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1. Introduction.
1.1 The present paper may be regarded as a chapter in the theory of

convolution algebras inaugurated in [3]. The algebras dealt with here are in
general infinite dimensional commutative Banach algebras, so that the ap-
paratus of Gel'fand's theory [2], topological considerations, and a number
of analytic devices all play a role. It will be seen, however, that the func-
tionals making up the algebras under study have obvious representations
as integrals with respect to countably additive, totally finite measures that
vanish except on countable sets. Thus the refinements of measure and inte-
gration theory are avoided, nothing more recondite than infinite series being
needed for all of the integral computations employed. The great majority
of our results deal only with the commutative case: in view of the genuine
difficulties connected with harmonic analysis even on noncommutative groups
and the obvious fact that semigroups are less tractable than groups, no
apology is perhaps required for this.

The present paper may be described as an introduction to harmonic analy-
sis on discrete commutative semigroups. It will no doubt be noted that we
state no theorems concerning Tauberian theorems, analogues of the Pon-
tryagin duality theorem, or the Silov boundary. We hope to deal with these
topics in a subsequent communication.

1.2. Throughout this paper, we use the terminology, notions, and results
of [3]. A few points, however, require re-statement, and we make a few new
definitions. The symbol "=" is used between semigroups, algebras, etc., to
denote the existence of a 1-to-l correspondence ir preserving all operations
of both systems; and if a product, say, is defined only for some pairs, then the
equality ir(xy) =Tr(x)ir(y) is to hold whenever either side is defined. A homo-
morphism of a semigroup G onto a semigroup H is a single-valued mapping
p of G onto H such that p(xy) =p(x)/i(y) for all x, yEG.

1.3. A multiplicative function on a semigroup G is any complex function
f on G satisfying the functional equation f(xy) =/(x)/(y) for all x, yEG. A
multiplicative function is called a semicharacter (see [3, 3.1 ]) if it is different
from 0 at some point and is bounded. It is easy to see that if x is a semichar-
acter on G, then | x(x) | ^ 1 for all xEG, and that a semicharacter of a group
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is a character. A group, however, may easily admit unbounded multiplica-
tive functions.

1.4. Let X be any nonvoid set, x any point of X, and % any linear space
of complex-valued functions on X. The linear functional on % whose value at
fE% isf(x) will be denoted by X*: thus \x(f) =f(x). We shall be largely con-
cerned in this paper with functionals of the form 2Zk=x a(x)\x, where a is a
complex-valued function on X such that 2»£x |a(^)] is finite. By this last
we mean that the set {x; xEX, a(x) ?^0} is countable, being written say as
{xlt X2, x3, ■ • • , xn, • • ■ }, and that 2n-i |«(*•>)| is finite. The number
23".x |a(x„)| is obviously independent of the order in which {xx, x2, X3, • • • ,
xn, ■ ■ • } is taken. We use the convention that an expression of the form
^",1 un may denote either a finite or an infinite series and that a sum over
the void set is 0.

2. Definition and elementary properties of /i(G).
2.1. Definition. Let G be an arbitrary semigroup. Let 33(G) denote the

linear space of all bounded complex-valued functions on G. Let h(G) denote
the set of all functionals A on 33(G) having the form

2.1.1 A =  Y,<*(x)K,
zGo

where a is a complex-valued function on G for which £%(= g | ol(x) | is finite.

2.2. Theorem. The set h(G) of 2.1 is a linear space of bounded linear func-
tionals on 33(G). There is a norm-preserving linear isomorphism between h(G)
and the Banach space of all complex-valued functions a on G that vanish except
on countable subsets of G and for which

2.2.1 £  \a(x)\   = \\a\\
xGa

is finite.
Proof. For/G33(G), with ||/|| =suplG<? \f(x)\, and AEh(G), we have

I "4 (/) I =| 2Z*G o <x(x)f(x) | =■ 11/|| zlzQ o | a(x) \. Hence A is a bounded linear
functional and \\A\\ = 2Zz£<? | a(x) |. Next, let/£33(G) be defined by the rela-
tions f(x)= 0 if a(x)=0 and f(x) =a(x)\a(x)\~1 if a(x)?±0, where a(x) is
the complex conjugate of a(x). Then if fy^O, we have ||/||=1. Since A(f)
= ^i£<? | ce(x) |, it follows that

\\A\\ =  £  \a(x) |.
i£o

The rest of the present theorem is obvious.

2.3. Theorem. The space h(G) is a convolution algebra. For A
= X^«eo a(u)\u and £=2»£o 0(tf)X» *M h(G), A*B is the functional
S*£ a ot* fi(x)\x, where
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72 EDWIN HEWITT AND H. S. ZUCKERMAN [September

2.3.1 a*B(x)=     Y   a(u)8(v) for all x EG.

Proof. Let/ be any function in 23(G). It is clear that xfE%(G) ior all
xGG:|/(xy)| ^sup„Gc |/(«)| for all x, yEG. This is condition 1.3.1 of [3].
For BEh(G) as above, we have

\s(uf)\ =  YKv)K(uf) =  Ymf(uv) ^||5||||/||.

Hence B(xf) is a bounded function of x; this establishes condition 1.3.2 of
[3]. To verify condition 1.3.3 of [3], we argue as follows. For every uEG,
the number ^gc B(v)f(uv) is the value at u of the function B(uf). Hence,
to compute A * B(f), we write

2.3.2 A*B(J) =  Y a(u)\u(B(uf)) =  Y «(«) [ Y B(v)f(uv)\

Since

Y  I «(«) I I   E   I P(v) I ■ [ f(uv) I I g |p4 || ■ ||S|| • 11/11 < co ,

we may rearrange the last expression in 2.3.2 in any fashion without altering
its value. Let {xi, x2, x3, • ■ • , xn, • • • } be the (finite or countably infinite)
set of all distinct products uv ior which a(u)?*0 and B(v)^0. Then we have

2.3.3 E«(«)[ Y pW(«t»)l= Y\     Y      a(u)8(v)~\f(xn).

Finally, we may write

2.3.4 A*B(f)=Y\    Y    a(u)8(v)\f(x) =   Y«*P(x)f(x),

with the usual convention that a void sum is 0. It remains to show that the
functional Y*GG a*B(x)\x is in h(G), i.e., that

2.3.5 Y  I <x*B(x) I   < 00.

To this end, consider the triple sum

2.3.6 Y  |«(«)| { Y\   Y    |0to|~|}.

For every fixed u, the sum { ■ • • } is less than or equal to YvG g \ B(v) \, since
each vEG can appear at most once in a summand [ • • • ]. It follows that 2.3.6
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is less than or equal to [|^4||  ||-B||, a finite number, and we may therefore re-
arrange 2.3.6 in any fashion without altering its value. It follows that

E |«*/3(*)| = E    E  «(«)£«
x£lG iG(?   u,v,uv=x

2-3.7 ^H   {    H      |«(«)|  |/9(f) I }
a:£G    \u,v,uc=x /

= E |«(»)| IE [ E |/s(«0|lf = Mii-ii-Bii= ».
This inequality is just 2.3.5, and the proof is complete.

2.4. Theorem. With the norm ||-4||, /i(G) is a Banach algebra.

Proof. This follows from 2.3.7 and the fact that \\A * B\\ = E*e g | a * fi(x) \.
2.5. Note. According to Gel'fand's original definition [2, p. 3], if a Ban-

ach algebra has a unit, then the norm of the unit is 1. This need not be the
case with the definition just given for the norm in h(G), as 11.1.6 shows. Of
course /i(G) can be renormed so that the unit, if one exists, has norm 1.

2.6. Theorem. Let {ux, • • • , up} and {vx, • ■ ■ , vq} be finite subsets of G
and {ax, ■ ■ • , ap}, {fix, • • • , fiq} sequences of complex numbers. Then

(p \    /   i \ p     q
E «A»i ) * ( E Pkkvk ) =  J^J^ a//3*X»>t,t.
1=1 /      \ k-X / )—1  k=l

Proof. It is obvious that Ef-i «A»y ar,d E*=i /3tX„t are elements of lx(G).
Consider first the product Xu *X„, where u and v are arbitrary elements of G.
Applying 2.3.1, we see that the only nonzero number a*fi(x) is a*fi(uv) = 1,
and hence X„ *X„ =X„„. Formula 2.6.1 now follows by the distributive law.

We next identify all multiplicative linear functionals on lx(G). This is of
course equivalent to finding all maximal regular 2-sided ideals 3H such that
lx(G) — 2TTC is commutative.

2.7. Theorem. Let G be an arbitrary semigroup, and let t be a multiplicative
linear functional on h(G) different from 0. Then t is a bounded linear functional,
and there exists a semicharacter xofG such that, for all A = E*e c a(x)\xElx(G),
we have

2.7.1 T(A) = S«(*)x(«).
xGG

Conversely, every semicharacter x of G defines a bounded multiplicative linear
functional by 2.7.1, and 2 distinct semicharacters define 2 distinct multiplicative
linear functionals. The norm ||r|| of t as a linear functional is equal to
supxeo \x(x)\.
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Proof. Let r be a nonzero multiplicative linear functional on h(G). It is
well known that r is continuous. (See for example [4, p. 481, Theorem
22.14.1 ].) Obviously the function x defined by x0*0 =f(X*) is a semicharacter
of G. Since t is continuous, 2.7.1 must hold for all AEk(G). The rest of the
present theorem is similarly easy to establish.

The preceding theorem enables us to identify the radical of h(G) for com-
mutative G.

2.8. Theorem. Let Gbea commutative semigroup, and let (P be the Jacobson
radical of h(G) [4, p. 476, Definition 22.13.2]. Then (P consists of all
A = Y*ea ct(x)\xEh(G) such that Yx^g a(x)x(x) =0 for all xGG [3, 3.7].
In particular, h(G) is semisimple if and only if for every complex-valued func-
tion a 7*0 on G such that YxG° \a(x)\ < °°, there exists some xGG for which
Y*EGCt(x)x(x)?*0.

Proof. h(G) is not a radical algebra, since it contains the proper regular
maximal ideal {.4; AEh(G), Y*eg a(x)=0}. (This is the kernel of the
multiplicative linear functional Y*£G a(x)Xx—►Y*£a a(x).) Hence by [4,
p. 485, Theorem 22.15.1], (P is the intersection of all proper regular maximal
ideals 9TC of h(G). However, h(G) — 3TI is the complex field, as is well known
(see for example [5, p. 69, 23A]) and 3Tt is thus the kernel 9TCT of a multiplica-
tive linear functional r. Combining this observation with 2.7, we obtain the
present theorem.

2.9. Remark. Theorem 2.8 shows that the maximal ideal space of h(G)
for a commutative semigroup G can be identified with G, just as in the case
where G is a group. We postpone to §8 a discussion of the topology that can
be imposed from this point of view on G.

2.10. Remark. It is natural to look for function spaces other than 53(67)
that can serve as the space g of [3, 1.3], in order to realize h(G) as a convolu-
tion algebra. Obvious choices are the space &«,»(<?) consisting of all complex-
valued functions on G that vanish outside of finite subsets of G and the space
Eoo(G) consisting of all complex-valued functions/ on G such that for every
real number 5>0, there exists a finite subset A of G such that |/(x)| <5 for
all xG^4- If there exist a, bEG such that the equation ay = b has an infinite
number of solutions yEG, then iif(b) = 1, say, we have„/(y) = 1 for an infinite
number of elements y. It is clear that [3, 1.3.1], is violated in this case. On
the other hand, if the equation ay = b has no solution or only a finite number
of solutions for all a, bEG, then the function spaces Q$.XX(G) and <&„(G) both
satisfy [3, 1.3.1 ], and may be used as the space % for h(G). For examples of
semigroups in which the equation ay = b admits an infinite number of solu-
tions for some a and b, see 11.1.3.

3. A criterion for semisimplicity of h(G).
3.1. In this section, we establish a useful necessary and sufficient condition

that h(G) he semisimple, if G is commutative. The main theorem of this sec-
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tion, 3.4, is appropriately stated for spaces of functions on sets without any
semigroup structure. Throughout this section, then, X will denote an arbi-
trary nonvoid set, finite or infinite (although our theorem is trivial for X
finite). The expression h(X) will denote the space of all complex-valued func-
tions a on X such that E*ex I a(x) \ is finite. The symbol © will denote a set
of complex-valued functions on X satisfying the following conditions:

3.1.1 for all <pE® and xEX, \<p(x)\ ̂ 1;
3.1.2 the function 1 is in ©;
3.1.3 if <j>x, 02 are in ©, then frfaE® or <px<t>2 = 0;
3.1.4 if <££©, then^G®.

Let X denote the linear space of all finite complex linear combinations of
functions in ©. It is obvious that X is an algebra of bounded complex-valued
functions having the property that ^£1 implies |^|2GI.

3.2. Definition. A family of complex-valued functions defined on X is
said to be a separating family on X or to separate points of X if, for every
pair of distinct points x, yEX, there is a function/ in the family under con-
sideration such that f(x) 9*f(y).

3.3. Theorem. Let X, h(X), and © be as in 3.1. Suppose that for every
aEh(X), at^O, there exists an element <p of © such that E*£0 a(x)<p(x)^0.
Then © is a separating family on X.

Proof. If there exist distinct points a, bEX such that <f>(a) =<p(b) for all
<££©, let a(a) = l,a(b) = -1, and a(x) =0 for all other xEX. Plainly aEh(X)
and E*e a a(x)(p(x) =<j>(a) -0(6) =0 for all <££©.

The converse of the foregoing obvious assertion is true, but its proof lies
somewhat deeper. We now state and prove it.

3.4. Theorem. Let X, h(X), and © be as in 3.1, and suppose that © is a
separating family on X. Then for every aEh(X) that is different from 0, there
exists a function (/>£© such that E^e* a(x)(p(x) 9^0.

Proof. Assume that the theorem is false: then for some a?±0, aEk(X),
we have E*e* ot(x)<f>(x) =0 for all <££© and hence E»ex a(x)<j>(x) =0 for
all <f>EX. We may order the set {x; xEX, a(x)^0} in the form {xlt x2,
Xs, • • • , xn, ■ • • }, and for convenience we write a(xf) =aj (j = 1, 2, 3, ■ • • ).
Now let r be an arbitrary positive integer. For every integer j, 2 ^/^r, there
exists (pjE® such that 4>j(xx)^<pj(xj), since © separates points in X. Let \f/
be the function such that

, /   N TT   *>(*)  ~ *'(*')y(x) = 11-
,--2   <t>j(Xx)  - <t>j(Xj)

for all xEX. It is clear from 3.1.2 and 3.1.3 that ypEt. It is also easy to see
that ^(xi) = l and 4,(xj)=0 (j = 2, 3, • • • , r). For every real number t and
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every non-negative integer n, the function

(it\d/\2)n

n\

is an element of 27. It follows from our assumption, then, that

^    [a 1 *(*/)!*]"    n3.4.1 Yai-= 0.

Summing 3.4.1 with respect to n, we obtain

±\±a,Mmm,o.
n=o l j-i n\ )

Since the series Y?=i \ai\ converges and since ip is a bounded function, the
double series 3.4.2 converges absolutely, and we may rearrange the order of
summation at will without altering its value. Thus

3.4.3 Y«ilY-;-1 = 0;
,_i     („_0 k!        ;

equivalently,
CO

3.4.4 Y <*i exP (ft I $(xi) I2) = °-
i-i

Consider the left side of 3.4.4 as a function g(t) (— co <^< + co). This func-
tion g is a Bohr almost periodic function (with absolutely convergent Fourier
series). By 3.4.4, we haveg = 0; by the uniqueness theorem for almost periodic
functions (see for example [6, p. 117]), all Fourier coefficients of g must van-
ish. (In this simple case, one can also take the Bohr mean value of g(t)e"1
ior real 5.) The Fourier coefficient of g for the exponent 1 is a sum Yi ai> the
sum being taken over all j such that |^(xy)|. = 1. For 1 ̂ j^r, the only entry
in this sum is ati. It follows that |ai| ^ Y-h=r+i \ai\ ■ Since r is arbitrary, we
infer that «i = 0. This contradicts the definition of X\, and hence we see that
<x = 0. This completes the proof.

Theorems 3.3 and 3.4 yield the following criterion for semisimplicity of
/i(G), G commutative.

3.5. Theorem. Let G be a commutative semigroup. Then h(G) is semi-
simple if and only if the set G of semicharacters is a separating family on G.

Proof. An element A = Yx&g a(x)\x of h(G) is in the radical of h(G) ii
and only if Y*&g a(x)x(x) =0 for all xGG, by 2.8. The set of functions G
obviously satisfies conditions 3.1.1-3.1.4; thus 3.3 and 3.4 yield the present
theorem.
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4. Certain algebraic properties of commutative semigroups. Theorem 2.8
shows an intimate connection between the radical of /i(G) and the semi-
characters of G. In this section, we establish various algebraic properties of G
which will be used in §5 to construct semicharacters of G. These in turn,
with 2.8 and 3.5, will be used to identify the radical of lx(G). We first break
up the semigroup G into subsets Tx which, as we shall show later, have the
property that yETx and if only if x(x) =x(y) for all xCG.

4.1. Definition. Let G be a commutative semigroup. For xEG, let Tx
be the set Tx= {yvyEG, xyn=yn+1, yxn = xn+1, for some positive integer n}.

It is obvious that xETx for all xEG and that yETx implies xETv.
Furthermore, if zETv and yETx, then we have yz" = zn+1, zyn=yr>+1, yxm
= xm+1, and xym = ym+1 for some positive integers m and n. From these equal-
ities, we find xz<-n+1)<-m+1)~1=xz<-n+1)mzn=xymznmzn=ym+1zni-m+1) =2("+i)(">+i) ancj
zx(n+l)(m+l)-l—zxim+l)nxm — Zynxnmxm—yn+lxm(.n+l)—x(n+l)(m+l)_    Jt   f0H0WS   that

zETx. These results imply the following theorem.

4.2. Theorem. The commutative semigroup G is the union of the sets Tx.
Every two of these sets are either identical or disjoint. Also, xETxfor all xEG.

4.3. Theorem. For all x, y, z, and w in G. if yETx and zETw, then
yzETxw.

Proof. If yETx, then xyn = yn+1 and yx" = x"+1. Hence (zx)(zy)" = (zy)n+1
and (zy)(zx)n = (zx)n+1. Therefore yzETXI. Hence, if yETx and zETw, then
yzETxz and xzET^; from this, we infer that yzETxw.

4.4. Definition. Let G' be the set whose elements are all of the distinct
sets Tx, G' = { Tx}, with the operation TXTV = Txy. It is clear that G' is a com-
mutative semigroup and that the mapping- x—>Tx is a homomorphism of G
onto G'.

4.5. Theorem. Let Tx, Ty be elements of G'. Then, if TxTy = T% = T\, it
follows that Tx = Ty.

Proof. From 4.4, we have Txy = TX2=Tyi and hence xiETxy and y2ETxy.
From the first of these relations, we have (xy)xin = x2(n+l) and, from the second,
(xy)yim = yiim+1). Therefore we have yx2n+1=x2"+2 and Xyim+l'=yim+s,
yxUn+m)+i=xn»+m)+2 ancj xy2(n+m)+i =y2(n+m)+2i anf] therefore xETy. This im-
plies that Tx= Ty.

4.6. The property proved in 4.5 will be shown to imply that h(G') is
semisimple. With this in mind, we note the following two theorems.

4.7. Theorem. Let G be a commutative semigroup with the property that
xy = x2 =y2 implies x = y, for all x, yEG. Then, for all x, y, z in G, if x"y=xnz
for some positive integer n, it follows that xy=xz.

Proof. Suppose first that n is odd. In this case, let m = (« + l)/2. We have
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(xmy)i = xn+1y2 = xxnyy = xx"zy=xxnz2. Suppose next that n is even. In this
case, let m = n/2. We then have (xmy)2 = x"y2 = x"zy = x"z2. In both cases, we
have (xmy)2 = (xmy)(xmz) = (xmz)2 and hence xmy = xmz. Since m is a positive
integer such that m <n for w> 1, we can repeat this argument until we obtain
xy=xz.

4.8. Theorem. Let G be a commutative semigroup. Then it has the property
that xy = x*=y2 implies x=y,if and only if all of its subsets Tx consist of precisely
one element.

Proof. This follows easily from 4.1 and 4.7. We omit the details.
4.9. Now we break up the semigroup G' into a certain family of pairwise

disjoint subsets. These subsets will be subsemigroups in which the cancella-
tion law holds. It is convenient to change the notation and to consider G'
as a commutative semigroup with elements x, y, • • • and having the prop-
erty that xy = x2 = y2 implies x = y.

4.10. Definition. For all xEG', let Hx be the set Hx={y; yEG', yn = ux,
xn = vy ior some positive integer n and some uEG' and vEG'}.

The following properties of the sets Hz are easy to verify: xEHx; x2EHx;
yEHx implies xEHy; zEHv and yEHx imply zEHx; yEHx and zEHw im-
ply yzEHrw. These relations imply the next two theorems.

4.11. Theorem. The semigroup G' is the union of the subsets Hx. Every two
of these sets are either identical or disjoint, and xEHxfor all xEG'.

4.12. Definition. Let G" be the set whose elements are all of the distinct
sets Hx, G" ={HX}, with the operation HXHV=HXV.

4.13. Theorem. G" is an idempotent commutative semigroup. The mapping
x—+Hx is a homomorphism of G' onto G". Furthermore, every set Hx is a subsemi-
group of G'.

4.14. Theorem. If yEHx, then there exist elements u' and v' of Hx and a
positive integer n' such that y"' = u'x and x"' =v'y.

Proof. We have y" = ux and x" = vy for some u, vEG', and hence yn+1
= (uy)x and xn+l = (vx)y. Now HUV = HUHU = HUHX and hence uyEHuv
= HuHx = HuH2x = HuvHx = Huvx = Hv"+i = Hy = Hx. Similarly we find vxEHx.
This gives us the present theorem with u' = uy, v' =vx, and n' =n + l.

4.15. Theorem. If yEHx, zEHx, and xy = xz, then y = z.

Proof. By 4.10, we have yn = ux, zm = wx, and therefore yn+l = uxy = uxz
=y"z, zm+1 = wxz = wxy=zmy. From 4.9 and 4.7, we find y2=yz, zi=yz and
then y = z.

4.15.1. Corollary. The cancellation law holds in every subsemigroup Hz.
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4.16. Theorem. // Hx contains an idempotent element e, then HX = H, is a
group.

Proof. If yEHe, then e2y = ey and ey=y by 4.15. Also, by 4.14, e"=vy for
some vEHe, and therefore vy = e. Since H, is a semigroup (4.13), it is a group.

4.17. If all of the subsemigroups Hx were groups, our problem would be
somewhat simpler. Elementary examples (see 11.6) show that this is not
always the case. For our study of semigroups with semisimple /i-algebras
and for the identification of the radical in other /i-algebras, we find it useful
to imbed G' in a semigroup G° that is the union of groups. The first step in
this imbedding process is to consider all ordered pairs (x, y) with x£G',
yEHx, and the operation (x, y)(z, w) = (xz, yw).

4.18. Theorem. For pairs (x, y) and (w, z) as in 4.17, let (x, y)~(w, z)
mean that wEHx a,nd xz = yw. The relation ~ is then an equivalence relation.

Proof. It is obvious that the relation is reflexive and symmetric. We show
that it is transitive. If (x, y)~(x', y') and (x', y')~(x", y"), then all 6 ele-
ments x, y, • • • , y" are in Hx = Hy>. Also we have y'(xy") = (xy')y" = (yx')y"
= y(x'y") =y(y'x") =y'(x"y). By 4.15, we then have xy" =x"y.

4.18.1. Theorem. // (x, y)~(x', y') and (z, w)~(z', w'), then (x, y)(z, w)
~(x', y')(z', w').

Proof. We have (x, y)(z, w) = (xz, yw), (x', y')(z', w') = (x'z', y'w'), and
(xz)(y'w') = (xy')(zw') = (yx')(wz') = (yw)(x'z'). Furthermore, we have x'z'
EHX'Hz' = HxHx = Hxz.

4.19. Definition. For all x£G' and yEHx, let [x, y] = {(z, w); (z, w)
~(x, y)}. Let G° be the set whose elements are all of the distinct sets [x, y],
with the operation [x, y][z, w] = [xz, yw]. It is clear that G° is a commutative
semigroup.

4.20. Definition. For all xEG', let #?= {[y, z}; [y, z]EG<>, yEHx}.
4.21. Theorem. The semigroup G° is the union of the sets IL?. Every two

sets H% are identical or disjoint, and each H% is a group.

Proof. If [x, y]EG°, then [x, y]EHz)- Therefore G° is the union of the sets
m.

If [x, y]££^n/f°, then xEH, and xEHw. Hence Hx = Ht = Hw and
tlx = H1—tiw.

Finally, to show that H% is a group, we note that [x, x]EHx), that
[x, x] [y, z] = [xy, xz] = [y, z] for all [y, z]ELTl, and that if [y, z]EHl, then
[z, y]EH% and [z, y][y, z]= [yz, yz]= [x, x]. Also, it is obvious from 4.13
that each IL? is closed under multiplication.

4.22. If [y, z]EH°xand [y', z']EH2>, then [yy', zz']EH^. Therefore the
1-to-l mapping HX-*HX is an isomorphism of G" onto the semigroup {-Hj}
with IL?HX' =HTX>. It is also easy to see that the mapping x—►[x2, x] is a
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1-to-l mapping of G' onto a subsemigroup of G°. This mapping is in fact an
isomorphism of G' into G°.

4.23. Theorem. Let G be a commutative semigroup. Then G has the property
that x2 = y2 = xy implies x=y if and only if G can be isomorphically imbedded
in a semigroup that is the union of disjoint groups.

Proof. If G has the property that x2=y2 = xy implies x = y, then-G is iso-
morphic to G', by 4.8. Hence G is isomorphic to a subsemigroup of G°, by 4.22.
Conversely, if GGU.S,, where each 5, is a commutative group, and if
x2 = y2 = xy, where x, yEG, then x, x2, y, y2, and xy all lie in a single St.
Since the cancellation law holds in 5,, we have x = y.

4.24. We summarize the constructions of the present section as follows.
Starting with an arbitrary commutative semigroup G, we form a homo-
morphic image G' of G. The semigroup G' has the property that x2 = y2 = xy
implies x = y, and as will be shown later (6.2), G' is in a certain sense the
largest semigroup with these properties. The semigroup G' is then imbedded
in a semigroup G°, which is the union of disjoint groups. The semigroup G"
is isomorphic to the subsemigroup of idempotent elements of G°. The present
G° is isomorphic to the semigroup G° of [3, 2.11], if G is finite.

5. Necessary and sufficient conditions for semisimplicity of h(G). In this
section, we find a simple algebraic condition on G equivalent to semisimplicity
of h(G) (Theorem 5.8). We also find the radical of h(G) (Theorem 5.9). In
doing these things, we first construct a number of semicharacters of G. We
use the notation of §4 and start by discussing semigroups G' as written in 4.9,
that is, commutative semigroups G' such that x2=y2 = xy implies x = y, for
all x, yEG'.

5.1. Theorem. Let x' be a semicharacter of G'. Then we have the following
facts.

5.1.1. If yEHx, then x'(y) =0 if and only ifx'(x) =0.
5.1.2. Let x° be defined by the relations

o(\x    ])=  f i/x'(x) = 0,
"   \x',x)/x',y) ifx><x) ̂ o.

Then x° is a multiplicative function on G° and x° is not identically 0.    ,
5.1.3. The function x° is a semicharacter of G° if and only if \ x'(x) | =0 or 1

for all xEG'.
5.1.4. We have x°([*2, x])=X'(x) for all xEG'.

Proof. Statement 5.1.1 follows directly from 4.10. Then 5.1.1 ensures that
the definition of x° in 5.1.2 does not involve a zero in the denominator. If
[x, y] = [z, w], then xw=yz and zEHx. This, together with 5.1.1 and the fact
that x' is multiplicative, shows that x° is uniquely defined, i.e., that x°( [x, y ])
= X°([z, w]). We also have
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l x\x)   x'(u)        x'(xu)
r , r        , ^^ ^^ = ^^ = X°([xu, yv]) if X'(*)x'(«) * 0,

x°([*. y])x°([«.*]) = <x'(y)   x'W      x'(y») l     ^J
'o = x°([««, yv]) if x'(*)x'(«) = 0.

This computation shows that x° is multiplicative. It is obvious that x° is not
identically 0 and that 5.1.4 holds. Finally, to establish 5.1.3 we note first
that if I x'(x) I =0 or 1, then the same is true of x°> and therefore x° is a semi-
character. Conversely, suppose that 0<|x'(y)| <1 for some yEG'. Then
|x°([y. y"])\ — |x'(y)| 1~n is arbitrarily large for n sufficiently large, and x°
is in this case not a semicharacter.

5.2. Theorem. Let x° be a semicharacter of G° and let x' be the function on
G' such that x'(x) = X°([x2, x]) for all x£G'. Then we have the following facts.

5.2.1 The function x' is a, semicharacter of G'.
5.2.2 \x'(x)\ =0 or lfor allxEG'.

(0 if x'(x) = 0,
5.2.3 x°([x,y]) = <

\x'(x)/x'(y) if x'(x)*0.

Proof. It is clear that x' is multiplicative and bounded, in view of 4.22. If
X°([y, z])^0, then x'(y) =X°([y2, y])^0, since [y2,y][y, yz}= [y, z]. There-
fore x' is a semicharacter of G'. If x'(x) 9^0, then we have x°( [x2, x}) 5^0. But
we also have [x2, x}= [x, x][x2, x] and [x, x2][x2, x]= [x, x]. From these
equalities we find that x°([xi x]) = l and x°([x. x2]) = (x°([x2> *]))-1. Since
X° is bounded and [x, x2]" and [x2, x]" are elements of G° for all positive inte-
gers n, we infer that |x'(*)| =|x°([^2> *])| =1. The verification of 5.2.3 is
simple and is omitted.

5.3. Definition. If G is a semigroup, let G* be the set of all semichar-
acters x of G such that | x(x) \ = 0 or 1 for all xEG.

5.4. Theorem. Let G' be as in the introduction to the present section. Then
wehaveG'*^G°.

Proof. This follows immediately from 5.1 and 5.2.

5.5. Theorem. Let uEG' and let x« be any character of the group H^. Let

f0ifHuHx*Hu,5.5.1 x°(ky]) = < o , ,
\Xu([ux, uy]) if HUHX = Hu.

Then x« is ct semicharacter of G°.

Proof. If HUHX = HU, then uxEHux = HUHX = Hu. Therefore [ux, uy]EH^
and x°( [ux, uy ]) is defined. It is clear that x° is bounded and not identically 0.
We must still prove that x°( [x, y ])x°( [z, w]) =x°( [xz, yw]). If x°( [xz, yw]) 9^0,
then   HuHXi = Hu   and   hence  HuHx = HuHxzHx = HuHxH1 = Hu   and   HUH,
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= HUHXH. = HU. We then have x°([*. y])x°([*. w]) = x2([«*. uy])xl([uz, uw])
= xl([uxz, uyw]) =x"([xz, yw]). If x°([xz, yw])=0, then HUHX^HU. Since

HUHX = HU and  HuH, = Hn imply HuHxl = HuHxHz = HuHt = Hu,  we  have
X°([x, y])x°([z> w]) =0=x°([#*i y^]) in this case.

5.6. Theorem. FAe se/ G'* is a separating family on G'.

Proof. If x° is any of the semicharacters constructed in 5.5 and if x'(x)
= X°([x*, x]), then obviously x'EG'*. Suppose that uEG', vEG', and u^v.
If vEHu, then [v2, v]EH% and the equality [v2, v]= [u2, u] would imply
v2u=vu2 and hence v = u, since the cancellation law holds in Hu (4.15.1).
Therefore if vEHu, there is a character xl of the commutative group H% such
that xStt1'2. »])^X«([«2« «])• (See for example [9, p. 94].) We use this u and
x2 in 5.5.1 to obtain x°. and obtain x' from x° by means of 5.2. We then have
x'(v) t*x'(u)- The other possibility is that vEHu. If this is the case, we have
either HUH,?*HU or HvHut*Hv. If HvHuj^Hv, we interchange u and v and
can then suppose that HUHV9*HU. We use this u and take xl identically 1 in
5.5. Then, by 5.2, we have x'(v) =0, x'(«) = 1-

5.6.1. Theorem. The sets Hx are just the sets Ux= {y; yEG', x'(y) =0 if
and only if x'(x) = 0, for all x'^EG'}.

Proof. From 5.1.1, we see that HXE Ux, for all xEG'. From the last part
of the proof of 5.6, we see that HXZ) Ux.

5.6.2. Theorem. The algebra h(G') is semisimple.

Proof. This is a direct consequence of 3.5 and 5.6.

5.7. Theorem. Let G be a commutative semigroup. Then we have the follow-
ing facts.

5.7.1. If x is a semicharacter of G and if yETx, then x(y) =x(x).
5.7.2. If x is a semicharacter of G and if x'(Tx) is defined as x(x), then x'

is a semicharacter of G'.
5.7.3. If x' is a semicharacter of G' and if x(x) is defined as x'(Tx), then x

is a semicharacter of G.

Proof. To prove 5.7.1, let y be any element of Tx. By 4.1, we have xyn
= yn+i| yXn=xn+i for some positive integer n. Therefore we have x(x)x(y)n
=x(y)n+1 and x(y)x(*)n=x(*)B+l. it follows that x(x)x(y) =x(y)2=x(*)2.
This in turn implies that x(y) ~x(x) and 5.7.1 follows.

The function x' defined in 5.7.2 is single-valued because of 5.7.1. The func-
tion x' is clearly bounded and not identically 0. It is multiplicative in view
of 4.4. The proof of 5.7.3 is equally simple and is omitted.

5.8. Theorem. Let G be a commutative semigroup. Then h(G) is semisimple
if and only if, for all x, yEG, x2=y2=xy implies x=y.
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Proof. The necessity of the condition stated follows from 5.7.1 and 3.5.
The sufficiency follows from 5.6.2, 4.8, and 4.4.

5.9. Theorem. The radical (P of h(G) consists of all A = E*e<? a(*)Xx,
E*ea | a(x)| < oo, such that E*£r a(x)=Ofor all TEG'.

Proof. If Ex£r«W=0 for all TEG', then, by 5.7.1, we have
^2xczGa(x)x(x) = ^tqg'^igt a(x)x(x) =0 for all xCG. Therefore, by 2.8,
we have A E <?■

Conversely, if AE®, then, by 2.8, we have E*e<? oc(x)x(x)=0 for all
XEG. By 5.7.2, we have 0= Erec E*£r ol(x)x(x) = Er£c{ E*£r a(x)}
X'(T), for all x'CG'. Using 5.6.2 and 2.8, we now obtain the fact that
Exer«W=°forall TEG'.

5.9.1. Corollary. The difference algebra h(G) — (P is isomorphic to h(G').

6. Miscellaneous facts about semicharacters.
6.1. By way of summary, we now review the constructions of §§4 and 5

relating to the structure of G and the semicharacters of G. Let G, then, be
an arbitrary commutative semigroup. The mapping x—*TX is a homomor-
phism of G onto G': we denote the element Tz of G' by the symbol x'. The map-
ping x'—»£v is a homomorphism of G' onto the idempotent semigroup G":
we denote the element Hx- of G" by the symbol x". The subsemigroups Hx>
have interesting properties. Either they are groups or they contain no idem-
potent elements; no semicharacter on Hx> vanishes anywhere; they obey the
cancellation law. In a sense they are the elementary building blocks from
which G' is constructed, and G" is the framework on which these blocks are
put. It is clear that all semigroups G' can be characterized in terms of the
semigroup G", the semigroups Hx>, and a suitable family of homomorphisms.
(See [l, Theorem 3], where this is done in a somewhat similar case.)

The semigroup G° can be thought of as containing G': in it, all of the semi-
groups Hx< are imbedded in groups. For x£G, let x° denote the element
[x'2, x'] of G°. Other elements of G° may be denoted by y*, z*, • • • . For an
example of different ways to imbed a certain G in a union of groups, see 11.3.

It is plain that G-=G'; that G" is isomorphic to the set of all semicharacters
of G and G' assuming only the values 0 and 1; and that G*^G'*^G*.

The following three theorems hardly require formal proofs.

6.2. Theorem. Let G be a commutative semigroup, and let H be a homo-
morphic image of G such that Tx= {x J for all xEH. Then H is a homomorphic
image of G'.

6.3. Theorem. Let G be as in 6.2 and let H be an idempotent commutative
semigroup that is a homomorphic image of G. Then H is a homomorphic image
of G".
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6.4. Theorem. Let G be an arbitrary semigroup containing a subsemigroup
S whose complement T is an ideal. Let \}/ be any semicharacter of S, and let x
be the function on G such that x(x) =^(x) for all xES, x(x) =0 for all xET.
Then x is a semicharacter of G.

The following three theorems will be useful in the sequel. In all of them,
G is an arbitrary commutative semigroup.

6.5. Theorem. Let yEG' and let if/ be a semicharacter of Hv. Then the func-
tion x'< defined by the relations

0 if HyHx ^ Hy,
x'(x) =   \p(yx)

-     if    HyHx    =     Hy,. Hy)
is a semicharacter of G'.

Proof. Since \{/ is not identically 0, we have ^(y)?^0 from 4.14. If HyHx
= Hy, then yxEHv and we see that x'(x) is defined for all xEG'. It is clear
that x' is bounded and not identically 0 on G'. Furthermore, for xEG' and
zEG', we have

'i(yx)   4>(yz)       Hy)Hyxz)       $(xyz)
-    -    =-     11     HyHX   =    HyHZ    -     Hy,

x'(x)x'(z) =   Hy)   Hy)       Hy)Hy)        Hy)
0 otherwise.

We also have
Hyxz)
-     if      HyH XZ    =     Hy,

x(xz) = j  \f>(y)
.0     if     HyHXZ    ̂     Hy.

As in the proof of 5.5, we see that HVHX = HyH, = Hy if and only if HyHx, = Hy.
Therefore x'(*)x'(z) =x'(xz).

6.6. Theorem. For wEG, letw' = TWEG' andw" = HW-EG". (A) Let x be
a semicharacter of G and let x" on G" be defined by

„.  „.       /I if x(*0 * 0,
Y   (W   )   =    <

10 if x(w) = 0.
Then x" is a semicharacter of G". (B) // x" is a semicharacter of G", let x be
the function on G such that x(w) =x"(w") for a^ t*>EG. Then x is a semichar-
acter of G.

Proof. (A) If wi' =w{', then w2' EHWl> and, for any x'EG', x'(wi) and
x'(w2) are both 0 or both different from 0, by 5.1.1. Then 5.7 shows that
x(wi) and x&d are both 0 or both different from 0 for all x&G. Thus x" is
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well defined. It is clearly bounded, not identically 0, and multiplicative.
(B) The function x assumes only the values 0 and 1, and is not identically

0. It is seen by 4.3 and 4.13 to be multiplicative.

6.7. Theorem. G is a semigroup if and only if for all w{' and wi' in G",
there exists a wi' in G" such that w{'w[' =w{' and wi'w" =w{'.

Proof. We use the notation of 6.6. Since G is a semigroup if and only if
X1X2 is not identically 0 for any xi and X2 in G, we see from 6.6 that G is a semi-
group if and only if xi' xi' is not identically 0 for any xi" and X2" in G".

Now we have Xi"W)^0 and xi' (wi')^O for some w(' and wi' in G".
If wi'wi' =wi" and wi'wi' =w2" for some wi' in G", then xi'(wi')xi'(wi')
= xi'(wi'wi')xi'(wi'wi')=xi'(wi')xi'(wi')x('(wi')xi'(wi'), and hence
Xi'(wi')xi'(wi') = l. Thus xi'xi' is not identically 0.

Conversely, if there exist w{' and wi' in G" such that there is no wi'
for which wi'wi' =w[' and wi'wi' =wi', then the functions xi' such that
x/'(w") = l if wi'w" = wl',x" (w")=0 otherwise, i = l, 2, w"EG", are semi-
characters of G" and xi'xi' =0.

7. The unit of /i(G). We here give conditions on a commutative semigroup
that are necessary and sufficient for the existence of a unit in li(G).

7.1. Definition. Let G be a semigroup, not necessarily commutative.
A set A CG is said to be a set of relative units for G if, for every xEG, there
exists aEA such that xa=ax=x.

For use in §8, we note the following fact.

7.2. Theorem. Let G be a semigroup, not necessarily commutative, and
suppose that G has a finite set A = {ax, a2, • ■ ■ ,am} of relative units. Then there
exists a subset B of A such that B is a set of relative units for G, all elements of B
are idempotent, and no proper subset of B is a set of relative units for G.

Proof. Consider an arbitrary element of A, say ax. Since A is a set of rela-
tive units for G, there exists an integer/, 1 ^j^m, such that axaj = ajax=ax.
If there exists a j>l with this property, then {a2, a3, • • ■ , am} is a set of rela-
tive units for G. To see this, let x£G and let atx = xax = x. Then ajX = aj(axx)
= (ajax)x = axx = x, and similarly xaj = x. Since A is finite, we may repeat
this argument a finite number of times to produce a subset B of A, which we
write as {bx, 62, • • • , b„} (n^m) with the properties that B is a set of relative
units for G and if bi, bjEB and bibj = bjb, = b,, then 6< = 6y. This completes
the proof.

7.3. Theorem. Let G be a commutative semigroup. If h(G) has a unit,
then G contains a finite set of relative units.

Proof. Let £= E«£c «uX„, E«ec | e„| < <», be the unit of h(G). Let the
set {u; uEG, eM?^0} be written as {ux, u2, u3, ■ ■ • , un, • • • }, and for con-
venience, write tUj as €j (j= 1, 2, 3, ■ • • ). Let m be a positive integer such that
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Y7-m+i | (j| < 1 • For all xGG, we have E * \x = \x, and since E * \x = Y?-1 «A«/»i
we have

7.3.1 1-    Y   «'/-        E       «y+       Z      «*■
i,UjX=x \Sj^m,uj x=x m<y<co,u^-x=a:

The last summand in 7.3.1 is in absolute value less than 1, and hence there
is an integer j such that l^j^w and u,x = x. Since G is commutative, we
have shown that {ui, u2, • ■ • , um} is a finite set of relative units for G.

7.4. AZote. With an obvious definition of relative right and left units in
G, 7.3 has an obvious analogue for the cases in which G is not commutative
and h(G) has a right or left unit.

7.5. Theorem. Let G be a commutative semigroup containing a finite set of
relative units. Then h(G) has a unit.

Proof. Let {ai, a2, • • • , am} he a finite set of relative units for G. We may
suppose without loss of generality that au a2, • ■ • , am are idempotent (7.2).
Let EEh(G) be defined by

E =      Y    X»i  -       ̂       Xo.ay
I.O.L lgjgm lSi'O'Sm

2-i Aa,OjOt '  "  '    +   (       l)m     A010,...a„.
lg«K*Sm

It is easy to see that £ is a unit for /i(G).
7.6. Note. If G has a unit e, it is obvious that Xe is the unit of k(G). Simple

examples, as in 11.1.6 for instance, show that h(G) can have a unit even if
G does not. The unit of h(G), if it exists, must be a finite linear combination
of functionals \x with idempotent x, as 7.5.1 shows. Since considerable can-
cellation can take place in the right side of 7.5.1, the unit of h(G) may be
much simpler in appearance than 7.5.1 indicates.

8. Topology of G.
8.1. Throughout this section, G is a commutative semigroup. According

to the well-known Gel'fand theory for commutative Banach algebras (see
for example [5, Chapters IV and V]), the space of regular maximal ideals of
h(G) may be identified with the space of all homomorphisms of /i(G) onto the
complex number field [5, p. 69, Theorem]. By 2.7, we can therefore identify
the space of regular maximal ideals of /i(G) with the set G.

In the usual way, we associate with every A = Yx&g a(x)\xEh(G) its
Fourier transform A, which is the complex function on G whose value at
XGG is

8.1.1 A(x) = Y «(*)x(«).
iGG

The Gel'fand topology of G is the weakest topology (i.e., the topology with
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the smallest family of open sets) under which all of the functions A are con-
tinuous. Throughout the remainder of the present section, except where the
contrary is explicitly stated, we shall take G to be a topological space with the
Gel'fand topology. The product of 2 elements of G is defined as in [3, 3.7].
It is well known that G is a locally compact Hausdorff space, that all functions
A vanish at infinity in G, and that G is compact if h(G) has a unit.

8.2. Theorem. Let x be an element of G, let {xi, x2, • • • , xm} be a finite
subset of G, and 5 a positive real number. Let UXl,...,Xm.s(x) be the set of all
\f/EG such that \^(xf) — x(xi)\ <o (j=l, • • • , m). Each set UXI,...,Xm;s(x) is
an open neighborhood of x, and the set of all of these neighborhoods is a complete
system of neighborhoods for x-

We omit the proof of this simple result.
8.3. Remark. We may restate the idea of 8.2 as follows. Let D be the

multiplicative semigroup {z; z is a complex number, \z\ ^1} with the ordi-
nary topology. For a cardinal number m>0 (finite or infinite), let Dm be the
Cartesian product of m replicas of D. Under the usual Cartesian product
topology, Dm is a compact Hausdorff space. With multiplication defined co-
ordinate-wise, Dm becomes a compact semigroup in which multiplication is
continuous in both variables. The set 93i of all complex-valued functions /
on G such that |/(x)| ^1 for all xEG can be identified with the semigroup
Dm such that m is the cardinal number of G. Every element of G is an element
of 55V Then 8.2 asserts that the Gel'fand topology of G is the relative topology
of G as a subspace of 55V where 33i has the Cartesian product topology of a
Dm. We have also the following facts, which are easily verified.

8.4. Theorem. Let 0 denote the function in 33i that is identically 0. Then
G^J {0} is a compact subsemigroup of S8i.

8.5. Theorem. G is compact if and only if 0 is not a limit point of G in 56V

8.6. Theorem. The mapping A defined by x~*x'< where x'(Fx) =x(x) (see
5.7) is a homeomorphism as well as an isomorphism of G onto G'.

8.7. Theorem. If h(G') has a unit, then G is compact.

Proof. As remarked in 8.1, if h(G') has a unit, then G' is" compact. Now
apply 8.6.

The converse of 8.7 is also true, but its proof is rather long. We break up
the proof into several steps.

8.8. Theorem. If G is compact, then G" has a finite set of relative units.

Proof. Like every idempotent commutative semigroup (see [3, 2.7J), G"
is a semilattice under the partial ordering Hu ^ Hv ii and only if HUHV = Hu.
Now let r be an arbitrary ordinal number and suppose that {HUy}y<r is
a subset of G" such that y<8<r implies HUy^H„t and HUy^Hut. Suppose

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 EDWIN HEWITT AND H. S. ZUCKERMAN [September

that there is no HVEG" such that Hv*zHUy for all y<T. Then let Xy be the
semicharacter of G defined by 5.5.1 with u = uy and Xuy identically 1 on Hu .
Now let {xi, Xi, • • • , xm} be an arbitrary finite subset of G. Under our
hypothesis, there exists for every i, i= 1, 2, • • • , m, an ordinal number
y(i)<T such that HUywHXi^HUy[i). Let o = max {7(1), 7(2), • • ■ , ?(m)}.
Then by the definition of the semicharacters Xy, it follows that Xi(x%) =0 for
i = l,2, ■ ■ • , m. Therefore every neighborhood of 0 in 33i contains a semichar-
acter, and by 8.5, G is noncompact. We have therefore proved the following
fact.

8.8.1. If G is compact, then every well-ordered increasing transfinite
sequence of elements of G" admits an upper bound in G"'.

It is a simple consequence of 8.8.1 (we omit the proof) that G" contains
elements that are maximal in the ordering =\ In fact, for every HXEG",
there exists HaEG" such that Ha is maximal and Ha^IIx. The reader will
note that the elements here called maximal are those called prime in 3.8 of
[3].  _

We next show that G" contains only a finite number of maximal elements.
Supposing the contrary, let {Hav Ha„, • • • , Ha„, • • • } be a coUntably in-
finite set of distinct maximal elements of G". For n = 1, 2, 3, • • • , let x» be
the function on G such that

CI ii xE Han,
1.0 otherwise.

Theorem 5.5, 5.2.1, and the maximality of Han show that Xn is a semicharacter
of G. If now {xi, x2, • • • , xm} is an arbitrary finite subset of G, there are
clearly an infinite number of positive integers n such that {xi, x2, • • • , xm}
CMIan = 0. For every such n,wehavexn(xi)=0 (i=l, 2, ■ ■ ■ , m), and there-
fore every neighborhood in 33i of the function 0 contains points of G. Theorem
8.5 shows that G is not compact. We thus have the following fact.

8.8.2. If G is compact, then G" contains only a finite number of maximal
elements.

Using 8.8.1 and 8.8.2, we can quickly complete the proof. From 8.8.1,
we know that G" contains a set {Ha} of maximal elements such that for all
HXEG", there exists an Ha for which HaHx = Hx. By 8.8.2, the set {Ha} is
finite, and is therefore a finite set of relative units for G". (Note that this set
automatically satisfies the conditions imposed on the set B in 7.2.) This com-
pletes the proof of 8.8.

8.8.3. Corollary. // G is compact, then h(G") has a unit.

Simple examples (see 11.4) show that the converse of 8.8.3 is false. We
next turn our attention to a special case, that of semigroups in which Tx= {x}
and in which there is only one set Hx. In this case, we obtain as by-products
some interesting facts about such semigroups.
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8.9. Theorem. Let G be a commutative semigroup such that Tx= {x} for
all xEG and such that for all x, yEG, there exist u, vEG and a positive integer
n for which x" = uy and yn=vx. Then G is compact if and only if G is a group.

Proof. Since Tx= {x} for all xEG, we have G=G', and by 5.6.2, h(G) is
semisimple. Now let x be an arbitrary element of G. We haveXx(x) =x(x) for
all X&G. It follows from 5.1.1 and the fact that G is a single Hx that x van-
ishes nowhere on G. In other words, the function X* vanishes nowhere on G.
Therefore h(G) is a semisimple commutative Banach algebra containing an
element whose Fourier transform vanishes nowhere. If G is compact, it is
known that h(G) must in this case contain a unit [5, p. 80, Corollary].
Since /i(G) contains a unit, G contains a finite set of relative units (7.3).
These relative units may be taken as idempotents (7.2). Therefore G contains
an idempotent, and by 4.16, G must be a group.

Conversely, if G is a group, then G contains a unit and Zi(G) contains a
unit. Therefore G is compact. This completes the proof.

8.10. Theorem. Let G be a semigroup satisfying the hypotheses of 8.9. Then
G is a non-group if and only if G contains an element x such that 0 < \ x(x) \ < 1
for all xEG.

Proof. Since every semicharacter of a group is a character, no semichar-
acter of G can have absolute value less than 1 at any point if G is a group. Con-
versely, suppose that G is a non-group. By 8.9, G is noncompact. In view of
8.5, this implies that for every finite subset {xi, x2, • • ■ , xm} of G and every
positive real number 5, there exists an element x^G such that |xfe)| <5
(j=l, 2, • • • , m). It follows a fortiori that G contains a semicharacter x
whose absolute value is at some point less than 1. Now if there existed an
element yEG such that | x(y) | = 1, we could define a function \p on G as fol-
lows: \p(u) = 1 if |x(")| =li ip(u)=0 if |x(«)| <1- It is easy to see that yp
would be a semicharacter of G assuming the values 0 and 1 and no other
values. This contradicts 5.1.1, and so we have IxWI <1 f°r ah xEG. This
completes the proof.

From 8.10, we easily obtain the following fact.

8.11. Theorem. Let G be a commutative semigroup. The following condi-
tions on G are equivalent:

8.11.1 G*=G;
8.11.2 G' is a union of disjoint groups;
8.11.3 every subsemigroup Hx of G' is a group;
8.11.4 G'^G".
Proof. The logical equivalence of 8.11.2, 8.11.3, and 8.11.4 is simple to

establish: we omit the proof. Suppose then that 8.11.1 fails, and that x is a
semicharacter of G such that 0<|x(w)| <1 for some uEG. Then we have
0< |x'(F„)[ <1, where x' is defined as in 5.7.2. Now, changing our notation
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in mid-proof, write the elements of G' as x, y, z, ■ ■ ■ . We see that there
exists an x£G' and a semicharacter x' of G' such that 0 < | x'(x) | < 1- Theorem
8.10 implies that the subsemigroup Hx is a non-group. Hence 8.11.3 implies
8.11.1.

Suppose next that 8.11.3 fails. Then there is a uEG' such that Hu is a
nongroup, and, by 8.10, there is a semicharacter x« of Hu such that 0 < | x«(z) |
<1 for all zEHu. By the construction given in 6.5, Xu admits an extension
over G', which we write as x'- The semicharacter x of G corresponding to x'
under the correspondence described in 5.7 is clearly a semicharacter of G that
assumes a nonzero value less than 1 in absolute value. Hence 8.11.1 implies
8.11.3, and the proof is complete.

After this digression, we return to our main line of investigation.

8.12. Theorem. Let G be a commutative semigroup. If G is compact, then
lx(G') has a unit.

Proof. If G is compact, then G" contains a finite set {Hai, Hai, ■ ■ • ,Han}
of maximal elements that are relative units for G". We shall show that each
Haj is a group if G is compact. Suppose that someHaj is a non-group. Then, by
8.10, there is a semicharacter Xi of Haj such that 0 < | Xi(x) | < 1 for all xEHar
Let x be the function on G' such that x(x) =Xi(x) for xEHaj and x(*) =0 for
xEHar It follows from 6.5 that xCG'. Note that we have |x(*)| <1 for all
xEG'. Let {xx, x2, • • • , xm} be an arbitrary finite subset of G' and 5 an arbi-
trary positive real number. It is clear that there exists a positive integer p
such that | x"^;) I <5 for j = l, 2, • ■ • , m; that is, 0 is a limit point in 33i
of-G'. Therefore G' is noncompact, by 8.5. By 8.6, G is noncompact. There-
fore, if G is compact, every Haj is a group. It is a notational matter only to
suppose that a, is the unit of Haj (j=l, 2, ■ ■ ■ , n). Let the element E"-i *«,-
of /i(G') be written as A. It is clear that 2(x) = l for all xEG'. Hence the
maximal ideal space of h(G') is compact, h(G') is semisimple, and h(G')
contains an element whose Fourier transform vanishes nowhere. Hence, by
[5, p. 80, Corollary], h(G') has a unit.

8.13. Remark. The foregoing proof can be completed without recourse
to [5, p. 80, Corollary], as follows. Given x£G', there is an a, such that
HxHaj=Hx; hence xajEHx. If xa^x, then there is a semicharacter x of G'
such that x(x)x(aj) =x(xai) ^x(x), by 5.6. Since xajEHx, we have x(xctj) 9^0,
x(x) 5*0. Therefore x(ai) = L since a* = a}; and x0*0 ̂ x(x). From this contra-
diction, we infer that xaj = x and that {ax, a2, • • • , an} is a finite set of rela-
tive units for G'. Then apply 7.5.

8.14. Theorem. Let G be a commutative semigroup. Then G is compact if
and only if there exists a finite subset A = {ax, ait • • • , a„} of G such that for
all xEG, there exists ajEA for which xETajX.

Proof. This follows at once from 8.12, 8.7, and 4.4.
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8.15. Theorem. Let G be a commutative semigroup. Then G is a compact
semigroup if and only if G' has a unit.

Proof. In view of 8.6, we may restrict our attention to G' and G'. If G' has
a unit, then it is obvious that G' is a semigroup. Also li(G') in this case has
a unit, and G' is compact. Conversely, suppose that G' is compact and a
semigroup. Since G' is a semigroup, it follows from 6.7 that there is at most
one maximal element in G". Since G' is compact, there is at least one maximal
element in G". Let Ha, then, be the unique maximal element in G". Since
G' is compact, it follows as in the proof of 8.12 that Ha is a group; we take a
to be the unit of Ha. The argument of 8.13 may be applied to show that a is
the unit of G'. This completes the proof.

8.15.1. Remark. Semigroup 17 of Appendix 2 in [3] shows that G may
be compact while ^i(G) has no unit. Hence we cannot replace G' by G in 8.15.

8.16. Theorem. Let G be a commutative semigroup. Then G is a compact
semigroup if and only if there exists an element aEG such that for all xEG,
axETx.

Proof. Apply 8.15 and 4.4.
9. Idempotents in h(G'). We discuss in this section the existence of idem-

potents in h(G'). As usual, a proper idempotent element E of an algebra is
taken to be an element different from the unit (if it exists) and from 0 such
that E2 = E. Our main theorem is the following.

9.1. Theorem. Let G be a commutative semigroup such that Tx= {x} for
all xEG. Then h(G) contains a proper idempotent if and only if G contains an
element a of finite order that is not a unit for G.

It is convenient to break the proof up into several theorems.

9.2. Theorem. The condition given in 9.1 is sufficient, even without the
hypothesis Tx= {x}.

Proof. Let a be an element of G having finite order. If a is idempotent and
is not a unit for G, then X0 is idempotent in /i(G) and, since X„ *XI = X„x?iXx for
some xEG, X0 is a proper idempotent. If a is not an idempotent of G, let k
and / be the smallest positive integers such that ak+l = al. If k = l, then a1 is
an idempotent of G that is not a unit for G. If k>l, the set {a1, al+1, • • • ,
al+h~1} =B is a finite subgroup of G of order >1, and E = (l/k) Y*^b X, is
a proper idempotent of h(G). (For the properties of k and / used here, see
[3, 2.6].)

9.3. To show that the condition given in 9.1 is necessary, we first prove a
preliminary fact. If G is as in 9.1, and if zEG, we let Vt denote the union of
all of the sets Hx for which HZHX = HZ.

9.4. Theorem. Let G be as in 9.1, and let E= Z"_i «nXx„ be an idempotent
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element of h(G). For an arbitrary zEG, let A = En' €„XX„, the symbol En' de-
noting the sum over all n such that x„ E Vz. Then A is also an idempotent ele-
ment of lx(G).

Proof. It is not hard to show that Vz is a subsemigroup of G whose com-
plement is an ideal. If \pz is a semicharacter of Vz, then the function \p such
that yp(x)=\pz(x) for xEVz and ^(x)=0 otherwise is a semicharacter of G
(6.4). We further have E(ip) =A(ypz), when we regard A as an element of
lx(Vz). Since £ is idempotent, the last equality implies that A(ipz) assumes
only the values 0 and 1. Therefore A2 = A, and since h(Vz) is semisimple
(5.6.2), it follows that A is idempotent.

9.5. Theorem. Let G be as in 9.1, let G contain a unit e, and no other element
of finite order. Then the complement P of He in G is a subsemigroup. If h(G)
contains a proper idempotent E = En°=i e»Xxn, then lx(P) contains a proper idem-
potent.

Proof. It is clear that H,= Ve, and, as noted in the proof of 9.4, P is even
an ideal in G. Let A be defined with respect to z = e as in 9.4. Then A is an
idempotent in li(He). If A were a proper idempotent, then A would assume
both the values 0 and 1, and H, would be disconnected. However, by hypoth-
esis H, contains no element of finite order other than e, and H, is a group
(4.16). These conditions imply that H, is connected [9, p. 110]. It follows
that A =0 or A= Xe. If .4 =0, then £ may be regarded as a nonzero element
of /i(£). As P contains no idempotent elements, /i(F) has no unit (7.3), and
£ is a proper idempotent of /i(£). If A =Xe, then Xe —£ is plainly idempotent
and different from 0. This functional too may be regarded as an element of
li(P). As in the case A =0, X„ — £ must be a proper idempotent of h(P).

9.6. Theorem. Let G be as in 9.1, and let G contain no element of finite
order. Then h(G) contains no proper idempotent.

Proof. The proof is by contradiction. Assume that EEk(G), that £2 = £,
and that E^O. We write £ in the usual way as E« 6nXIn, the sum being over
just those positive integers n for which en is different from 0. There exists a
positive integer m such that E»>>» I €"| <l/2 (a void sum being 0). It is not
hard to show that there exists an x,- (1 ^j^m) having the property that the
equality HXjHXn = HXj implies that HXn = HXj or that n is greater than m. We
omit the details of this argument. We write the x3 so selected as z and con-
struct A Eh(G) from £ and z as in 9.4. Thus

9.6.1 4 = EU) «»**. 7* 0.
n

Let C= E*„£ff* £"Xz„ and let D = A — C. Then D = E« «nXx„, where the sum
is taken over all n such that x„EHz and xnEVz. Our construction implies
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that all of these «'s are greater than m. For an arbitrary semicharacter x of
G, we clearly have

9.6.2 A(x) = C(X) + D(X),    and     | D(x) \   < 1/2.

There are now two cases to consider. First, if x(z) = 0, we know from
5.1.1 that x(O=0 for all xnEH^ Hence C(x)=0, and |2(x)| <l/2 by 9.6.2.
Since A is idempotent, we have .4(x) =0 or 1, and therefore .4(x) =0.

The second case, x(z) 5^0, requires a more elaborate argument. Let xo be
the semicharacter of Hz such thatXo(x) =x(x) for all xEHz. Since Hz contains
no idempotent, it is a non-group, and by 8.10 and the fact that the absolute
value of a semicharacter is again a semicharacter, we see that there exists a
semicharacter xi of Hz such that 0<xi(x) <1 for all xEHz. Then, for 0^r < co ,
the function xw. defined by the relations

fO if HZHX ^ Hz,

x-Kx) = U^).f EEx _ ^
1 XoX\(z)

is a semicharacter of G (6.5). Then we have

-Tv ,      v-,!      ,   ^      ^->,i      x<^zx^        w,     Xo(zxn)MX)   =   YM tnX(Xn)   =   YM *. —7"   =    £(" «. "7—
X(z) » Xo(z)

=   Y <»XW(Xn)   =  2(XC0>).
n

Now the function ^4(x(r)), given by

It   frn       V^f.i       Xo(zx„)xir(zx„)

Xo(z)x[(z)

is a continuous function of r ior r^0, and hence we have .4(x(r)) =0 for all
r^O or A(x(T)) = l ior all r^O. Furthermore, we have |C(x(r))|
= 1 Yxn^HZ €nXo(xn)x'i(Xn)\ <l/2 for all r sufficiently large. By 9.6.2 with

X=x(r). we have |.4(x(r))| <1 for r sufficiently large, and hence A(x(r))=0
for all r^0. From 9.6.3, it follows that 2(x) =0.

Putting these 2 cases together, we find that A =0, and since /i(G) is semi-
simple, we have .4=0. This contradicts 9.6.1, and therefore the assumption
E9^0 is false.

9.7. Proof of 9.1. The sufficiency argument is given in 9.2. To establish
the necessity of the condition given in 9.1, let £ be a proper idempotent of
h(G). Ii the only element of finite order in G is the unit of G, then 9.5 reduces
our problem to the case treated in 9.6.

10. Connectedness of Go.
10.1. Silov has shown [7, p. 362] that if A is a commutative Banach

algebra with unit, and if the maximal ideal space of A is disconnected, then
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A contains a proper idempotent. The converse, which is very simple, was
noted by Gel'fand [2, p. 19]. Silov's theorem is not true for commutative
Banach algebras without unit, but something very like it is true. We discuss
this matter here and apply the result, together with 9.1, to finding conditions
under which G is disconnected.

10.2. Theorem. Let A be a semisimple commutative Banach algebra without
unit. If A contains an idempotent e different from 0, then the maximal ideal space
9JJ of A is disconnected. More specifically, there exist nonvoid complementary
closed subsets of SR, one of which is compact.

We omit the proof.
10.3. Remark. Theorem 10.2 obviously fails if A is not semisimple.

10.4. Theorem. Let A be a commutative Banach algebra with or without
unit, and suppose that the maximal ideal space 90? o/ A is disconnected, Tt = 3i^ 82,
where %jx and ^2 are nonvoid, closed, and complementary. If at least one of %x
and $2 is compact, then A contains an idempotent f that is different from 0 and
from the unit of A if one exists.

Proof. If A has a unit, then we have only to cite Silov's theorem as in
10.1. In this case 93i and hence %x and ^2 are compact. If A has no unit, we
adjoin a unit e, obtaining the algebra A, of all elements x+Xe, where xEA
and X is complex. The maximal ideal space of Ae is 9J2W{/)}, where p is an
adjoined point representing the homomorphism x+Xe—->X of A, onto the com-
plex number field. If §1, say, is compact, it is clear that %x and i5^{p} are
nonvoid complementary closed subsets of 9JJW {p}. Applying Silov's theorem
to Ae, we find that Ae contains an idempotent x+Xe, where X9^0. Since
x+Xe = x2 + 2Xx+X2e, we have X equal to 0 or 1. If X = l, then —x is an
idempotent in A. If X = 0, then x is an idempotent in A. In either case, A con-
tains an idempotent/t^O, and since in the present case A has no unit, the
proof is complete.

10.5. Remark. Theorem 10.4 fails to be true if both gi and %2 are non-
compact. A simple example to show this is provided by the Banach algebra
of all continuous complex-valued functions / on [0, l] such that/(1/2) =0,
with pointwise operations and ||/|| =maxqs<gi |/(0| -The maximal ideal space
here is the space [0, (1/2) [U](l/2), l], with the usual topology, and is obvi-
ously disconnected. However the algebra in question contains no idempotent
elements except 0.

The foregoing results may be applied to G as follows.

10.6. Theorem. Let G be a commutative semigroup. Then G is the union of
2 nonvoid complementary closed sets, one of which at least is compact, if and only
if G' contains an element of finite order that is not a unit for G'.

Proof. This assertion follows directly from 10.2, 10.4, and 9.1.
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11. Examples. We now take up various examples that illustrate the fore-
going theory. We begin with the simple case of a commutative idempotent
semigroup.

11.1. According to [3, 2.7], every commutative idempotent semigroup G
admits a faithful representation by a semigroup {.4 } consisting of sets, the
semigroup operation in {A } being set-theoretic intersection.

11.1.1. It is not hard to see that the semicharacters of {.4} correspond
in a 1-to-l way with filters in {.4 }. A filter in {.4 } is a nonvoid subfamily
{B} of {.4} such that: (1) Bu B2E{B} imply Bif\B2E {B}; (2) BE{B},
CDB, and CE {A } imply CE {B}. Every such filter is the set where a semi-
character assumes the value 1, and conversely.

11.1.2. The representation u—>\u of an idempotent commutative semi-
group G is faithful, since /i(G) is semisimple. Since X« assumes only the values
0 and 1, the representation u—*{x', X&G, X«(x) = 1} is a faithful representa-
tion of G by subsets A of G. In this representation, all filters and hence all
semicharacters are described by families of sets of the form {A; XoG-4 } for
some fixed XoGG. This corresponds to Stone's perfect representation of a
Boolean algebra. (See [8, p. 107], and also [3, 2.7.2].)

11.1.3. The semigroup of all real numbers t, with the semigroup operation
j'/ = raax (s, t) is an example of a semigroup in which the equation ay = a has
an infinite number of solutions for all a in the semigroup. By using well-
ordered sets, with the operation y-& = max (y, 5), one easily gets semigroups
in which this equation has a set of solutions of arbitrarily large cardinal
number.

11.1.4. Let G be the positive integers {1, 2, 3, • ■ • } with the semigroup
operation max (x, y). This semigroup has the unit 1. It is simple to show
that the functions x*> (k = l, 2, 3, • • • ), where Xk(x) = l for l^x^k and
X*(x)=0 for x>k, are semicharacters. The only other semicharacter is the
function 1. The topology of G makes every x* isolated, and a generic neigh-
borhood of 1 is {x», X»+i> " ' " } f°r a positive integer s. Thus G is compact.
This is in consonance with 8.7. For A = Yn-i cen\nEh(G), we have .4(1)
= Ym-1 <*»> and .4(x*) = 2~lX-i «•■ The class of Fourier transforms in this case
may be represented as the class of all functions/defined on {l, 2, 3, ■••,«>}
such that liningf(n)=f(<*>) and 23~=1 \f(n + l)—f(n)\ is finite. If Yn-i «»
is a conditionally convergent infinite series and g(k) = Yn-iUn ior
k = l, 2, 3, • • ■ , g(«>) = yi",i un, then g is a continuous function on G that
is not a Fourier transform.

11.1.5. Let G be the positive integers {l, 2, 3, • • ■ } with the semigroup
operation min(x, y). This semigroup has no finite set of relative units. Ac-
cordingly, by 7.3, h(G) has no unit, and by 8.12, G is not compact. In this
case it is easy to show that the functions ypn, where ypn(x) =0 for 1 gx^w and
ypn(x) = 1 for x>n, are semicharacters and that these are the only semichar-
acters. The space G is discrete and hence locally compact. For A = ^3",i or„X„
G/i(G), we have A(\pk) = Y*-t «*•
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11.1.6. Let G be any nonvoid set and let a be a fixed element of G: let
x2 = x for all xEG and xy = a if xs^y. Then G is a commutative idempotent
semigroup. The function 1 is a semicharacter of G; every other semicharacter
of G has the form Xv for some y^a, where Xv(x) =oxv for all x£G. If G is
infinite, then G has no finite set of relative units, h(G) has no unit, (?has the
discrete topology, and of course k(G) contains a large number of proper idem-
potents. If G is finite, G= {a, Xi, x2, • ■ • , xp}, then the unit of h(G) is
£=X*1+ • • ■ +\Xp-(p-l)\a, and \\E\\=2p-l.

11.2. By slightly altering the definition of multiplication given in 11.1.6,
we obtain a very different G and h(G). For G any nonvoid set, let a be a fixed
element of G and let xy=a for all x, yEG. The function 1 is the only semi-
character of G, and G', G", and G° all consist of just one element. For all
A = E*£<? <x(x)\xEh(G) and uEG, we haveX„*4. = (E*e<? ot(x))\a, so that
lx(G) has no unit if G contains more than one element. The semigroup G con-
sists of exactly one element.

11.3. If G is a commutative semigroup in which Tx= {x}, then there are
an infinite number of ways to imbed G in a semigroup that is a union of
groups. For example, one may adjoin in succession as many zeros as one
wishes to the semigroup G°[3, 2.2]. A simple nontrivial example of 2 distinct
imbeddings is provided by the additive semigroup JO, 1, 2, 3, • • ■ }. Obvi-
ously this semigroup can be imbedded in the additive group { • • • , —2, —1,
0, 1, 2, • • • }. However we have H0= {o} and fli={l, 2, 3, • • • }, and G°
is the union of H%^{0} and IL°^{  • • • , -2, -1, 0, 1, 2, • • • }.

11.4. The semigroup G= [l, 2, 3, ■ • • } under addition is clearly a semi-
group in which Tx= {x} and Hx = Hi= • • • =G. A semicharacter Xz of G is
determined by the complex number z, 0<|z| ^1, such that x*(l)=2- The
semigroup G is thus isomorphic to the multiplicative semigroup {3; z is com-
plex, 0 < I z\ ^ 1}. The topology of G is easily seen to be that of G as a subset
of the plane. The algebra lx(G) is of course very well known (see for example
[10, p. 444]); it is isomorphic to the algebra of all functions/(z) = En-i otnzn
such that En-i |<*n| is finite. This semigroup is the simplest example of a
commutative semigroup that is a nongroup and that is a single Hx. Since G"
consists of a single element, lx(G") has a unit, but G is not compact. Previously
established facts are all apparent here: semicharacters exist that everywhere
have absolute value less than 1; no semicharacter vanishes anywhere; the
cancellation law holds; no element is idempotent. Note too that /i(G) contains
no idempotent except 0, and that G is connected.

11.5. The additive semigroup G={0, 1, 2, 3, ■ ■ ■ } is very like
{l, 2, 3, • • • }, being obtained from {1, 2, 3, • • • } by the adjunction of
the unit 0. Here we have G=D (8.3), with the usual topology, the function
Xo such that Xo(0) = 1, Xo(k) =0 for k = 1, 2, 3, • • ■ being a semicharacter of
G. As remarked in 11.3, G° is a nongroup. The algebra lx(G) has a unit, Xo,
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has no proper idempotents, and is isomorphic to the algebra of all functions
f(z) = Yn~0 CtnZn,   Yn°=0 I an I  < *>•

11.6. A complete classification of all commutative semigroups G in
which Tx= {xj and G is a single Hx would be very complicated. These semi-
groups come very close, in a sense, to being groups, as 4.16, 5.1.1, and 8.10
show. Algebraically, the relationship with groups may be rendered precise
as follows. A commutative semigroup is a group if and only if the equation
au = b has a solution u for all a and b. A commutative semigroup in which
Tx = {x} is a single Hx if and only if the 2 equations an = ub,bn = va have solu-
tions u, v, and n ior all a and b.

11.6.1. Non-groups of the kind under study are easy to find, as noted in
11.4, and may have arbitrarily large cardinal number. For example, let X be
any nonvoid set, and let G be the additive semigroup of all bounded real-
valued functions / on X ior each of which there exists a positive number 5
such that/(x) Si 5 for all xEG.

11.6.2. The example {0, 1, 2, 3, • • • } C { • • • , -2, -1, 0, 1, 2, • • • }
shows that a subsemigroup of a semigroup having the property under study
may fail to have it.

11.7. Let G be an arbitrary commutative semigroup and let GVJ{a} he
obtained from G by adjoining a repeat element, as in 2.4 of [3]. Then we have
aETxl, so that /i(GUJaj) is never semisimple, by 5.9.
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