
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
The Airport Gate Assignment Problem:

Mathematical Model and a Tabu Search Algorithm

Jiefeng Xu and Glenn Bailey

Delta Technology Inc., 1001 International Boulevard,

Atlanta, Georgia 30354-1801

Email: jiefeng.xu@delta-air.com, glenn.bailey@delta-air.com
Abstract

In this paper, we consider an Airport Gate Assign-

ment Problem that dynamically assigns airport gates

to scheduled
ights based on passengers' daily origin

and destination
ow data. The objective of the prob-

lem is to minimize the overall connection times that

passengers walk to catch their connection
ights. We

formulate this problem as a mixed 0-1 quadratic inte-

ger programming problem and then reformulate it as a

mixed 0-1 integer problem with a linear objective func-

tion and constraints. We design a simple tabu search

meta-heuristic to solve the problem. The algorithm ex-

ploits the special properties of di�erent types of neigh-

borhood moves, and create highly e�ective candidate

list strategies. We also address issues of tabu short

term memory, dynamic tabu tenure, aspiration rule,

and various intensi�cation and diversi�cation strate-

gies. Preliminary computational experiments are con-

ducted and the results are presented and analyzed.

1 Introduction

The airline industry has long been a fertile area for
applying optimization techniques. In this paper, we
consider an optimization problem that allows an air-
line company to dynamically assign existing airport
gates to its scheduled
ights based on passengers' daily
origin and destination (O&D) data. The objective of
this optimization is to minimize the overall connection
times required for passengers to catch their connec-
tion
ights. The Airport Gate Assignment Problem
(AGAP) can be described in detail as follows. Sup-
pose an airline company owns/leases a certain number
of gates in an airport, and hosts a certain number of

ights every day. Currently, assigning the
ights to
gates is static and it does not consider passenger con-
nection times between
ights. The AGAP is a planning
problem that can be solved at the beginning of every
0-7695-0981-9/01 $10
planning day. Since most passengers' O&D data are
available at that moment, the AGAP can determine
the feasible gate-
ight assignment such that the total
of passengers' connection times is minimized. For a
passenger who transfers to a connection
ight at the
airport, the connection time is readily de�ned as the
walking time required from the arrival gate of his/her
incoming
ight to the departure gate of his/her out-
going
ight. For a passenger whose destination is the
current airport, the connection time is de�ned as the
walking time required from his/her arrival gate to the
baggage claim area. For a passenger who originates at
the current airport, the connection time is accordingly
de�ned as the walking time required from the baggage
check-in area to the departure gate of his/her outgoing

ight. In the AGAP, the arrival time of the incoming

ight and the departure time of the outgoing
ight are
�xed due to the published
ight schedule. Each
ight
must be assigned to exactly one gate, and there should
be su�cient time for passengers boarding at the gate.

In addition to the increased customer service level
by minimizing the connection time, the AGAP may
achieve another associated bene�t for the company:
the total routing costs to transfer passengers' luggage
may be minimized via the optimization of the gate-

ight assignment. Despite these bene�ts in practice,
the AGAP received little attention from the operations
research community. To our best knowledge, there ex-
ists no prior research directly addressing the AGAP to
minimize the customer connection time.

This paper is organized as follows. We present the
mathematical formulation in the next section. We also
discuss the linearization of the quadratic model. In
Section 3 we describe a Tabu Search (TS) based heuris-
tic for the problem and examine several relevant issues
such as short term and long term memory, move selec-
tion, neighborhood structure, and candidate list strate-
gies. Section 4 reports computational results from a set
of carefully designed test problems, including compari-
.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
son with an exact approach. In the concluding section,
we summarize our methodology and �ndings.

2 Mathematical Formulation

In this section, we establish the mathematical models
for the AGAP. First we describe the following input
data required by the AGAP:

N : set of
ights (arrived at or) departed from the
airport during the planning day;

K: set of gates available at the airport;
ai : arrival time of
ight i;
di : departure time of
ight i;
ckl : connection time for passengers from arrival

gate k to departure gate l;
fij : the number of passengers transferring from

arrival
ight i to departure
ight j;
�i : average boarding time per passenger for

ight i.
� : bu�er time between the aircraft's arrival time

and the start time for passenger boarding.
� : bu�er time between the aircraft's departure

time and the next aircraft's arrival time at
the same gate.

M : a su�ciently large number.

Some special notes need to be made for the input
data. First, the gate setK contains a dummy gate (de-
noted as 0) which represents the entrance/exit areas
of the airport. Therefore, c0i represents the connec-
tion time from the airport entrance (or baggage check-
in counters) to departure gate i, and ci0 is the con-
nection time from gate i to the airport exit (or bag-
gage claim) area. Similarly, the
ight set N includes a
dummy
ight denoted as 0, which indicates the airport
itself. Therefore, fi0 represents the number of passen-
gers from arrival
ight i whose destination is the cur-
rent airport, and f0i is the number of passengers who
originates from the current airport and take departure

ight i. Accordingly, a0 is designated as the start time,
d0 is the end time of the planning day, and �0 is zero.

Second, for each departure
ight i there is an associ-
ated incoming
ight which arrives at the same gate im-
mediately before
ight i departs, with the assumption
that these two
ights use the same aircraft. Though
the arrival
ight may carry a di�erent
ight number, we
still denote it as
ight i in order to simplify the model
and to avoid an unnecessary proliferation of symbols
and subscripts. Thus, N only represents half of the
number of
ights, with each
ight in N denoting both
an incoming
ight and an outgoing
ight. Therefore,
ai stands for the arrival time of the arrival
ight i, and
0-7695-0981-9/01 $10.0
di indicates the departure time for the departure
ight.
Both incoming and outgoing
ights are assigned to the
same gate and use the same aircraft. In this regard,
fij represents the
ow from the incoming
ight i to
the outgoing
ight j. Furthermore,

P
i2N fij represent

the total number of passengers who will be on-broad
for
ight j.

Finally, the two bu�er times make sense in prac-
tice. The �rst bu�er time �, can be used for unboard-
ing passengers and crew members from the incoming

ight, for cleaning the cabin and supplementing the
supplies, and for boarding the crew members of the
departure
ight. The second bu�er time, �, can be
used for ground clearance to receive the next aircraft's
arrival.

We illustrate the AGAP using a mathematical for-
mulation with the following decision variables:

yik : a binary variable equal to 1 if and only if

ight i is assigned to gate k;

zijk : a binary variable equal to 1 if and only if
both
ights i and j are assigned to gate k
and
ight i immediately precedes
ight j;

ti : time the gate starts to open for boarding
for
ight i.

The mathematical formulation is as follows:
Model 1

Minimize
X
i;j2N

X
k;l2K

fijcklyikyjl (1)

subject to:

X
k2K

yik = 1; 8i 2 N; (2)

yik =
X
j2N

zijk ; 8i 2 N;

8k 2 K; (3)

yjk =
X
i2N

zijk ; 8j 2 N;

8k 2 K; (4)
ti � ai + �; 8i 2 N; (5)

ti � di � �i
X
j2N

fji; 8i 2 N; (6)

ti + �i
X
j2N

fji � tj + (1� zijk)M; 8i; j 2 N;

8k 2 K; (7)
aj + (1� zijk)M � di + �; 8i; j 2 N;

8k 2 K; (8)
yik; zijk 2 f0; 1g; 8i; j 2 N;

8k; l 2 K; (9)
ti � 0 8i 2 N: (10)

In this formulation, the objective function (1) seeks
to minimize the total connection times by passengers.
0 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Constraint (2) speci�es that every
ight must be as-
signed to one gate. Constraint (3) indicates that every

ight can have at most one
ight immediately followed
at the same gate. Constraint (4) indicates that every

ight can have at most one preceding
ight at the same
gate. Constraints (5) and (6) stipulate a gate must
open for boarding on a
ight during the time between
its arrival and departure, and also must allow su�-
cient time for handling the passenger boarding, which
is assumed to be proportional to the number of pas-
sengers going on board. Constraint (7) establishes the
precedence relationship for the binary variable zijk and
the time variables ti and tj , and is only e�ective when
zijk = 1. It demands that if
ight i is assigned immedi-
ately before
ight j at the same gate k, the gate must
open for
ight i earlier than for
ight j. Therefore, it
ensures each gate only serves one
ight at any particu-
lar time. Constraint (8) further states the aircraft can
only arrive at the gate when the previous
ight has
departed for certain time. Note that (5){(8) jointly
imply that ai + � + �i

P
j2N fji � di, which reveals a

relationship between the input data. Finally, we de�ne
the binary and nonnegative requirements for decision
variables in constraints (9) and (10).

The above-mentioned model is a mixed 0-1 integer
programming model with the quadratic objective func-
tion. We use a common approach to reformulate the
model into a mixed 0-1 integer problem with a linear
objective function and constraints (See [2],[6] and [13]).
First we introduce the binary variable xijkl to replace
the binary term yikyjl, so xijkl = 1 if and only if
ight
i is assigned to gate k and
ight j is assigned to gate l.
Therefore the Model 1 can be reformulated as follows.
Model 2

Minimize
X
i;j2N

X
k;l2K

fijcklxijkl (11)

subject to:

(2)� (10)
xijkl � yik; 8i; j 2 N;

8k; l 2 K (12)
xijkl � yjl; 8i; j 2 N;

8k; l 2 K (13)
yik + yjl � 1 � xijkl ; 8i; j 2 N;

8k; l 2 K; (14)
xijkl 2 f0; 1g; 8i; j 2 N;

8k; l 2 K; (15)

Constraints (12) and (13) state that a binary vari-
able xijkl can be equal to one if
ight i is assigned
to gate k (yik = 1) and
ight j is assigned to gate l

(yjl = 1). Constraint (14) further speci�es the neces-
sary condition that xijkl must be equal to one if yik = 1
and yjl = 1.
0-7695-0981-9/01 $10.
Both Models 1 and Model 2 are NP-hard, which im-
plies that there is no known algorithm for �nding the
optimal solution within a polynomial-bounded amount
of time. In practice, a major airline hub may handle
more than 750 daily
ights at more than 100 gates,
which in our formulation results in billions of binary
variables. Due to such a huge size, this model cannot
be handled by branch-and-bound-based MIP solvers
within a reasonable time bound. Thus, the design of
an e�cient heuristic becomes of paramount importance
and constitutes the key focus of this important appli-
cation.

3 A Tabu Search Algorithm

In this section we present a simple TS algorithm which
is specially designed for the AGAP. TS is a meta-
heuristic approach that is recognized as a very e�ec-
tive tool for many combinatorial optimization prob-
lems. The basic TS approach is to search for the opti-
mum solution with the assistance of an adaptive mem-
ory procedure that proceeds as follows. At each it-
eration, candidate neighborhood moves are evaluated,
which then lead from the current solution to a new
solution. Restrictions are imposed to classify certain
moves tabu and thus forbid (or discourage) their selec-
tion. Conventionally, a non-tabu move with the highest
evaluation is selected, although aspiration criteria per-
mit su�ciently attractive moves to be selected in spite
of their tabu status. The algorithm terminates after
a pre-de�ned number of iterations. A complete review
on TS can be found in [4]and [5].

The elementary TS form consists of a neighborhood
search and the use of recency-based short-term mem-
ory. We describe these components as well as enhance-
ments in the next several subsections.

3.1 Neighborhood Search Moves

A neighborhood search move is the operation that maps
one solution � to another solution �0. All solutions
that are \reachable" from solution � via a single move
form a neighborhood of �, denoted by N(�). The at-
tractiveness of a move from � to �0 can be examined
by calculating the cost (objective function value) im-
provement of �0 compared to that of �. Here we de-
velop three types of neighborhood moves that prevail
in the AGAP applications.

The �rst type of neighborhood move is called as In-
sert Move. It moves a single
ight to a gate other than
the one it currently assigns. We denote (i; k) ! (i; l)
as the insert which inserts
ight i from gate k to gate
00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
l. We denote the current solution as � and its corre-
sponding objective function value as f(�). The result-
ing solution of the move (i; k)! (i; l) is denoted as �0.
Therefore, the cost improvement of the Insert Move

(i; k)! l (denoted as �(i;k)!(i;l)) can be calculated as
follows:
�(i;k)!(i;l) = f(�0)� f(�)

=
X

p6=i;q 6=i

X
r;s2K

crsfpqy
0
pry

0
qs

+
X
p6=i

X
r;s2K

crsfpiy
0
pry

0
is +
X
q 6=i

X
r;s2K

crsfiqy
0
iry
0
qs

+
X
r;s2K

crsfiiy
0
iry
0
is �

X
p6=i;q 6=i

X
r;s2K

crsfpqypryqs

�
X
p6=i

X
r;s2K

crsfpiypryis �
X
q 6=i

X
r;s2K

crsfiqyir

�
X
r;s2K

crsfiiyiryis (16)

Since by assumption we have yik = 1; yir = 0 8r 6= k,
y0il = 1; y0ir = 0 8r 6= l and ypr = y0pr 8p 6= i, fii = 0,
and ckl = clk, then (16) becomes:

�(i;k)!(i;l) =
P

p6=i

P
r2K(crl � crk)fpiypr

+
X
q 6=i

X
s2K

(cls � cks)fiqyqs

=
P

p6=i

P
r2K(crl�crk)(fpi+fip)ypr (17)

In reality, for two distinct
ights i and j, fij and fji
are exclusive, that is, if fij > 0 then fji = 0, and vice
versa. Thus, denoting Fij = maxffij ; fjig, (17) can be
simpli�ed as

�(i;k)!(i;l) =
X
p6=i

X
r2K

(crl � crk)Fpiypr: (18)

Since (crl � crk)Fpi is independent of the gate assign-
ment and can be pre-calculated, so an Insert Move can
be evaluated in linear time at each iteration.

The second type of neighborhood move, which is de-
noted as Exchange I Move, is to exchange two
ights
and their gate assignment. Exchange I Move represents
a more complicated move. For Exchange I Move, we
have the following observations:

Observation 1: The Exchange I Move is infeasible for

the same-gate
ights.

For proof we assume there exists subscripts
i; j; k such that zijk = 1. By (5) and (6), we have
di � ti + �

P
j2N fji � ai + � > ai. By (8), we have

aj � di+� > ai. Therefore, i and j is not exchangable.
0-7695-0981-9/01 $10.0
Observation 2: An Exchange I Move can be viewed as

two Insert moves.

To illustrate this, we evaluate the cost improvement
of the Exchange I move. We denote the current so-
lution as � and its corresponding objective function
value as f(�). In �, we assume there exist two dis-
tinct
ights i and j, and two distinct gates k and l,
such that yik = 1 and yjl = 1. We consider the Ex-

change I Move for (i; k)() (j; l). We de�ne the space
H = p 2 N ; r 2 K and the space A = fp = i; r =
kg [fp = i; r = lg [fp = j; r = lg [fp = j; r = kg.
We denote that �A = H � A. The new solution after
(i; k)() (j; l), �0, can be constituted as follows:

y0pr =

�
ypr (p; r) 2 �A;
1� ypr (p; r) 2 A:

(19)

Then the cost improvement for the move
(i; k)() (j; l) can be calculated as

�(i;k)()(j;l) = f(�0)� f(�)

=
X
p;r2A

X
q;s2A

crsfpq �
X
p;r2A

X
q;s2A

crsfpqypr

+
X
p;r2 �A

X
q;s2A

crsfpqypr �
X
p;r2A

X
q;s2A

crsfpqyqs

�2
X
p;r2 �A

X
q;s2A

crsfpqypryqs +
X
p;r2A

X
q;s2 �A

crsfpqyqs

�2
X
p;r2A

X
q;s2 �A

crsfpqypryqs (20)

Noting that yil = 0; yik = 1; yjk = 0; yjl = 1,
ckl = clk; ckk = cll = 0, fii = fjj = 0, applying them
to (20) gives

�(i;k)()(j;l) =
X
p;r2 �A

(crl� crk)(fpi+ fip� fpj � fjp)ypr

=
X
p;r2 �A

(crl � crk)(Fpi � Fpj)ypr

= �(i;k)!(i;l)+�(j;l)!(j;k): (21)

Clearly, the move (i; k) () (j; l) can be viewed as
a composition of two Insert Moves (i; k) ! (i; l) and
(j; l)! (j; k). Therefore, an Exchange I Move can also
be evaluated in linear time at each iteration.

The third type of neighborhood move, denoted as
Exchange II Move, exchanges two
ight pairs in the
current assignment. More speci�cally, assuming there
exists two triples (i1, i2, k) and (j1, j2, l), such that
zi1i2k = 1 and zj1j2l = 1, the move exchanges the
ight
pair (i1; i2) to gate l, and the
ight pair (j1; j2) to gate
k. We denote the move as (i1; i2; k)() (j1; j2; l).
0 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Similarly, we denote A2 = fp = i1; r = kg [
fp = i1; r = lg [fp = i2; r = kg [fp = i1; r = lg [
fp = j1; r = lg [fp = j1; r = kg [fp = j2; r = lg [
fp = j2; r = kg. Again, we denote that �A2 = H � A2.
The new solution after (i1; i2; k)() (j1; j2; l), �

0, can
be constituted as

y0pr =

�
ypr (p; r) 2 �A2;
1� ypr (p; r) 2 A2:

(22)

Using a similar approach applied to (20), we con-
clude that the cost improvement of Exchange II Move

can be evaluated linearly. More speci�cally, we have
�(i1;i2;k)()(j1;j2;l)

=
X

p;r2 �A2

(crk � crl)(Fpj1 + Fpj2 � Fpi1 � Fpi2)ypr

= �(i1;k)()(j1;l) +�(i2;k)()(j2;l) (23)

Similarly, an Exchange II Move can be viewed as
a composition of two Exchange I moves, and its eval-
uation can be acquired by the evaluations of its two
partial Exchange I moves.

3.2 Tabu Short-Term Memory

The elementary tabu search procedure innovatively
incorporates the search history (memory) by impos-
ing tabu restrictions to prevent revisiting previous so-
lutions, thus avoiding being trapped into local op-
tima. More speci�cally, it forbids the solution attribute
changes recorded in the recency-memory to be reversed
back to their previous settings. Tabu restrictions often
operate through short term memory, which records the
most recent changes of selected solution attributes. By
short term memory, a certain TS restriction can only
be valid for a limited time, and is referred to as tabu

tenure for a move. Therefore, once a move is made we
forbid those future moves which would reverse the at-
tribute changes of that move for t iterations, where t
is the value of the tabu tenure determined right after
the move is made.

For the AGAP, the short term memory can
be e�ciently implemented as follows. We main-
tain the three lists tabu(); tabuI() and tabuII()
for the three corresponding moves, and denote
tabu((i; k) ! (i; l)), tabuI((i; k)() (j; l)) and
tabuII((i1; i2; k)() (j1; j2; l)) to indicate the future
iteration values governing the duration that will forbid
the reversal of the expressed Insert, Exchange I, or
Exchange II moves. Initially, all values of the elements
in these three lists are set to zero. Letting iter be the
current iteration counter, then the TS restrictions are:
0-7695-0981-9/01 $10.0
tabu((i; k) ! (i; l)) = iter + tabu tenure (for the
Insert move of (i; k) ! (i; l), to prevent the move of
(i; l)! (i; k)),
tabuI((i; k) () (j; l)) = iter + tabu tenure (for the
ExchangeI move of (i; k) () (j; l), to prevent the
move of (j; k)() (i; l)),
tabuII((i1; i2; k) () (j1; j2; l)) = iter + tabu tenure

(for the ExchangeII move of (i1; i2; k) () (j1; j2; l),
to prevent the move of (i1; i2; l)() (j1; j2; k)).

As a result, it is easy to test if the TS restrictions
are in e�ect. The TS restrictions are valid if and only
if iter � tabu((i; k) ! (i; l)) for the candidate Insert

move of (i; k)! (i; l), or iter � tabuI((i; k)() (j; l))
for the candidate Exchange I move of (i; k) () (j; l),
or iter � tabuII((i1; i2; k)() (j1; j2; l)) for candidate
Exchange II move of (i1; i2; k)() (j1; j2; l)).

We employ the dynamic rule to select the value
of tabu tenure at each iteration uniformly within a
pre-de�ned interval. This helps to signi�cantly di-
minish the possibility of cycling during the search.
We also use di�erent tabu tenure intervals for dif-
ferent neighborhood moves. For example, the values
of tabu tenure used for tabuI((i; k) () (j; l)) and
tabuII((i1; i2; k)() (j1; j2; l)) could be di�erent. Al-
though there exists a more complicated option called
reactive tabu search to systematically alter the value
of tabu tenure as proposed by [1], we adhere to the
dynamic tabu tenure for its simplicity and e�ective-
ness demonstrated in various TS applications (See
[7],[8],[9],[11] and [12]).

In TS applications, the tabu restrictions can be
overridden if the candidate move under consideration
is \good enough". The rule to determine whether to ig-
nore the tabu restriction is called aspiration criterion.
In the AGAP, we apply the literature's standard aspi-
ration criterion, which is to remove the TS restrictions
of a move if the move would lead to a solution better
than the best solution obtained so far.

Below we outline a general framework of the short
termmemory based tabu search heuristic for the AGAP.
Let max iter be the maximum iteration number al-
lowed for the search. All other notations remain the
same as previously de�ned.

Step 0 (Initialization).
Generate a starting solution � now; set the cur-
rent best known solution � best as � best = � now.
Initialize all tabu, tabuI and tabuII memory as
0. Set ietr = 0.

Step 1 (Termination Conditions).
If iter � max iter, terminate with � best. Oth-
erwise, go to Step 2.
0 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Step 2 (Move Selection).

Determine the type of neighborhood move
used at the current iteration. Generate
the speci�ed neighborhood set of � now,
N(� now). For each candidate solution
� trial 2 N(� now), evaluate f(� trial). If
9� trial such that f(� trial) < f(� best), then
select it as � next = � trial. Otherwise, select
� next = min� trial2N(� now) f(� trial) such
that iter � tabu(� now ! � trial) if the move
type is Insert, or iter � tabuI(� now ! � trial)
if the move type is Exchange I, or
iter � tabuII(� now ! � trial) if the move
type is Exchange II.

Step 3 (Update).
Update the tabu memory as follows:
tabu(� now ! � next) = iter + U(a1; b1) for
move type Insert.
tabuI(� now ! � next) = iter + U(a2; b2) for
move type Exchange I .
tabuII(� now ! � next) = iter + U(a3; b3) for
move type Exchange II .

where U(a; b) represents a number gener-
ated randomly between the two bounds a

and b. a1 and b1 are pre-de�ned bounds for
Insert moves, a2 and b2 are bounds for Ex-

change I moves, and a3 and b3 are bounds
for Exchange II moves. Then we update
� now = � next. If f(� now) < f(� best), then
� best = � now. Finally, we increase iteration
counter as iter = iter+1 and go back to Step 1.

As pointed out by many researchers, the simple el-
ementary Tabu Search often produces high quality so-
lutions for a range of combinatorial optimization prob-
lems. However, it is now widely recognized that the
simple TS algorithm can be e�ectively enhanced by
including advanced strategies such as candidate list
strategy, and intensi�cation and diversi�cation strat-
egy. Next we describe these components.

3.3 Intensi�cation and Diversi�cation

Strategies

Intensi�cation and diversi�cation may often improve
the power of a meta-heuristic search method. Intensi-
�cation will search one speci�c region in the solution
space more thoroughly, while diversi�cation guides the
search to some regions which have received less atten-
tion in the search history. In this paper, we develop a
0-7695-0981-9/01 $10.0
simple diversi�cation strategy based on an oscillation
mechanism between di�erent neighborhood moves.

As described in 3.1, we employ three di�erent types
of neighborhood moves. The �rst type of move, the In-
sert move, will change single
ight's gate assignment.
The Exchange I move will exchange two
ights' gate
assignments, and the Exchange II move will bring even
more changes to the current assignment. Therefore,
these moves possess di�erent diversi�cation impact on
the search process. More speci�cally, executing an Ex-

change II move diversi�es the search more than execut-
ing an Exchange I move, and executing an Exchange I

move makes more diversi�cation e�ect than an Insert

move.
Due to these various diversi�cation impacts by our

neighborhood moves, we design an oscillation mecha-
nism to guide the search to achieve more diversi�cation
under certain situations. First, we apply the di�erent
neighborhood moves at di�erent frequency. We execute
the Insert moves more often than the other two moves
to take advantage of its intensi�cation characteristics.
The Exchange I and Exchange II moves are executed
less frequently on a periodical basis. Therefore, they
may break potential impasse by directing the search to
more diversi�ed regions. Next, we execute Exchange

I and Exchange II move for some certain situations
which require more diversi�cation. For example, if the
current solution cannot make a feasible Insert move,
or the search shows no improvement for a speci�ed pe-
riod of time, we will execute an Exchange I move or
Exchange II move.

3.4 Candidate List Strategies

Candidate list strategies prevail in most TS applica-
tions and are critical to the e�ciency of TS algorithms.
The purpose of the candidate list is to isolate a subset
of promising neighborhood moves (called candidates)
for evaluation. The move is selected within these can-
didate evaluations. Candidate list strategies can also
produce an intensi�cation e�ect that could improve the
overall performance of TS. In this application, we im-
plement candidate list strategy based on the feasibility
measure of the neighborhood moves.

Consider an Insert move (i; k)! (i; l), and assume
that
ight i will be inserted between
ight p and q at
gate l. By (5){(8), the necessary conditions for this
move are ai > dp + � and di < aq � �. Based on these
conditions, we can build a candidate list by enlisting
the gates which can accept the Insertmove with
ight i.
After a move, most candidate lists remain unchanged,
but those who are involved with the a�ected gate-
ight
assignment are altered by that move. Similarly, can-
0 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
didate list strategies can also be applied to Exchange

I and Exchange II moves by including pre-determined
feasible moves in the list and updating the partial list
after a move is selected and executed.

The feasibility constraints of the neighborhood
moves may be relaxed to a moderate degree to al-
low moves which lead to infeasible solutions. This is
based on the conjecture that there exists infeasible so-
lution regions between feasible solution regions in the
search space. Though currently not implemented, our
candidate list strategy can be readily adapted to this
controlled feasibility violation and therefore provide a
bridge for traversing from one feasible solution region
to the other.

Furthermore, our candidate list strategy is implic-
itly implemented to avoid evaluating moves that were
previously evaluated. For example, for each type of
neighborhood moves, since only a portion of the gate-

ight con�guration has been changed for each iteration,
we can save the move evaluations that are not a�ected
in the last iteration and use the evaluations from the
current iteration. This implicit candidate list strategy
signi�cantly increases the e�ciency of our algorithm.

4 Computational Results

We conduct preliminary computational experiments to
verify and validate our AGAP model and TS heuristic.
In the next few subsections, we describe the test prob-
lem design and parameter settings for our TS heuris-
tics. We report computational results on these test
problems and provide analysis.

4.1 Test Problem Design

We designed two sets of test problems. The �rst set
of test problems provides a test platform to validate
the objective of the AGAP model. To simulate the
current static gate assignment operation, we generate
a set of feasible gate assignments with various sizes of

ights and gates. We then randomly generate the pas-
sengers' O&D data for a certain number of work days
for each known gate assignment. We �rst calculate the
total passengers' connection times (1) by the current
static gate assignment. Then, for each working day
we solve the corresponding AGAP problem using our
TS heuristic, and calculate the same objective function
value over the new assignment. Finally, we compare
the results from both the static assignment and the
dynamic optimization model to validate the economic
signi�cance of our dynamic AGAP model.

More speci�cally, the �rst set of test problems are
generated as follows. We generate 7 test problems with
0-7695-0981-9/01 $10.0
up to 50 gates. For each gate we assign 8
ights. The
(n�m) column in Table 1 lists the size for each prob-
lem where n and m represent the number of
ights and
the number of gates respectively. The arrival time of

ight i, ai, is randomly generated within the interval
[90 � (k � 1) � 5; 90 � (k � 1) + 5], where
ight i is
the kth
ight assigned to the gate during the day. We
then set the departure time di to ai + U(55; 65). The
two bu�er times, � and �, are set to 15 and 5 respec-
tively. To better simulate the gate connection time in
practice, we arrange the gates equally into two parallel
terminals whose layout is illustrated in Figure 1. The
connection time from one gate to its adjacent gate on
the same terminal is 1 minute, and it takes 3 minutes
to walk between the two closest gates at the di�erent
terminals, e.g., gate 1 of terminal A and gate 1 of ter-
minal B. Furthermore, the airport entrance/exit is 5
minutes apart from the closet gates (Gate 1) of both
terminals.

.

.

Terminal B

Entrance/Exit

Terminal A

Gate 1 Gate 2

Gate 1 Gate 2

Figure 1: Gate Layout for First Type of Test Problems

We generate the passenger's O&D data as follows.
The passenger
ow from
ight i to
ight j, fij , is gen-
erated between the interval [1,10] if ai + � < dj , and
fij is set to 0 if ai + � >= dj . The number of passen-
gers for
ight i whose origins are the current airport,
f0i, is uniformly generated from [6; 60]. Similarly, the
number of passengers from
ight i whose destinations
are the current airport, is uniformly generated from
the same interval [6; 60]. The average boarding time
per passenger, �i, is randomly generated from the in-
terval [0:5; 1:0]. After all these data are generated, we
check the consistency of the input data. If the condi-
tion ai+�+�i �

P
j2N fji <= di is violated, we reduce

the value of �i to (di � 5 � ai � �)=
P

j2N fji. For
each test problem, we generate the passenger's O&D
data for �ve consecutive working days so that we can
validate the bene�ts of our dynamic assignment model
over the static assignment model.

We devise the second set of test problems to show
the performance of our TS heuristic. Since our AGAP
study is the �rst known research on this problem and
there are no other algorithms available, we compare
our heuristic with exact methods. Since the model
0 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
contains a huge number of binary variables, the size
of the instances that can be solved by exact methods is
very limited. Subsequently we show that a MIP-based
exact method can only solve the AGAP with up to 20

ights and 5 gates, which is trivial for our TS heuristic.

We generate 10 instances for the second set of test
problems. The sizes of these instances are speci�ed in
the (n �m) column in Table 2. Unlike the �rst set of
test problems which start with a feasible gate assign-
ment, we generate the
ights' arrival and departure
time randomly. First we generate ai = U(0; 900), then
we set di = ai+U(45; 60). The passengers' O&D data,
fij , are generated in the same way as in the �rst test
set, but we only produce data for one working day for
each problem. Again, �i is generated and adjusted as
described in the �rst test set. To calculate the connec-
tion time between two gates, we �rst obtain the two co-
ordinates xi = U(0; 10) and yi = U(0; 2) for every gate
i, then we calculate cij = jxi�xj j+ jyij+ jyj j where jaj
represents the absolute value of number a. Since this
set of test problems are generated more randomly, some
instances may not have feasible solutions. We aban-
don those infeasible problems identi�ed by the exact
method (as described subsequently), and re-generate
the problems until feasible solutions are found.

We realize that the computational experiments we
currently undertake are merely preliminary and by no
means su�cient. Additional simulated data with larger
sizes as well as actual operational data from real world
are necessary to further test our heuristic. This will
become one of the focuses of our future research on the
AGAP.

4.2 Parameter Settings for TS

Heuristic

Our TS heuristic requires a few parameters which are
described subsequently. Note that the parameters of
our TS approach are set arbitrarily or by common sense
in this paper. This does indicate the potentials for fu-
ture improvement of our TS heuristic by systematically
�ne-tuning these parameters using statistical tests, as
shown in [10].

Our TS heuristic starts with iteration 1 and termi-
nates at the iteration number which equals 40m� 500
where m represents the number of gates. The tabu
tenure is uniformly generated within the interval [2,5]
for Insert moves, and [3,7] for Exchange I moves,
and [4,8] for Exchange II moves. Di�erent neighbor-
hood moves are evaluated and executed at di�erent fre-
quency. The Insert move is the primary type of moves.
It is evaluated and executed at each iteration unless the
following conditions speci�ed for the other two neigh-
0-7695-0981-9/01 $10.0
borhood moves are satis�ed. If the iteration counter
hits the multiple of seven, e.g., 7, 14, 21, ..., we then
evaluate and execute Exchange II moves at the current
iteration. If the iteration counter hits the multiple of
�ve (e.g., 5, 10, ...), we then evaluate and execute Ex-

change I moves at the current iteration. In addition,
if an Insert move evaluation does not produce a legiti-
mate (Insert) move, we switch to an Exchange I move
at the next iteration. Similarly, if an Exchange I move
evaluation does not produce a legitimate (Exchange I)
move, we switch to an Exchange II move at the next it-
eration. If the number of iterations that the search does
not improve the best solution exceeds 50, we switch to
Exchange I or Exchange II moves arbitrarily for the
current iteration.

4.3 Results and Analysis

We code our TS heuristic in C++ and compile it with
aCC (ansi C++) compiler on an HP D380 workstation.
We present our computational results on the two sets
of test problems as follows. First, we show the results
from the �rst set of test problems in Table 1.

Problem Static TS Savings CPU
(n�m) (min.) Max (%) Min (%) Total (%) (sec.)

160 � 20 3180239 17.13 12.32 14.21 2.9

200 � 25 5756391 26.47 19.34 21.40 8.0

240 � 30 9471432 27.89 22.71 24.99 18.98

280 � 35 14510099 29.53 26.24 27.57 35.86

320 � 40 20955371 29.35 26.06 27.67 65.064

360 � 45 29247456 30.52 23.56 27.77 102.3

400 � 50 39362349 31.10 26.50 29.29 154.81

Average | | | 24.70

Table 1: Results on First Set of Test Problems

In Table 1, we list the problem dimension in n�m
column. The total passengers' connection times over
the �ve consecutive working days under the current
static assignment operation are presented in Static col-
umn. To show the savings achieved by our TS heuris-
tic, we in turn list the maximum, minimum and total
saving percentages among the �ve working days. Fi-
nally, we report the average CPU time required for our
heuristic to solve a daily AGAP problem with the spec-
i�ed size. Table 1 demonstrates undoubted advantage
of our TS heuristic over the current static assignment.
The average saving is 24.70% for all (35) problem in-
stances. In addition, the savings are consistent over the
�ve working days, and our heuristic uses very reason-
able CPU times to solve the problem. The overall solid
performance and signi�cant savings give our heuristic
a high promise as an e�ective practical tool for solving
the AGAP problem.

In the second test set, we compare the performance
of our heuristic with the exact method. We use CPLEX
6.0, a cutting-edge software for solving the MIP prob-
0 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
lem using branch and bound mechanism, to solve the
0-1 mixed formulation as speci�ed by Model 2. Since
this set of test problems have much smaller sizes, we
slightly modify our TS heuristic to allow it to termi-
nate early (e.g., at iteration 100). As pointed out pre-
viously, this set of test problems are generated more
randomly. Unlike the �rst set of problems, there is
no obvious feasible assignment which can be served
as an initial solution. Therefore we start with an ar-
bitrary assignment which may be infeasible. To ad-
dress this, we calculate the infeasibility measure (e.g.,P

i;j;kmaxf0; di+�� ajg 8i; j; k such that zijk = 1)
of each move, multiplied by 10, and add it as a penalty
to the move evaluation. Driven by this penalty, the
search quickly yields feasible solutions. The compar-
isons are presented in Table 2 where the objective val-
ues and CPU times of both methods are reported.

Problem Size CPLEX TS Solution
No. (n�m) Cost CPU (sec.) Cost CPU (sec.)

1 12 � 3 11275 105.48 11275 0

2 12 � 3 2793 4.94 2793 0

3 12 � 3 8434 7.08 8434 0

4 12 � 3 6250 7.88 6250 0

5 15 � 3 19529 618.74 19529 0

6 15 � 3 11025 294.18 11025 0

7 15 � 3 9804 43.11 9804 0

8 15 � 3 10875 44.31 10875 0

9 20 � 5 18958 122761.37 18958 0.01

10 20 � 5 19228 132776.56 19228 0.01

Table 2: Results on Second Set of Test Problem

Table 2 clearly shows that the branch-and-bound
based exact method is impractical to solve the AGAP
problem. The solution times required by CPLEX in-
crease exponentially even for the indeed trivial prob-
lems. In contrast, our TS heuristic yields optimal solu-
tions for all problem instance within negligible times.

5 Conclusions

In this paper, we consider an Airport Gate Assign-
ment Problem that dynamically assigns airport gates
to scheduled
ights based on passengers' O&D
ow
data. The objective is to minimize the overall connec-
tion times that passengers walk to catch the connection

ights. We �rst formulate this problem as a mixed 0-1
quadratic integer programming problem, then we re-
formulate it as a mixed 0-1 integer problem with a lin-
ear objective function and constraints. We develop a
tabu search based heuristic for the AGAP problem that
employs a standard version of short term memory, dy-
namic tabu tenure and aspiration criterion. We further
enhance the heuristic by incorporating some highly ef-
fective candidate list strategies and intensi�cation and
diversi�cation strategies.

We conduct two preliminary tests. First, we show
0-7695-0981-9/01 $10.0
that our TS heuristic can e�ectively achieve signi�cant
savings on passengers' connection time compared with
the static gate assignment in current airline operation.
The average saving for seven test problems with up to
400
ights and 50 gates over �ve consecutive working
days is 24.70%. Then we show that the our heuristic
yields optimal solutions for all instances that could be
solved by an MIP-based exact method, while requiring
only a fraction of the solution time.

Future improvements of our TS approach are antic-
ipated to result by including frequency-based long term
memory functions, and by using more re�ned candidate
list strategies and other intensi�cation and diversi�ca-
tion strategies. Our model should incorporate various
practical constraints and re�ned objective functions.
Finally, the current AGAP model and algorithm is de-
vised for the planning problem. To be a successful im-
plementation in real world, our model and algorithm
must be extended to handle the real-time gate assign-
ment by patching the disrupted assigment caused by
operations such as
ight delays and cancellations.

Reference

1. Battiti, R. and G. Tecchiolli (1994), The Reactive
Tabu Search, ORSA Journal on Computing, 6, 126.

2. Dantzig, G.B. (1963), Linear Programming and Ex-

tensions, Princeton University Press, Princeton.

3. Glover, F. (1994), Unnoticed Ways to Improve Non-
linear Integer Programming Formulations, Working

Paper, School of Business, University of Colorado,
Boulder, CO80309.

4. Glover, F. (1996), Tabu Search and Adaptive Mem-
ory Programming { Advances, Applications and Chal-
lenges, in: Interfaces in Computer Science and Opera-

tions Research, Barr, Helgason and Kennington, eds.,
Kluwer Academic Publishers, 1-75.

5. Glover, F. and M. Laguna(1997),Tabu Search,
Kluwer Academic Publishers.

6. Glover, F. and R.E.D. Woolsey (1974), Fur-
ther Reduction of Zero-One Polynomial Programming
Problems to Zero-One Linear Programming Prob-
lems,Operations Research, Vol. 22, No.1.

7. Xu, J., S. Y. Chiu and F. Glover (1996a) Using
Tabu Search to Solve the steiner Tree-Star Problem
in Telecommunications Network Design, Telecommu-

nication Systems, 6, 117-125.

8. Xu, J., S. Y. Chiu and F. Glover (1996b), Prob-
abilistic Tabu Search for Telecommunications Net-
work Design, Combinatorial Optimization: Theory

and Practice, Vol. 1, No. 1, 69-94.

9. Xu, J., S. Y. Chiu and F. Glover (1997), Tabu
Search for Dynamic Routing Communications Net-
work Design, Telecommunication Systems, 8, 55-77.
0 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
10. Xu, J., S. Y. Chiu and F. Glover (1998). Fine-
Tuning a Tabu Search Algorithm with Statistical
Tests, International Transactions in Operational Re-

search Vol. 5, No. 3,233-244.

11. Xu, J., S. Y. Chiu and F. Glover (1999),Opti-
mizing a Ring-Based Private Line Telecommunication
Network Using Tabu Search, Management Science,
Vol. 45, No. 3, 330-345.

12. Xu, J. and J. P. Kelly (1996), A New Network Flow-
Based Tabu Search Heuristic for the Vehicle Routing
Problem, Transportation Science, 30, 4, 379-393.

13. Zangwill, W.I. (1965), Media Selection by Deci-
sion Programming, Journal of Advertising Research,
Vol.5, No.3.
0-7695-0981-9/01 $10.00 (c) 2001 IEEE 10

