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Abstract—The Akaike information criterion (AIC) is a widely
used tool for model selection. AIC is derived as an asymptoti-
cally unbiased estimator of a function used for ranking candi-
date models which is a variant of the Kullback–Leibler diver-
gence between the true model and the approximating candidate
model. Despite the Kullback–Leibler’s computational and theo-
retical advantages, what can become inconvenient in model se-
lection applications is their lack of symmetry. Simple examples
can show that reversing the role of the arguments in the Kull-
back–Leibler divergence can yield substantially different results.
In this paper, three new functions for ranking candidate models
are proposed. These functions are constructed by symmetrizing
the Kullback–Leibler divergence between the true model and the
approximating candidate model. The operations used for sym-
metrizing are the average, geometric, and harmonic means. It is
found that the original AIC criterion is an asymptotically unbi-
ased estimator of these three different functions. Using one of
these proposed ranking functions, an example of new bias cor-
rection to AIC is derived for univariate linear regression models.
A simulation study based on polynomial regression is provided
to compare the different proposed ranking functions with AIC
and the new derived correction with AIC .

Index Terms—Akaike information criterion (AIC), geometric
and harmonic means, Kullback–Leibler divergence, model selec-
tion.

I. INTRODUCTION

ACOMMON and widespread problem in science and en-
gineering is determining a suitable model to describe or

characterize an experimental data set. This determination con-
sists of two tasks, the choice of an appropriate model struc-
ture, and the estimation of its parameters. The task of param-
eter estimation is generally done by maximum likelihood or
least squares procedures given the structure or dimension of the
model. The choice of the dimension of a model is often facili-
tated by the use of a model selection criterion where one only
has to evaluate two simple terms [1]–[3]. The underlying idea
of model selection criteria is the parsimonious principle which
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says that there should be a tradeoff between data fitting and com-
plexity. Thus, all criteria have one term defining a measure of
fit, typically a deviance statistic and one term characterizing the
complexity, a multiple of the number of free parameters in the
model.

Different philosophies have been used to derive different
model selection criteria [4]. The minimum description length
(MDL) suggested in [5] implements the parsimony principle of
economy to code a data set using the idea of universal coding
introduced by Kolmogorov. Therefore, the model chosen with
the MDL can be considered as providing the best explanation
of the data in terms of the code length. In [6] and [7], based
on Bayesian arguments and maximum a posteriori probability,
the Bayesian information criterion (BIC) was introduced. A
number of other criteria of this type have been proposed in the
literature; from them one can cite, the final prediction error
(FPE) [8], the combination among variables (Cp or Mallows
statistic) [9], and the Hannan and Quinn (HQ) [10].

Another way used for deriving model selection criteria is
based on the quantification of “how close are” the probability
density of the generating model (the true density) and the
probability density of the fitted approximating model. Sev-
eral coefficients have been introduced in the literature for this
quantification. Such coefficients have been variously named
divergence, distance, and measure, depending on whether they
satisfy all the properties of a metric or not. Due to its com-
putational and theoretical advantages, the Kullback–Leibler
divergence [11] is perhaps the most frequently used informa-
tion theoretic coefficient for measuring divergence, separation,
or disparity between two probability densities. The Akaike
information criterion (AIC) [12], which is the first theoretic
criterion to have gained widespread acceptance, is based on
the concept of Kullback–Leibler directed divergence between
two probability density functions. It is derived from consid-
eration of the asymptotic behavior of the Kullback–Leibler
directed divergence between the true density and the prob-
ability density of the fitted approximating model under the
assumption that the true density is correctly specified or over-
fitted. Despite its computational and theoretical advantages,
the Kullback–Leibler divergence, which is also known as
Kullback–Leibler information, relative entropy, or the -di-
vergence, is a nonsymmetric divergence or measure. Its asym-
metry means that reversing the roles of the two arguments in
the Kullback–Leibler divergence can yield substantially dif-
ferent results, as can be shown using simple examples. This
raises questions about which orientation should be considered
more appropriate for model selection and the principles by
which this choice should be made.
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In evaluating the adequacy of a fitted model, results from
[13] indicate that the directed Kullback–Leibler divergence may
better reflect the error due to overfitting, whereas the alternative
directed divergence may better reflect the error due to underfit-
ting. This suggests that there might be an advantage to combining
the directed and the alternative directed divergences by sym-
metrizing them. The composite measure may provide a more
balanced gauge of model disparity than either of its individual
components. Thus, in settings where the collection of candidate
models consists of both underfitted and overfitted models a sym-
metrized version of the Kullback–Leibler divergence may serve
to better indicate which models are improperly specified than the
Kullback–Leibler divergence. As a consequence, an estimator
of a symmetrized version of the Kullback–Leibler divergence
may be preferable to an estimator of the Kullback–Leibler
divergence as model selection criterion. A simple example of
symmetric measure of model separation can be obtained by the
sum of the two directed divergences. This divergence is known
as Kullback’s symmetric divergence or -divergence [14]. The
Kullback information criterion (KIC) proposed in [15] is an
asymptotically unbiased estimator of a variant (within a con-
stant) of the -divergence between the generating model and the
fitted approximating model. However, the -divergence is just
one particular case of mixture of the two directed divergences.
We can consider alternative ways of mixing the two directed
divergences to create a symmetric divergence. What is needed,
is a symmetric divergence that can be easily evaluated analyti-
cally and estimated to derive a model selection criterion.

In this paper, we propose three alternate ways for sym-
metrizing the Kullback–Leibler divergence to create three new
ranking functions (also called discrepancies). The operations
used for symmetrizing are the average geometric and harmonic
means. Their asymptotic estimates are derived by using similar
arguments, used by Akaike in the derivation of AIC. It is found
that AIC is also an asymptotically unbiased estimator of these
three ranking functions. This explains why AIC provides good
performance also when the collection of candidate models
consists of both underfitted and overfitted models. Based on
this, other forms of correction to the AIC criterion different
from those that already exist can be derived. An example of
a new correction, named AIC , which is different from AIC
[16], is derived for the univariate linear regression model using
the ranking function obtained by averaging the two directed
divergences.

The remainder of this paper is organized as follows. In
Section II, we discuss and extend the derivation of AIC and
KIC criteria. In Section III, we introduce two other ways for
symmetrizing the Kullback–Leibler divergence, namely the
geometric and harmonic means and derive asymptotic esti-
mates of functions which are variants of these symmetrized
quantities. An example of a new bias corrected AIC adapted
to univariate linear regression model is derived in Section IV.
This new bias corrected AIC is compared to AIC in a simu-
lation experiment described in Section V. This simulation also
investigates the effectiveness of AIC in estimating the different
proposed ranking functions. Concluding remarks are given in
Section VI. Theoretical justifications of the proposed results
are also presented.

II. AIC CRITERION AND THE WEIGHTED AVERAGE MIXTURE

Suppose a collection of data has been
generated according to an unknown parametric model or density

. We try to find a parametric model which provides a
suitable approximation for where

Let denote a -dimensional
parametric family, where consists of -independent elements
that correspond to the model’s parameters. Let denote the
vector of parameter estimates obtained by maximizing the like-
lihood function over , and let denote the
corresponding fitted model. For simplicity, we will assume

, so the collection ’s consists of nested fam-
ilies, i.e, of dimension one through

[12]. It is also assumed as in [12] that the search is car-
ried out in a parametric family of distribution including the true
model.

To determine which candidate model best approximates
the unknown generating model , we need a real co-
efficient which provides a suitable reflection of the disparity
between and an approximating model . The
Kullback–Leibler directed divergence is one such coefficient.

The Kullback–Leibler divergence between two parametric
densities and , with respect to is de-
fined as

(1)

where and the expectation
is taken with respect to .

The Kullback–Leibler divergence is one example of the
Ali–Silvey class of measures of divergence [17], which
are defined to be of the form

, where represents
the ratio , is a continuous convex func-
tion and is an increasing function. The Kullback–Leibler
divergence corresponds to and .

Since does not depend on , any ranking of the
candidate models according to would be identical
to ranking them according to or

(2)

Therefore, would provide a suitable measure of
a variant of Kullback–Leibler directed divergence between the
generating model and the fitted model . Yet,
evaluating is not possible, since doing so requires
the knowledge of .
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In [12], it was argued that is a biased es-
timator of and an asymptotic bias correction was
proposed, leading to [12]

AIC (3)

If we write

then, one can establish that

AIC

The alternate divergence provides extra informa-
tion that may be useful to take into account in model selection
problems. Therefore, what is needed, is a symmetric divergence
that can be asymptotically estimated to provide an information
theoretic criterion for model selection.

To address the symmetry problem, various solutions can be
considered. The weighted average, defined as

(4)

is the simplest solution to generate a symmetric divergence
for a particular value of . Indeed, the average of the Kull-
back–Leibler divergences which is symmetric is defined as

(5)

It corresponds to the particular case of (4) and equals
[14].

The coefficient is also an example of the
Ali–Silvey class of measures of divergence; it corresponds to

and .
Now, since does not depend on and by analogy

to (2), the basis for deriving AIC, any ranking of the candidate
models according to would be identical to ranking
them according to

(6)

Evaluating is not possible, since doing so re-
quires the knowledge of . However, an asymptotically unbi-
ased estimator can be derived.

Under the assumptions mentioned in the beginning of this
section, and the usual regularity conditions required to ensure
the consistency and asymptotic normality of the maximum-like-
lihood estimator , we have the following statistic with an ex-
pectation which is within of .

Proposition 1: The AIC criterion

AIC (7)

also satisfies

AIC

Proof: See Appendix I.
The AIC is also an asymptotically unbiased estimator of a

variant within a constant of the average of the Kullback–Leibler
divergences. Therefore, it provides information on the behavior
of , a term that is more sensitive to underfitting [13].

Other forms of weighted average can be imagined to create
symmetric divergences; for example, defined as

can also be used to generate a symmetric divergence. Indeed,
this mixture of and is a generalization of
the -divergence which is symmetric [14]

The coefficient is another example of the
Ali–Silvey class of measures of divergence, it corresponds to

and .
By analogy to (2), the basis of AIC, one can imagine ranking

the candidate models according to

(8)

Then, constitutes a basis for deriving a model
selection criterion.

Under the previous assumptions, an asymptotically unbiased
estimator within of can be derived.

Proposition 2: The KIC criterion introduced in [15]

KIC (9)

satisfy

KIC

Proof: Can easily be derived by following the same lines
of derivation of proposition 1 in Appendix I.

We should not expect that every reasonable mixture of the
directed and alternate Kullback–Leibler divergences to be of
the form . Other mixtures of the directed and alter-
nate Kullback–Leibler divergences that are not member of the
Ali–Silvey class can be constructed for a model selection pur-
pose. Two different mixtures are proposed in Section III.
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III. AIC CRITERION AND THE GEOMETRIC

AND HARMONIC MEANS

To address the symmetry problem of the Kullback–Leibler
divergence, we can consider different forms of mixture of the
directed and alternate Kullback–Leibler divergences or different
ways of averaging them. Naturally, we immediately think of the
geometric and harmonic means. Based on this, in what follows,
we define two new symmetric measures of divergence between
probabilities and derive their asymptotic estimates. These esti-
mators can be used as model selection criteria.

The geometric mean of and is defined
by

and it corresponds to the particular case of of the more
general mixture

Its weighted version is

As in Section II, since does not depend on
and by analogy to (2), any ranking of the candidate models
according to would be identical to ranking them
according to

(10)

Then, this coefficient measure can be used for model selection
within the limit of the derivation of a model selection criterion.
However, and as earlier, evaluating is not possible,
since doing so requires the knowledge of , but an asymptoti-
cally unbiased estimator can be derived.

Under previous assumptions, we have the following
statistic with an expectation which is within of

.
Proposition 3: The AIC criterion

AIC (11)

also satisfies

AIC

Proof: See Appendix II.
The harmonic mean of and is defined

by

By analogy to (2), any ranking of the candidate models ac-
cording to would be identical to ranking them ac-
cording to

(12)

This measure can also be used for model selection within the
limit of the derivation of a model selection criterion. Under pre-
vious assumptions, we have the following statistic with an ex-
pectation which is within of .

Proposition 4: The AIC criterion

AIC (13)

also satisfies

AIC

Proof: See Appendix III.
Therefore, in the dominant order sense the Kullback–Leibler

divergence, the average, geometric, and harmonic means of the
two Kullback–Leibler divergences are equivalent.

The geometric and harmonic means
are not members of the Ali–Silvey class of measures of di-
vergence, but because of their direct relationship to the Kull-
back–Leibler divergence, they do have its two distance proper-
ties plus the symmetric property as does the -divergence.

All of the aforementioned mixtures means can be considered
as particular cases of the one-parameter family of means, named
the -mean. This concept originates from information geom-
etry [18], which has a family of invariance structures ( -affine
connections together with the Fisher Riemannian metric) in the
manifold of probability distributions. The -mean of two posi-
tives numbers and is defined by

where is a constant that makes sure
is satisfied.

Let us introduce the -representation of a number by

when ; the limit of is . Then,
the -representation of the -mean of two numbers is the mean
of the -representation of respective numbers
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From this, we derive the special cases

The -mean is monotone with respect ,
, for . Therefore, the relation among the var-

ious symmetric mixtures of the Kullback–Leibler divergences
is

and

IV. EXAMPLE OF A NEW BIAS CORRECTED AIC

Based on one of the previous mentioned ranking functions, a
new bias correction to AIC is derived for univariate linear re-
gression model. The correction is of particular use when the
sample size is small or when the number of fitted parameters
is a moderate to large fraction of the sample size. The proposed
correction is different from

AIC

proposed in [16] and derived from . For linear uni-
variate regression models, the corrected criterion, called AIC ,
is an asymptotically exact unbiased estimator of ,
assuming the true model is correctly specified or overfitted.

As in [13], suppose that the generating model for the data and
the th candidate model are, respectively, given by

(14)

Here, is an observation vector, and are
noise vectors, and are parameter vectors, and
is an design matrix of full rank. The vector of param-
eters is , where , and the max-
imum-likelihood estimate of is and

. In this case, the total number
of parameter is .

It is also assumed (as in [12] and [16]) that the true model
is correctly specified or orverfitted by all the candidate models,
i.e., .

Proposition 5: Let

AIC

(15)

where is the digamma function. Then

AIC

Proof: See Appendix IV.
Using this approximation [13]

in (14), we obtain

AIC (16)

It is worth mentioning that asymptotically AIC will con-
verge to AIC.

V. SIMULATION RESULTS

In this example, we propose to compare the two univariate
corrected versions of AIC, i.e., AIC and AIC , and investi-
gate the effectiveness of AIC in estimating the different afore-
mentioned ranking functions. For this, we consider the classical
problem of fitting polynomial functions to a set of points over
a compact support. The motivation for studying this example is
that polynomials create a difficult model selection problem with
a marked tendency to overfitting, especially when the data set is
small. In addition, polynomials constitute an interesting class
of univariate linear models, for which there exist efficient tech-
niques for computing the best fit.

Two polynomials of order three and six with parameters
and

are used to generate eight simulation data sets. The sample sizes,
15 and 20 are used with each polynomial. The noise

levels 0 dB and 10 dB are used with the polynomial
of order three and 10 dB and 15 dB are used
with the polynomial of order six. The design points are equally
spaced over the interval with . Data are
made noisy by adding independent identically distributed (i.i.d.)
samples sampled from a zero mean Gaussian random variable
with variance adjusted to have the required value of

. Here

A Monte-Carlo simulation consisting of 1000 runs was con-
ducted. For each realization of the data set, a least squares al-
gorithm was used to fit candidate polynomials of degree 0 to
10. Table I gives a comparison of AIC, AIC , AIC , KIC, FPE



102 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

TABLE I
FREQUENCY OF THE MODEL ORDER SELECTED BY EACH CRITERION FOR 1000 REALIZATIONS

[8], and BIC [7] in terms of relative frequencies of the selected
model order.

The corrected versions AIC and AIC show clearly better
performances, followed by KIC or BIC depending on the data
set. The performances of AIC in comparison to AIC depend
also on the data set. This behavior is directly linked to the be-

havior of the ranking functions and
used in their derivations. We can also remark from these sim-
ulations that AIC underfit less than AIC when the polynomial
order equal six, due to the presence in of the addi-
tional term which measures model dissimilarity in a way which
is more sensitive to underfitting. This explains why the perfor-
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Fig. 1. For the third-order polynomial with n = 20 and snr = 10 dB: (a)
averages of AIC, AIC , and D (� ; �̂ ); and (b) averages of AIC, AIC , and
D (� ; �̂ ). The x-axis represents the model order “k.”

Fig. 2. I (� ; �̂ ), J (� ; �̂ ), G (� ; �̂ ), H (� ; �̂ ), and AIC for the
third-order polynomial with n = 100 and snr = 10 dB. The x-axis represents
the model order “k.”

mance of AIC is better in comparison to AIC in this partic-
ular case. Therefore, depending on the situation there will be
ranking functions that are more suited than others for the deriva-
tion of appropriate model selection criteria. Note also that no
single model selection criterion will always be better than an-
other. Certain criteria perform best for specific models types.

Fig. 1 provides some insight as to why AIC and AIC tend
to outperform AIC in selecting the correct order of the true
model. Consider the fourth simulation data set of Table I. Sim-
ulated values of AIC , , AIC ,

, and AIC are obtained by averaging
AIC , , AIC , , and AIC, respectively,
over the 1000 realizations. These average values are plotted
versus .

Figs. 2 and 3 are obtained with the two other simulation
data sets (as described in the figures). The different curves

Fig. 3. I (� ; �̂ ), J (� ; �̂ ), G (� ; �̂ ), H (� ; �̂ ), and AIC for the
third-order polynomial with n = 30 and snr = 10 dB. The x-axis represents
the model order “k.”

, (a particular case of the
weighted average), , and ,
which are plotted versus are obtained by averaging the exact
expression of these quantities over the 1000 replications. These
expressions can easily be derived in the linear case. We can
observe on the figure that all these divergences are minimized at

3. Note, as illustrated on Fig. 2, that AIC provides a good
estimate of a variant of these divergences for large . However,
as illustrated on Fig. 3, AIC is a negatively biased estimator of
the variant of these divergences for small , especially when
increases.

VI. CONCLUSION

This paper had an objective of searching for easily estimated
symmetric divergences based on the Kullback–Leibler diver-
gence that can be used to derive model criteria. The obtained
results suggest that symmetrizing the Kullback–Leibler diver-
gence may provide a foundation for the development of other
model selection criteria which can be preferable to that provided
by the Kullback–Leibler divergence. This motivates the need
to further explore the properties of , , and

as a measure of model disparity, as well as the need
to develop small sample estimator of their variant functions.

By symmetrizing the Kullback–Leibler divergence in dif-
ferent ways, different functions for ranking candidate models
can be constructed and thus different model selection criteria
derived. Each of these criteria will have properties that are
linked to the function from which it has been derived. Ob-
viously, other forms of symmetrizing the Kullback–Leibler
divergence different from those proposed in this paper can
be imagined; however, it is not evident that all possible sym-
metrizing operations will be useful for model selection.

The results derived in this paper provide support to the idea
affirming that in the dominant order sense, the Kullback–Leibler
divergence, the average, and the geometric and harmonic means
of Kullback–Leibler’s divergences are equivalent since all of
them can be estimated using the AIC criterion.
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As it can be seen in Section V, in settings where the sample
size is small and the candidate models consists of families which
are excessively overparameterized, the AIC criterion may ex-
hibit a negative bias in estimating the different variants of the
proposed divergences. In such cases, this criterion provides an
insufficient degree of bias correction for the larger fitted models;
as a result, it tends to underestimate the ranking function from
which it is derived. Recent work has led to successful small
sample refinements of the penalty terms of AIC [16], [19], [20]
and KIC [13], [21], [22]. Two types of refinements are used in
the literature. The first one is based on assuming a particular
form for candidate model families and using the characteristics
of this class of model families to derive more precise approx-
imation for the penalty term. The second refinement is based
on using bootstrap to approximation the bias adjustment. In
small applications where excessively overparameterized fami-
lies are candidates, AIC tends to underestimate and

. In future work, we expect to use such approaches
to develop new small sample refinements for the penalty term of
AIC to estimate more accurately and .

APPENDIX I

The following Taylor approximation results are used to ap-
proximate the expectation of within . Define

and

Thus, , , and denote, respectively, the
true, the expected, and the observed Fisher information matrix.

By expanding around , we have

where is between and and is . Usual regularity
conditions justify the expansion

(17)

From the second-order expansion of around and
the usual regularity conditions, we have

where is .

Then, from (1)

(18)

From the second-order expansion of around and
the usual regularity conditions, we have

where is .
Then

(19)

The result follows from the fact that under the usual regularity
conditions, the terms

and

converge to centrally random variables with degrees of
freedom. Thus, the expectation of each of these terms is within

of . Then

This concludes the proof.
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APPENDIX II

Using (17)–(19), the expectation of Geometric mean and
can be approximated as follows:

A first-order Taylor expansion of around (and as-
suming that is sufficiently smooth around ) gives

(20)

Using this and the approximation for
small , we have

where and are . This allows us to write

This concludes the proof.

APPENDIX III

Using (17)–(19), the expectation of harmonic mean and
can be approximated as follows:

Using (20) and the approximation for
small , we have

where ,
and

.
Then

This concludes the proof.

APPENDIX IV

From the model candidate (14), we have

Using this expression in (6) leads to

(21)
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We have the following results (see [13] for details):

and

Substituting these results in (21), we obtain

This concludes the proof.
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