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THE ALGEBRA OF THE SUBSPACE SEMIGROUP OF M2(Fq)

BY

JAN OKNIŃSKI (Warszawa)

Abstract. The semigroup S = S(M2(Fq)) of subspaces of the algebraM2(Fq) of 2×2
matrices over a finite field Fq is studied. The ideal structure of S, the regular J -classes
of S and the structure of the complex semigroup algebra C[S] are described.

1. Introduction. Let Mn(K) be the algebra of n × n matrices over a
field K. By S(Mn(K)) we denote the subspace semigroup of Mn(K), de-
fined as the set of all K-subspaces equipped with the operation V ∗W =
linK(VW ). This semigroup arose in the context of discrete dynamical sys-
tems, [3], and was first studied in [6]. It was shown that there exists a finite
ideal chain I1 ⊂ . . . ⊂ It = S(Mn(K)) such that I1 and every Rees factor
Ik/Ik−1 are either nil or 0-disjoint unions of completely 0-simple ideals.

In this paper we consider the case where K is a finite field. A nat-
ural problem is to determine the complex irreducible representations of
S(Mn(K)) and to study the structure and symmetries of the algebra
C[S(Mn(K))]. It is well known that a description of the regular J -classes of
the semigroup is needed in this context. Our aim is to deal with these prob-
lems in the case where n = 2. A characterization of non-regular elements of
S(M2(K)) is obtained and regular J -classes are fully described. Moreover,
the ideal structures of S(M2(K)) and of its complex semigroup algebra are
determined.

We refer to [2] for basic semigroup theory, to [5] for background on semi-
groups of matrices, while [4] is our reference for semigroup algebras.

2. Regular J -classes. Let S = S(M2(K)) for a finite field K. Since
the idempotents of S play a crucial role, first we list unitary subalgebras of
M2(K):
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1. A1 =M2(K).

2. A2 =

{(

a b
0 c

) ∣

∣

∣

∣

a, b, c ∈ K

}

.

For simplicity, we write A2 =
(

a b
0 c

)

, if unambiguous.

3. A3 =

(

a 0
0 b

)

.

4. A4 =

(

a b
0 a

)

.

5. A5 =

(

a 0
0 a

)

.

6. A6 = a field extension F of dimension 2 over K.

(By the Noether–Skolem theorem any two such subfields are conjugate, as
they are isomorphic).

7. A7 =

(

a 0
0 0

)

.

Let J(A) be the radical of an algebra A ⊆M2(K). Recall that by Wed-
derburn’s structure theorem for algebras over a perfect field [1] we know
that A = B + J(A) where B is a subalgebra such that B ∼= A/J(A). Also,
every nil subalgebra of M2(K) is conjugate to

(

0 a
0 0

)

. So it is easy to see
that, up to conjugation, the above list exhausts all unitary subalgebras of
M2(K).
From [6] we know that every non-zero regular J -class J of S=S(M2(K))

contains a unitary algebra, whence it contains one of the algebras Ai. Recall
that this J -class consists of subspaces V ⊆M2(K) such that V and Ai gen-
erate the same ideal of S(M2(K)). Clearly, A5 is the identity of S(M2(K)).
Any two of the elements A1, A2, A3, A4, A5, A6 are in different J -classes of
S. This can be checked directly but it also follows from the fact that AJB
implies that A,B are Morita equivalent [6]. Clearly A1 and A7 are in the
same J -class of S.
For any n ≥ 2, let A be a subalgebra of Mn(K) which is basic. That is,

A has a unity and A/J(A) has no non-zero nilpotents. Let U = U(A) be
the unit group of A and N = N(A) be the normalizer of A in Gln(K). So
N = {g ∈ Gln(K) | gA = Ag}. Notice that linK U(A) = A if K 6= F2, the
field of two elements (it is enough to assume that A/J(A) has at most one
copy of F2 as a direct summand). Therefore, in this case N = {g ∈ Gln(K) |
gU = Ug}. By HA we denote the maximal subgroup of S containing A,
treated as an idempotent of S. In other words, HA consists of all subspaces
V of Mn(K) such that V = AV = V A and VW = WV = A for some
subspace W . Let e be the identity of A. Then eN = Ne is a subgroup of
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U(eMn(K)e) ∼=Mrank(e)(K), which we denote by Ne. It is easy to see that

HA = {Ax | x ∈ N} and HA ∼= Ne/U.

In particular, if A contains the identity matrix, then U ⊆ N = Ne and
HA = [N : U ]. Moreover

[Gln(K) : N ]=the number of H-classes of S of the form gHA, g∈Gln(K)

=the number of H-classes of S of the form HAg, g∈Gln(K).

We shall consider the case where K = Fq, a finite field of q elements. We
count the subspaces of M2(Fq) of any given dimension:

Dimension Number of subspaces

0 1

1 (q4 − 1)/(q − 1) = q3 + q2 + q + 1

2 (1 + q + q2)(1 + q2)

3 q3 + q2 + q + 1

4 1

It follows that |S| = q4 + 3q3 + 4q2 + 3q + 5.
Write G = Gl2(K). We have seen above that {gAh | g, h ∈ G} yields

[N : U ][G : N ]2 elements in the J -class of A in the subspace semigroup
S = S(M2(K)). We discuss the seven cases listed above.
1) A = M2(K). Then AJB for B =

(

a 0
0 0

)

. Every non-zero subspace

V ⊆
(

∗ ∗

0 0

)

is a left B-module and satisfies VW = B for some right B-
module W . So the R-class of B consists of all such subspaces V , whence it
has q + 2 elements. As the same holds for the L-class of B, it follows that
the J -class of B has ≥ (q + 2)2 elements.
2) A =

(

a b
0 c

)

. It is easy to see that N = U and [G : N ] = q + 1. So the

J -class of A has ≥ (q + 1)2 elements.

3) A =
(

a 0
0 b

)

. Then N consists of invertible matrices of the form
( x 0
0 y

)

or
( 0 x
y 0

)

. Hence [N : U ] = 2 and [G : N ] = (q+1)q/2. Therefore the J -class

of A has ≥ q2(q + 1)2/2 elements.
4) A =

(

a b
0 a

)

. Then N consists of invertible matrices of the form
( x y
0 z

)

.

So |U | = (q− 1)q and |N | = (q− 1)2q. Hence [N : U ] = q− 1 and [G : N ] =
q + 1 and therefore the J -class of A has ≥ (q + 1)2(q − 1) elements.
5) A =

(

a 0
0 a

)

. Then N = G and U ∼= K∗. So [N : U ] = q(q2 − 1) and

[G : N ] = 1. It follows that the J -class of A has ≥ q(q2 − 1) elements.
6) A is a subfield of dimension 2 over K. Now |A| = q2, so that |U | =

q2− 1. Let C be the centralizer of A in M2(K). Then C is a simple algebra,
so it is a maximal subfield of M2(K) containing A, [1]. Hence C = A. The
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Galois group G(A/K) is {Id, φ}, where φ(x) = xq. So n ∈ N if and only if
nan−1 = a or nan−1 = aq for a ∈ A (as there are no other automorphisms).
Hence n ∈ C = A or nan−1 = aq. By the Noether–Skolem theorem there
exists an element n ∈ N of the latter type. Then any other y ∈ N satisfies
either y−1n ∈ C or y ∈ C. So N ⊆ C ∪ Cn and consequently N = U ∪ Un.
Hence [N : U ] = 2. But [G : U ] = (q2 − q)(q2 − 1)/(q2 − 1) = q2 − q. So
[G : N ] = (q2−q)/2. Therefore we get 2((q2−q)/2)2 = q2(q−1)2/2 elements
in the J -class of A.
We now add the numbers of subspaces produced in cases 1)–6) (note

that they are in different J -classes of S):

1) (q + 1)2 spaces of dimension 1,
2q + 2 spaces of dimension 2,
1 space of dimension 4,

2) (q + 1)2 spaces of dimension 3,
3) q2(q + 1)2/2 spaces of dimension 2,
4) (q + 1)2(q − 1) spaces of dimension 2,
5) q(q2 − 1) spaces of dimension 1,
6) q2(q − 1)2/2 spaces of dimension 2.

So we have constructed

q4 + q3 + 2q2 + q + 1 = (1 + q + q2)(1 + q2)

subspaces of dimension 2, whence these are all such subspaces. Also, we have
got q3+ q2+ q+1, hence all, subspaces of dimension 1. Moreover, there are

|S| − 1− |{elements listed in 1)–6)}| = q3 − q

remaining non-zero elements of S (all of them of dimension 3). We will show
that they are all not regular. So, it will follow that the elements listed in
1)–6) cover all non-zero regular J -classes of S, and hence they exhaust all
non-zero regular elements of S. It also follows that the regular J -classes of
S consist of unit regular elements of S.

Proposition 2.1. Assume that K is any field and let n ≥ 2. Let V ∈
S = S(Mn(K)) be a subspace of dimension n

2 − 1. Let V be described by a
linear equation

∑n
i,j=1 aijxij = 0, aij ∈ K. If V wV ⊆ V for some non-zero

w ∈Mn(K), then the rank of the matrix A = (aij) is 1. Moreover , the latter
is equivalent to the fact that V is a regular element of S.

Proof. Assume that h ∈ Mn(K) is an elementary matrix. So it is a
transposition or h = 1+λepq for some p 6= q and λ ∈ K

∗, where epq denotes
a matrix unit. Let B = (bij) be the matrix determined by an equation
describing the subspace hV . If h is a transposition with non-diagonal entries
hpq, hqp, then clearly we may take bqj = apj , bpj = aqj and bij = aij if
i 6= p, q, for j = 1, . . . , n. If h = 1 + λepq, then it is easy to see that we
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may take bqj = aqj − λapj and bij = aij for i 6= q, and for all j. It follows
that rank(A) = rank(B). Hence every hV is described by an equation with
the corresponding matrix having the same rank as A. The same holds if
h = 1 + λepp with any p ∈ {1, . . . , n} and λ 6= −1, and therefore for every
h ∈ Gln(K). The same applies to V h.

Suppose that V wV ⊆ V for some w ∈Mn(K). If g, h ∈ Gln(K), then

g−1V hh−1wgg−1V h ⊆ g−1V h.

Clearly, V is a regular element of S if and only if so is g−1V h. It follows that,
when proving both statements, we may replace V by any g−1V h. Hence we
may assume that the matrix A is of the form A =

(

I 0
0 0

)

for an identity
matrix I of size r ≤ n.

First assume that rank(A) = 1. So, let a11 = 1 be the only non-zero
entry. This means that V =

(

0 b
c d

)

where b, c, d are 1× (n− 1), (n− 1)× 1,

(n − 1) × (n − 1) matrices, respectively. It is easy to see that W =
(

a b
c 0

)

satisfies VWV = V . Therefore V is a regular element of S.

It is clear that if V is a regular element of S then there exists a non-zero
w ∈Mn(K) such that V wV ⊆ V .

Finally, suppose that V wV ⊆ V for a non-zero matrix w. Because of the
diagonal idempotent form of A we have

V = {x = (xij) ∈Mn(K) | x11 + . . .+ xrr = 0}.

If r = 1 then rank(A) = 1 and we are done. So suppose that r ≥ 2. Let
w = (wij) and suppose that wkt 6= 0 for some k, t. If k, t 6= 1 then let
v = (vij), v

′ = (v′ij) be such that v1k = 1 = v
′

t1 and all the remaining entries
are 0. Then v, v′ ∈ V , so that vwv′ ∈ V . But vwv′ has only one non-zero
entry and it is in position (1, 1). This contradicts the above description of
V . It follows that wij = 0 if i, j 6= 1. The same argument applied to position
(2, 2) implies that also wij = 0 if i, j 6= 2. So w12, w21 can be the only
non-zero entries of w. Choose a matrix u = (uij) whose only non-zero entry
is u21 and let u

′ = (u′ij) be such that u11 = −1 and u22 = 1 and all other
entries are zero. Then u, u′ ∈ V and uwu′ ∈ V . The second row of uwu′ is
equal to (0, w12, 0, . . . , 0) and all other rows are zero. So the description of
V yields w12 = 0. A similar argument applied to the product u

twu′ (where
ut is the transpose of u) yields w21 = 0. Therefore w = 0. This contradiction
shows that r = 1, completing the proof of the proposition.

We come back to the case K = Fq and n = 2. Notice that there are

|Gl2(K)|/(q − 1) = (q
2 − q)(q2 − 1)/(q − 1) = q3 − q

subspaces of dimension 3 defined by an equation αx11+βx12+γx21+δx22 = 0
such that det

( α β
γ δ

)

6= 0.
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Let V =
{(

a b
b c

)∣

∣a, b, c∈K
}

. So, V is defined by the equation x12 − x21=0,

and is of the desired type. We determine the stabilizer C of V under the
action of Gl2(K) on S by left multiplication. So, let g=(gij)∈Gl2(K) satisfy

(

g1 g2
g3 g4

)(

a b
b c

)

=

(

g1a+ g2b g1b+ g2c
g3a+ g4b g3b+ g4c

)

∈ V

for all a, b, c ∈ K. Then g3a + g4b = g1b + g2c, whence g3 = 0 = g2 and
g4 = g1. So C consists of scalar matrices and

|{gV | g ∈ Gl2(K)}| = |Gl2(K)| · |K
∗|−1 = q3 − q.

Clearly, every element of the form gV , g ∈ Gl2(K), satisfies gV LV in S,
whence it is not regular by Proposition 2.1. It then follows that we have con-
structed q3 − q non-regular elements of the form gV . Therefore, comparing
the cardinality of S and the number of regular elements constructed before,
we see that the elements listed in cases 1)–6) exhaust all non-zero regular
J -classes of S and the elements gV, g ∈ Gl2(K), exhaust all non-regular
elements of S.

Corollary 2.2. Let V = {x = (xij) ∈ M2(K) | x12 = x21}. Then the
J -class of V in S is equal to {gV | g ∈ Gl2(K)} = {V g | g ∈ Gl2(K)} and
it coincides with the H-class of V . Moreover S has exactly eight J -classes,
namely the classes of A1, . . . , A6, V, {0}.

Proof. We have seen that {gV | g ∈ Gl2(K)} exhaust all non-regular
elements in S. A symmetric argument shows that {V g | g ∈ Gl2(K)} also is
the set of all non-regular elements of S and hence {gV | g ∈ Gl2(K)} = {V g |
g ∈ Gl2(K)}. Therefore non-regular elements of S form a single H-class of
S and the assertion follows.

3. Structure of the algebra. In this section we describe the radical
of C[S] and we show that, for every regular principal factor T of S, the
contracted semigroup algebra C0[T ] is semisimple. Hence C[S]/J(C[S]) is a
direct product of all C0[T ] (see [4]). As C[S] = B + J(C[S]), a direct sum of
subspaces, for a subalgebra B ∼= C[S]/J(C[S]), this yields a description of
the structure of the algebra.

Lemma 3.1. Let A ⊆ Mn(K) be a subalgebra with 1 ∈ A. Then A =
{gAh | g, h ∈ G} with zero adjoined is a completely 0-simple inverse sub-
semigroup of the principal factor JA of A in S(Mn(K)). Moreover , A is a
union of H-classes of JA.

Proof. We know that HA = {Ax | x ∈ N}, where N is the normalizer of
A in Gln(K). It follows that A is a union of H-classes of JA. Moreover every
non-empty intersection R of A with an R-class of S contains an idempotent.
Namely, if uAv ∈ R for some u, v ∈ G, then uAu−1 ∈ R.
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Suppose that B ∈ A is an idempotent from the R-class of A in S.
Since B ∩G 6= ∅ and B is a subalgebra of Mn(K), we must have 1 ∈ B. But
AB = B and BA = A. It follows that A = B. Now, if gAh is an idempotent,
where g, h ∈ G, then Ahg is also an idempotent and ARAhg. So Ahg = A by
the preceding part of the proof. Then gAh = gAg−1. Now, suppose that two
idempotents gAg−1, fAf−1 (g, f ∈ G) are in the same R-class of S. Then
ARg−1fAf−1g and again we get A = g−1fAf−1g. Hence gAg−1 = fAf−1.
Similarly one proves that every non-empty intersection of A with an L-class
of S contains exactly one idempotent. The assertion follows.

We have seen that the regular J -classes of S described in cases 2)–6) are
of the form A, where A is a subalgebra containing 1. So, the lemma above
applies to these J -classes.

Proposition 3.2. Let J be a completely 0-simple principal factor of the
semigroup S = S(M2(Fq)). Then C0[J ] is a semisimple algebra.

Proof. Let J be one of the regular J -classes of S described in 2)–6),
with zero adjoined. Then by Lemma 3.1, C0[J ] ∼=Mk(C[H]) for the maximal
subgroup H of J and some k (see [4], Corollary 5.26). It remains to consider

the J -class J containing A =
(

a 0
0 0

)

. The maximal subgroup of J is trivial.
So, to consider the Rees presentation of J (see [2]) in the coordinate system
corresponding to the maximal subgroup {A} of J , we list the elements of
the R-class of A (in the leading column) and of the L-class of A (in the
leading row). This yields the following form of the sandwich matrix P of J :

(

0 0
a 0

) (

a 0
αa 0

) (

a 0
0 0

) (

a 0
c 0

)

(

b 0
0 0

)

0 1 . . . 1 1 1

(

b −α−1b
0 0

)

1
...
1

0 1
. . .

1 0

1
...
1

1
...
1

(

0 b
0 0

)

1 1 . . . 1 0 1
(

d b
0 0

)

1 1 . . . 1 1 1

Here the second row (column, respectively) represents q − 1 different
rows (columns) of P corresponding to different q − 1 elements α of F

∗

q .
Performing elementary operations on rows and columns of P , one brings P
to the identity matrix. So, P is invertible as a matrix over C and consequently
C0[J ] ∼=Mq+2(C), again by Corollary 5.26 of [4]. The assertion follows.
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It is easy to verify that the inverse of the above sandwich matrix is

P−1 =













−1 0 . . . 0 1
0 −1 . . . 0 1
...

...
. . .

...
...

0 0 . . . −1 1
1 1 . . . 1 −q













.

Finally, we describe the radical of the algebra C0[S]. Let J be the J -class
containing Mn(K) and A =

(

a 0
0 0

)

, together with the zero subspace. Notice

that J is an ideal of S. Since C0[J ] is semisimple, it has an identity E, which
can be effectively determined. Namely, in the Munn algebra notation for
C0[J ] (see [4]), E can be identified with P

−1. Therefore E can be expressed
as a linear combination of elements of J with coefficients 1,−1 and q as
follows:

E =

(

0 b
0 d

)

+

(

0 0
b d

)

+
∑

α∈K

((

a αa
c αc

)

+

(

a b
αa αb

))

−

(

0 a
0 0

)

−

(

0 0
b 0

)

−
∑

α∈K∗

(

a −α−1a
αa −a

)

− qM2(K).

Proposition 3.3. Let V = {x ∈M2(K) | x12 = x21}. Then

J(C0[S]) = linC{gV − EgV | g ∈ Gl2(K)}

and J(C0[S])
2 = 0.

Proof. Denote the right hand side by I. Let J be the J -class of S con-
taining Mn(K) with zero adjoined. Then C0[J ] is an ideal of C0[S] since
J is an ideal of S. We have C0[J ]I = IC0[J ] = 0 because E is a central
idempotent in C0[S]. Moreover I

2 = 0. Indeed, if g ∈ Gl2(K) then gV = V h
for some h ∈ Gl2(K) by Corollary 2.2. Therefore

(V − EV )(gV − EgV ) = (V − EV )(V h− V hE).

Since V 2 = M2(K) ∈ J , we get (V − EV )(V h − V hE) = 0, so I
2 = 0, as

desired.
We know that the set HV = {gV | g ∈ Gl2(K)} has cardinality q

3 − q,
so the dimension of I is at most q3 − q. Since the image of I modulo C0[J ]
is spanned by HV , it has dimension q

3 − q. Hence, this is the dimension of
I as well.
We claim that I is an ideal of C0[S]. By symmetry of HV and since E is

central, it is enough to show that I is a left ideal. Let X ∈ S, X 6= 0. If X is
not regular in S, then X = gV for some g ∈ Gl2(K) and XV =M2(K) ∈ J .
If X is in one of the regular J -classes listed in cases 2)–6), then X contains
an invertible matrix u. Thus, XV is either of the form uV or it is equal to
M2(K). So X(V − EV ) ∈ I in the former case and X(V − EV ) = 0 in the
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latter. Finally, if X ∈ J , then we also get X(V −EV ) = 0 because E is the
identity of C0[J ]. So I is a left ideal, as claimed.
It follows that I ⊆ J(C0[S]). By Proposition 3.2, the dimension of C0[S]

modulo its radical is q3 − q. Comparing dimensions we get J(C0[S]) = I.

Notice that we have in fact shown that the H-class HV of V in S, with
zero adjoined, is a minimal non-zero ideal of the Rees factor S/J .

REFERENCES

[1] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin,
1994.

[2] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Univ. Press, 1995.
[3] J. Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), 255–290.
[4] J. Okniński, Semigroup Algebras, Dekker, New York, 1991.
[5] —, Semigroups of Matrices, World Sci., Singapore, 1998.
[6] J. Okniński and M. S. Putcha, Subspace semigroups, J. Algebra 233 (2000), 87–104.

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: okninski@mimuw.edu.pl

Received 4 June 2001;

revised 6 September 2001 (4075)


