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Abstract Using a systematic approach to evaluate Fredholm determinants numerically, we
provide convincing evidence that the Airy1-process, arising as a limit law in stochastic sur-
face growth, is not the limit law for the evolution of the largest eigenvalue in GOE matrix
diffusion.

Keywords Random matrix theory · Stochastic surface growth · Airy processes · Matrix
diffusion

1 Introduction

One of the unsolved problems in random matrix theory is to understand the law for the
largest eigenvalue in GOE matrix diffusion. Let M(t) be a matrix-valued stationary process
on real symmetric matrices of size N × N satisfying: (i) the one-time distribution of M(t)

is given by the Gaussian Orthogonal Ensemble (GOE), (ii) the (independent) entries of
M(t) are independent stationary Ornstein-Uhlenbeck processes in time. The correspond-
ing process for the ordered eigenvalues λN,j (t), j = 1, . . . ,N is Dyson’s Brownian motion
with β = 1. The stationary distribution of the largest eigenvalue, λN,N(t), can be expressed
fairly explicitly, and its limiting distribution, under proper rescaling as N → ∞, is the GOE
Tracy-Widom distribution [15]. However, no simple expression for the joint distribution of
the largest eigenvalue at two different times is known. To be specific, one can ask for the
covariance of the largest eigenvalue Cov(λN,N (t), λN,N (0)) and its asymptotic behavior as
N → ∞.
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For the related case of GUE matrix diffusion, i.e., when M(t) is a hermitian matrix and
the stationary distribution is given by the Gaussian Unitary Ensemble (GUE), the corre-
sponding question is answered. In this case the law for the eigenvalues is given by Dyson’s
Brownian motion with β = 2 and the limiting process of the properly rescaled largest eigen-
value is the Airy process. This process first arose in the context of one-dimensional stochas-
tic surface growth with curved macroscopic shape [13] for the so-called polynuclear growth
(PNG) model.

This raised the question, whether the limit process of the largest eigenvalue in GOE
matrix diffusion can also be obtained from a growth process. A strong candidate was one-
dimensional growth starting from a flat substrate, since in this case the limiting one-point
distribution is the same as for GOE matrix diffusion [12]. This correspondence was partially
extended to a multilayer version of flat growth with non-intersecting height lines. It was
shown in [7] that the point process of the multilayer at a fixed position and the point process
of the GOE ensemble at the edge of the spectrum have the same asymptotic law.

The analogue of the Airy process for flat growth was discovered by Sasamoto in a growth
model related to PNG [14]. Since its defining kernel at equal times is, in a certain sense, the
square root of the standard Airy kernel [9], it was baptized the “Airy1 process”. Accordingly,
for better distinction, we call the standard Airy process “Airy2 process” in the rest of the
paper.

In [4] two conjectures have been formulated. The first predicted that the Airy1 process is
also the limit process for the PNG model with flat initial conditions, which subsequently has
been proven in [5]. The second claimed that the Airy1 process is also the limit of the largest
eigenvalue in GOE matrix diffusion (β = 1 Dyson’s Brownian motion).

In this paper we show that the second conjecture does not hold. To this end we compare
the two-point functions of the Airy1 process and of the largest eigenvalue in GOE matrix
diffusion for different matrix sizes.

The joint distribution functions for the Airy processes are given in terms of Fredholm
determinants of integral operators. To evaluate these Fredholm determinants we employ
a numerical scheme, recently developed by one of the authors [2], which in itself is of
general interest. For matrix diffusion we use straightforward Monte-Carlo simulations on
large matrices.

The comparison shows that the correlation function for GOE matrix diffusion differs, in
the limit of large matrices, from the one for Airy1. In contrast, in the case of GUE matrix dif-
fusion, the corresponding numerical calculations perfectly illustrate the known convergence
to the Airy2 process.

2 Polynuclear Growth Model

In this section we present the polynuclear growth model in 1+1 dimensions and give known
results relevant for the discussion. We refer to the original papers for more details.

2.1 The Model and Its Multilayer Extension

We briefly define the polynuclear growth (PNG) model on a one-dimensional substrate.
At time t , the surface is described by an integer-valued height function x �→ h(x, t) ∈ Z,
x ∈ R, t ∈ R+, with steps of size 1, which is taken to be upper semicontinuous, i.e.,
limx→x0 h(x, t) ≤ h(x0, t) for all x0, t . Thus the surface consists of up-steps (��) and down-
steps (��). The dynamics of these steps has a deterministic and a stochastic part:
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(i) up- (down-) steps move to the left (right) with unit speed. When a down-step and an
up-step collide they simply disappear.

(ii) pairs of up- and down- steps at the same point (spikes) are produced by random nu-
cleation events with some given intensity. The up- and down-steps of the spikes then
spread out with unit speed according to (i).

The multilayer extension of the PNG model [13] is the following. Instead of a single
height function h(x, t) we have a set of height functions {h�(x, t), � ≤ 0}, with the initial
condition h�(x,0) = �, for all x ∈ R. The dynamics of h0(x, t) is the same as for the original
h(x, t). For the remaining lines (i) applies as for h0(x, t). Rule (ii) is modified insofar, that
for h�(x, t), � ≤ −1, nucleation events are not produced at random, but whenever there is a
collision of a pair of steps in level � + 1 at (x, t), a spike is produced in level � at (x, t). By
construction the lines do not intersect and one associates an (extended) point process η on
R × Z, by

η(x, j) =
{

1, h�(x, t) = j for some � ≤ 0,

0, otherwise.
(2.1)

2.2 The PNG Droplet

Consider a flat initial substrate h(x,0) = 0, x ∈ R. The PNG droplet is obtained when the
nucleations form a Poisson point process in space-time with intensity ρ(x, t) = 2 for |x| ≤ t

and ρ(x, t) = 0 otherwise. For large growth time t , the interface has the shape of a droplet,
namely the deterministic limit,

hma(ξ) := lim
t→∞ t−1h(ξ t, t) = 2

√
1 − ξ 21(|ξ | ≤ 1). (2.2)

The fluctuations of the height function grow as t1/3 and the correlation length as t2/3. There-
fore, the edge scaling of the (multilayer) height functions around the origin, x = 0, is given
by

h
droplet
� (u, t) := h�(ut2/3) − thma(ut−1/3)

t1/3
. (2.3)

For the PNG droplet, the point process associated to the multilayer is determinantal. More-
over, rescaled as in (2.3), it converges in the large t limit to the Airy field [13], defined by
the n-point correlation functions

ρ(n)(u1, s1; . . . ;un, sn) = det(KA2(ui, si;uj , sj ))1≤i,j≤n, (2.4)

where

KA2(u, s;u′, s ′) =
{∫ ∞

0 dλe(u′−u)λAi(s + λ)Ai(s ′ + λ), u′ ≤ u,

− ∫ 0
−∞ dλe(u′−u)λAi(s + λ)Ai(s ′ + λ), u′ > u.

(2.5)

Denote by A2(u) the highest point of the Airy field at position u. It can be seen as a
process u �→ A2(u) and it is called the Airy2 process. The convergence of the extended
point process to the Airy field implies in particular that [13]

lim
t→∞h

droplet
0 (u, t) = A2(u). (2.6)
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The joint distributions of the Airy2 process are given by Fredholm determinants: for any
given u1 < u2 < · · · < um, and s1, . . . , sm ∈ R,

P

(
m⋂

k=1

{A2(uk) ≤ sk}
)

= det(1 − χsKA2χs)L2({u1,...,um}×R), (2.7)

where χs(uk, x) = 1(x > sk). This expression allows to determine some properties of the
covariance

g2(u) := Cov(A2(u), A2(0)), (2.8)

namely

g2(0) = Var(A2(0)) = 0.81320 . . . , g′
2(0) = −1, (2.9)

and the asymptotics for large u [1, 16],

g2(u) = 1

u2
+ c

u4
+ O(u−6), (2.10)

with the constant c = −3.542 . . . , evaluated numerically from an explicit expression in terms
of the Hastings-McLeod solution of Painlevé II [2].

2.3 The Flat PNG

Consider a flat initial substrate h(x,0) = 0, x ∈ R, and run the PNG dynamics with con-
stant nucleation intensity, say ρ(x, t) = 2 for all x ∈ R, t ≥ 0. Then the limit shape is flat,
hma(ξ) = 2. Thus the edge scaling is

hflat
� (u, t) := h�(ut2/3) − 2t

t1/3
. (2.11)

For the flat PNG, the correlation structure of the multilayer version is not known, but a
few results are available.

(a) In the large time limit the point process corresponding to (2.11) for a fixed value of u

converges to a Pfaffian point process [7] whose n-point correlation functions are given by

ρ(n)(s1, . . . , sn) = 22n/3Pf(GGOE(22/3si;22/3sj ))1≤i,j≤n. (2.12)

GGOE is a 2 × 2 matrix kernel (for an explicit expression see, e.g. (2.9) in [7]) and Pf is
the Pfaffian (Pf(A) = √

det(A) for an antisymmetric matrix A). This kernel also occurs for
GOE random matrices in the large matrix limit at the edge of the spectrum.

(b) Recently, it has been proven that the Airy1 process describes the limit of the top line
of the multilayer flat PNG [5], namely

lim
t→∞hflat

0 (u, t) = 21/3 A1(u/22/3). (2.13)

The joint distributions of the Airy1 process are given by Fredholm determinants: for any
given u1 < u2 < · · · < um, and s1, . . . , sm ∈ R,

P

(
m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1 − χsKA1χs)L2({u1,...,um}×R), (2.14)
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where χs(uk, x) = 1(x > sk), and the kernel KA1 is defined by

KA1(u, s;u′, s ′) = Ai(s + s ′ + (u − u′)2) exp
(
(u′ − u)(s + s ′) + 2

3 (u′ − u)3
)

− 1√
4π(u′ − u)

exp

(
− (s ′ − s)2

4(u′ − u)

)
1(u′ > u). (2.15)

Some properties of the Airy1 process like the short and long time behavior of the covari-
ance are known. We refer to the review [8] for details. In particular, the short-time behavior
of the covariance of the Airy1 process,

g1(u) := Cov(A1(u), A1(0)), (2.16)

satisfies

g1(0) = Var(A1(0)) 
 0.402 . . . , g′
1(0) = −1. (2.17)

3 Dyson’s Brownian Motion

Dyson’s Brownian motion [6] describes the diffusion of N mutually repelling particles with
positions λj (t), j = 1, . . . ,N , at time t on the real line in a harmonic potential,

dλj (t) =
(

−γ λj (t) + β

2

∑
i �=j

1

λj (t) − λi(t)

)
dt + dbj (t), j = 1, . . . ,N, (3.1)

the bj (t) being independent standard Brownian motions with Var(bj (t)) = t . Let P (λ) de-
note the probability distribution of particle positions λ = (λ1, . . . , λN). It satisfies the diffu-
sion equation

∂

∂t
P (λ) =

N∑
j=1

∂

∂λj

(
γ λjP (λ) − β

2

∑
i �=j

1

λj − λi

P (λ)

)
+ 1

2

∂2

∂λ2
j

P (λ). (3.2)

The stationary distribution is given by

P (λ) = 1

Z
|�(λ)|β exp

(
−γ

N∑
j=1

λ2
j

)
, (3.3)

with �(λ) = ∏
1≤i<j≤N(λj − λi), and Z the normalization.

In his original work, Dyson linked the special values β = 1,2,4 to the eigenvalue GOE,
GUE and GSE random matrices, respectively. In these cases, λj (t) is the j -th smallest eigen-
value of a random matrix M(t) diffusing according to an Ornstein-Uhlenbeck process on
real symmetric, hermitian or symplectic matrices, respectively.

We describe the correspondence only in the cases β = 1 (GOE) and β = 2 (GUE). Let
bα

ij (t), 1 ≤ i, j ≤ N , α = 1,2, be independent standard Brownian motions. In the GOE case
one sets bij (t) = b1

ij (t) ∈ R, in the GUE case one sets bij (t) = b1
ij (t) + ib2

ij (t) ∈ C. Let

Bij (t) = 1
2 (bij (t) + bji(t)). Now B(t) is a Brownian motion on the space of real symmetric,

resp., hermitian matrices, which is invariant with respect to orthogonal, resp. unitary rota-
tions. For GOE the independent entries are Bij , j ≥ i, while for GUE the independent entries
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are Bii and Re(Bij ), Im(Bij ), j > i. These real-valued independent entries perform Brown-
ian motions, with variance t on the diagonal and variance t/2 for the remaining entries. Now
let M(t) be the stationary Ornstein-Uhlenbeck process defined by

dM(t) = −γM(t)dt + dB(t). (3.4)

The stationary distribution is proportional to exp(−γ Tr(M2)) in both cases, GOE and GUE.
By integrating over the angular variables, one gets the stochastic evolution of eigenvalues as
in (3.3).

Let us mention here, that the parameter γ is in fact irrelevant. Multiplying the eigen-
values by

√
γ and rescaling time by γ −1 one can always arrange for γ = 1. We kept this

parameter throughout the formulas to facilitate comparisons with the literature, where dif-
ferent, sometimes N -dependent, conventions for γ have been adopted. The most common
choice, γ = 1, leads to the standard Hermite kernel with Hermite polynomials orthogonal
with respect to the weight e−x2

.

3.1 GUE Diffusion and Airy Process

In the case β = 2, the point process associated to the ordered eigenvalues, λj (t) of M(t) is
determinantal, defined by the extended Hermite kernel [11]. The edge scaling at the upper
edge of the spectrum is given by

λGUE
N,j (u) = √

2γN1/6
(
λj (u/(γN1/3)) − √

2N/γ
)
. (3.5)

Under this rescaling, the kernel of the corresponding point process converges to the Airy
kernel KA2 as N → ∞ [1]. This allows to show the convergence of the rescaled largest
eigenvalue, λGUE

N,N (u), to the Airy2 process,

lim
N→∞

λGUE
N,N (u) = A2(u), (3.6)

in the sense of convergence of finite-dimensional distributions [10]. The finite-N covariance
of the largest eigenvalue is denoted by f GUE

N ,

f GUE
N (u) = Cov

(
λGUE

N,N (u),λGUE
N,N (0)

)
. (3.7)

Obviously one expects that limN→∞ f GUE
N (u) = g2(u). To prove this rigorously, convergence

of moments is needed in (3.6), a result which is currently not available.

3.2 GOE Diffusion

For β = 1, the GOE case, explicit expressions for dynamical correlations are not known.
Nevertheless one expects an analogous behavior as for GUE diffusion. In the edge scaling
of the ordered eigenvalues λj (t) of M(t) in the GOE case, one has two free parameters
(time and space scaling). In order to check the hypothesis that the Airy1 process describes
the evolution of the largest eigenvalue for the GOE case, we choose the free parameters by
matching the covariance and its derivative at zero, see (2.17). We obtain

λGOE
N,j (u) = √

γN1/6
(
λj (2u/(γN1/3)) − √

N/γ
)
. (3.8)
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As anticipated while speaking of the flat PNG, the point process of the edge-rescaled GOE
eigenvalues at a fixed time (the one associated to {λGOE

N,j (0),1 ≤ j ≤ N}) converges to a
Pfaffian point process with n-point correlation given by

ρ(n)(s1, . . . , sn) = 2nPf(GGOE(2si,2sj ))1≤i,j≤n (3.9)

in the N → ∞ limit. We denote by f GOE
N the finite-N covariance of the largest eigenvalue,

f GOE
N (u) = Cov

(
λGOE

N,N (u),λGOE
N,N (0)

)
. (3.10)

The scaling in (3.8) is chosen such that f GOE
N

′
(0) = −1 and f GOE

N (0) → g1(0) as N → ∞.
As in the GUE case one expects the limit f GOE∞ (u) = limN→∞ f GOE

N (u) to exist. In the next
section we address the question whether f GOE∞ (u) equals g1(u).

4 Numerical Results

The Airy1 process was regarded as a candidate for the limit of the rescaled largest GOE
eigenvalue process [4, 14], because of the known properties of these two processes. Both are
stationary processes with the same one-point distribution, and the conjectured short time be-
haviors coincide, too. Furthermore, as explained above, the underlying multiline ensembles
have the same limiting single time distribution as point processes on R (see (2.12) and (3.9)).
The final ingredient for the guess is that the connections carries over the multilines picture
in the β = 2 case.

In lack of more analytical input, we looked for an answer to the question, whether the
Airy1 process is the limit of the β = 1 Dyson’s Brownian motion by numerical means.
We decided to compare the large N limit of (3.10) with the covariance of the Airy1

process (2.16). The quantities in question are not straightforwardly accessible. For the Airy1

process one needs to evaluate Fredholm determinants. For Dyson’s Brownian motion we
performed Monte-Carlo simulations on the eigenvalues of coupled GOE matrices directly.

4.1 Covariances of the Airy1 and Airy2 Processes

The key point of the numerical computation is the evaluation of the Fredholm determinants
of the two-point joint distributions for the Airy1 and Airy2 processes, (2.7), (2.14). This is
explained in details in the recent paper [2]. Let us briefly describe the procedure.

Basic ingredient is a Nyström-type approximation of integral operators by an n-point
quadrature formula for integrals over the interval (s,∞) that gives exponential convergence
rates for holomorphic integrands. Such a formula can be based on the holomorphic transfor-
mation

φs : (0,1) → (s,∞), ξ �→ s + 10 tan(πξ/2),

followed by Gauss–Legendre quadrature on the interval (0,1) with weights wj and points
ξj (j = 1, . . . , n). This way we obtain

∫ ∞

sk

f (x)dx ≈
n∑

j=1

wjφ
′
sk
(ξj ) f (φsk (ξj )) =

n∑
j=1

wkjf (xkj ).
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The Fredholm determinants (2.7) and (2.14) are now approximated, with μ = 1 for the Airy1

and μ = 2 for the Airy2 process, by the mn × mn-dimensional determinants

det(1 − χsKAμχs)L2({u1,...,um}×R) ≈ det

⎛
⎜⎜⎜⎝

1 − A11 A12 · · · A1m

A21 1 − A22 · · · A2m

...
...

...

Am1 Am2 · · · 1 − Amm

⎞
⎟⎟⎟⎠ , (4.1)

where the submatrices Aij ∈ R
n×n (i, j = 1, . . . ,m) are defined by

(Aij )pq = w
1/2
ip KAμ(ui, xip;uj , xjq)w

1/2
jq (p, q = 1, . . . , n). (4.2)

Theorem 8.1 of [2] shows that the approximation error in (4.1) decays exponentially with
n, that is, like O(ρ−n) for some constant ρ > 1. Thus, doubling n doubles the number of
correct digits; a fact on which simple strategies for adaptive error control can be based [3].
Additionally, the level of round-off error can be controlled as described in [2]. It turns out
that the two-point (m = 2) joint distribution can be calculated to an absolute precision of
10−14 using n quadrature points with n between 20 and 100, depending on the specific
values of u, s1, and s2. The CPU time for a single evaluation of the joint distribution is well
below a second (using a 2 GHz PC).

The covariances g1(u) and g2(u) were calculated by first truncating the integrals, then
integrating by parts (to avoid numerical differentiation), and finally using Clenshaw–Curtis
quadrature. A truncation at ±10 (except for small u ≤ 0.05 in the case of g1, where larger
integration intervals are necessary) and 100 quadrature points in each of the two dimensions
are sufficient to secure an absolute precision of 10−10.

The code for calculating the two-point joint distributions and the covariances g1 and g2

can be obtained from the first author upon request.

4.2 Monte Carlo Simulation of Random Matrices

To get an estimate for the covariance of the largest eigenvalue of GUE and GOE matri-
ces, we performed straightforward Monte-Carlo simulations. A collection of matrices Ck ,
k = 0, . . . ,K , independently distributed according to the stationary distribution of (3.4) can
be easily produced with standard pseudo random generators, since each Ck consists of in-
dependently normally distributed entries. Fixing a time step �t , it is easy to see that for the
stationary process M(t) governed by (3.4) the joint distribution of (M(k�t))0≤k≤K is the
same as for the matrices Mk , defined by

M0 = C0, Mk = e−γ�tMk−1 +
√

1 − e−2γ�tCk, 1 ≤ k ≤ K. (4.3)

Now, one numerically determines the largest eigenvalues of the Mk and rescales according
to (3.5), resp., (3.8). This yields realizations of λGOE

N,N (u) and λGUE
N,N (u) at equidistant times u.

The empirical auto-covariance of these time series gives an estimate for the covariance func-
tions f GOE

N (u) and f GUE
N (u) at discrete values of u. The data presented here are for N = 64,

128, and 256 with γ = 1/2 and �t = 1
2N−1/3. We chose K = 106, and produced up to

100 independent realizations of the time series in each case. This allows to obtain an error
estimate for each data point.
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Fig. 1 The covariance g1 of the
Airy1 process (line) versus the
one of the largest eigenvalue for
GOE matrix diffusion, f GOE

N
, for

N = 64,256

Fig. 2 The covariance g2 of the
Airy2 process (line) versus the
one of the largest eigenvalue for
GUE matrix diffusion, f GUE

N
, for

N = 64,256

4.3 Discussion

In Fig. 1 we compare the covariance (2.16) of the Airy1 process and the one of the largest
eigenvalue for GOE matrix diffusion (3.10) for N = 64 and N = 256. One clearly sees that
they do not agree.

Increasing the matrix dimension does not change sensibly the result; namely, the results
for N = 128 agree to plotting accuracy with the one for N = 256 in Fig. 1 and therefore
are not shown. In comparison, in Fig. 2 we plot the covariance (2.8) of the Airy2 process
and the one of the largest eigenvalue for GUE matrix diffusion (3.7) for the same matrix
dimensions. Here the agreement is already quite good even for relatively small matrix sizes.
In both plots the errorbars are of order 10−3, smaller then the symbols used and therefore
omitted.

Concerning the decay of g1, it appears to be superexponentially in sharp contrast to the
algebraic decay (2.10) of g2. After reinspecting the 2 × 2 block Fredholm determinant this
behavior becomes clear, since one of the off-diagonal blocks is superexponentially small
in u for large values of u, while the others stay of order one, a fact already noticed by
Widom [17].
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Fig. 3 Log-log plot of the
rescaled correlation functions for
GOE and GUE

Finally, in Fig. 3, we provide a comparison of the decay of correlation for GOE and GUE
matrix diffusion. In a log-log plot we draw f GOE

N and f GUE
N for N = 128 and N = 256 with

errorbars. For GUE one observes the deviation from the asymptotic behavior u−2 for large u

due to finite size effects. Remarkably f GOE
N (u) looks very similar to 1

2f GUE
N (2u), indicating

that the large u behavior of f GOE∞ (u) might also be algebraically decaying, in sharp contrast
to the superexponential decay of g1(u). Given the small matrix dimensions we used, we
can not, however, conclude whether the decay for f GOE∞ (u) is of order u−2 as for GUE or
not.
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