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1 Introduction

The construction of Dirac observables in theories with gauge redundancy is a fundamentally
important subject of research, since only Dirac observables allow one to extract the “phys-
ical”, i.e. gauge invariant, predictions of the theory. An alternative, but equivalent route is
to introduce gauge fixings and employ the associated Dirac brackets for the computation of
the dynamics. At the Hamiltonian level, the gauge redundancy translates in the appearance
of constraints, and a rigorous mathematical framework to deal with them is available [1, 2],
including explicit formulas for the construction of Dirac observables once the related gauge
conditions are specified [3–5].

In general relativity, the gauge redundancy is given by the invariance of the theory
under spacetime diffeomorphisms. Consequently, in order to talk about a certain field at a
point in an invariant way, we need to specify this point via some relational construction [6].
In other words, we would choose four independent fields (or more general phase space func-
tions) with suitably non-vanishing gradient and prescribe our point as the point at which
these fields take a certain value. Clearly, such a construction defines a physical coordinate
system and an observable defined as some other field at this point is diffeomorphism invari-
ant. Various examples for such constructions have been given in the literature dating back
to [7], e.g. using dust [8], a perfect fluid [9], scalar fields [10], geodesics (Gaußian normal
coordinates) [11–14], and many more.
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Given a certain construction of observables, the most important questions to answer
are about the algebra of the Dirac observables and the physical Hamiltonian. On the one
hand, one would like to know the algebra of observables in order to be able to quantise
the theory. If the algebra turns out to be complicated, e.g. non-local,1 one would expect
little chance of finding a Hilbert space representation thereof. On the other hand, the
physical Hamiltonian which generates the time evolution with respect to the chosen clock
field should be sufficiently simple and explicitly known (which may require the inversion
of some differential operator), again also to be able to quantise it. Another interesting
question that can be asked is about the local quantum field theory limit of a theory of
quantum gravity, see e.g. [14, 17] for a recent discussion. If we choose to perform a reduced
phase space quantisation, different choices of Dirac observables will not be equally well
suited for establishing such a limit. In particular, one would like to maintain a suitable
form of locality of at least the non-gravitational sector of the theory.

Similar questions have recently also become relevant within the context of the AdS/CFT
correspondence [18–20]. There, the reconstruction of bulk fields from boundary operators
has to deal with the question of how bulk points are invariantly specified. Recently, the
spacetime radial gauge was employed for this [12–14], see also [21] for a related construction.
In this line of work, it is a crucial question whether the bulk matter fields commute, and
contradictory claims were made [13, 14].

In this paper, we will reinvestigate the issue of a spacetime version of the radial gauge,
building on the results previously derived for a purely spatial version of it [11, 22]. We
will work completely non-perturbatively, as opposed to the perturbative discussion in [14].
Our results will back those of [14], i.e. the bulk matter fields do not commute at spacelike
separation. The underlying reason for this will be identified as a the non-commutativity
of the four gauge conditions underlying the spacetime radial gauge. Our discussion should
thus settle similar questions by a simple check of the commutativity properties of the chosen
gauge conditions.

This paper is organised as follows: we recall the spatial version of the radial gauge as an
introduction to the subject in section 2. The main part of the paper is section 3, where the
spacetime radial gauge is implemented and the non-locality of the algebra of observables is
exposed. We make some comments in section 4 and conclude in section 5.

2 The spatial radial gauge

We will first briefly review the spatial version of the radial gauge, which will serve as a
foundation for what follows. While the idea of using a radial2 gauge is quite old, the algebra
of the associated observables for the spatial version has only been computed recently [11].
Based on this construction of observables, a reduced phase space formulation was established
in [22].

1Contrary to what is sometimes claimed or suggested, complete (= separating in the reduced phase
space) algebras of observables may very well be local, even if the gauges involved are purely geometric
in nature [15] or relational with respect to a non-local object, e.g. a geodesic [11, 16], see also section 4,
comment 2.

2Also referred to as axial gauge [14], holographic gauge [13], or Fefferman-Graham gauge [23].
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The main idea is to specify coordinates on the spatial slice via the endpoints of spatial
geodesics anchored either at a central point or at spatial infinity. From a gauge fixing
perspective, one would demand that in a given coordinate system where the radial direction
is denoted by r and the angular directions by A, compoundly written as a = r,A, the spatial
Christoffel symbols

(3)

Γ
A
rr =

1

2
qAa (2qra,r − qrr,a) (2.1)

vanish. One can furthermore demand that also
(3)

Γ
r
rr =

1

2
qra (2qra,r − qrr,a) (2.2)

vanishes, which means that the coordinate r measures (a multiple of the) proper distance
along the geodesics. While one could directly impose (2.1) = 0 and (2.2) = 0 as gauge
conditions, which is equivalent to 2qra,r − qrr,a = 0, it is more convenient to impose the
stronger condition

qra = δra, (2.3)

which is easier3 to deal with in practise and fleshes out the geometric interpretation of
the gauge.

qra = δra can now be interpreted as a gauge fixing condition for the spatial diffeomor-
phism constraint and the Dirac brackets can be constructed, as done in [22]. It is important
to notice that the gauge conditions qra = δra are mutually Poisson-commuting, which leads
to a Dirac bracket {f, g}DB where all corrections with respect to the Poisson bracket {f, g}
are proportional to {f, qra} or {g, qra} due to the general inversion formula(

A B

C 0

)−1

=

(
0 C−1

B−1 −B−1AC−1

)
(2.4)

for a (Dirac) matrix of the given block form.4 All fields Poisson-commuting with qra,
in particular additional matter fields, thus have Dirac brackets identical to their Poisson
brackets. If P ra is involved on the other hand, the Dirac brackets are non-trivial and given
in [22]. However, we can solve for P ra via the spatial diffeomorphism constraint in terms
of variables having canonical Poisson brackets, that is qAB, PAB, and the matter fields.
We thus can find a complete set of observables which have canonical, in particular local,
Poisson brackets (or equivalently a complete set of fields with canonical Dirac brackets).
These observables are constructed from fields living at a point which is specified by the
mentioned geometric construction, and are thus local in this sense.5

3While it seems hard to avoid setting qrA = 0 in practical applications, it might be advantageous not to
fix qrr = 1 classically, but to only gauge fix qrr,A = 0 classically and solve the remaining parts of the radial
diffeomorphisms at the quantum level, as done in [24].

4A more detailed discussion of the Dirac bracket and the Dirac matrix is presented in section 3.1 and
appendix A. The purpose of equation (2.4) is to indicate, that vanishing of the bottom-right block, describing
the brackets between the gauge conditions, leads to a vanishing of the top-left block in the inverse. This
has profound consequences for the algebra of observables in the gauge-fixed theory as described in the rest
of the current paper.

5The Hamiltonian however contains non-localities which originate from solving the spatial diffeomor-
phism constraint for P ra, see also section 4, comment 3.
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The spatial radial gauge can also be combined with an additional gauge condition for
the Hamiltonian constraint. In [11, 22] this was tentatively specified as deparametrisation
with respect to non-rotating dust [8, 25]. The dust clock trivially Poisson-commutes with
qra and thus the two gauge fixings are effectively independent of each other. However, in
the case of the spacetime radial gauge, the new gauge fixing condition does not Poisson
commute with qrr, which leads to the problem discussed in the next section.

3 The spacetime radial gauge

In order to upgrade the spatial radial gauge to a spacetime gauge, we need to study the
form of the spacetime Christoffel symbols and translate the conditions for a radial geodesic
to remain a radial (but now spacetime) geodesic into the canonical framework. Similar
discussions are found in [13, 14].

We start with the usual ADM decomposition [26]

gµν =

(
−N2 +NaNa Na

Na qab

)
gµν =

(
−1/N2 Na/N2

Na/N2 qab −NaN b/N2

)
, (3.1)

where the spatial indices are raised and lowered with the use of spatial metric and its
inverse, and obtain after a few lines of computation

(4)

Γ
t
rr =

1

N
Krr, (3.2)

(4)

Γ
r
rr = −N r

(4)

Γ
t
rr +

1

2
qrb (2qrb,r − qrr,b) , (3.3)

(4)

Γ
A
rr = −NA

(4)

Γ
t
rr +

1

2
qAb (2qrb,r − qrr,b) , (3.4)

where Kab = 1
2N (qab,t − 2

(3)

∇(a Nb)) is the extrinsic curvature tensor. In case we take
our gravitational theory to be general relativity, we have the ADM [26] Poisson struc-
ture {qab(x), P cd(y)} = δ(3)(x, y)δc(aδ

d
b) with P ab = 1

2κ

√
q
(
Kab − qabK

)
and the constraints

given by

H[N ] =

∫
d3xN

(
2κ
√
q

(
P abPab −

1

2
P 2

)
−
√
q

2κ
R(3)

)
, (3.5)

Ca[N
a] = −2

∫
d3xNa∇bP ba . (3.6)

In order to have both (3.2) and (3.4) vanishing, it is necessary that also FA :=

qAb (2qrb,r − qrr,b) vanishes. Since Krr = 2κ√
q (Prr − 1

2qrrP ), it follows that
{
FA,

(4)

Γ t
rr

}
6= 0,

which will lead to the main conclusion of the paper. However, instead of being completely
general in our presentation, we proceed as in the spatial case and not only demand that (3.2)
and (3.4) vanish, but also that (3.3) vanishes and furthermore

qra = δra. (3.7)
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We stress that both (3.3) = 0 and qra = δra are subsequently stronger conditions than
just (3.2) and (3.4), however they do not interfere with the main conclusion of this paper
and allow for a straightforward geometric interpretation.

From qra = δra, it now follows that 2qrb,r− qrr,b = 0, whereas from (3.2)=0 we see that

Krr = 0 (3.8)

has to be added as our fourth gauge condition. We note for later use that this can be
written more conveniently, using qrA = 0, as

P rrqrr − PABqAB = 0, (3.9)

which is just a generator of local scale transformations on the gravitational variables (with
different weights for the radial and angular components6).

One would now like to proceed as above and compute the set of phase space functions
which Poisson-commute with the gauge conditions, and use them to construct a local algebra
of observables. This however fails, essentially because the gauge conditions are not Poisson-
commuting with each other. To see this explicitly, let us compute the Dirac bracket.

3.1 Spherically symmetric setting

The key feature of the Dirac bracket which is needed for the argument discussed here
is already present in the spherically symmetric setting. Since it is much more transparent
there, we will discuss the case of spherically symmetric general relativity coupled to a scalar
field in this section. We will do so employing the midisuperspace approach developed in [27,
28]. The computation of the Dirac bracket for the full theory is presented in appendix A.

3.1.1 Setup

In spherically symmetric midisuperspace models, the spatial line element is given by

ds2 = Λ2dr2 +R2dΩ2, (3.11)

where Λ2 corresponds to the qrr component of the metric of the non-symmetric theory, while,
due to the symmetry, the qrA components are automatically zero (we of course center the
spherical coordinate system in the center of symmetry). The remaining variable R describes
the areas of spheres at a given distance r from the center of symmetry, which means 4πR2

corresponds to
∫
dΩ
√

det qAB. The canonically conjugate momenta are denoted by PΛ and
PR and the Poisson brackets read

{R(r), PR(r̄)} = δ(r − r̄), {Λ(r), PΛ(r̄)} = δ(r − r̄). (3.12)

We consider a coupling to a scalar field, so we also have the canonical pair

{φ(r), Pφ(r̄)} = δ(r − r̄). (3.13)
6We note here, that it is particularly transparent in a more general setting of D spatial dimensions

where (3.9) takes the form
(D − 2)P rrqrr − PABqAB = 0. (3.10)
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The Hamiltonian of the theory is a sum of a vector and Hamiltonian constraint, which are
given by

C[N r] =

∫
drN rc(r)

=

∫
drN r

(
PRR

′ − ΛP ′Λ + Pφφ
′) , (3.14a)

H[N ] =

∫
drNh(r)

=

∫
drN

(
1

χ

(
ΛP 2

Λ

2R2
− PRPΛ

R

)
+ χ

(
RR′′

Λ
− RR′Λ′

Λ2
+
R′2

2Λ
− Λ

2

)
+ hmatt

)
,

(3.14b)

where the shift vector has only a radial component due to the symmetry requirement, the
prime denotes a radial derivative, χ is a coupling parameter7 and the hmatt term depends
on the type of scalar field one considers as well as the cosmological constant. We will
assume that φ is minimally coupled, which means hmatt is a functional of φ, Pφ, Λ and R
but does not depend on the gravitational momenta PΛ and PR, and also not on the radial
derivatives of Λ and R. Since we are working in spherically symmetric context, all the
fields considered are functions of at most the radial coordinate r and time, but they do not
depend on the angles.

The radial-radial component of the extrinsic curvature, Krr, can be expressed in terms
of the above variables in the following way8

Krr =
1

χ

(
Λ2PΛ

R2
− ΛPR

R

)
. (3.15)

A convenient notation we will use later is to introduce

mADM :=
1

2

(
P 2

Λ

χR
+ χR

(
1− R′2

Λ2

))
(3.16)

which is the (local) expression of the ADM mass of a vacuum spacetime (see [27] for a
discussion of its properties).

3.1.2 Spacetime radial gauge and Dirac bracket

Imposing the spatial radial gauge in the spherically symmetric context amounts to
demanding

Λ− 1 = 0, (3.17)

7To restore the units convention G = 1 = c used in [27] one should put χ = 1 and to restore the units
convention commonly used in quantum gravity literature, namely 8πG = 1 = c one should put χ = 8π.
Within the current paper, in the context of spherical symmetry, we will keep the constant χ = 1

G
, while in

the context of the full theory, we introduced the constant κ = 8πG.
8Note, that our convention for the definition of the extrinsic curvature differs from the one used in [27]

by a sign factor.
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which has been extensively discussed in [22]. Requiring that the radial geodesics are also
spacetime geodesics amounts to requiring additionally

1

χ

(
Λ2PΛ

R2
− ΛPR

R

)
= 0. (3.18)

The two above conditions will now be treated as gauge-fixing constraints which fix the
vector and scalar constraints. The Dirac matrix of the system of the four constraints is
given by

Mαβ(r, r̄) =


0 0 −2mADM

χR3 + tmatt − ∂2
r 0

0 0 0 ∂r
2mADM
χR3 − tmatt + ∂2

r̄ 0 0 − 1
χR2

0 −∂r̄ 1
χR2 0


αβ

δ(r, r̄) (3.19)

on the constraint surface, where α, β are indices running through the set of labels
{H,C,K,Λ} denoting correspondingly the constraints (3.14b)= 0, (3.14a)= 0, (3.18)
and (3.17), so that in this notation we have in particular MCΛ(r, r̄) = {c(r), Λ(r̄) − 1} =

∂rδ(r, r̄). The term tmatt denotes the contribution coming from the presence of the cosmo-
logical constant and the scalar field. It is given by (we use here the assumptions spelled
out under equation (3.14))

tmatt(r)δ(r, r̄) =
1

χR2(r)

δhmatt(r)

δΛ(r̄)
− 1

χR(r)

δhmatt(r)

δR(r̄)
+

1

χR2(r)
hmatt(r)δ(r, r̄). (3.20)

Since the Dirac matrix is of block form, its formal inversion is of the form[
0 A

−A# B

]−1

=

[
(A#)−1BA−1 −(A#)−1

A−1 0

]
=

[
(A−1)#BA−1 −(A−1)#

A−1 0

]
, (3.21)

where # denotes a formal transposition of the matrix integral kernel and in the second
equality we used the fact that a transposition commutes with an inversion. The block A is
diagonal, so its inversion is described in terms of the inverses of the diagonal terms

A−1 =

[
a2 0

0 a1

]−1

=

[
a−1

2 0

0 a−1
1

]
. (3.22)

Hence, a formal inversion of the Dirac matrix can be written in the form

(M−1)αβ =


0 −(a−1

2 )# 1
χR2a

−1
1 −(a−1

2 )# 0

(a−1
1 )# 1

χR2a
−1
2 0 0 −(a−1

1 )#

a−1
2 0 0 0

0 a−1
1 0 0


αβ

. (3.23)

The Dirac bracket of two observables O1 and O2 is formally given by

{O1, O2}D = {O1, O2} −
∑

α,β∈{H,C,K,Λ}

{O1, Cα}(M−1)αβ{Cβ , O2}, (3.24)

– 7 –
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where Cα denotes the constraint specified by α and the integrations involved in the action
of M−1 are suppressed here for simplicity. The remaining task is therefore to compute the
inverses of a1 and a2.

Finding the inverses of a1 and a2 amounts to solving the following equations

∂rN
r = f, (3.25a)

∂2
rN +

(
2mADM

χR3
− tmatt

)
N = −g, (3.25b)

for N r and N in terms of f and g respectively. We denoted the unknown functions with
the same letters as the shift and lapse because, when looking for lapse and shift functions
smearing the constraints which stabilise our gauge fixing constraints, one finds equations
of the type above.

The solution of the first equation can be written in the form

N r(r) =

∫ r

r1

dr̄f(r̄) +N r(r1), (3.26)

where the point r1 and the value of N r at that point can be chosen invoking for example the
behaviour of the shift at zero or at infinity (see the discussion of the two possibilities in [22]).
For our purposes in the present paper, it is not necessary to specify this function further.

Solving the second equation is a little more complicated. We first find that[
N(r)

N ′(r)

]
= U(r, r2)

([
N(r2)

N ′(r2)

]
−
∫ r

r2

dr̄ U(r2, r̄)

[
0

g(r̄)

])
, (3.27)

where the resolvent of the homogeneous equation, U , is given by

U(r4, r3) = Texp

(∫ r4

r3

dr̄

[
0 1

−(2mADM
χR3 − tmatt) 0

]
(r̄)

)
, (3.28)

where Texp denotes an ordered exponential. Like in the previous case, the value of the
lapse and its derivative at some point r2 have to be specified (the two natural choices again
being zero and infinity).

For later reference, let us introduce the following notation. The solutions of equa-
tions (3.25) given by (3.26) and (3.27) will be denoted explicitly referencing the right hand
side for which the equation was solved, namely

N r
[f ], N[g], (3.29)

so that, e.g., N r
[f ] is a function, such that

∂rN
r
[f ] = f. (3.30)

– 8 –
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3.1.3 Dirac bracket for massless scalar field

The key feature we want to stress of the Dirac bracket obtained in the previous section is
its non-locality. For the sake of clarity, let us discuss a specific type of scalar field, namely
the massless scalar field, and also add a cosmological constant Ω. In such a case, the
contribution to the Hamiltonian constraint is given by [28]

hmatt =
1

2Λ

(
P 2
φ

R2
+R2φ′2

)
+
χ

2
Ω ΛR2, (3.31)

so that the contribution to the Dirac bracket is given by (note, that this is the form on the
constraint surface Cα = 0 for α ∈ {H,C,K,Λ})

tmatt =
P 2
φ

2χR4
− 3φ′2

2χ
. (3.32)

We note that the cosmological constant terms cancel in our definition of the spherically
symmetric tmatt, which was constructed using the vanishing of the Hamiltonian constraint.9

To understand the non-locality of the Dirac bracket, let us consider a Dirac bracket of
φ smeared with a phase-space-independent density µ (assumed later to be localised at some
rµ, meaning µ(r) ∼ δ(r, rµ)) and the same field φ smeared with a phase-space-independent
density ν (assumed later to be localised at some rν). We obtain{∫

µφ,

∫
νφ

}
D

= −
∫
drdr̄

{∫
µφ, c(r)

}
(M−1)CH(r, r̄)

{
h(r̄),

∫
νφ

}
−
∫
drdr̄

{∫
µφ, h(r)

}
(M−1)HC(r, r̄)

{
c(r̄),

∫
νφ

}
=

∫
drdr̄µ(r)ν(r̄)

(
φ′(r)(M−1)CH(r, r̄)

Pφ
R2

(r̄)

+
Pφ
R2

(r)(M−1)HC(r, r̄)φ′(r̄)

)
=

∫
drdr̄d¯̄r(µφ′)(r)(a−1

1 )#(r, r̄)
1

χR2
(r̄)a−1

2 (r̄, ¯̄r)

(
ν
Pφ
R2

)
(¯̄r)

−
∫
drdr̄d¯̄r

(
µ
Pφ
R2

)
(r)(a−1

2 )#(r, r̄)
1

χR2
(r̄)a−1

1 (r̄, ¯̄r)(νφ′)(¯̄r)

=

∫
drdr̄d¯̄r(µφ′)(r)a−1

1 (r̄, r)
1

χR2
(r̄)a−1

2 (r̄, ¯̄r)

(
ν
Pφ
R2

)
(¯̄r)

−
∫
drdr̄d¯̄r

(
µ
Pφ
R2

)
(r)a−1

2 (r̄, r)
1

χR2
(r̄)a−1

1 (r̄, ¯̄r)(νφ′)(¯̄r). (3.33)

Making use of the discussion about the inverse of the Dirac matrix, and using the notation
introduced in (3.29) we can write{∫

µφ,

∫
νφ

}
D

=

∫
N r

[µφ′]

1

χR2
N

[ν
Pφ

R2 ]
−
∫
N

[µ
Pφ

R2 ]

1

χR2
N r

[νφ′]. (3.34)

9Our definition in the general case, (A.6), retains a contribution coming from the cosmological constant,
given by −Ω δ(r, θ; r̄, θ̄), since the Hamiltonian constraint was used differently there.

– 9 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
7

3.1.4 Non-locality of the Dirac bracket in spacetime radial gauge

Considering µ and ν to be localised at rµ and rν , and analysing the properties of the
solutions (3.26) and (3.27), one can draw a conclusion that in general

{φ(rµ), φ(rν)}D 6= 0, (3.35)

where the non-trivial result of the bracket depends on the canonical data also in points
different then rµ and rν , which constitutes its non-locality. This result contradicts one of
the conclusions of [13], however, it is supported by the perturbative analysis of [14]. We
discuss the argument presented in reference [13] in comment 4 in section 4.

For the sake of clarity of the correspondence with the constructions of observables
discussed elsewhere, let us comment that the “anchoring at infinity" construction discussed
in [12–14] corresponds to choosing the points r1 and r2 of the solutions (3.26) and (3.27) to
be located at infinity, and specifying the behaviour of the solutions at those points according
to the fall-off conditions on the lapse and shift functions. It is important to note that the
non-locality presented above cannot be removed by choosing differently the location of r1

and r2, and the values of the solutions of (3.25) at those points.
Finally, the computation of the corresponding Dirac bracket in the full theory (without

assuming spherical symmetry) yields an analogues result. The non-locality there is present
when the two points lie on a common radial geodesic, and is supported along that radial
geodesic.10 We present the computation in the full theory in appendix A. In both cases,
we see that the non-locality vanishes in the limit of vanishing Newton constant, which is
also consistent with the perturbative analysis of [14]. While the presence of a cosmological
constant changes some details, see footnote 9, it does not affect the qualitative result.

3.2 Non-locality of locally constructed algebras of observables

A result elucidated by the example in the previous section is that the Dirac bracket for
the spacetime radial gauge is generically non-local. Consider a Dirac bracket of two local
observables constructed from the canonical fields, where by their locality we mean that
the observable is a finite11 polynomial of the canonical fields and their spatial derivatives
at a given point. From the structure of the Dirac bracket (see appendix A), we see that
the non-local contributions appear if the two observables are supported at points lying on
the same radial geodesic. In such a case, regardless of the boundary conditions chosen in
the definition of the inverse of the Dirac matrix, there will generically be contributions to
the Dirac bracket given by integrals of some combinations of the canonical data along some
part of that geodesic (which part of that geodesic depends on the boundary conditions - the
choice of the anchoring platform). This fact leads to the conclusion that it is impossible to
construct a complete set of local observables having local Dirac brackets using the spacetime
radial gauge. The contributions along the involved geodesics cannot be compensated by

10If one would have chosen a Coulomb-type dressing as in [14], the conclusion would hold for generic
rµ, rν .

11For infinite polynomials, one could reconstruct canonical fields in a neighbourhood of the specified point
as a Taylor expansion, both in the spatial and the temporal directions.
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a specific choice of local observable, which enters the non-local contribution to the Dirac
bracket only at the endpoints of the radial geodesic connecting the two points at which the
two observables are defined. Moreover, the non-local contributions appear not only in the
gravitational sector, but are also present in brackets of matter fields (as shown explicitly),
which contradicts a claim of [13], and is in agreement with [14].

4 Comments

1. From the point of view of Dirac quantisation, i.e. quantisation prior to solving the
constraints, it is expected that the spacetime radial gauge is problematic: since K̂rr

and q̂rr cannot commute if the Poisson-algebra is represented properly, the existence
of a state |ψ〉 for which simultaneously K̂rr |ψ〉 = 0 and q̂rr |ψ〉 = 0 leads to the
standard contradiction observed in the attempt to quantise second class constraints,
see e.g. [1]. In other words, existence of a state for which (3.2), (3.3), and (3.4) vanish
with arbitrary precision, appears to be in conflict with the Heisenberg uncertainty
relation.

2. One can ask to what extent the spatial radial gauge can be combined with another
gauge condition while retaining a local algebra of observables. Of course, this is
in general always possible for commuting gauge conditions, such as using an addi-
tional matter field as a clock. Another possibility, explicitly involving a geometric
clock, would be to follow the ideas of [15] and include a non-minimally coupled scalar
field. Due to the mixing of matter and geometric degrees of freedom in the canonical
structure of the theory as detailed in [15, 30], geometric gauge conditions such as a
constant mean curvature, or fixed value of Krr, translate into conformal generators
(such as 3.9), also including the scalar field, of the form

α(φ)P rrqrr + β(φ)PABqAB + γ(φ)πφφ = 0 (4.1)

for three local functions α, β, γ of the scalar field, where we also used the gauge
fixing qrA = 0. The ansatz q̃rr = f(φ)qrr, P̃ rr = f(φ)−1P rr, q̃AB = g(φ)qAB,
P̃AB = g(φ)−1PAB for Dirac observables then gives equations for f and g which can
be solved. The spatial radial gauge can now be employed for the rescaled form of the
metric, i.e. q̃rr = 1, whereas qrA = 0 has already been demanded above. While this
gauge is similar to the spacetime radial gauge, in particular if Krr = 0 is used as a
gauge condition, it is a different gauge condition since from q̃rr = 1 it does not follow
that qrr = 1, and thus (3.2), (3.3), and (3.4) do not vanish in general.

3. Given the problems that we encountered with the spacetime radial gauge, we should
ask the question about other suitable gauges for establishing a local quantum field
theory limit of quantum gravity. In our point of view, it is most important to choose
a gauge in which the algebra of observables is local. Within this class, non-rotating
dust as a clock field [8], or more precisely the proper time elapsing for it, has the
advantage that the lapse function is always 1, so that no non-localities are introduced
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into the Hamiltonian, as e.g. in the above example, or that it involves taking a square
root12 as e.g. in [10]. Moreover, the back reaction of the dust on the geometry can be
made arbitrarily small [8]. Using the dust’s proper time also seems to be physically
appropriate choice of clock.

For the spatial diffeomorphisms, the situation is less clear. The spatial radial gauge
is very close to the specification of points in usual quantum field theory, whereas it
introduces non-localities into the Hamiltonian as the back reaction of matter on the
geodesics, scaling with the Newton constant [11, 22]. However, these non-localities
can be controlled at the quantum level as far as a definition of the Hamiltonian is
concerned [32]. Additional dust fields usually lead to a square root in the Hamilto-
nian [8, 33].

4. In [13], an argument was given for why the matter fields should retain their local
Poisson brackets. It seems that the error happens around equation (30), where it
is stated, in the notation of [13], that σ̇ only contains terms proportional to ġij .
However, there still are time derivatives of the matter fields hiding in the temporal
components of the energy momentum tensor, which cannot be translated into the
conjugate momenta of the matter fields before the Legendre transformation. The
reasoning for the locality of the matter Poisson brackets therefore appears to be
circular at this point.

To address directly a statement made in [13], in which it was said that coupling gravity
to matter fields does not modify their brackets, we state that we agree on that point
(for the case of minimal coupling). However, as we see from (3.21), it is the gauge
fixing in which gauge conditions are not mutually Poisson-commuting which leads to
modified Poisson (or in fact Dirac) brackets of the matter fields.

5 Conclusion

In this paper, we have discussed a spacetime form of the radial gauge, or in other words,
the choice of Gaußian normal spacetime coordinates in canonical formulations of general
relativistic theories. In particular, we showed that the algebra of observables is generically
non-local and traced this back to the non-commutativity of the gauge conditions. While
this result is certainly interesting for quantum gravity by itself, it has also become of
interest recently within the AdS/CFT correspondence. The non-perturbative computation
in this paper should settle the debate on the locality of the resulting algebra of observables.
Slight deviations of the spacetime radial gauge were suggested which do not suffer from
non-locality. It remains however to show that such gauges are also useful within AdS/CFT.

A Dirac bracket for non-symmetric General Relativity

In this appendix, the Dirac bracket for the spacetime radial gauge in the case of non-
symmetric General Relativity coupled to a scalar field φ is presented. A related discussion

12Note that a similar square root resulting from the absolute value of the Hamiltonian as considered
in [25] in the case of dust is not necessary [31].
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of the Dirac bracket with gauge conditions (3.7) and (3.8) can be found in [34]. The Dirac
bracket of two observables O1 and O2 is given by

{O1, O2}D = {O1, O2}

−
8∑

α,β=1

∫
drd2θ dr̄d2θ̄ {O1, Cα(r, θ)}(M−1)αβ(r, θ; r̄, θ̄){Cβ(r̄, θ̄), O2}, (A.1)

where
Cα = (H,Cr, CA,Krr, qrr − 1, qrA) (A.2)

is the set of all constraints in the considered model without assumption of spherical symme-
try (we remind the reader that indices A,B, . . . run over the two angular coordinates) and

Mαβ = {Cα,Cβ} =

[
0 A

−A# B

]
αβ

. (A.3)

The entries of the above matrix: A and B are themselves four dimensional matrices (the
symbol # denotes a transposition of a matrix integral kernel):

A(r, θ; r̄, θ̄) =


R

(3)
rr − 2KArK

Ar + tmatt − ∂2
r 0 −2KrA

0 2∂r ∂B

2∂rKrB 0 ∂rqAB

 δ(r, θ; r̄, θ̄), (A.4)

where the derivatives in the last row act also on the delta, and

B(r, θ; r̄, θ̄) =


0 − κ√

det q
0 0

κ√
det q

0 0 0

0 0 0 0

0 0 0 0

 δ(r, θ; r̄, θ̄). (A.5)

In (A.4) we used the notation (assuming that the matter contribution to the Hamiltonian
constraint does not depend on the momentum conjugate to the spatial metric)

tmatt(r, θ)δ(r, θ; r̄, θ̄) =
κ
√
q

(
δhmatt(r, θ)

δqrr(r̄, θ̄)
− qAB

δhmatt(r, θ)

δqAB(r̄, θ̄)
− 1

2
hmatt(r, θ)δ(r, θ; r̄, θ̄)

)
.

(A.6)
The above Dirac matrix reduces to the one given in the case of spherical symmetry upon an
appropriate reduction (note that the Hamiltonian contraint needs to be used to show this).

The inverse of the matrix M is formally given by

M−1 =

[
(A−1)#BA−1 −(A−1)#

A−1 0

]
. (A.7)

In order to find A−1 we will solve the equation

4∑
β=1

∫
dr̄d2θ̄ Aαβ(r, θ; r̄, θ̄)Nβ(r̄, θ̄) = Mα(r, θ) (A.8)
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for Nα (α = 1, . . . , 4) assuming that the functions Mα (α = 1, . . . , 4) are given. We use the
notation

Nα = (N,N r, NA), Mα = (M,M r,MA). (A.9)

The equation (A.8) is equivalent to the following set of differential equations

∂2
rN + (−R(3)

rr + 2KArK
Ar − tmatt)N + 2KrAN

A = −M, (A.10a)

2∂rN
r + ∂BN

B = Mr, (A.10b)

∂rNA + 2∂r(KrAN) = MA. (A.10c)

We first solve equation (A.10c)

NA(r, θ) + 2KrAN(r, θ) =

∫ r

r1

dr̄MA(r̄, θ) +NA(r1, θ) + 2KrAN(r1, θ). (A.11)

The precise location of the anchoring platform (the value of r1), and the values of the fields
in that location are irrelevant for the discussion in the current paper, so we do not specify
them further. Using the above result we can write (A.10a) as follows

∂2
rN −WN = −M̄, (A.12)

where W = R
(3)
rr + 2KArK

Ar + tmatt and

M̄ = M + 2KrA

∫ r

r1

dr̄MA(r̄, θ) + 2KrANA(r1, θ) + 4KrAKrAN(r1, θ). (A.13)

Note that M̄ is determined by M , MA and the initial data. We find that[
N(r, θ)

N ′(r, θ)

]
= U(r, r2, θ)

([
N(r2, θ)

N ′(r2, θ)

]
−
∫ r

r2

dr̄ U(r2, r̄, θ)

[
0

M̄(r̄, θ)

])
, (A.14)

where

U(r2, r1, θ) = Texp

(∫ r2

r1

dr

[
0 1

W (r, θ) 0

])
. (A.15)

Using equations (A.11) and (A.14), we determine N and NA in terms of M , MA and the
initial data. In order to find the component N r, we solve equation (A.10b) and obtain

N r(r, θ) =
1

2

∫ r

r3

dr̄
[
Mr(r̄, θ)− ∂BNB(r̄, θ)

]
+N r(r3, θ). (A.16)

In what follows, we make the dependence on (Mα) explicit in our notation and write N[Mα],
~N[Mα] for the solution of the equations (A.10) given explicitly by (A.14), (A.16) and (A.11)
with some arbitrarily fixed initial conditions.
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In order to see the non-locality of the Dirac bracket let us calculate the bracket of φ
with itself

{φ(r1, θ1), φ(r2, θ2)}D =

4∑
α,β=1

∫
drd2θdr̄d2θ̄d¯̄rd2 ¯̄θ {φ(r1, θ1), Cα(r̄, θ̄)} A−1

2α (r, θ; r̄, θ̄)

× κ√
det q(r, θ)

A−1
1β (r, θ; ¯̄r, ¯̄θ) {Cβ(¯̄r, ¯̄θ), φ(r2, θ2)}

−
4∑

α,β=1

∫
drd2θdr̄d2θ̄d¯̄rd2 ¯̄θ {φ(r1, θ1), Cα(r̄, θ̄)} A−1

1α (r, θ; r̄, θ̄)

× κ√
det q(r, θ)

A−1
2β (r, θ; ¯̄r, ¯̄θ) {Cβ(¯̄r, ¯̄θ), φ(r2, θ2)}

=

∫
drd2θ N r

[{φ(r1,θ1), Cα}](r, θ)
κ√

det q(r, θ)
N[{Cα, φ(r2,θ2)}](r, θ)

−
∫
drd2θ N[{φ(r1,θ1), Cα}](r, θ)

κ√
det q(r, θ)

N r
[{Cα, φ(r2,θ2)}](r, θ). (A.17)

Both of the terms generically do not vanish for (r1, θ1) 6= (r2, θ2). In fact, equa-
tions (A.16), (A.14), (A.11) show that the kernel A−1

αβ(r1, θ1; r2, θ2) is non-local. To be
more precise, it is proportional to δ(θ1, θ2), but in general is different than zero for r1 6= r2

(i.e. it does not vanish for non-coincident points lying on the same radial geodesic).
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