displayed 

by “intelligent” machine systems include a combination of classification, prediction, and 

decision-making. These capabilities are already being deployed in a diverse array of 

domains, like health (e.g., recognising features in an image such as an X-ray scan for cancer 

diagnosis), transportation (e.g., using environmental sensors to safely drive a car), and 

communication (e.g., processing human speech and responding in kind). Applying the 
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“solution space” of AI to the “problem space” of climate change could yield significant 

benefits, by helping to understand the problem, and by facilitating effective responses. 

 Despite scientific consensus about the basic facts of climate change, many aspects 

of the environmental crisis remain uncertain. This includes the explanation of past and 

present events and observations, and the accurate prediction of future outcomes. The 

ability of AI to process enormous amounts of non-structured, multi-dimensional data 

using sophisticated optimisation techniques is already facilitating the understanding of 

high-dimensional climate datasets and forecasting of future trends (Huntingford et al. 

2019). AI techniques have been used to forecast global mean temperature changes (Ise 

and Oba 2019; Cifuentes et al. 2020); predict climactic and oceanic phenomena such as El 

Niño (Ham, Kim, and Luo 2019), cloud systems (Rasp, Pritchard, and Gentine 2018), and 

tropical instability waves (Zheng et al. 2020); better understand aspects of the weather 

system — like rainfall, generally (Sønderby et al. 2020; Larraondo et al. 2020) and in 

specific locales, such as Malaysia (Ridwan et al. 2020) — and their knock-on consequences, 

like water demand (Shrestha, Manandhar, and Shrestha 2020; Xenochristou et al. 2020). 

AI tools can also help anticipate the extreme weather events that are more common as a 

result of global climate change, for example heavy rain damage (Choi et al. 2018) and 

wildfires (Jaafari et al. 2019), and other downstream consequences, such as patterns of 

human migration (Robinson and Dilkina 2018). In many cases, AI techniques can help to 

improve or expedite existing forecasting and prediction systems, for example by 

automatically labelling climate modelling data (Chattopadhyay, Hassanzadeh, and Pasha 

2020), improving approximations for simulating the atmosphere (Gagne et al. 2020), and 

separating signals from noise in climate observations (Barnes et al. 2019). 

Combating climate change effectively requires a vast array of responses to the 

crisis, which broadly include both mitigating existing effects of climate change and 

reducing emissions through decarbonisation to prevent further warming. For example, a 

2018 Microsoft/PwC report estimated that using AI for environmental applications could 

boost global GDP by between 3.1 and 4.4%, while reducing greenhouse gas emissions 

anywhere from 1.5 to 4% by 2030 compared to a “business as usual” scenario (Microsoft 

2018, 8). An array of AI-based techniques already play a key role in many of these 

responses (Inderwildi et al. 2020; Sayed-Mouchaweh 2020). This includes, for example, 

energy efficiency in industry, especially the petrochemical sector (Narciso and Martins 
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2020). Studies have also used AI to understand industrial pollution in China (Zhou et al. 

2016), the carbon footprint of concrete used in construction (Thilakarathna et al. 2020), 

and even energy efficiency in shipping (Perera, Mo, and Soares 2016). Other work has 

explored the use of AI in electrical grid management (Di Piazza et al. 2020), to forecast 

building energy usage (Fathi et al. 2020), and to assess the sustainability of food 

consumption (Abdella et al. 2020). AI can also help to predict carbon emissions based on 

present trends (Mardani et al. 2020; Wei, Yuwei, and Chongchong 2018) and the impact 

of interventionist policies like a carbon tax (Abrell, Kosch, and Rausch 2019) and carbon 

trading systems (Lu et al. 2020). AI could also be used to help monitor the active removal 

of carbon from the atmosphere through sequestration (Menad et al. 2019).  

Beyond this indicative evidence, the growing use of AI to fight climate change can 

also be seen from the higher vantage point of major institutions and large-scale initiatives. 

The European Lab for Learning & Intelligent Systems (ELLIS) has a Machine Learning 

for Earth and Climate Sciences programme that aims to “model and understand the Earth 

system with Machine Learning and Process Understanding”.1 The European Space 

Agency has also established a Digital Twin Earth Challenge to provide “forecasting on the 

impact of climate change and responding to societal challenges”.2 On the academic side, 

the EC-funded iMIRACLI (innovative MachIne leaRning to constrain Aerosol-cloud 

CLimate Impacts) initiative will support 15 PhD students across nine European 

universities to “develop machine learning solutions to deliver a breakthrough in climate 

research”,3 with doctoral projects underway since autumn 2020.  

Several European universities have initiatives and training programmes dedicated 

to unlocking the power of AI for climate.4,5,6 Indeed, a search of Cordis — the European 

database for funded research — for current projects addressing climate change and AI 

returned a total of 122 results.7 Analysis of these 122 projects suggests that they represent 

both geographic and disciplinary breadth. The projects are well spread across the 

 
1 https://ellis.eu/programs/machine-learning-for-earth-and-climate-sciences 
2 https://copernicus-masters.com/prize/esa-challenge/# 
3 https://imiracli.web.ox.ac.uk 
4 https://www.uv.es/uvweb/uv-news/en/news/ai-understanding-modelling-earth-system-international-
research-team-co-led-university-valencia-wins-erc-synergy-grant-1285973304159/Novetat.html 
5 https://www.exeter.ac.uk/research/environmental-intelligence/ 
6 https://ai4er-cdt.esc.cam.ac.uk 
7 Search of Cordis research project database conducted 30th November 2020 of Projects with search string 
[('climate change' OR ‘global warming’) AND ('artificial intelligence' OR 'machine learning')], (n=122). 
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continent, albeit with a clear skew towards western Europe in terms of where they are 

coordinated (see Figure 1.1). Figure 1.2 displays the top-level field(s) of study indicated 

for each of the projects, where this information was provided (n=106). Unsurprisingly, a 

large majority of projects relate to the natural sciences and/or engineering and technology, 

but a considerable number are also anchored in social sciences. And as Figure 1.3 shows, 

at a more granular level, the breadth of subjects that these projects touch on is vast, and 

spans domains as diverse as viticulture, mycology and galactic astronomy.  

 

Figure 1.1: Countries in which EU-funded projects using AI to address climate change are “coordinated”. 

Not shown: Israel (1 project).  

 

 

 

Agricultural sciences Engineering and technology

Humanities/philosophy Natural sciences

Medical and health sciences Social sciences
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Figure 1.2: Top-level disciplinary focus of EU-funded projects using AI to address climate change. 

 

 

Figure 1.3: Frequency-based word cloud showing self-identified domains of EU-funded projects using AI 

to address climate change. 

 

There is also considerable evidence of private and non-profit initiatives using AI to combat 

climate change around the world. Microsoft’s AI for Earth is a five-year $50 million 

initiative established in 2017, designed to support organisations and researchers using AI 

and other computational techniques to tackle various aspects of the climate crisis. It 

currently has 16 partner organisations8 and has released relevant open-source tools9 and 

provided grants in the form of cloud computing credits to projects using AI for a variety 

of purposes, from monitoring climate change in the Antarctic to protecting bird 

populations after hurricanes. Google’s AI for Social Good programme supports 20 

organisations using AI to pursuing various socially beneficial goals with funding and cloud 

computing credits, including projects seeking to minimise crop damage in India, better 

manage waste in Indonesia, protect rainforests in the US, and improve air quality in 

 
8 https://www.microsoft.com/en-us/ai/ai-for-earth-partners 
9 https://microsoft.github.io/AIforEarth-Grantees/ 
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Uganda.10 Meanwhile, AI development company ElementAI’s AI for Climate program11 

provides expertise and partnership opportunities to improve the energy efficiency of 

manufacturing and business operations.  

 

1.2 How evidence of AI against climate change is gathered 

AI is not a silver bullet nor “the only tool in the drawer” for combating climate change, 

but the previous section illustrates that efforts to use AI to combat climate change are 

growing at a fast pace. Because of this pace of development, undertaking a more 

comprehensive, and rigorous, assessment is a challenge. To date, several systematic 

approaches to gathering evidence of the use of AI for climate change worldwide have been 

trialled, resulting in a range of datasets, organised in different ways, each of which paints 

a partial picture of the phenomenon. For instance, some researchers have used the United 

Nations Sustainable Development Goals (SDGs) as a basis for evidence-gathering about 

AI-based solutions to address climate change. Of the 17 SDGs, goal 13, “Climate Action”, 

is most explicitly associated with climate change, but several others, such as 14, “Life 

Below Water”, and 15, “Life on Land”, are also related. For example, the database of 

University of Oxford’s Research Initiative on AIxSDGs12 contains 108 projects, of which 

28 are labelled as related to Goal 13 (see Figure 1.4); the SDG AI Repository managed by 

the UN’s ITU agency13 contains 9 climate-focused projects; and the database of the 

AI4SDGs Think Tank14 contains 5.  

Clearly, the full range of projects using AI to tackle climate change around the 

world is not captured in these databases. This may be a result of the selection criteria 

employed in the surveys, or a lack of awareness of these evidence-gathering efforts among 

those actually deploying the technology (despite the annual, high-profile AI for Good 

summit organised by the ITU). It may also be that the SDGs are not the ideal framework, 

at least scientifically, for exploring the use of AI to tackle climate change. Each SDG 

contains specific targets and indicators (five and eight respectively in the case of the 13th 

goal), which are high-level and policy-focused. Consider, for example, indicator 13.1.2, the 

 
10 https://ai.google/social-good/impact-challenge/ 
11 https://www.elementai.com/ai-for-climate 
12 https://www.sbs.ox.ac.uk/research/centres-and-initiatives/oxford-initiative-aisdgs  
13 https://www.itu.int/en/ITU-T/AI/Pages/ai-repository.aspx  
14 http://www.ai-for-sdgs.academy/topics#13%20Climate%20Action  
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“number of countries with national and local disaster risk reduction strategies”. Tying the 

outputs of a single AI initiative to high-level and policy-focused outcomes may prove to 

be problematic and make the SDGs less than the ideal framework to map the uses of AI 

to tackle climate change. 

 

 

Figure 1.4 AI-based projects addressing the UN Sustainable Development Goals (Cowls et al. 

Forthcoming). 

 

 

Alternative approaches to mapping the uses of AI to address the climate crisis clarify the 

phenomenon further. One recent large-scale study pinpointed 37 use cases within 13 

domains where AI15 “can be applied with high impact in the fight against climate change” 

(Rolnick et al. 2019, 2), and offered a host of examples. For each case, the authors noted 

which subdomain of the technology (causal inference, computer vision, etc) could be 

beneficial (see Figure 1.5). Since the publication of this landscaping study, the authors have 

launched Climate Change AI (CCAI), an organisation composed of “volunteers from 

academia and industry who believe that tackling climate change requires concerted societal 

 
15 Machine learning is commonly considered to be a subset of the wider set of technological systems that fall 
under the heading of artificial intelligence. Rolnick et al.’s usage of “machine learning”, however, is quite 
inclusive, capturing a broad array of examples. Rather than split definitional hairs, the evidence assembled 
is treated here as a comprehensive overview of the ways in which artificial intelligence per se can be used to 
combat climate change. 
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action, in which machine learning can play an impactful role”16, which has resulted in a 

wide network of researchers.  

 

 

 

 
16 https://www.climatechange.ai/about 
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Figure 1.5: Domains of prospective positive climate impact and forms of AI technology relevant to each, 

from Rolnick et al. (2019).  

 

Each of these approaches to gathering evidence of AI used to combat climate change 

helps illuminate the nature of the phenomenon and understand better which domains are 

attracting more efforts and which are potentially overlooked. Consider for example a 

cross-analysis (Cowls et al. Forthcoming) between the aforementioned Oxford Research 

Initiative AIxSDGs database and scoping study by Rolnick et al. (2019). Figure 1.6 charts 

the number of climate change-related projects in the AIxSDGs against the specific 

domains identified by Rolnick and colleagues. In some domains, such as Farms & Forests, 

there is clear evidence of projects that met the criteria for inclusion in the AIxSDGs 

database, whereas in others few if any projects are included. This may result in part from 

the criteria used in the AIxSDGs database collection, among which was the need for 

evidence of tangible real-world impact.  

 

 

Figure 1.6: Projects in the Oxford AIxSDG database working in the different domains identified by 

Rolnick et al. (2019). 

 

It is clear that AI offers many options for addressing a wide array of challenges associated 

with climate change. And given the severity and scope of the challenges posed by climate 

change, it may be advisable to experiment with a wide array of potential solutions across 
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many domains, as discussed in section 1.1. However, the opportunities offered by AI can 

only be harnessed to their full potential if ethical values and social expectations are to be 

met. We turn to these next. 

 

1.3 What are the risks to be avoided or minimised? 

Using AI in the context of climate change poses fewer and less severe ethical risks 

(Tsamados et al. 2020) than using AI in domains such as health and criminal justice, where 

personal data and direct human-facing decisions are at the core of all activities. 

Nonetheless, it is important to avoid or minimise the ethical risks that may still arise when 

maximising the positive impact AI in the fight against climate change.  

The first set of risks follows from the way AI models are designed and developed 

(Yang et al. 2018). Most data-driven approaches to AI are supervised, i.e. they are “trained” 

on existing labelled data as a basis from which to “learn” to cluster, classify, predict or 

make decisions regarding new, previously unseen data. This introduces the potential for 

unwanted bias to enter into the decisions at which an AI system ultimately arrives. This 

may lead to discrimination and unfair treatment of individuals or groups. Consider, for 

example, the use of AI to decide where to locate charging stations for electric vehicles 

(EVs) based on existing patterns of EV use (Tao, Huang, and Yang 2018). It is possible 

that using AI to decide where to place charging stations based purely on existing patterns 

of EV ownership — which could be skewed towards wealthier areas — may result in bias 

against less wealthy areas, in turn disincentivising the uptake of EVs in these areas. In the 

same vein,  attempts to rely on smartphones to infer individuals’ transportation choices 

(Dabiri and Heaslip 2018) may lead to biased choices unless communities with lower 

smartphone uptake are properly accounted for. 

A second set of risks concerns the erosion to human autonomy that some climate-

focused AI systems may pose (Floridi and Cowls 2019; Taddeo and Floridi 2018). Tackling 

climate change requires large-scale coordinated action, including systematic changes to 

individual behaviour. As Rolnick et al. note, “understanding individual behaviour can help 

signal how it can be nudged” (2019 p. 51), for example through limiting people’s 

“psychological distance” to the climate crisis, helping them visualise its impacts, or 

encouraging them to take pro-environmental actions. There is considerable debate over 

the impact of nudging on individual autonomy (Floridi 2016), and whether it prevents 
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people making “free choices” (for discussion see Schmidt and Engelen 2020), so adopting 

such an approach in the environmental context requires striking the right balance between 

protecting individual autonomy and implementing large-scale climate-friendly policies and 

practices (Coeckelbergh 2020).  

 Along with fair treatment and autonomy, uses of AI to fight climate change also 

risk breaching privacy. To the extent to which AI systems rely on non-personal data, e.g. 

meteorological and geographical data, to understand the climate crisis, they are unlikely to 

raise privacy concerns. But devising strategies to limit emissions may require data that 

reveal patterns of human behaviour, where privacy concerns could have more relevance. 

For example, in control systems designed to decrease carbon footprints in a range of 

contexts, such as energy storage (Dobbe et al. 2019), industrial heating and cooling (Aftab 

et al. 2017), and precision agriculture (Liakos et al. 2018), the effectiveness of AI systems 

depends on granular data about energy demands, often available in real time. The data 

collected may contain sensitive personal information, risking privacy at both individual 

and group levels (Floridi 2017). This tension is highlighted in recent Vodafone Institute 

research finding showing that, while Europeans are broadly willing to share their data to 

help protect the environment, a clear majority (53%) would only do so under strict 

conditions of data protection (Vodafone Institute for Society and Communications 2020, 

3).  

 None of these obstacles emerge solely from the use of AI to combat climate 

change. However, ethical challenges caused by AI may take on novel forms in this context, 

and therefore require careful responses. Furthermore, the computational cost and 

potential environmental impact of developing AI systems raises a different set of 

considerations specific to the climate change domain, which are the focus of the next 

section. 

  

 

2. AI’s carbon footprint 
 
AI (both in the sense of training models and of uses) can consume vast amounts of energy 

and generate greenhouse gas (GHG) emissions (García-Martín et al. 2019; Cai et al. 2020). 

This is why establishing systematic and accurate measurements of AI’s carbon footprint 

is key to ensuring that efforts to harness the potential of this technology outweigh its 
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environmental cost. For reasons explained in Section 2.1, this section focuses on methods 

to estimate the carbon footprint only of AI research (training models), not of AI uses in 

general, and the technological and normative factors that contribute to the rise of 

computationally-intensive AI research.   

Following the advent of deep learning (DL), computing power (henceforth 

compute) usage rose exponentially, doubling every 3.4 months (Amodei and Hernandez 

2018), as specialised hardware to train large AI models became central to the research field 

(Hooker 2020). The increase in energy consumption associated with training larger models 

and with the widespread adoption of AI has been in part mitigated by hardware efficiency 

improvements (Ahmed and Wahed 2020; Wheeldon et al. 2020). However, depending on 

where and how energy is sourced, stored and delivered, the rise of compute-intensive AI 

research can have significant, negative environmental effects (Lacoste et al. 2019).  

 

2.1 Gauging the carbon footprint of AI 

A “carbon footprint” accounts for the GHG emissions of a device or activity, expressed 

as carbon dioxide equivalent (CO2eq). When applied to a product like a smartphone, a 

carbon footprint estimation considers emissions that occur during constituent activities, 

like the extraction of raw materials, manufacturing, transportation, lifetime usage and how 

the product is disposed of (Crawford and Joler 2018; Malmodin and Lundén 2018). This 

estimate includes, among other things, information on the carbon/emission intensity of 

electricity generation throughout a product’s lifecycle and on the carbon offsetting efforts 

made by the various actors involved in the aforementioned activities (Matthews, 

Hendrickson, and Weber 2008). However, determining the carbon footprint of a type of 

product (e.g. AI systems) or entire sector (e.g. Information Communication Technologies, 

ICT) can be a daunting task that yields only partial results, not least due to transparency 

issues and methodological challenges of GHG monitoring (Matthews, Hendrickson, and 

Weber 2008; Russell 2019; Cook and Jardim 2019; Mytton 2020).  

Estimates of GHG emissions of the ICT sector (including computing devices and 

data centres) vary greatly across different studies (Malmodin and Lundén 2018; Hintemann 

and Hinterholzer 2020). Malmodin and Lundén’s (2018), a widely cited study based on 

data from 2015, estimates that the ICT sector is responsible for 1.4% of global GHG 

emissions. Depending on future efficiency gains and the diversification of energy sources, 
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estimates indicate that the ICT sector will be responsible for anywhere between 1.4% 

(assuming a stagnant growth) to 23% of global emissions by 2030 (Andrae and Edler 2015; 

Malmodin and Lundén 2018; C2E2 2018; Belkhir and Elmeligi 2018; Jones 2018).17 At the 

same time, it is worth noting that the demand for data centres, which are key to the ICT 

sector and the operation of AI in research and production settings, has grown substantially 

in recent years, yet data centres’ energy consumption has remained relatively stable 

(Avgerinou, Bertoldi, and Castellazzi 2017; Shehabi et al. 2018; Jones 2018; Masanet et al. 

2020). The International Energy Agency reports that, if current efficiency trends in 

hardware and data centre infrastructure can be maintained, global data centre energy 

demand — currently 1% of global electricity demand — “can remain nearly flat through 

2022, despite a 60% increase in service demand” (IEA 2020). Indeed, significant efforts 

have been made to curb data centres’ carbon footprint by investing in energy-efficient 

infrastructure and switching to renewable sources of energy (Jones 2018; Masanet et al. 

2020). Cloud providers especially, such as Microsoft Azure and Google Cloud, have 

worked to keep their carbon footprint in check by committing to renewable energy, 

improving cooling systems and efficient processors, recycling waste heat, and investing in 

carbon offsetting schemes (Jouhara and Meskimmon 2014; Avgerinou, Bertoldi, and 

Castellazzi 2017; Jones 2018; Open Compute Project 2020). In fact, both providers have 

leveraged AI to reduce the energy consumption of their data centres, in some cases by up 

to 40% (Evans and Gao 2016; Microsoft 2018).  

Whether these efforts keep pace with the growing demand for data centre services 

and whether efficiency gains are equally realised around the world will be crucial factors 

affecting the environmental impact of the sector. These goals may not be easily achievable. 

Even in the EU, where energy-efficient cloud computing has become a primary issue on 

the political agenda, the European Commission estimates a 28% increase in energy 

consumption of data centres by 2030 (European Commission 2020d). Things are 

complicated even further by transparency concerns regarding the data required to calculate 

GHG emissions of on-premise data centres as well as cloud vendors, which will need to 

be addressed in order to obtain an accurate understanding of the  carbon footprint of the 

ICT sector (Hintemann 2015; Mytton 2020; Hintemann and Hinterholzer 2020). 

 
17 In fact, a new standard (L.1470) set out by the ITU was recently developed to keep the ICT industry in 
line with the Paris Agreement and reduce GHG emissions by 45% from 2020 to 2030 (ITU 2020). 
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At the same time, understanding the carbon footprint of AI involves more than 

just monitoring data centres, as the rest of this section will show (Henderson et al. 2020; 

Cai et al. 2020). Given the wide range of artefacts and activities relying on some form of 

AI and the multi-layered production process of AI systems — spanning from data 

collection and storage, to hardware production and shipment, to AI/machine learning 

(ML) model trainings and inferences — gauging the carbon footprint of AI is challenging. 

This is why this section focuses on the carbon footprint associated with the energy 

consumption of AI research activities, available in corresponding research publications.18 

As we shall see in section 2.3, verifiable information on the short- and projected medium-

term environmental impact of AI research activities is limited and suffers from a lack of 

systematic and accurate measurements. However, the information contained in research 

publications regarding the energy consumption and carbon emission of AI is more 

accessible and testable than in industry reports. Thus, it offers a more reliable starting 

point to understand the environmental impact of AI, even if it is indicative only of a subset 

of all AI-related activities. Furthermore, to gauge the energy consumption and carbon 

footprint of AI research activities, it is important to distinguish between two phases of 

computation that are central to supervised ML research methods: training (or “learning”) 

and inferences. Training a ML model involves providing labelled sample data, or a 

“training set”, to a ML algorithm so that it can “learn” from it and create an appropriate 

mathematical model with the optimal parameters that minimise a certain cost function 

(e.g. some metric of error). Once the training phase is finished, a model and its parameters 

are fixed and such model can be operationalised and produce actionable output on new, 

unseen data, which is the “inference” process.  

In the short term, the training phase is computationally more demanding and 

energy intensive (Al-Jarrah et al. 2015). In the medium term, the energy consumption of 

the inference phase scales with usage, as inference can usually occur millions of times per 

day for an indefinite amount of time (Sze et al. 2017). So, training is often more energy-

 
18 Over the past two decades the number of data-driven AI conferences and publications have grown 
dramatically (Perrault et al. 2019). The volume of peer-reviewed AI papers increased by more than 300% 
from 1998 to 2018, while the number of publications on “Machine Learning” on the open-access archive 
“ArXiv” has doubled every 15 months since 2015 (Perrault et al. 2019). This growth is also fuelled by an 
increasing amount of publications originating from the private sector — big technology companies in 
particular — with their seemingly limitless resources to conduct experiments (Perrault et al. 2019, 17; Lohr 
2019; Ahmed and Wahed 2020). 
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intensive in data-driven, ML-based research, while inference might be more energy-

intensive in at-scale production systems which may require non-stop usage. This is why, 

in the context of AI as a whole, this report focuses on information pertaining to the 

research and training of AI models. 

Several approaches to monitoring and estimating the GHG emissions of AI 

research activities have been recently offered. These include the reporting of floating point 

operations (Lacoste et al. 2019; Schwartz et al. 2019; Henderson et al. 2020), hardware 

type and hardware burden or “processors multiplied by the computation rate and time” 

(Thompson et al. 2020, 10), the data centre in use during model training, as well as the 

energy sources powering the electrical grid (Schwartz et al. 2019; Anthony, Kanding, and 

Selvan 2020), the number of experiments required during model construction (Schwartz 

et al. 2019; Strubell, Ganesh, and McCallum 2019), and the time period in which a model 

was trained, as carbon/emission intensity can vary throughout the day (Anthony, Kanding, 

and Selvan 2020). Of these approaches, two recent efforts stand out for their 

generalisability and/or ease of use, namely Henderson et al’s (2020) “experiment-impact-

tracker” and Lacoste et al’s (2019) Machine Learning Emissions Calculator.  

The first approach rests on a comprehensive framework available on GitHub 

(Henderson et al. 2020), specifying the relevant data to collect during and after model 

training phases to assess the related GHG emissions:  

1. Central processing unit (CPU) and graphics processing unit (GPU)19 hardware 

information  

2. experiment start and end-times  

3. the energy grid region the experiment is being run in (based on IP address)  

4. the average carbon/emission intensity in the energy grid region  

5. CPU- and GPU-package power draw  

6. per-process utilisation of CPUs and GPUs  

7. GPU performance states  

8. memory usage  

9. the real-time CPU frequency (in Hz)  

10. real-time carbon intensity  

 
19 It is important to also include Field Programmable Gate Arrays (FPGAs) and Application Specific 
Integrated Circuits (ASICs) like Tensor Processing Units (TPUs) to this framework. 
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11. disk write speed.  

Unfortunately, information about these 11 variables is rarely available in its entirety in 

most research publications (Henderson et al. 2020). In an analysis of 1,058 research papers 

on DL, Thompson et al. (2020, 10) found that most papers “did not report any details of 

their computational requirements”.  

By contrast, the second approach (Lacoste et al.’s 2019) limits itself to information 

pertaining to the type of hardware, hours of training, region of compute, and cloud 

provider/private infrastructure. This is a helpful approach to estimating the carbon 

footprint of AI research activities using a minimum amount of data and without actually 

reproducing experiments and models. For this reason, we use Lacoste et al.’s (2019) 

approach to calculate the carbon footprint of large AI research projects, and we use GPT-

3, OpenAI’s latest research breakthrough as our case study. While the following estimates 

cannot be definitive, due to a lack of data available in OpenAI’s research publication, they 

serve to reflect both the importance and the difficulty of assessing carbon footprints when 

researchers fail either to report them or to provide enough information regarding training 

infrastructure and model implementation.  

GPT-3 is an autoregressive language model that has attracted considerable 

attention from researchers and news outlets since documentation was published on ArXiv 

in May 2020 by Brown et al (2020). From the research publication detailing GPT-3, we 

know that the model required several thousands of petaflop/s-days (3.14E23 FLOPS) of 

compute during pre-training. This is orders of magnitude higher than the previous state-

of-the-art (SOTA) 1.5B parameter GPT-2 model that the company released in 2018, which 

required only tens of petaflop/s-days (Radford et al. 2018). GPT-3 was trained using 

NVIDIA’s V100 GPUs on a cluster provided by Microsoft. Thus, one can calculate that, 

at a theoretical processing speed of 28 Terra Flops (TFLOPS)20 for a V100 GPU, it would 

take around 355 GPU years for a single training run (Li 2020).  

Using Lacoste et al.’s carbon impact calculator and assuming that the cloud 

provider (Microsoft Azure) was based in the US (West), we find that a single training run 

would have generated 223,920kg CO2eq. If the cloud provider had been Amazon Web 

 
20 The 28 TFLOPS is assumed here based of NVIDIA’s advertisement of the V100 performance as well as 
on Microsoft’s DeepSpeed and ZeRO-2 performance results for training +100-billion-parameter models 
using V100 GPUs (NVIDIA 2018; Rangan and Junhua 2020). 

Electronic copy available at: https://ssrn.com/abstract=3804983



 

 19 

Services (AWS), the same training would have generated 279,900kg CO2eq.21 This does 

not include the carbon offsetting efforts made by these companies (Mytton 2020). As a 

point of reference, a typical passenger car in the United States emits about 4,600kg CO2eq 

per year (US EPA 2016), meaning that one training run would emit as much as 49 cars 

(Microsoft Azure) or 61 cars (AWS) in a year. A single training run can emit drastically 

more GHG depending on the region of compute and the carbon/emission intensity of 

electricity generation in the selected region (Lacoste et al. 2019). For example, it is 10 times 

more costly in terms of CO2eq emissions to train a model using energy grids in South 

Africa compared to France (see compute regions in Lacoste et al. 2019). Figure 3.1 below 

offers examples of the variation of energy consumption across different countries. 

 

Figure 3.1 Environmental costs (in kg of CO2eq) of a single training run of GPT-3 across different 

compute regions.22 

 

The authors of GPT-3 (Brown et al. 2020) also note that training the model required an 

immense amount of resource, but GPT-3 has the advantage of adapting to new tasks quite 

efficiently compared to other language models that would be relatively costly to fine-tune. 

For example, the authors report that to generate “100 pages of content from a trained 

 
21 Using a different set of assumptions and a methodology similar to that of Henderson et al. (2020), a group 
of researchers from the University of Copenhagen have estimated the training run would emit up to 
84,738.48kg CO2eq in the US (region not specified) (Anthony, Kanding, and Selvan 2020). This highlights 
the importance of disclosing enough information in research publications. 
22 Regional carbon intensity sourced from https://github.com/mlco2/impact/tree/master/data 
 

  

Carbon 
emissions 
(CO2eq) 

Train 
Compute 
(FLOPS) GPU 

Training 
hours Cloud Provider  

South Africa (West)  942,330kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

India (South) 858,360kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

Australia (Central) 839,700kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

Europe (North) 578,460kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

South Korea (Central) 485,160kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

Brazil (South)  186,600kg 3.14E+23 V100 3.11E+06 Microsoft Azure 

France (Central) 93,300kg 3.14E+23 V100 3.11E+06 Microsoft Azure 
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model can cost on the order of 0.4 kW-hr, or only a few cents in energy costs” (Brown et 

al. 2020). 

More recently, researchers from the Google Brain team released a research paper 

stating to have trained a 1.6 trillion parameters language model — approximately 9 times 

bigger than GPT-3 (Fedus, Zoph, and Shazeer 2021). And although the paper describes 

the use of a training technique that reduces computational costs and increases model 

training speed, it does not indicate the energy consumption or carbon emissions of the 

research project. This comes against the backdrop of earlier warnings from Google’s own 

Ethical AI team regarding the environmental costs of such large models (Bender, Gebru, 

and McMillan-Major 2021). 

It is crucial for the field of AI to come to terms with these numbers. These large AI 

research projects may be indicative of — and exacerbate — a failure to engage with 

environmental questions, to disclose important research data, and to shift the focus away 

from ecologically short-sighted success metrics (García-Martín et al. 2019; Schwartz et al. 

2019; Henderson et al. 2020).  In what follows we explore the technological and normative 

factors that have entrenched the field of AI research on an energy-intensive, and 

potentially carbon-intensive, path. 

 

2.2 Factors driving increases in AI’s carbon footprint 
 
Technological Considerations: Compute-Intensive Progress 

The recent rise of AI can be largely attributed to the increasing availability of massive 

amounts of data and to the adoption of general methods leveraging the “continued 

exponentially falling cost per unit of computation” described by Moore’s law (i.e the 

number of transistors per microchip doubles every two years for the same costs) (Sutton 

2019). DL epitomises AI research that is based on scaling general purpose methods with 

increased computation and availability of large amounts of non-structured data (Sutton 

2019). Recent breakthroughs, where AI models were able to reach parity with humans on 

a number of specific tasks, are the result of such AI research based on deep neural 

networks and improvements in computation and data availability (Ahmed and Wahed 

2020; Hooker 2020). However, the advent of DL has also marked a split between the 

increase in available compute (i.e. Moore’s law) and the increase in compute-usage (Theis 

and Wong 2017; N. Thompson and Spanuth 2018; Ahmed and Wahed 2020). Exploring 
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these trends helps us map the risks and opportunities of AI research with regards to 

climate change. 

Moore’s law has resulted in developers being able to double an application’s 

performance for the same hardware cost. Prior to 2012, AI developments have closely 

mirrored Moore’s law, with available compute doubling approximately every two years 

(Perrault et al. 2019). As shown in Figure 3.2, improvements in computer hardware 

provided almost a 50,000× improvement in performance, while the computational 

requirements of neural networks had grown at a similar pace until the introduction of 

chips with multiple processor cores (Hill and Marty 2008; Thompson et al. 2020, 8). 

Arguably, hardware development has often determined what research activities would be 

successful (Hooker 2020). For example, deep convolutional neural networks and 

backpropagation, which are central components to contemporary DL research, had 

already been introduced in the 80s (Fukushima and Miyake 1982; Werbos 1988), but had 

real impact only four decades later, following hardware progress and large-scale data 

availability (Hooker 2020).  

 

 

Figure 3.2 Computing power demanded by DL throughout the years (figure taken from Thompson et al. 

2020). 

 

As described by Thompson et al. (2020, 8), during the “multicore era”, DL was “ported 

to GPUs, initially yielding a 5 − 15× speed-up which by 2012 had grown to more than 

35×” and which led to the AlexNet breakthrough in 2012 (Alom et al. 2018). Shortly after 
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the AlexNet breakthrough in image recognition, a number of achievements followed in 

the various sub-fields of AI. In 2015, a Reinforcement Learning (RL) system achieved 

human-level performance in a majority of Atari games; in 2016 object recognition reached 

human parity and AlphaGo beat one of the world’s greatest Go players; in 2017 speech 

recognition reached human parity; in 2018 reading comprehension, speech synthesis and 

machine translation all reached human parity; and in 2019, the ability to scan and extract 

contextual meaning from text and speech (and answer a series of interconnected 

questions) reached human parity (Alom et al. 2018; Microsoft 2019; Evans and Gao 2016). 

These breakthroughs were all possible due to considerable increases in compute-usage 

(Ahmed and Wahed 2020). Indeed, since 2012, compute-usage has been doubling every 

3.4 months, spearheaded by the development of DL (Amodei and Hernandez 2018).  

Increases in compute have been essential, especially to RL, as this is an area of ML 

that stands out for its sample-inefficient methods of learning. Learning phases can require 

hundreds of millions of samples, making it impractical for “real-world control problems” 

such as in robotics (Buckman et al. 2018). Yet, RL has been used for text summarisation, 

robotic manipulation, and also to compete with human performance in domains such as 

Atari games, Chess, and Go (Berner et al. 2019). As researchers begin to apply RL methods 

to increasingly complex domains, like online multiplayer games, sample inefficiency will 

continue to drive energy costs higher. For example, OpenAI Five, which was developed 

to compete with professional Dota 2 players, played 900 years’ worth of games per day to 

reach a competitive level at the game (Berner et al. 2019). After ten months of training, 

using around 770 Peta Flops/s·days of compute, the model beat the world champions at 

Dota 2 (Berner et al. 2019). 

The multicore era also marks a decoupling of the improvements in hardware 

performance from the growth in computational requirements of large AI models, with the 

latter considerably outpacing the former. Because of this, researchers are facing 

diminishing returns (Thompson et al. 2020). The compute needed to train SOTA models 

is growing approximately ten times faster than GPU performance per watt (Thompson et 

al. 2020). This means that the present trend in scaling ML models is unlikely to be a 

sustainable path forward, both in terms of financial costs and for the preservation of the 

planet, given the very high levels of energy consumption that are associated with it 

(Henderson et al. 2020; Thompson et al. 2020). As shown in Figure 3.3, it would be 
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financially and ecologically prohibitive to reach lower error rates in different tasks, as any 

improvement (measured in percentage points) on a model’s accuracy would require 

significantly more energy and GHG. For example, if we look at the Thompson et al.’s 

(2020) polynomial models, it appears that reducing the error rate by 16.7 percentage points 

for MS COCO (Common Objects in Context) to achieve an error rate of 30%, would 

require 109× more computation (GFLOPS) and generate 108× more CO2eq (in lbs). 

Figure 3.3 Implications of achieving performance benchmarks on the computation, carbon emissions (lbs), 

and economic costs from deep learning based on projections from polynomial and exponential models (figure 

from Thompson et al. 2019). 

 

To enable the current compute-usage trend and mitigate diminishing returns, ML-specific 

hardware, such as Google’s TPUs, and various approaches, like neural architecture search, 

have been developed in recent years (Amodei and Hernandez 2018). However, even as 

new devices and hardware architectures continue to deliver better energy efficiency, it is 

not guaranteed that these improvements will keep pace with compute-usage, nor are they 

guaranteed to be available to everyone around the globe (Ahmed and Wahed 2020; Hooker 

2020). It follows that, if AI researchers are unable to access SOTA hardware to train large  

ML models, or if hardware performance does not keep pace with the growth of compute-

usage in AI research, then the field’s energy consumption will grow quickly (Nature 

Electronics 2018). Additionally, research has shown that the current focus on DL and 

custom hardware has come at the detriment of funding “hardware for use cases that are 
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not immediately commercially viable”, making it more costly to diversify research (Hooker 

2020, 9). 

 Algorithmic progress has also shown promising effects in relation to efficiency 

improvements for large model trainings. Although algorithmic progress is more dependent 

on human knowledge — as opposed to computational advances — and thus takes more 

time and effort to occur (Sutton 2019), Thompson et al. (2020) note that three years of 

algorithmic improvement is equivalent to an increase in computing power by a factor of 

10. This can be observed in image recognition (Hernandez and Brown 2020), neural 

machine translation (Thompson et al. 2020), and certain areas of RL (Hernandez and 

Brown 2020). For example, since 2012 the compute required to train a neural network to 

the “same performance on ImageNet classification, has been decreasing by a factor of 2 

every 16 months” and it now takes “44 times less compute to train a neural network to 

the level of AlexNet” (Hernandez and Brown 2020). Nevertheless, we note that research 

exploring new neural network architectures or new hardware-software-algorithm 

combinations has largely been side-lined in favour of compute-intensive AI research  

(Hooker 2020; Marcus 2020; Ahmed and Wahed 2020). 

Fortunately, researchers have also sought to reduce the computational burden and 

energy consumption of AI by focusing on building more efficient models through various 

approaches, such as random hyperparameter search, pruning, transfer learning or simply 

by stopping training early for underperforming models (Sze et al. 2017; Pham et al. 2018; 

C.-F. Chen et al. 2019; Schwartz et al. 2019; Coleman, Kang, Narayanan, Nardi, Zhao, 

Zhang, Bailis, Olukotun, Re, et al. 2019). More efforts are required in these areas. To be 

successful they need endorsement and cultivation from the wider field of AI to gain larger 

uptake. For AI research to continue to thrive, while keeping its carbon footprint in check 

and avoid running into a technological impasse in the coming years (Jones 2018), the field 

needs to reconsider its dedication to compute-intensive research and move away from 

performance metrics that focus exclusively on accuracy improvements (Schwartz et al. 

2019). The following section addresses the normative factors that have enabled these 

negative trends.   

 

Normative Considerations 
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For a field of research that relies on data collection and data processing, information about 

the energy consumption and carbon emissions of AI/ML models and research activities 

should be more detailed and more accessible (Henderson et al. 2020). Indeed, alongside 

the technological factors that have skewed the development of AI/ML models, there are 

also normative factors, like the lack of effective reproducibility requirements for research 

publications, which also contribute to explain the entrenchment of research activities in 

energy-intensive practices (Hooker 2020; Fursin 2020). Examining these factors, and 

questioning the validity of some standards and practices in AI research, is key to ensuring 

that the field keeps its carbon footprint to a minimum.  

AI research has been grappling with a reproducibility crisis. Given the growing 

amount of AI-related research activities and compute-usage, this crisis needlessly 

supercharges the field’s carbon footprint (Fursin 2020). From papers that do not disclose 

their code (as is the case for GPT-3) to papers that do not share the data used to train 

their model (e.g. for privacy or proprietary reasons) to papers that provide insufficient or 

even misleading information about the training conditions of their models, there have 

been persistent obstacles to verifying and reproducing results in AI research (Gibney 2020; 

Fursin 2020). In turn, these obstacles translate into unnecessary energy consumption. 

After conducting a survey of 400 algorithms presented in research papers at two 

top AI conferences (IJCAI and NeurIPS), researchers reported that only 6% of the 

presented papers shared the algorithm's code, a third shared the data on which they tested 

their algorithms, and only half shared a partial summary of the algorithm (Gundersen and 

Kjensmo 2018; Hutson 2018). Several studies have investigated this issue in the context 

of energy consumption and carbon emissions (Lacoste et al. 2019; Schwartz et al. 2019; 

Strubell, Ganesh, and McCallum 2019; Henderson et al. 2020; Dhar 2020). Indeed, after 

analysing a sample of 100 papers from the NeurIPS 2019 proceedings, Henderson et al. 

(2020, 4) reported that none of them provided carbon metrics, only one of them 

“measured energy in some way, 45 measured runtimes in some way, 46 provided the 

hardware used” and 17 of them “provided some measure of computational complexity 

(e.g., compute-time, FPOs, parameters)”. Although major AI conferences, such as ICML, 

IJCAI or NeurIPS, are increasing their efforts to normalise the submission of code and 

have implemented reproducibility checklists, the disclosure of information regarding 
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computational complexity, energy consumption, and carbon emission is still uncommon 

(Strubell, Ganesh, and McCallum 2019; Thompson et al. 2020). 

Sharing source code is necessary to ensure reproducibility in AI research. But it is 

not sufficient. Researchers have highlighted the importance of disclosing the training data 

and the initial parameters set for the training phase, or hyperparameters (Schwartz et al. 

2019; Hartley and Olsson 2020). Sharing a model’s sensitivity to hyperparameters, or of 

the random numbers generated to start the training process in the case of RL, is essential 

to allow researchers to reproduce results without going through a long, and 

environmentally costly, process of trial and error (Hutson 2018; Strubell, Ganesh, and 

McCallum 2019; Gibney 2020). Indeed, the number of experiments run by researchers 

before achieving publishable results are both “underreported and underdiscussed” (Dodge 

et al. 2019; Schwartz et al. 2019, 9). In this case, a direct result of incomplete or misleading 

information disclosures is the “double costs” incurred by researchers that have to 

rediscover, even if only partially, the information that led to the reported results. Building 

on existing research becomes more difficult when newcomers have to incur unnecessary 

costs of experimentation that were already incurred for the original publication of a model. 

This approach inflicts an unnecessary double cost on the environment via increased energy 

consumption. 

According to recent research on the energy consumption and carbon footprint of 

DL in natural language processing (NLP), the process of researching and developing 

SOTA models multiplies the financial and environmental costs of training a model by 

thousands of times (Strubell, Ganesh, and McCallum 2019). Indeed, over the course of six 

months of research and development, a single research paper may require training 

thousands of models before being published (Dodge et al. 2019; Schwartz et al. 2019, 4). 

Similarly, Schwartz et al’ (2019, 4) have reported that massive amounts of computation go 

into “tuning hyperparameters or searching over neural architectures”. This is the case, for 

example, of Google Brain, which trained over 12,800 neural networks in its neural 

architecture search to achieve a 0.09 percent accuracy improvement and 1.05x in speed on 

the CIFAR-10 dataset (Zoph and Le 2017). In light of our calculations regarding the 

carbon emission of a single training run for GPT-3, this would mean that to achieve their 

published model the research team at OpenAI may have generated much more CO2eq 

than previously estimated. Failing to report the research experiments that went into 
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achieving the reported results can have a snowball effect for the field of AI research in 

terms of energy consumption and carbon emissions, as it imposes a longer trial-and-error 

process onto new researchers.  

Modern AI research has focused on producing deeper and more accurate models 

at the detriment of energy efficiency (Sutton 2019; Perrault et al. 2019; Hooker 2020). 

Indeed, some of the main benchmarks, challenges and leader boards on which AI 

researchers and organisations compete, such as GLUE (2020), SuperGLUE (2020), 

SQuAD2.0 (2020), ILSVRC (2017) and VTAB (2020), have been heavily focused on 

driving accuracy improvements with little regard for improving on energy efficiency 

(Perrault et al. 2019; Reddi et al. 2020). This narrow focus increases compute-intensive AI 

research and exacerbates diminishing returns, with researchers competing for fractional 

improvements in error rates (Henderson et al. 2020). It is only relatively recently that 

efforts have emerged to reduce compute-usage and improve energy efficiency of DL 

methods, at the algorithmic, hardware, as well as implementation levels (T. Chen et al. 

2015; Y.-H. Chen, Emer, and Sze 2017; EDL 2017; Sze et al. 2017; Guss et al. 2019; 

García-Martín et al. 2019; Jiang et al. 2019; Cai et al. 2020). The Low Power Image Recognition 

Challenge (LPIRC) is a good example of such efforts (García-Martín et al. 2019).  

To demonstrate the prevalence of accuracy metrics over efficiency metrics, a group 

of researchers at the Allen AI Institute sampled 60 papers from top AI conferences (ACL, 

CVPR and NeurIPS) that claimed to achieve some kind of improvement in AI (Schwartz 

et al. 2019). As shown in Figure 3.4, a large majority of the papers target accuracy (90% of 

ACL papers, 80% of NeurIPS papers and 75% of CVPR papers), and in both ACL and 

CVPR, which are empirical AI conferences, only 10% and 20% respectively argue for new 

efficiency results (Schwartz et al. 2019). The prevalence of accuracy over efficiency in AI 

research has also been stressed by the Electronic Frontier Foundation’s “AI Progress 

Measurement” project, which tracks progress on problems and metrics/datasets from the 

AI research literature and provides a comprehensive view of the field’s priorities (EFF 

2017).23 

 
23 It is also worth noting the carbon footprint associated with the steep growth in attendance at AI 
conferences. The Stanford AI Index reports that in 2019, NeurIPS had an increase of 41% in attendance 
over 2018 and over 800% relative to 2012 (Perrault et al. 2019). Other conferences such as the AAAI and 
CVPR are also seeing an annual attendance growth of around 30% (Perrault et al. 2019). These generate a 
non-negligible amount of carbon emissions (Perrault et al. 2019; Henderson et al. 2020). Using the 
attendance of the top 10 AI conferences in 2019, Henderson et al. (2019) estimate that around 34,449,597 
kg of CO2eq were emitted from these conferences alone.  
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Figure 3.4. Proportion of papers that target accuracy, efficiency, both or other from a sample of 60 papers (figure 

from Schwartz 2019). 

 

Several issues arise from focusing on accuracy over efficiency metrics. First, it creates a 

high barrier to entry, as only wealthy research groups are able to incur in the growing costs 

of compute-intensive research (Ahmed and Wahed 2020). This leads to a limited number 

of researchers to be able to afford stronger results and hence publications (Schwartz et al. 

2019, 2), thus creating a virtual monopoly on fundamental research and side-lining 

researchers from smaller organisations, less funded contexts, and developing countries 

(see Figure 3.5). Second, it ingrains a “the bigger the better” mentality into the field, thus 

giving carte blanche to organisations and researchers to accelerate experimentation and 

increase their eventual energy consumption. This, in turn, makes it harder to explore 

efficiency improvements. It also reduces the diversity of research topics. Third, it keeps 

the field on a path of diminishing returns and incentivises researchers to pursue 

incremental improvements and “publish at all cost”, even if it means achieving practically 

(for deployed systems) negligible accuracy improvements. 
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Figure 3.5 Number of deep learning papers on ArXiv, per region (figure from Perrault et al. 2019). 

 

 

2.3 Overall balance 
 
It is important to keep in mind that, although training AI/ML models can require a lot of 

energy, they are usually used to improve the efficiency of many tasks that would otherwise 

require more time, space, human effort, and potentially electricity (Narciso and Martins 

2020). When deployed in production settings or edge devices, AI systems can have 

downstream effects that counterbalance their own energy consumption and GHG 

emissions (see Section 1). Additionally, recent progress in making the deployment of deep 

neural networks on edge devices, like smartphones and tablets, much more efficient, has 

been significant for the environmental impact of AI (Cai et al. 2020). Indeed, the diversity 

of hardware platforms in use today has created various efficiency constraints requiring, for 

example, that neural networks are redesigned and retrained for each new environment they 

are deployed in (Cai et al. 2020). However, novel approaches, such as “Once-for-All” 

networks, show great promise as they require approximately 1/1,300 of the carbon 
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emissions of SOTA neural architecture search approaches while also reducing inference 

time (Cai et al. 2020).24 

For most or all industry sectors, AI offers significant “gains in efficiency and 

performance” (Hall and Pesenti 2017, 2), and indeed, the European Commission’s 

Horizon 2020 programme has been investing in projects using AI systems to improve the 

energy and resource efficiency of many sectors (Dahlquist 2020). Balancing the energy 

consumption of AI against its energy-efficiency gains will be an important task for both 

researchers and regulators alike, one that begins with obtaining enough information about 

a model.  

Our analysis thus far is testament to the complexity inherent to any attempt to talk 

about AI in the context of climate change. On the one hand, the power of AI can be 

harnessed to address some of the most complex tasks associated with combatting climate 

change successfully. On the other hand, the development of AI is itself contributing to 

GHG emissions that advance climate change still further. Taken together, this analysis 

suggests the need for coordinated, multilevel policymaking that can advance the use of AI 

to combat climate change, whilst ensuring that the development of AI does not itself 

contribute to the existing problem. This is why in the remainder of this report we turn 

from technological to political considerations for AI and climate change.  

 

3. Policy context: the EU’s twin transitions 
 

The opportunities presented by AI for tackling climate change are just one example of the 

broader intersection between the digital revolution and the efforts for sustainability. In 

recent years, this “Green & Blue” formula (Floridi and Nobre 2020; Floridi 2020) has 

become apparent in European policymaking. “A European Green Deal” and “A Europe 

fit for the digital age” were two of the six “headline ambitions” highlighted in the political 

guidelines released as part of von der Leyen’s campaign. Since von der Leyen took office, 

documents issued by the Commission have begun referring to the “twin transitions” — 

ecological and digital — that will shape Europe’s medium- to long-term future. The 

 
24 Once-for-all networks support “diverse architectural settings by decoupling training and search”, thus 
reducing GPU usage and carbon emissions (Cai et al. 2020, 1). 
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proximity and interdependence of “green plus blue” has recently been further reinforced 

by the Commission’s response to the coronavirus pandemic, which anticipates a large 

stimulus including “modernisation” through “fair climate and digital transitions, via the 

Just Transition Fund and the Digital Europe Programme” (European Commission 2020i). 

References to the role of digital technology are studded throughout the “European Green 

Deal” communication and roadmap, released in December 2019 (European Commission 

2019). As the document notes, “digital technologies are a critical enabler for attaining the 

sustainability goals of the Green Deal in many different sectors”, and technologies “such 

as artificial intelligence … can accelerate and maximise the impact of policies to deal with 

climate change and protect the environment” (p. 9). Domains in which “smart” or 

“innovative” digital technologies are expected to play a role include energy grids (p. 6), 

consumer products (p. 8), pollution monitoring (p. 9), mobility (p. 10), and food and 

agriculture (p. 12) — that is, many of the domains in which the existing evidence, 

summarised in section 1, suggests that AI is already being deployed and will make an 

increasing difference. 

 Recent Commission documents on Europe’s forthcoming “digital 

transformation” equally highlight the possibilities this transformation holds for 

sustainability. As the Commission’s recently released “Strategy on shaping Europe’s digital 

future” (European Commission 2020e) notes, digital technologies will “be key in reaching 

the ambitions of the European Green Deal and the Sustainable Development Goals” as 

“powerful enablers for the sustainability transition” (European Commission 2020, p.5). 

The document highlights sectors including agriculture, transport and energy as benefiting 

particularly from digital “solutions”. In addition, other Commission documents released 

within the last twelve months also highlight the twin transitions:  

• The “European strategy for data” announces the establishment of a “common 

European Green Deal data space” to use shared data to meet Green Deal targets 

(European Commission 2020b); 

• The “White Paper on Artificial Intelligence: A European approach to excellence 

and trust” highlights the impact of AI on climate change mitigation and 

adaptation in its first paragraph and again throughout (European Commission 

2020g); and 
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• The “New industrial strategy for Europe” asserts that Europe “needs an 

industr[ial sector] that becomes greener and more digital” (European 

Commission 2020b p. 2)  

Several of the documents make reference to the so-called “Destination Earth” initiative, 

the stated intention of which is to “develop a very high precision digital model of the Earth 

to monitor and simulate natural and human activity, and to develop and test scenarios that 

would enable more sustainable development and support European environmental 

policies” (European Commission 2020h). Destination Earth is designed to contribute 

both to the Commission’s Green Deal and to its Digital Strategy. It targets national 

authorities to aid policymakers and then opens up to users from academia and industry. 

The technical details of Destination Earth remain to be specified, but it is said to provide 

access to “data, advanced computing infrastructure, software, AI applications and 

analytics”. Therefore, while the exact role of AI tools within the initiative remains to be 

seen, the scale and ambition of Destination Earth and its role at the intersection of the 

“twin transitions” suggest it may be important in fostering the use AI to tackle climate 

change. 

 Given the prominence of digital technologies in everyday life and the increasing 

salience of the climate change challenge — as well as the coordination of policy priorities 

that accompanies a new administration — it is not surprising to find concordance among 

these documents. Nonetheless, the extent to which the Commission seems to see the twin 

transitions as developing hand-in-hand is striking. The EU’s renewed commitment to 

using AI and other digital technologies to make European society and industry greener 

and more sustainable is an important statement of intent and suggests that Europe may 

become a focal point of efforts to develop AI to combat climate change effectively. 

However, for all the opportunities these policy documents highlight, they brush over the 

challenges that need to be addressed to ensure a successful adoption of AI tools. To this 

end, in the next section, we offer 13 recommendations. 

 

4. Recommendations for EU policymakers and the AI research community  
 
The previous sections identified two areas where recommendations for leveraging the 

opportunities and addressing the challenges posed by AI in the context of climate change 

can be offered. Stated as objectives, these are, first, to harness the potential of AI for 
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combatting climate change in ways that are ethically sound; and second, to gauge and 

minimise the size of AI’s carbon footprint. In this section, we address these two objectives 

in turn, in order to identify specific methods and areas of intervention for European 

policymakers and AI researchers. Our recommendations urge these stakeholders to assess 

existing capacities and potential opportunities, incentivise the creation of new 

infrastructures, and develop new approaches to enable society to maximise the potential of 

AI in the context of climate change, while minimising ethical and environmental 

drawbacks. 

 

4.1 Harnessing the potential of AI for combatting climate change 

By themselves, comprehensive surveys and conferences appear to be insufficient to gather, 

document, and analyse all the relevant evidence of AI being used to tackle climate change. 

More needs to be done to monitor and seek positive, climate-focused AI solutions from 

across sectors, domains, and regions of the world. This would involve deriving best 

practices and lessons learned from existing projects and identifying opportunities for 

future initiatives that may be missed without sufficient funding or support. Given the 

political and economic commitments it has already made, the EU would be an especially 

suitable sponsor and host of such an initiative. The EU is also in a leading position 

internationally to disseminate its findings to support action against climate change at a 

global scale. 

Recommendation 1: Incentivise a world-leading initiative (Observatory) to 

document evidence of AI being used to combat climate change around the 

world, derive best practices and lessons learned, and disseminate the findings 

among researchers, policymakers and the public. 

Another challenge concerns the ability to share the necessary resources for developing 

robust AI systems. This includes the best practices and lessons learned to be collected by 

the initiatives proposed in Recommendation 1 but, crucially, it also extends to data. The 

effectiveness of AI systems rests in large part on the size and quality of available datasets 

used to train these systems.  

The recent European Strategy for Data notes that a current lack of data hinders 

the use of data for the public good, underlining the Commission’s support for establishing 
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a new Common European Green Deal “data space [to] support … the Green Deal priority 

actions on climate change” (European Commission 2020b). This may in turn require 

legislative and regulatory steps to facilitate business-to-business and business-to-

government data sharing. The document also notes the need to “assess what measures are 

necessary to establish data pools for data analysis and machine learning”. The issue for the 

climate change data space is not simply to open the floodgates to data sharing, but also to 

ensure that the data that is shared is high-quality, accurate, and relevant to the problem at 

hand. In short, this is not just a question of collation but also of curation. The steps 

outlined so far to ensure that the specific requirements of climate change research are 

served by the data space are moving in this direction.  

The European Strategy for Data argues that “data spaces should foster an 

ecosystem (of companies, civil society and individuals) creating new products and services 

based on more accessible data”. In the case of climate change, organisations (particularly 

in the private sector) may need further encouragement to develop AI-based solutions that 

are not “products and services” per se, but rather focused efforts to tackle climate-related 

issues, with or without a profit incentive, and potentially in partnership with public and 

non-profit groups. Therefore, the Commission could play a more front-footed role in 

stimulating these efforts or “challenges”, as it has already sought to do in the context of 

business-to-government data sharing for the public interest more generally (European 

Commission 2020f). 

Recommendation 2: Develop standards of quality, accuracy, relevance and 

interoperability for data to be included in the forthcoming Common European 

Green Deal data space; identify aspects of climate action for which more data 

would be most beneficial; and explore, in consultation with domain experts and 

civil society organisations, how this data could be pooled in a common global 

climate data space. 

Recommendation 3: Incentivise collaborations between data providers and 

technical experts in the private sector with domain experts from civil society, in 

the form of “challenges”, to ensure that the data in the Common European 

Green Deal data space is utilised effectively against climate change.  
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As section 3 makes clear, there has been considerable investment — both fiscal and 

political — to harness the twin ecological and digital transitions in order to create a more 

sustainable and prosperous EU. If done right, using AI in the fight against climate change 

is an ideal point of synthesis for these objectives. Therefore, to build on the previous 

recommendations, we also recommend that the European Commission earmarks a 

proportion of the recently announced Recovery Fund to support efforts to develop AI 

that tackles climate change in the ways identified through the proposals in 

Recommendation 1. Per the recent agreement between the Commission, the Parliament 

and European leaders, a considerable proportion (30%) of the Fund will be “dedicated to 

fighting climate change”, and it is separately stated that more than 50% of the overall fund 

will support modernisation related, to inter alia, “fair climate and digital transitions”. Thus, 

there is ample scope to invest a substantial proportion of this fund to leveraging AI-based 

responses to climate change, building on opportunities identified in Recommendations 1-

3.   

Recommendation 4: Incentivise the development of sustainable, scalable responses 

to climate change that incorporate AI technology, drawing on earmarked 

Recovery Fund resources.  

It is important to ensure that all EU-funded and supported climate change research and 

innovation that uses AI follow steps to prevent bias and discrimination. This should take 

the form of protocols, auditing, and best practices tailored to this particular research 

context. In particular, large-scale initiatives such as the Destination Earth project ought to 

be designed with great care to prevent biases and discrepancies from arising in the so-

called “digital twin” that will be created. 

 At the same time, transparency of purposes — clarifying for what an AI system is 

being optimised — may help to protect human autonomy. To this end, it may not be 

enough to make available information about how systems are optimised, but it may also 

be necessary to give affected stakeholders the opportunity to question, and even contest, 

the optimisation parameters that are set for a given system, depending on the context. 

Ensuring that these mechanisms of explanation and contestation are reliable and 

reproducible is likely to require access to the relevant data and initial conditions and 

parameter settings that were used for training algorithms.  
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Recommendation 5: Develop mechanisms for ethical auditing of AI systems 

deployed in high-stakes climate change contexts, where personal data may be 

used and/or individual behaviour may be affected. Ensure that clear, accessible 

statements regarding what metrics AI systems are optimised for, and why this is 

justified, are made available prior to the deployment of these systems. The 

possibility for affected stakeholders to question and contest system design and 

outcomes should also be guaranteed. 

 

4.2 Regulating AI’s carbon footprint 
 

The field of AI research stakeholders, which includes (but is not limited to) researchers, 

laboratories, funding agencies, journal editors, conference organisers, and the managers of 

open-source ML libraries, can take several immediate steps to ensure that its carbon 

footprint is properly gauged and kept in check. At the same time, policymakers should 

play a critical role in ensuring that new reporting standards are set for organisations 

conducting large scale experiments and that the underlying infrastructure of AI remains 

environmentally sustainable while supporting innovative AI research in the EU. To this 

end, we offer recommendations to both stakeholders in both the research and policy 

domains. 

 

Recommendations for AI research stakeholders 

Steps have already been taken to tackle the reproducibility crisis mentioned in section 2.3. 

For example, within two years of encouraging paper submissions to include source code, 

NeurIPS reported the number of papers with code going from 50% to 75% of submissions 

(Gibney 2020). Additionally, standards and tools, like the Association for Computing 

Machinery’s (ACM) (2020) artifact badging, NeurIPS’s (2020) OpenReview, cKnowledge 

(Fursin 2020), PapersWithCode (2020), and MLPerf (Reddi et al. 2020), have been 

established in recent years to promote openness in scientific communication and ensure 

reproducibility. Similarly, systematic and accurate measurements to evaluate the energy 

consumption and carbon emissions of AI is needed for research activities. “Plug and play” 

tools need to be developed to facilitate the reporting of GHG emissions, and research 

conferences, journals and the community at large can play an important role in normalising 

the reporting of such data.  
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Open-source ML libraries, which are often established by private organisations, 

are essential to AI research. Adding information on the energy consumption, carbon 

emissions, and training conditions of various models — including hyperparameter 

sensitivity or algorithm performance against hardware — on these websites can help the 

field develop its environmental commitment.  

Recommendation 6: Develop conference and journal checklists that include the 

disclosure of, inter alia, energy consumption, computational complexity, and 

experiments (e.g. number of training runs, and models produced) to align the 

field on common metrics (Gibney 2020; Schwartz et al. 2019; Henderson et al. 

2020).  

Recommendation 7: Assess the carbon footprint of AI models that appear on 

popular libraries and platforms, such as PyTorch, TensorFlow and Hugging Face, 

to inform users about their environmental costs. 

These recommendations aim to normalise the disclosure of information pertaining to AI’s 

carbon footprint as well as to help researchers and organisations select research tools based 

on environmental considerations. Online AI courses, ML libraries, journals and 

conferences can take actions to collect and display more information regarding the energy 

consumption and GHG emissions of AI. These recommendations aim to enable 

researchers to monitor and report systematically their AI projects’ carbon footprints by 

using ready-made tools such as Lacoste et al.’s calculator (2019) or Henderson et al.’s 

framework (2020). 

Increasing research on energy efficient computing and efficient AI is an important 

component to ensure that AI’s carbon footprint is controlled in the long run. And the 

promotion of efficiency metrics and research may need to come from the field itself. For 

example, the Low-Power Image Recognition Challenge was created to define a common 

metric to compare image recognition results, accounting for energy efficiency and accuracy 

(Gauen et al. 2017). Similarly, Stanford University’s DAWNbench benchmark was created 

in response to the field’s hyper focus on accuracy metrics (Coleman, Kang, Narayanan, 

Nardi, Zhao, Zhang, Bailis, Olukotun, Ré, et al. 2019). The benchmark offers a “reference 

set of common deep learning workloads for quantifying training time, training cost, 

inference latency, different optimisation strategies, model architectures, software 
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frameworks, clouds, and hardware” (Coleman, Kang, Narayanan, Nardi, Zhao, Zhang, 

Bailis, Olukotun, Re, et al. 2019)  

Recommendation 8: Incentivise the development of efficiency metrics for AI 

research and development (including model training) by promoting efficiency 

improvements and objectives in journals, conferences and challenges.  

Note that key organisations such as the ACM, IEEE, NeurIPS and ICML, among others, 

would be instrumental in normalising efficiency metrics or publication requirements such 

as the one outlined in Recommendation 6. The normalisation of such metrics and 

requirements can bring more researchers to actively seek energy-efficient approaches to 

research and development, such as by changing their region of compute or cloud provider, 

or by opting to run intense calculations during times of excess electricity generation 

capacity (e.g. at night).  

Recommendations for EU policymakers 

Policymakers have an important role to play in equalising access to compute, developing 

efficient deep learning, and making compute-intensive AI research more accessible and 

affordable. For example, researchers in the US have suggested nationalising cloud 

infrastructure to provide more researchers with the ability to work without bearing 

exorbitant costs (Etchemendy and Li 2020). A European equivalent of the “National 

Research Cloud” could allow the EU to establish a long-term infrastructure that enables 

more European researchers to compete on a global scale, while also ensuring that research 

occurs on an efficient and sustainable European platform.25  

The reported and estimated decrease (by 30%) of EU-based data centres (EEA 

2020) is largely due to efforts by EU states to increase the share of renewable energies in 

power generation (European Commission 2020a). CO2 emissions of national power 

generation across EU member states has been decreasing, albeit emission rates differ 

 
25 Such a project would present clear synergies with the EU’s landmark cloud infrastructure 
project, Gaia-X, which seeks to develop a common data infrastructure in Europe (GAIA-X 
2020).  
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significantly between different member states. For example, power generation in Estonia 

emits over 9 times more CO2 than in Slovakia (EEA 2020). 

Recommendation 9: Develop greener, smarter and cheaper data infrastructure 

(e.g., European research data centres) for researchers and universities across the 

EU.  

Given the EU’s increasing interest and investments in AI (Stix 2019), it is also important 

that the AI sector is considered specifically when formulating environmental policies. Both 

in research or production settings, AI requires increasingly specialised hardware and 

services that should be considered in any long-term environmental strategies. 

Recommendation 10: Assess AI and its underlying infrastructure (e.g., data 

centres) when formulating energy management and carbon mitigation strategies 

to ensure that the European AI sector becomes sustainable as well as uniquely 

competitive.  

Carbon labels and similar standards can benefit from receiving the endorsement of 

policymakers and even be required within the EU. Policymakers are key to ensuring that 

the field of AI research becomes more transparent when it comes to energy consumption 

and carbon emissions. 

 

Recommendation 11: Develop carbon assessment and disclosure standards for 

AI to help the field align on metrics, increase research transparency, and 

communicate carbon footprints effectively via methods such as adding carbon 

labels to AI-based technologies and models listed in online libraries, journals, and 

leader boards. 

 

These labels would allow researchers and developers to make environmentally informed 

decisions when choosing components (e.g. model, hardware and cloud provider) for their 

work. For example, borrowing directly from The Carbon Trust’s (2020) “product carbon 

footprint labels”, the following labels could be adapted to AI research and distributed in 

a similar fashion to ACM labels:  
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• Lower CO2eq – indicating that the carbon footprint of a model/product is 

significantly lower carbon than the market dominant model/product in its 

category. 

• CO2eq Measured – indicating that the model/product footprint has been 

measured in accordance with an internationally recognised standard such as 

product standards: PAS2050, GHG Product Standard and ISO14067. 

• Carbon Neutral – indicating that the model/product emissions are offset by the 

issuing organisation. 

Policymakers are also key to ensuring that AI researchers in the EU are able to expand the 

field of AI research and diverge from conventional assumptions and research practices. 

Diverse funding will help European researchers to break from technological and 

normative trends that make it costly for researchers to try new ideas.   

Recommendation 12: Incentivise diverse research agendas by funding and 

rewarding projects that diverge from the current trend of compute-intensive AI 

research in order to explore energy-efficient AI.  

Example of potentially energy-efficient AI strategies include new hardware-software-

algorithm combinations, algorithmic progress, symbolic AI, and hybrid symbolic-neural 

systems (Marcus 2020). Following this recommendation would enable the EU to enhance 

its potential for the development of AI research, by allowing a diverse pool of researchers 

from multiple countries to pursue a wide range of research agendas and compete with 

compute-intensive AI research coming from the US and China. 

Recommendation 13: Incentivise energy-efficient and green research by making 

EU funding conditional on applicants measuring and reporting their estimated 

energy consumption and GHG emissions. Funding could fluctuate according to 

environmental efforts made (e.g. usage of efficient equipment, usage of 

renewable electricity, Power Usage Effectiveness of <1.5). 

 

Conclusion 
 
This report has described the beneficial impact that AI can have in the fight against climate 

change, the ethical challenges encountered in this process, and the computational intensity 
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that the development of AI requires, which introduces different challenges relating to 

energy consumption and GHG emissions. Benefits and risks are distinct yet intertwined. 

This is why we agree with Floridi and Nobre (2020) and see the use of AI to fight climate 

change as a leading example of 

“a new marriage between the Green of our habitats – natural, synthetic and 

artificial, from the biosphere to the infosphere, from urban environments to 

economic, social, and political circumstances – and the Blue of our digital 

technologies, from mobile phones to social platforms, from the Internet of 

Things to Big Data, from AI to future quantum computing”. 

In this marriage, some risks, such as AI’s carbon footprint, are not entirely avoidable, but 

they can certainly be minimised, to deliver the best strategies against climate change. This 

is why the right policies are key to harness the opportunities while ensuring that the risks 

are adequately assessed and minimised, as much as possible.  

Harnessing the positive and mitigating the negative impact of AI on the 

environment is achievable with the support of robust policymaking and of key 

stakeholders. The formula of “Green & Blue” has never been more central to the 

European policymaking agenda, and the Recommendations outlined in this report can 

serve as a “Green & Blue-print” for a more sustainable society and a healthier biosphere. 

By shedding light on the use of AI to counter climate change and offering 

recommendations to make this use of AI ethically sound and sustainable, this report aims 

to inform EU policy strategy for the ‘twin transitions’ and help ensure that the marriage 

between the Green and the Blue is a success that leads to a better society and a healthier 

planet. 
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Appendix: List of Abbreviations 

 

 

ACM               Association for Computing Machinery 

AI  Artificial Intelligence 

ASICs  Application Specific Integrated Circuits  

AWS                Amazon Web Services 

Compute Computing Power 

CCAI  Climate Change AI 

CPU  Central Processing Unit 

CO2eq  Carbon Dioxide Equivalent 

DL  Deep Learning 

EU  European Union 

ELLIS  European Lab for Learning & Intelligent Systems 

FLOPS Floating Point Operations Per Second 

FPGAs Field Programmable Gate Arrays 

GDP  Gross Domestic Product 

GDPR  General Data Protection Regulation 

GHG  Greenhouse Gas 

GPU  Graphics Processing Unit 

ICML             International Conference on Machine Learning 

ICT  Information Communication Technologies 

IJCAI              International Joint Conferences on Artificial Intelligence 

IPCC  Intergovernmental Panel on Climate Change 

ML  Machine Learning 

NeurIPS          Conference on Neural Information Processing Systems 

NLP  Natural Language Processing 

RL  Reinforcement Learning 

SOTA  State-Of-The-Art 

SDGs  Sustainable Development Goals  

TPU  Tensor Processing Unit 

UN  United Nations 
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