COLLOQUIUM MATHEMATICUM

THE ALGEBRA OF THE SUBSPACE SEMIGROUP OF $M_{2}\left(\mathbb{F}_{q}\right)$

BY
JAN OKNIŃSKI (Warszawa)

Abstract

The semigroup $S=S\left(M_{2}\left(\mathbb{F}_{q}\right)\right)$ of subspaces of the algebra $M_{2}\left(\mathbb{F}_{q}\right)$ of 2×2 matrices over a finite field \mathbb{F}_{q} is studied. The ideal structure of S, the regular \mathcal{J}-classes of S and the structure of the complex semigroup algebra $\mathbb{C}[S]$ are described.

1. Introduction. Let $M_{n}(K)$ be the algebra of $n \times n$ matrices over a field K. By $S\left(M_{n}(K)\right.$) we denote the subspace semigroup of $M_{n}(K)$, defined as the set of all K-subspaces equipped with the operation $V * W=$ $\operatorname{lin}_{K}(V W)$. This semigroup arose in the context of discrete dynamical systems, [3], and was first studied in [6]. It was shown that there exists a finite ideal chain $I_{1} \subset \ldots \subset I_{t}=S\left(M_{n}(K)\right)$ such that I_{1} and every Rees factor I_{k} / I_{k-1} are either nil or 0-disjoint unions of completely 0 -simple ideals.

In this paper we consider the case where K is a finite field. A natural problem is to determine the complex irreducible representations of $S\left(M_{n}(K)\right)$ and to study the structure and symmetries of the algebra $\mathbb{C}\left[S\left(M_{n}(K)\right)\right]$. It is well known that a description of the regular \mathcal{J}-classes of the semigroup is needed in this context. Our aim is to deal with these problems in the case where $n=2$. A characterization of non-regular elements of $S\left(M_{2}(K)\right)$ is obtained and regular \mathcal{J}-classes are fully described. Moreover, the ideal structures of $S\left(M_{2}(K)\right)$ and of its complex semigroup algebra are determined.

We refer to [2] for basic semigroup theory, to [5] for background on semigroups of matrices, while [4] is our reference for semigroup algebras.
2. Regular \mathcal{J}-classes. Let $S=S\left(M_{2}(K)\right)$ for a finite field K. Since the idempotents of S play a crucial role, first we list unitary subalgebras of $M_{2}(K)$:

[^0]1. $A_{1}=M_{2}(K)$.
2. $A_{2}=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in K\right\}$.

For simplicity, we write $A_{2}=\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$, if unambiguous.
3. $A_{3}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$.
4. $A_{4}=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$.
5. $A_{5}=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$.
6. $A_{6}=$ a field extension F of dimension 2 over K.
(By the Noether-Skolem theorem any two such subfields are conjugate, as they are isomorphic).
7. $A_{7}=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$.

Let $J(A)$ be the radical of an algebra $A \subseteq M_{2}(K)$. Recall that by Wedderburn's structure theorem for algebras over a perfect field [1] we know that $A=B+J(A)$ where B is a subalgebra such that $B \cong A / J(A)$. Also, every nil subalgebra of $M_{2}(K)$ is conjugate to $\left(\begin{array}{cc}0 & a \\ 0 & 0\end{array}\right)$. So it is easy to see that, up to conjugation, the above list exhausts all unitary subalgebras of $M_{2}(K)$ 。

From [6] we know that every non-zero regular \mathcal{J}-class J of $S=S\left(M_{2}(K)\right)$ contains a unitary algebra, whence it contains one of the algebras A_{i}. Recall that this \mathcal{J}-class consists of subspaces $V \subseteq M_{2}(K)$ such that V and A_{i} generate the same ideal of $S\left(M_{2}(K)\right)$. Clearly, A_{5} is the identity of $S\left(M_{2}(K)\right)$. Any two of the elements $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ are in different \mathcal{J}-classes of S. This can be checked directly but it also follows from the fact that $A \mathcal{J} B$ implies that A, B are Morita equivalent [6]. Clearly A_{1} and A_{7} are in the same \mathcal{J}-class of S.

For any $n \geq 2$, let A be a subalgebra of $M_{n}(K)$ which is basic. That is, A has a unity and $A / J(A)$ has no non-zero nilpotents. Let $U=U(A)$ be the unit group of A and $N=N(A)$ be the normalizer of A in $\mathrm{Gl}_{n}(K)$. So $N=\left\{g \in \mathrm{Gl}_{n}(K) \mid g A=A g\right\}$. Notice that $\operatorname{lin}_{K} U(A)=A$ if $K \neq \mathbb{F}_{2}$, the field of two elements (it is enough to assume that $A / J(A)$ has at most one copy of \mathbb{F}_{2} as a direct summand). Therefore, in this case $N=\left\{g \in \mathrm{Gl}_{n}(K) \mid\right.$ $g U=U g\}$. By H_{A} we denote the maximal subgroup of S containing A, treated as an idempotent of S. In other words, H_{A} consists of all subspaces V of $M_{n}(K)$ such that $V=A V=V A$ and $V W=W V=A$ for some subspace W. Let e be the identity of A. Then $e N=N e$ is a subgroup of
$U\left(e M_{n}(K) e\right) \cong M_{\operatorname{rank}(e)}(K)$, which we denote by N_{e}. It is easy to see that

$$
H_{A}=\{A x \mid x \in N\} \quad \text { and } \quad H_{A} \cong N_{e} / U
$$

In particular, if A contains the identity matrix, then $U \subseteq N=N_{e}$ and $H_{A}=[N: U]$. Moreover
$\left[\operatorname{Gl}_{n}(K): N\right]=$ the number of \mathcal{H}-classes of S of the form $g H_{A}, g \in \mathrm{Gl}_{n}(K)$
$=$ the number of \mathcal{H}-classes of S of the form $H_{A} g, g \in \mathrm{Gl}_{n}(K)$.
We shall consider the case where $K=\mathbb{F}_{q}$, a finite field of q elements. We count the subspaces of $M_{2}\left(\mathbb{F}_{q}\right)$ of any given dimension:

Dimension	Number of subspaces
0	1
1	$\left(q^{4}-1\right) /(q-1)=q^{3}+q^{2}+q+1$
2	$\left(1+q+q^{2}\right)\left(1+q^{2}\right)$
3	$q^{3}+q^{2}+q+1$
4	1

It follows that $|S|=q^{4}+3 q^{3}+4 q^{2}+3 q+5$.
Write $G=\mathrm{Gl}_{2}(K)$. We have seen above that $\{g A h \mid g, h \in G\}$ yields [$N: U][G: N]^{2}$ elements in the \mathcal{J}-class of A in the subspace semigroup $S=S\left(M_{2}(K)\right)$. We discuss the seven cases listed above.

1) $A=M_{2}(K)$. Then $A \mathcal{J} B$ for $B=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$. Every non-zero subspace $V \subseteq\left(\begin{array}{cc}* & * \\ 0 & 0\end{array}\right)$ is a left B-module and satisfies $V W=B$ for some right B module W. So the \mathcal{R}-class of B consists of all such subspaces V, whence it has $q+2$ elements. As the same holds for the \mathcal{L}-class of B, it follows that the \mathcal{J}-class of B has $\geq(q+2)^{2}$ elements.
2) $A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$. It is easy to see that $N=U$ and $[G: N]=q+1$. So the \mathcal{J}-class of A has $\geq(q+1)^{2}$ elements.
3) $A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. Then N consists of invertible matrices of the form $\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$ or $\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right)$. Hence $[N: U]=2$ and $[G: N]=(q+1) q / 2$. Therefore the \mathcal{J}-class of A has $\geq q^{2}(q+1)^{2} / 2$ elements.
4) $A=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$. Then N consists of invertible matrices of the form $\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)$. So $|U|=(q-1) q$ and $|N|=(q-1)^{2} q$. Hence $[N: U]=q-1$ and $[G: N]=$ $q+1$ and therefore the \mathcal{J}-class of A has $\geq(q+1)^{2}(q-1)$ elements.
5) $A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$. Then $N=G$ and $U \cong K^{*}$. So $[N: U]=q\left(q^{2}-1\right)$ and $[G: N]=1$. It follows that the \mathcal{J}-class of A has $\geq q\left(q^{2}-1\right)$ elements.
6) A is a subfield of dimension 2 over K. Now $|A|=q^{2}$, so that $|U|=$ $q^{2}-1$. Let C be the centralizer of A in $M_{2}(K)$. Then C is a simple algebra, so it is a maximal subfield of $M_{2}(K)$ containing $A,[1]$. Hence $C=A$. The

Galois group $G(A / K)$ is $\{\operatorname{Id}, \phi\}$, where $\phi(x)=x^{q}$. So $n \in N$ if and only if $n a n^{-1}=a$ or $n a n^{-1}=a^{q}$ for $a \in A$ (as there are no other automorphisms). Hence $n \in C=A$ or $n a n^{-1}=a^{q}$. By the Noether-Skolem theorem there exists an element $n \in N$ of the latter type. Then any other $y \in N$ satisfies either $y^{-1} n \in C$ or $y \in C$. So $N \subseteq C \cup C n$ and consequently $N=U \cup U n$. Hence $[N: U]=2$. But $[G: U]=\left(q^{2}-q\right)\left(q^{2}-1\right) /\left(q^{2}-1\right)=q^{2}-q$. So $[G: N]=\left(q^{2}-q\right) / 2$. Therefore we get $2\left(\left(q^{2}-q\right) / 2\right)^{2}=q^{2}(q-1)^{2} / 2$ elements in the \mathcal{J}-class of A.

We now add the numbers of subspaces produced in cases 1)-6) (note that they are in different \mathcal{J}-classes of S):

1) $(q+1)^{2}$ spaces of dimension 1 ,
$2 q+2$ spaces of dimension 2 ,
1 space of dimension 4,
2) $(q+1)^{2}$ spaces of dimension 3 ,
3) $q^{2}(q+1)^{2} / 2$ spaces of dimension 2 ,
4) $(q+1)^{2}(q-1)$ spaces of dimension 2 ,
5) $q\left(q^{2}-1\right)$ spaces of dimension 1 ,
6) $q^{2}(q-1)^{2} / 2$ spaces of dimension 2 .

So we have constructed

$$
q^{4}+q^{3}+2 q^{2}+q+1=\left(1+q+q^{2}\right)\left(1+q^{2}\right)
$$

subspaces of dimension 2 , whence these are all such subspaces. Also, we have got $q^{3}+q^{2}+q+1$, hence all, subspaces of dimension 1 . Moreover, there are

$$
|S|-1-\mid\{\text { elements listed in 1)-6) }\} \mid=q^{3}-q
$$

remaining non-zero elements of S (all of them of dimension 3). We will show that they are all not regular. So, it will follow that the elements listed in 1)-6) cover all non-zero regular \mathcal{J}-classes of S, and hence they exhaust all non-zero regular elements of S. It also follows that the regular \mathcal{J}-classes of S consist of unit regular elements of S.

Proposition 2.1. Assume that K is any field and let $n \geq 2$. Let $V \in$ $S=S\left(M_{n}(K)\right)$ be a subspace of dimension $n^{2}-1$. Let V be described by a linear equation $\sum_{i, j=1}^{n} a_{i j} x_{i j}=0, a_{i j} \in K$. If $V w V \subseteq V$ for some non-zero $w \in M_{n}(K)$, then the rank of the matrix $A=\left(a_{i j}\right)$ is 1 . Moreover, the latter is equivalent to the fact that V is a regular element of S.

Proof. Assume that $h \in M_{n}(K)$ is an elementary matrix. So it is a transposition or $h=1+\lambda e_{p q}$ for some $p \neq q$ and $\lambda \in K^{*}$, where $e_{p q}$ denotes a matrix unit. Let $B=\left(b_{i j}\right)$ be the matrix determined by an equation describing the subspace $h V$. If h is a transposition with non-diagonal entries $h_{p q}, h_{q p}$, then clearly we may take $b_{q j}=a_{p j}, b_{p j}=a_{q j}$ and $b_{i j}=a_{i j}$ if $i \neq p, q$, for $j=1, \ldots, n$. If $h=1+\lambda e_{p q}$, then it is easy to see that we
may take $b_{q j}=a_{q j}-\lambda a_{p j}$ and $b_{i j}=a_{i j}$ for $i \neq q$, and for all j. It follows that $\operatorname{rank}(A)=\operatorname{rank}(B)$. Hence every $h V$ is described by an equation with the corresponding matrix having the same rank as A. The same holds if $h=1+\lambda e_{p p}$ with any $p \in\{1, \ldots, n\}$ and $\lambda \neq-1$, and therefore for every $h \in \mathrm{Gl}_{n}(K)$. The same applies to $V h$.

Suppose that $V w V \subseteq V$ for some $w \in M_{n}(K)$. If $g, h \in \mathrm{Gl}_{n}(K)$, then

$$
g^{-1} V h h^{-1} w g g^{-1} V h \subseteq g^{-1} V h
$$

Clearly, V is a regular element of S if and only if so is $g^{-1} V h$. It follows that, when proving both statements, we may replace V by any $g^{-1} V h$. Hence we may assume that the matrix A is of the form $A=\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)$ for an identity $\operatorname{matrix} I$ of size $r \leq n$.

First assume that $\operatorname{rank}(A)=1$. So, let $a_{11}=1$ be the only non-zero entry. This means that $V=\left(\begin{array}{ll}0 & b \\ c & d\end{array}\right)$ where b, c, d are $1 \times(n-1),(n-1) \times 1$, $(n-1) \times(n-1)$ matrices, respectively. It is easy to see that $W=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)$ satisfies $V W V=V$. Therefore V is a regular element of S.

It is clear that if V is a regular element of S then there exists a non-zero $w \in M_{n}(K)$ such that $V w V \subseteq V$.

Finally, suppose that $V w V \subseteq V$ for a non-zero matrix w. Because of the diagonal idempotent form of A we have

$$
V=\left\{x=\left(x_{i j}\right) \in M_{n}(K) \mid x_{11}+\ldots+x_{r r}=0\right\}
$$

If $r=1$ then $\operatorname{rank}(A)=1$ and we are done. So suppose that $r \geq 2$. Let $w=\left(w_{i j}\right)$ and suppose that $w_{k t} \neq 0$ for some k, t. If $k, t \neq 1$ then let $v=\left(v_{i j}\right), v^{\prime}=\left(v_{i j}^{\prime}\right)$ be such that $v_{1 k}=1=v_{t 1}^{\prime}$ and all the remaining entries are 0 . Then $v, v^{\prime} \in V$, so that $v w v^{\prime} \in V$. But $v w v^{\prime}$ has only one non-zero entry and it is in position $(1,1)$. This contradicts the above description of V. It follows that $w_{i j}=0$ if $i, j \neq 1$. The same argument applied to position $(2,2)$ implies that also $w_{i j}=0$ if $i, j \neq 2$. So w_{12}, w_{21} can be the only non-zero entries of w. Choose a matrix $u=\left(u_{i j}\right)$ whose only non-zero entry is u_{21} and let $u^{\prime}=\left(u_{i j}^{\prime}\right)$ be such that $u_{11}=-1$ and $u_{22}=1$ and all other entries are zero. Then $u, u^{\prime} \in V$ and $u w u^{\prime} \in V$. The second row of $u w u^{\prime}$ is equal to $\left(0, w_{12}, 0, \ldots, 0\right)$ and all other rows are zero. So the description of V yields $w_{12}=0$. A similar argument applied to the product $u^{t} w u^{\prime}$ (where u^{t} is the transpose of u) yields $w_{21}=0$. Therefore $w=0$. This contradiction shows that $r=1$, completing the proof of the proposition.

We come back to the case $K=\mathbb{F}_{q}$ and $n=2$. Notice that there are

$$
\left|\mathrm{Gl}_{2}(K)\right| /(q-1)=\left(q^{2}-q\right)\left(q^{2}-1\right) /(q-1)=q^{3}-q
$$

subspaces of dimension 3 defined by an equation $\alpha x_{11}+\beta x_{12}+\gamma x_{21}+\delta x_{22}=0$ such that $\operatorname{det}\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \neq 0$.

Let $V=\left\{\left.\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \right\rvert\, a, b, c \in K\right\}$. So, V is defined by the equation $x_{12}-x_{21}=0$, and is of the desired type. We determine the stabilizer C of V under the action of $\mathrm{Gl}_{2}(K)$ on S by left multiplication. So, let $g=\left(g_{i j}\right) \in \mathrm{Gl}_{2}(K)$ satisfy

$$
\left(\begin{array}{ll}
g_{1} & g_{2} \\
g_{3} & g_{4}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=\left(\begin{array}{ll}
g_{1} a+g_{2} b & g_{1} b+g_{2} c \\
g_{3} a+g_{4} b & g_{3} b+g_{4} c
\end{array}\right) \in V
$$

for all $a, b, c \in K$. Then $g_{3} a+g_{4} b=g_{1} b+g_{2} c$, whence $g_{3}=0=g_{2}$ and $g_{4}=g_{1}$. So C consists of scalar matrices and

$$
\left|\left\{g V \mid g \in \mathrm{Gl}_{2}(K)\right\}\right|=\left|\mathrm{Gl}_{2}(K)\right| \cdot\left|K^{*}\right|^{-1}=q^{3}-q
$$

Clearly, every element of the form $g V, g \in \mathrm{Gl}_{2}(K)$, satisfies $g V \mathcal{L} V$ in S, whence it is not regular by Proposition 2.1. It then follows that we have constructed $q^{3}-q$ non-regular elements of the form $g V$. Therefore, comparing the cardinality of S and the number of regular elements constructed before, we see that the elements listed in cases 1)-6) exhaust all non-zero regular \mathcal{J}-classes of S and the elements $g V, g \in \mathrm{Gl}_{2}(K)$, exhaust all non-regular elements of S.

Corollary 2.2. Let $V=\left\{x=\left(x_{i j}\right) \in M_{2}(K) \mid x_{12}=x_{21}\right\}$. Then the \mathcal{J}-class of V in S is equal to $\left\{g V \mid g \in \mathrm{Gl}_{2}(K)\right\}=\left\{V g \mid g \in \mathrm{Gl}_{2}(K)\right\}$ and it coincides with the \mathcal{H}-class of V. Moreover S has exactly eight \mathcal{J}-classes, namely the classes of $A_{1}, \ldots, A_{6}, V,\{0\}$.

Proof. We have seen that $\left\{g V \mid g \in \mathrm{Gl}_{2}(K)\right\}$ exhaust all non-regular elements in S. A symmetric argument shows that $\left\{V g \mid g \in \mathrm{Gl}_{2}(K)\right\}$ also is the set of all non-regular elements of S and hence $\left\{g V \mid g \in \mathrm{Gl}_{2}(K)\right\}=\{V g \mid$ $\left.g \in \mathrm{Gl}_{2}(K)\right\}$. Therefore non-regular elements of S form a single \mathcal{H}-class of S and the assertion follows.
3. Structure of the algebra. In this section we describe the radical of $\mathbb{C}[S]$ and we show that, for every regular principal factor T of S, the contracted semigroup algebra $\mathbb{C}_{0}[T]$ is semisimple. Hence $\mathbb{C}[S] / J(\mathbb{C}[S])$ is a direct product of all $\mathbb{C}_{0}[T]$ (see $[4]$). As $\mathbb{C}[S]=B+J(\mathbb{C}[S])$, a direct sum of subspaces, for a subalgebra $B \cong \mathbb{C}[S] / J(\mathbb{C}[S])$, this yields a description of the structure of the algebra.

Lemma 3.1. Let $A \subseteq M_{n}(K)$ be a subalgebra with $1 \in A$. Then $\mathcal{A}=$ $\{g A h \mid g, h \in G\}$ with zero adjoined is a completely 0 -simple inverse subsemigroup of the principal factor J_{A} of A in $S\left(M_{n}(K)\right)$. Moreover, \mathcal{A} is a union of \mathcal{H}-classes of J_{A}.

Proof. We know that $H_{A}=\{A x \mid x \in N\}$, where N is the normalizer of A in $\mathrm{Gl}_{n}(K)$. It follows that \mathcal{A} is a union of \mathcal{H}-classes of J_{A}. Moreover every non-empty intersection R of \mathcal{A} with an \mathcal{R}-class of S contains an idempotent. Namely, if $u A v \in R$ for some $u, v \in G$, then $u A u^{-1} \in R$.

Suppose that $B \in \mathcal{A}$ is an idempotent from the \mathcal{R}-class of A in S. Since $B \cap G \neq \emptyset$ and B is a subalgebra of $M_{n}(K)$, we must have $1 \in B$. But $A B=B$ and $B A=A$. It follows that $A=B$. Now, if $g A h$ is an idempotent, where $g, h \in G$, then $A h g$ is also an idempotent and $A \mathcal{R} A h g$. So $A h g=A$ by the preceding part of the proof. Then $g A h=g A g^{-1}$. Now, suppose that two idempotents $g A g^{-1}, f A f^{-1}(g, f \in G)$ are in the same \mathcal{R}-class of S. Then $A \mathcal{R} g^{-1} f A f^{-1} g$ and again we get $A=g^{-1} f A f^{-1} g$. Hence $g A g^{-1}=f A f^{-1}$. Similarly one proves that every non-empty intersection of \mathcal{A} with an \mathcal{L}-class of S contains exactly one idempotent. The assertion follows.

We have seen that the regular \mathcal{J}-classes of S described in cases 2)-6) are of the form \mathcal{A}, where \mathcal{A} is a subalgebra containing 1 . So, the lemma above applies to these \mathcal{J}-classes.

Proposition 3.2. Let J be a completely 0 -simple principal factor of the semigroup $S=S\left(M_{2}\left(\mathbb{F}_{q}\right)\right)$. Then $\mathbb{C}_{0}[J]$ is a semisimple algebra.

Proof. Let J be one of the regular \mathcal{J}-classes of S described in 2)-6), with zero adjoined. Then by Lemma $3.1, \mathbb{C}_{0}[J] \cong M_{k}(\mathbb{C}[H])$ for the maximal subgroup H of J and some k (see [4], Corollary 5.26). It remains to consider the \mathcal{J}-class J containing $A=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$. The maximal subgroup of J is trivial. So, to consider the Rees presentation of J (see [2]) in the coordinate system corresponding to the maximal subgroup $\{A\}$ of J, we list the elements of the \mathcal{R}-class of A (in the leading column) and of the \mathcal{L}-class of A (in the leading row). This yields the following form of the sandwich matrix P of J :

	$\left(\begin{array}{cc}0 & 0 \\ a & 0\end{array}\right)$	$\left(\begin{array}{cc}a & 0 \\ \alpha a & 0\end{array}\right)$	$\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}a & 0 \\ c & 0\end{array}\right)$
$\left(\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right)$	0	$1 \ldots 1$	1	1
$\left(\begin{array}{cc}b & -\alpha^{-1} b \\ 0 & 0\end{array}\right)$	\vdots	0	1	1
1	1	0	1	\vdots
1	1			
$\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$	1	$1 \ldots 1$	0	1
$\left(\begin{array}{ll}d & b \\ 0 & 0\end{array}\right)$	1	$1 \ldots 1$	1	1

Here the second row (column, respectively) represents $q-1$ different rows (columns) of P corresponding to different $q-1$ elements α of \mathbb{F}_{q}^{*}. Performing elementary operations on rows and columns of P, one brings P to the identity matrix. So, P is invertible as a matrix over \mathbb{C} and consequently $\mathbb{C}_{0}[J] \cong M_{q+2}(\mathbb{C})$, again by Corollary 5.26 of $[4]$. The assertion follows.

It is easy to verify that the inverse of the above sandwich matrix is

$$
P^{-1}=\left(\begin{array}{ccccc}
-1 & 0 & \ldots & 0 & 1 \\
0 & -1 & \ldots & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & 1 \\
1 & 1 & \ldots & 1 & -q
\end{array}\right)
$$

Finally, we describe the radical of the algebra $\mathbb{C}_{0}[S]$. Let J be the \mathcal{J}-class containing $M_{n}(K)$ and $A=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$, together with the zero subspace. Notice that J is an ideal of S. Since $\mathbb{C}_{0}[J]$ is semisimple, it has an identity E, which can be effectively determined. Namely, in the Munn algebra notation for $\mathbb{C}_{0}[J]$ (see [4]), E can be identified with P^{-1}. Therefore E can be expressed as a linear combination of elements of J with coefficients $1,-1$ and q as follows:

$$
\begin{aligned}
E= & \left(\begin{array}{cc}
0 & b \\
0 & d
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
b & d
\end{array}\right)+\sum_{\alpha \in K}\left(\left(\begin{array}{cc}
a & \alpha a \\
c & \alpha c
\end{array}\right)+\left(\begin{array}{cc}
a & b \\
\alpha a & \alpha b
\end{array}\right)\right) \\
& -\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
b & 0
\end{array}\right)-\sum_{\alpha \in K^{*}}\left(\begin{array}{cc}
a & -\alpha^{-1} a \\
\alpha a & -a
\end{array}\right)-q M_{2}(K) .
\end{aligned}
$$

Proposition 3.3. Let $V=\left\{x \in M_{2}(K) \mid x_{12}=x_{21}\right\}$. Then

$$
J\left(\mathbb{C}_{0}[S]\right)=\operatorname{lin}_{\mathbb{C}}\left\{g V-E g V \mid g \in \mathrm{Gl}_{2}(K)\right\}
$$

and $J\left(\mathbb{C}_{0}[S]\right)^{2}=0$.
Proof. Denote the right hand side by I. Let J be the \mathcal{J}-class of S containing $M_{n}(K)$ with zero adjoined. Then $\mathbb{C}_{0}[J]$ is an ideal of $\mathbb{C}_{0}[S]$ since J is an ideal of S. We have $\mathbb{C}_{0}[J] I=I \mathbb{C}_{0}[J]=0$ because E is a central idempotent in $\mathbb{C}_{0}[S]$. Moreover $I^{2}=0$. Indeed, if $g \in \mathrm{Gl}_{2}(K)$ then $g V=V h$ for some $h \in \mathrm{Gl}_{2}(K)$ by Corollary 2.2. Therefore

$$
(V-E V)(g V-E g V)=(V-E V)(V h-V h E)
$$

Since $V^{2}=M_{2}(K) \in J$, we get $(V-E V)(V h-V h E)=0$, so $I^{2}=0$, as desired.

We know that the set $H_{V}=\left\{g V \mid g \in \mathrm{Gl}_{2}(K)\right\}$ has cardinality $q^{3}-q$, so the dimension of I is at most $q^{3}-q$. Since the image of I modulo $\mathbb{C}_{0}[J]$ is spanned by H_{V}, it has dimension $q^{3}-q$. Hence, this is the dimension of I as well.

We claim that I is an ideal of $\mathbb{C}_{0}[S]$. By symmetry of H_{V} and since E is central, it is enough to show that I is a left ideal. Let $X \in S, X \neq 0$. If X is not regular in S, then $X=g V$ for some $g \in \mathrm{Gl}_{2}(K)$ and $X V=M_{2}(K) \in J$. If X is in one of the regular \mathcal{J}-classes listed in cases 2$)-6$), then X contains an invertible matrix u. Thus, $X V$ is either of the form $u V$ or it is equal to $M_{2}(K)$. So $X(V-E V) \in I$ in the former case and $X(V-E V)=0$ in the
latter. Finally, if $X \in J$, then we also get $X(V-E V)=0$ because E is the identity of $\mathbb{C}_{0}[J]$. So I is a left ideal, as claimed.

It follows that $I \subseteq J\left(\mathbb{C}_{0}[S]\right)$. By Proposition 3.2, the dimension of $\mathbb{C}_{0}[S]$ modulo its radical is $q^{3}-q$. Comparing dimensions we get $J\left(\mathbb{C}_{0}[S]\right)=I$.

Notice that we have in fact shown that the \mathcal{H}-class H_{V} of V in S, with zero adjoined, is a minimal non-zero ideal of the Rees factor S / J.

REFERENCES

[1] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
[2] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Univ. Press, 1995.
[3] J. Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), 255-290.
[4] J. Okniński, Semigroup Algebras, Dekker, New York, 1991.
[5] -, Semigroups of Matrices, World Sci., Singapore, 1998.
[6] J. Okniński and M. S. Putcha, Subspace semigroups, J. Algebra 233 (2000), 87-104.
Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: okninski@mimuw.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 20M25, 16S36; Secondary 20M20, 16P10.

 Supported by KBN research grant 2P03A 03018.

