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INTRODUCTION

The algebraic classification (up to isomorphism) of algebras of dimension n from a certain va-
riety defined by a certain family of polynomial identities is a classic problem in the theory of
non-associative algebras. There are many results related to the algebraic classification of small-
dimensional algebras in the varieties of Jordan, Lie, Leibniz, Zinbiel and many other algebras
[16,[18,136]. Geometric properties of a variety of algebras defined by a family of polynomial iden-
tities have been an object of study since 1970’s (see, [4-7,14}115,125,126,130,131,138,146,147,49.,1501]).
Gabriel described the irreducible components of the variety of 4-dimensional unital associative alge-
bras [26]. Cibils considered rigid associative algebras with 2-step nilpotent radical [15]. Grunewald
and O’Halloran computed the degenerations for the variety of 5-dimensional nilpotent Lie alge-
bras [30]. All irreducible components of 2-step nilpotent commutative and anticommutative algebras
have been described in [33,47]]. Chouhy proved that in the case of finite-dimensional associative al-
gebras, the N-Koszul property is preserved under the degeneration relation [14]. Degenerations have
also been used to study a level of complexity of an algebra [29,49.150]. The study of degenerations of
algebras is very rich and closely related to deformation theory, in the sense of Gerstenhaber [28].
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Loday introduced a class of symmetric operads generated by one bilinear operation subject to one
relation making each left-normed product of three elements equal to a linear combination of right-
normed products: (a1az2)as = Y Zs(1)(Ar(2)00(3)); such an operad is called a parametrized one-
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relation operad. For a particular choice of parameters {z, }, this operad is said to be regular if each of
its components is the regular representation of the symmetric group; equivalently, the corresponding
free algebra on a vector space V' is, as a graded vector space, isomorphic to the tensor algebra of V.
Bremner and Dotsenko classified, over an algebraically closed field of characteristic zero, all regular
parametrized one-relation operads. In fact, they proved that each such operad is isomorphic to one
of the following five operads: the left-nilpotent operad, the associative operad, the Leibniz operad,
the Zinbiel operad, and the Poisson operad [10]. An algebra A is called a (left) Zinbiel algebra if it
satisfies the identity (xy)z = x(yz + zy). Zinbiel algebras were introduced by Loday in [41]. Under
the Koszul duality, the operad of Zinbiel algebras is dual to the operad of Leibniz algebras. Zinbiel
algebras are also known as pre-commutative algebras [40] and chronological algebras [39]. A Zinbiel
algebra is equivalent to a commutative dendriform algebra [2]]. It plays an important role in the
definition of pre-Gerstenhaber algebras [3]]. The variety of Zinbiel algebras is a proper subvariety in
the variety of right commutative algebras. Each Zinbiel algebra with the commutator multiplication
gives a Tortkara algebra [22], which has sprung up in unexpected areas of mathematics [[19,20].
Recently, the notion of matching Zinbiel algebras was introduced in [27]]. Recently, Zinbiel algebras
also appeared in a study of rack cohomology [17], number theory [13] and in a construction of a
Cartesian differential category [34]]. In recent years, there has been a strong interest in the study of
Zinbiel algebras in the algebraic and the operad context [I8,[11,21-24,27,135,138.,42-45]].

Free Zinbiel algebras were shown to be precisely the shuffle product algebra [42]]. Naurazbekova
proved that, over a field of characteristic zero, free Zinbiel algebras are the free associative-
commutative algebras (without unity) with respect to the symmetrization multiplication and their free
generators are found; also she constructed examples of subalgebras of the two-generated free Zinbiel
algebra that are free Zinbiel algebras of countable rank [44]. Nilpotent algebras play an important role
in the class of Zinbiel algebras. So, Dzhumadildaev and Tulenbaev proved that each complex finite
dimensional Zinbiel algebra is nilpotent [23]; Naurazbekova and Umirbaev proved that in character-
istic zero any proper subvariety of the variety of Zinbiel algebras is nilpotent [45]]. Finite-dimensional
Zinbiel algebras with a “big” nilpotency index are classified in [1,[11]. Central extensions of three
dimensional Zinbiel algebras were calculated in [35] and of filiform Zinbiel algebras in [12]. The full
system of degenerations of complex four dimensional Zinbiel algebras is given in [38]].

Our method for classifying nilpotent Zinbiel algebras is based on the calculation of central ex-
tensions of nilpotent algebras of smaller dimensions from the same variety. The algebraic study of
central extensions of algebras has been an important topic for years [32,37,48]]. First, Skjelbred and
Sund used central extensions of Lie algebras to obtain a classification of nilpotent Lie algebras [48]].
Note that the Skjelbred-Sund method of central extensions is an important tool in the classification of
nilpotent algebras. Using the same method, small dimensional nilpotent (associative, terminal [36]],
Jordan, Lie [[16}/18], anticommutative algebras, and some others) have been described. Our main
results related to the algebraic classification of cited varieties are summarized below.
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Theorem A. Up to isomorphism, there are infinitely many isomorphism classes of complex 5-
dimensional non-split non-2-step nilpotent Zinbiel algebras, described explicitly in section in
terms of 6 one-parameter families and 53 additional isomorphism classes.

The degenerations between the (finite-dimensional) algebras from a certain variety J defined by
a set of identities have been actively studied in the past decade. The description of all degenerations
allows one to find the so-called rigid algebras and families of algebras, i.e. those whose orbit closures
under the action of the general linear group form irreducible components of 2 (with respect to the
Zariski topology). We list here some works in which the rigid algebras of the varieties of all 4-
dimensional Leibniz algebras, all 4-dimensional nilpotent terminal algebras [36], all 4-dimensional
nilpotent commutative algebras, all 6-dimensional nilpotent binary Lie algebras, all 6-dimensional
nilpotent anticommutative algebras have been found. A full description of degenerations has been
obtained for 2-dimensional algebras, for 4-dimensional Lie algebras, for 4-dimensional Zinbiel and
4-dimensional nilpotent Leibniz algebras in [38]], for 6-dimensional nilpotent Lie algebras in [30,46],
for 8-dimensional 2-step nilpotent anticommutative algebras [4], and for (n + 1)-dimensional n-Lie
algebras. Our main results related to the geometric classification of cited varieties are summarized
below.

Theorem B. The variety of complex 5-dimensional Zinbiel algebras has dimension 24 and it has 16
irreducible components (in particular, there are only 11 rigid algebras in this variety).

0.1. Symmetric Zinbiel algebras. Similar to the Leibniz case, obvious that there are left and right
Zinbiel algebras. Hence, the notation of symmetric Zinbiel algebra should be introduced by the sim-
ilar way with symmetric Leibniz algebras (about symmetric Leibniz algebras see [9] and references
therein). An algebra A is called a symmetric Zinbiel algebra if it satisfies the identities

(zy)z = 2(yz + 2y), z(y2) = (zy + yz)=.
The operad of symmetric Zinbiel algebras is dual to the operad of symmetric Leibniz algebras. The

variety of symmetric Zinbiel algebras is a proper subvariety in the variety of bicommutative algebras.
The following Lemma can be obtained by some tedious calculations.

Lemma 1. Let S be a symmetric Zinbiel algebra. Then § is a 3-step nilpotent algebra and it satisfies
the following two identities

(zy)z = —y(zx) and (vy)z = —z(yx).
Corollary 2. Each n-dimensional (n < 6) symmetric Zinbiel algebra is 2-step nilpotent. There is a

non-2-step nilpotent 6-dimensional symmetric Zinbiel algebra.

Proof. The first part of the present statement follows from Theorem A, because there are no symmetric
algebras in the classification of Theorem A. The required 6-dimensional symmetric Zinbiel algebra is
given below:

€162 = €3 €261 = €4 €263 = €5 €165 = € €561 = —Cg
€9€y — —266 €469 — —€g €E9€3 — € €3€9 — 266



1. THE ALGEBRAIC CLASSIFICATION OF ZINBIEL ALGEBRAS

1.1. Method of classification of nilpotent algebras. Throughout this paper, we use the notations
and methods well written in [32,137], which we have adapted for the Zinbiel case with some modifi-
cations. Further in this section we give some important definitions.

Let (A, -) be a Zinbiel algebra over C and let V be a vector space over C. Then the C-linear space
7? (A, V) is defined as the set of all bilinear maps # : A x A — V, such that

O(zy, z) = 0(z,yz + zy).

These elements will be called cocycles. For a linear map f from A to V, if we define
60f: A X A — V by df(x,y) = f(zy), then §f € Z?>(A,V). We define B(A,V) =
{0 =6f : f € Hom (A,V)}. We define the second cohomology space H? (A, V) as the quotient
space Z? (A, V) /B? (A, V).

Let Aut(A) be the automorphism group of A and let ¢ € Aut(A). For § € Z*(A,V) define
the action of the group Aut(A) on Z% (A, V) by ¢0(x,y) = 0 (¢ (z), ¢ (y)). Itis easy to verify that
B? (A, V) is invariant under the action of Aut(A). So, we have an induced action of Aut(A) on

H?2 (A,V).
Let A be a Zinbiel algebra of dimension m over C and V be a C-vector space of dimension k.
For the bilinear map 6, define on the linear space Ay = A @ V the bilinear product “ [—, —] A,

by [v + 2",y +y']s, = 2y + 0(x,y) forall z,y € A,2',y" € V. The algebra Ay is called a -
dimensional central extension of A by V. One can easily check that Ay is a Zinbiel algebra if and
only if 6 € Z*(A, V).

Call the set Ann(#) = {z € A : 0 (z,A) + 0 (A,z) = 0} the annihilator of §. We recall that the
annihilator of an algebra A is defined as the ideal Ann(A) = {r € A : xA + Az = 0}. Observe
that Ann (Ay) = (Ann(d) N Ann(A)) @ V.

The following result shows that every algebra with a nonzero annihilator is a central extension of a
smaller-dimensional algebra.

Lemma 3. Let A be an n-dimensional Zinbiel algebra such that dim(Ann(A)) = m # 0. Then
there exists, up to isomorphism, an unique (n — m)-dimensional Zinbiel algebra A’ and a bilinear
map 0 € Z*(A’, V) with Ann(A’) N Ann(0) = 0, where V is a vector space of dimension m, such
that A = A’y and A/ Ann(A) = A'.

Proof. Let A’ be a linear complement of Ann(A) in A. Define a linear map P: A — A’ by
P(z +v) =xforz € A’ and v € Ann(A), and define a multiplication on A’ by [z, y]a = P(zy)
forz,y € A'. Forxz,y € A, we have

Play) = P((x = P(x) + P(x))(y — P(y) + P(y))) = P(P(2)P(y)) = [P(x), P(y)]a-
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Since P is a homomorphism, P(A) = A’ is a Zinbiel algebra and A/ Ann(A) = A’, which gives
us the uniqueness. Now, define the map 6: A’ x A’ — Ann(A) by 0(z,y) = 2y — [z, y]as. Thus,
A} is A and therefore § € Z*(A’, V) and Ann(A’) N Ann(6) = 0. O

Definition 4. Let A be an algebra and I be a subspace of Ann(A). If A = Ao @ I then I is called
an annihilator component of A. A central extension of an algebra A without annihilator component
is called a non-split central extension.

Our task is to find all central extensions of an algebra A by a space V. In order to solve the iso-
morphism problem we need to study the action of Aut(A) on H? (A, V). To do that, let us fix a basis

{e1,...,es} of V,and @ € Z% (A, V). Then € can be uniquely written as 6 (x, y) ZQ (z,y) e,

where 6; € Z? (A, C). Moreover, Ann(d) = Ann(6;) N Ann(6y) N ... N Ann(d,). Furthermore
0 € B2(A,V) if and only if all §; € B*(A,C). It is not difficult to prove (see [32, Lemma 13])

that given a Zinbiel algebra Ay, if we write as above 0 (x,y) = Z 0; (z,y)e; € Z*(A,V) and
i=1

Ann(f) N Ann (A) = 0, then Ay has an annihilator component if and only if [6,], [6], ..., [0s] are

linearly dependent in H? (A, C).

Let V be a finite-dimensional vector space over C. The Grassmannian Gy (V) is the set of all
k-dimensional linear subspaces of V. Let G, (H? (A, C)) be the Grassmannian of subspaces of di-
mension s in H? (A, C). There is a natural action of Aut(A) on G, (H? (A, C)). Let ¢ € Aut(A).

For W = ([01],[62],...,[0s]) € Gs (H? (A, C)) define oW = ([¢01], [¢0s] , ..., [p0s]). We denote
the orbit of W € G, (H? (A, C)) under the action of Aut(A) by Orb(W). Given
Wl = <[91] ’ [‘92] PR [‘93]> 9 W2 = <[791] ) [792] [ [ﬁsD € Gs (H2 (A7 C)) )

we easily have that if W, = W, then (| Ann(#;) NAnn (A) = ﬂ Ann(9;) NAnn(A), and therefore
i=1 i=1
we can introduce the set

TS(A):{Wz([@l],[eﬂ,...,[esbeG H? (A, C)) ﬂAnn ﬁAnn(A)zO},

which is stable under the action of Aut(A).

Now, let V be an s-dimensional linear space and let us denote by E (A, V) the set of all non-split
s-dimensional central extensions of A by V. By above, we can write

E(A,V):{Ag 0 (x Ze z,y)e; and ([01],[04], . [93])6TS(A)}.

i=1

We also have the following result, which can be proved as in [32, Lemma 17].
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Lemma 5. Let Ay, Ay € E(A,)V). Suppose that 0(x,y) = ZH,- (x,y)e; and 9 (x,y) =

i=1

Z V; (z,y) e;. Then the Zinbiel algebras Ay and Ay are isomorphic if and only if
i=1

Orb <[‘91] ) [82] ) [88]> = Orb <[791] ) [192] yr [ﬁsD :

This shows that there exists a one-to-one correspondence between the set of Aut(A)-orbits on
T, (A) and the set of isomorphism classes of E (A, V). Consequently we have a procedure that
allows us, given a Zinbiel algebra A’ of dimension n — s, to construct all non-split central extensions
of A’. This procedure is:

(1) For a given Zinbiel algebra A’ of dimension n — s, determine H?(A’,C), Ann(A’) and
Aut(A’).

(2) Determine the set of Aut(A’)-orbits on T(A’).

(3) For each orbit, construct the Zinbiel algebra associated with a representative of it.

1.1.1. Notations. Let us introduce the following notations. Let A be a nilpotent algebra with a basis
{e1,e2,...,e,}. Then by A;; we will denote the bilinear form A;; : A x A — C with Aj(e, e,,) =
dit0jm. The set {A;; : 1 <4, <n} is a basis for the linear space of bilinear forms on A, so every

6 € Z*(A,V) can be uniquely written as 6 = Z ¢ijAi;, where ¢;; € C. Let us fix the following

1<i,j<n
notations for our nilpotent algebras:
2MN; — jth4-dimensional 2-step nilpotent algebra.
[91]; — jth ¢-dimensional central extension of 3-dimensional Zinbiel algebra 2 (see, [35]]).

1.2. The algebraic classification of complex 4-dimensional Zinbiel algebras and their cohomol-
ogy spaces. The present table collects all information about multiplication tables and cohomology
spaces of 4-dimensional Zinbiel algebras (for the classification of 4-dimensional Zinbiel algebras
see, [38] and the Corrigendum of [38]]), which will be used in our main classification.

The list of 2-step nilpotent 4-dimensional Zinbiel algebras
‘)701 . €161 = €9

(o) = ([Asa], [Aa], [Aaa), [Aas], [Aa], (D], [Ass), [Aaa], [Arp +2851])
No2 Doe1e] = €3 €96y = €y

H2(Moz) = ([Asa], [A1], [As + 281], [Agy + 2A])

Mos3 I oe1ey = e3 ege] = —e€3

H?(Ng3) = <[A11], [Ara], [Ara], [As2], [Aa], [Aar], [Asz], [Aua], [Arz], [Azs], [A43]>




‘ﬁ8‘4 . €161 = e3 €1 = €3 €9 = (X€3

H2(905,) = ([Aizl, [Aw: [Ba]. [Aaa], [Aai) [Aa]. [Ae], [Au])

MNos T oe1e1 = e3 e1ey = es €061 = €3
H?(Ngs) = <[A11]7 [Ar2], [Ara], [Ag], [Asd], [Au], [As], [A44]>
Nos i €162 = €4 €361 = €4
H?(Ngs) = <[A11], [Ar2], [Aus], [An], [Ass], [Ass], [As], [A33]>
No7 I €16g = €3 €961 = €4 €96y = —e€3
H2 (o) = ([An], [Aaa, [Ars — vt — Ay + gy — 205 )

08 Toe1e1 =e3 e1ey =€y €961 = —Qe3 €96y = —€4

HA O™ = ([Ara), [Aan])
H2 () = (1], (A0, [As + 240
H2(MYs) = ([An], [Ar2], [Ags — Arz — 2051 + Asg + Ap], [Aoy — Ay — Ay — Ay + 2A42]>

na, D e16] = €4 €169 = €y €961 = —(€4 €969 = €4 €363 = €4
H2(00) = ([Aua], [Ars], [Ban), [Bao]: [Bag): [A), [Asa], [Asg])

Ny Doe1ey = €4 €163 = €4 €3] = —€4 €96y = €4  €36] = €4
H?(9y) = <[A11], [Ar2], [Aus], [An], [Ass], [Agi], [As], [A33]>

Ny €161 = €4 €162 = €4 €2€1 = —€4 €3€3 = €4

H*(M) = <[A11]7 [Ar2], [Aus], [An], [Asa], [Ass], [Azi], [A32]>

Ny Doe1ey = €3 €9e] = €y

(o) = ([An], [An, [Ars = Aggl, [Ags — Aay])

I3 Toe1e1 =e4 e1ey = es €961 = —€3  €9€y = 2e3 + €4
H?(3) = <[A21]7 [A22]>

N Tl = €4 €961 = (Wey €9€y = €3

HO7 ) = ([Au), [Ba1], [B2s + 28], 2080 + (0 + 1) (Ags + 2045, +24p)])
H* (M) = <[A11]7 [Ag1], [Aa], [Aga], [Agz + 2A32]>

‘ﬁ15 . €1 = €4 €91 = —€4 €363 = €4

H?(Dy5) = <[A11], [Aus], [Aai], [Asa], [Ass], [Asi], [Asg], [A33]>

The list of 3-step nilpotent 4-dimensional Zinbiel algebras

31 . €161 = ey €12 = €3 €91 — 263

H?*(3,) = <[A13 + 3093 + 3A31], [Ava], [Ant], [Aad], >

1 . — — — —
[m1]01 . €161 = €2 €162 = €4 €91 = 264 €363 — €4



H2(5)5) = ([Aul, [Aar])

[m(ﬂ(lm . €161 = €2 €162 = €4 e1e3 = €4 ese; = 2ey
(95 T) = ([Aus], sl [Ass])

[ml](l)l 1 €162 = €3 €163 = €4 €961 = —€3 €263 = €4
H([903) = ([Au), [A1): [Aus], [Ans])

[ml](l)z P16 = €3 €163 = €4 €261 = —€3

Hz([ml]éz) = <[A11], [Ai2], [Ag], [A23]>

The list of 4-dimensional null-filiform Zinbiel algebras
311 : eler=ey erer=ge3 ere3=2es  eger =€z egeg =3y eze; = bey

H?([3,]}) = <[A14 + 8Ag3 + 12A5, + 4A41]>

Remark 6. From the previous list, we will only consider MNy1, Moz, Noz, Moz, Nigr Mo, N, 31, [31]1-
All n-dimensional central extensions of the remaining algebras are split or have (n + 1)-dimensional
annihilator.

Remark 7. In what follows, when we consider an automorphism, the entries of the matrix that are
choosen to be zero will be omitted in the description.

1.2.1. Central extensions of )y;. Let us use the following notations:

Vi=[Anp+2Ay], Vo=[A13], Vi=[Au]l, Vi=[As], V5;=[As3],
Ve = [Asdl, Vir=[Anl], Vs=[Ag], Vg=[Au]

9
Take 6 = > ;V; € H2(Np; ). The automorphism group of 9y, is generated by invertible matrices

i=1
of the form
z 0 0 O
2
T4 oz ow
o=
q 0 s t
r 0 u w
Since
0 o1 ag a3 ot al o5 aj
¢T2a1000¢:20§000
as 0 a5 g o 0 az ag|’
ar 0 ag g a; 0 ag ag

9 9
we have that the action of Aut(9%;) on the subspace (> «;V;) is given by (> a;'V;), where
i=1 =1

_ 3
o] = ogr,



a5 = T2+ st + asur + as5qs + agqu + asgrs + agru,
oz = qWT + ot + agvr + asqt + aequ + agrt + agro,
oy = 2007z + ousT + asqs + agrs + apur + agqu + agru,
aif = azs® + (s + ags + agu)u,

o5 = asst 4 agsv + agtu 4+ agu,

o; = 20qwx + agtr + asqt + aert + azvr + agqu + agrv,
ag = asst + agtu + agsv + aguv,

ay = ast® + (agt + agt + agv)v.

First note that we cannothave a; = 0, s =y = a5 = g = ag = 0oras = ag = ay = g =
ag = 0. Besides, considering ¢ givenbyz =s=v =1, 2 = —2%41 and w = —2%71, Wwe can suppose

ay = a7 = 0. On the other hand, if we choose ¢ givenby z = v =t = 1 and 2 = w we have the
following change of position: oy <> as, a5 <> a9 and ag <> ag. Finally, we note that if a5 # 0

then we can choose ag = 0 (just take ¢ givenby z = s = v = land t = —%) and applying the
automorphism givenby v = s =v =1, 2 = 9=, w = agand r = 2a3 , we can suppose a3 = 0.
In what follow, we will consider ov; = 1 and ooy = a7 = 0. Then:
(1) Suppose a5 = ag = 0 and g = —as.
(a) If ag = 0, note that ag # 0. Therefore, by choosingz = s = 1, u = —g—i andv = a%, we

obtain the representative (V; + V3), that we do not consider since the associated algebra
would have 2-dimensional annihilator.

(b) IfOKG #O,byChOOSingﬂf:fU = —u—l P OéJ’w_ %@Cs%’q: —%’t: %6 and
r= g%z, we obtain the representative (V; + Vg — V).

(2) Suppose a5 = ag = 0 and ag # —
(a) If ag = 2ag, we have ag # 0. Then, there are two cases to consider:

(1) f ay = 0,by choosingz =t =1, u= =, 2z = 0;38 and ¢ = :2))0" we obtain the
representative (V1 + Vg + 2V5).
(i) If ap # 0, by choosing z = 1, = O%, u=92, 7= 9% andr = —32, we obtain

the representative (V1 + V3 + Vg + 2V5).
(b) Suppose ag # 2as.
(i) Suppose ag = 2a4 and, thus, ag # 0.

(A) If g = 0, by choosingz = v =1, s = aiﬁ, z=72andr = :2,)32, we obtain
the representative (V; + Vg + 2V8)
(B) If a3 # 0, by choosing x = 1, s = a— v = 1 , 2= 052060‘3 and r = —g’%i,we

obtain the representative (V1 + V3 + Vg + 2V8>

(ii) If ag # 2ag, since we can change position between ag and ag, we can suppose
o308 Q206

CYg?éO ThenbyChOOSIHg:L'—u—lt— Z—mw:m,q
ﬁ and r = a62a§a , we obtain the family of representatives (V; + Vs + aVyg),

with o # —1, 2, 2. Note that for a # 0, (V1 + Vg + aVs) and (V; + Vg + L V)
are in the same orbit.
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(3) Suppose a5 = 0 and g # 0.

(a) Suppose ag = —ag.
(i) If ag # 0, by choosing © = /aday, z = —3esectlesas 4, — o200
o 2 ¥ag(Bazast+azag) o _ 2a Yag _ .
q = 9%/al st = g, v = 3 Vo and ©u = —ag, we obtain the rep-

resentative (V1 + V5 + Vg — V).

(ii) If ag = 0, note that iy # 0. By choosingz = 1, s = L, t = —a;\“;’@ and v = \/La_g,
we obtain the representative (V; + Vg + Vo).
(b) If ag # —ag, by choosingz = s =t = land v = —O‘Ga—tf‘s, we return to the case
a5 = ag = 0.
. agt+ag++/ (as+ag)?—dasa
(4) Suppose azag # 0. By choosingz =t = u = 1 and s = — 207" (2‘1 87710509 e return

to the case as; = 0 and ag # 0
Summarizing, we have the following distinct orbits
(V1 + Vi + Vi), (V1 + Vi + aVs)0@=0Q) (V) + V5 + Vi — V), (Vi + Vs + Vg + 2Vs),
which give the following new algebras:

2»01 . €161 — €9 €169 = €5 €1€3 = €5 €€ = 265 €4€4 = €5

23y @ €161 =€y e1ey =e€5 €961 = 2€5 €364 =€5 €463 = Q€5

2;03 . €161 =m €9 €169 = €5 €961 = 265 €3€3 — €5 €34 = €5 €463 = —€5
Z(]4 . €161 —m €9 €169 = €5 €164 = €5 €91 — 265 €34 = €5 €4€3 = 265

1.2.2. Central extensions of M. Let us use the following notations:

Vi= [AlZ]a Vy = [A21]7 V3 = [Al?, + 2A31], V4= [A24 + 2A42].

1
Take 0 = >~ ;V; € H%(My2). The automorphism group of N is generated by invertible matrices
i=1

of the form
z 0 0 O 0z 0 0
el P E TR
u v 0 y? u v oy 0
Since
0 o a3 O o o a3 0
rla 0 0 a4 | o o™ 0 o
%o, 0 0 0|7 25 0 0 0|’
0 20 0 O 0 207 0 O

4

4
we have that the action of Aut(91y,) on the subspace (> «;V;) is given by (> aiV;), where
=1 =1



1
af = ajry + astr + 2oquy, a = asry + 203t + quuy, o = azzd, af = agy’

Since Ann(9y2) = (es, e4), we can not have azay = 0. Thus, we can suppose oy = 1. Then, by

choosing = = ;3/%73, y=11t= 0‘13_7230‘2 and u = O‘;g—\/i%‘l, we obtain the representative
(V3 + Vy),

which gives the following new algebra:
2»05 . €161 — €3 €163 — €5 €9€9 — €4 €9€4 — €5 €361 = 265 €4y = 265

1.2.3. Central extensions of )y3. Let us use the following notations:

VI = [All]v VQ = [AIQ]v v3 = [A13]7 v4 = [A14]7 v5 = [A22]7
vﬁ = [A23]7 v? = [A24]7 VS = [A41]7 v9 = [A42]7 VIO = [A43]7 v11 = [A44]-

11
Take 6 = >~ ;V; € H?(Mp3). The automorphism group of I3 is generated by invertible matrices
i=1

of the form
T w 0 0
|z oy 0 0
¢ = qg r TYy—wz 8
t u 0
Since
o e a3 oy o ay;+at a3 a
v 0 a5 as oy | o ag o o
¢ 0O 0 O 0 ¢= 0 0 0 0|’
ag Qg Qg O o oy ajy O

11 11
we have that the action of Aut(9%3) on the subspace (> «;V;) is given by (> «;V;), where
i=1 i=1

al = a2 + aprz + asxq + agxt + a2’ + agzq + gzt + agrt + gzt + ageqt + angt?,

oy = 20qwr + ae(ry + wz) + az(quw + rx) + au(tw + ux) + 2052y + ag(rz + qy)+
ar(ty + zu) + ag(tw + uz) + ag(ty + zu) + aio(rt + qu) + 2041 tu,

af = (sr+ agz + aqot) (xy — wz),

oy = 35T+ ourv + azs + arzv + agest + o tv,

ai = (agr+ aqu+ agu)w + (asy + agr + aru + agu)y + aoru + aju?,

af = (asw~+ agy + aou)(zy — wz),

or = Q3S5W + aqUw + 0gSY + aryv + aosu + o u,

ag = (agr+ agz + aipq + oqit)v,

af = (agw + agy + aier + agu)v,

oy = ago(ry —wz)v,
af; = (ag08 + agv)v.
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First note that we can not have o3 = g = ;9 = 0or vy = vy = g = g = g = 31 = O.
Besides, a standard computation shows that we can change the position of a3 and .
Since aj, = 0 if, and only if, a;p = 0, we have:

(1) Suppose a9 = a7 = 0. Note that in this case we can not have a3 = a5 = 0.
(a) Suppose azag # 0 and ag = 0. Write H = aias — apazag + alag

(i) If s = 0 and iy # azar, by choosing z = 1, w = =24, y = alg, q=-2,
3
= 2a1a3a6a7—30410440%-1-0%(&4045—&2047)’ s — asay U — H and v —

ag(azar—aqag) agag—azar’ ag(aga7—a4a6)
aa—ara-» We obtain the representative (V3 + V7).

(i1) Suppose ag = 0 and oy = 3.

2
asg

(A) If H = 0, by choosing x = v = 1, w = —g—g,y = a—13,q = —3—2,7“ =
201060203 gpd g = —27, we obtain the representative (V3), that we do not
3

consider since it does not satisfy the above condition.

: 3 QO Q Cl{4
(B) If H # 0, bychoosmga::g,w:—ﬁ,yZﬁ,qz— 1a‘§ﬁ,7’=

21— o3 , 8 =

O‘—Z and v = 1, we obtain the representative (V3 + V5), that

asvVH
we do not consider since it does not satisfy the above condition.
(iii) Suppose ag # 0 and a6 + agag # azay. By choosing 7 = aiﬁ, z = -9,
6
2 2 2
o _ arogar—azasart+2agasas(astag)—azoag(astas) _ as . ar o
y=1Lg= ad(agas—azartagas) A t =

aga:;ae—agas—ala%
o (asas—asartasas)
Ve + Vs).
(iv) Suppose ag # 0 and aya + agag = azasy.
(A) If H # 0, by choosing v = 2%, » = —S2, y = Y g — Zmos—oos
a5 \/_ a7\/_

r = , 8 = and v = ﬁ, we obtain the representative (V; —
a6 agOg

V4 ‘l‘ VG + v8>
(B) If H =0, by Choosingx =1,z=—

and v = g—g, we obtain the family of representatives (V4 +

Z_z’ Yy = %9 q= a% s = o
§ = —qk -, we obtain the representative (—V, + Vg + Vg).
(b) Suppose ag = g = 0 and a3 7é 0
(i) If azag # 0, by choosing x = a, y = ag, ¢ = —r = as(aaas— a2a7+a5a8), s =
—ayar, ¢ = —222% and v = @y, we obtain the representative <V3 + V7 + Vs).

(i) If asag # 0 and a7 = 0, by choosing ©r = a5, y = azas, ¢ = O‘Clgd r = —aaas,

2 2
s = O"O“‘O‘f’ and v = —8 we obtain the representative (V3 + V5 + Vg).
(iii) If g # Oanda5 = a7 = 0, bychoosing z = 1,y = as, ¢ = =3+, 7 = —=2=
s = —ay and v = a3, we obtain the representative (V3 + Vg).
(iv) If as = 0 and a7 # 0, by choosing z = a7, y = 1, ¢ = —<7%, r = 82—t
$ = —uoy, U = —g—i and v = aay, we obtain the representative (V3 + V7).

_ 2aza5—anas r= as

W

b

9
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Q4

(V) If azas = 0, by choosing v = 1 and s = —2%, we obtain the representative
(a1V1 4+ aaVy + a3V3 + a5 V5), that we do not consider since it does not satisfy
the above condition.
(c) If azag # 0 or agag # 0, by choosingw = z = v = 1 and y = — 22, we return to one of
the above cases.
(d) If a3 = ag = 0 and ag # 0, by choosing x = y = z = v = 1, we return to the case when
30g §£ 0 and Qg = 0.
(2) Suppose a9 = 0 and a7 # 0. Again, in this case we can not have a3 = ag = 0.
(a) Suppose ag # 0 and ag = 0.
(i) If ag # oy, by choosing o = Y%L, — Voi—os ', _ azas_anaptasag

r =
ag—ag’ 4/01110%, agw/all(ou;—ag) ’
o4 —aglxrxg—11 ¢, —
Voy i(7r9 11 5),82049 ar 4 — s ’u:ai\/az;aandv_ 1 . we
\/041‘1042 agy/a11 Varr(ag—as) aZab, Vvaii

obtain the family of representatives (a V1 + V4 + Vg + Vi1).

’ y - 4 ’ —
Voeran—ao? Vor10?

(i) If ag = a4 and ayay; # o, by choosing z =

ag(ar+ag)—aiiaz _ (arag—ar1as) \4/ 0110!11—04421 s — @e—ar 4 au
ag\/all(alall—ai)’ Va?lag ’ o+/011 arn(arari—a?)’
« $ a1 —OZ2 . .
=V ”411124 and v = \/%11 , we obtain the representative (V1 + Vg + V11).
a11%
(iii) If ag = a4 and ajaq; = o2, by choosing z = aiﬁ, y=1¢q= W,
_ arag—a11as _ ag—ay oy — _ 09 _ _1 :
ro= SIS, s = 9L t = anan U o and v s we obtain the
representative (Vg + Vi1).
300 , by choosin x———an z =y = v = 1, we return to the case « an
b) If azag # 0, by ch d Yy 1, turn to th 6 7= 0 and
g = 0.
(3) Suppose ayg # 0. Note that, by choosing z =y = v = 1, ¢ = HHLE;H088 1y = SUA0000
10 10
S = gi(lyt: _ag and u = ——1 We can Suppose &xz = g = (g = (xg = (11 =0.
(a) Suppose ar ;é 0. By choosingz =y =v =1land 2z = g‘; we can suppose oy = 0.
Therefore, we have the following cases:
: 2 : _ o7 — Qaaay —
(@) If ai(a; — 4anas) # 0, by choosing x = 2T, w = T e—s y =
104/ 4a1as—aj
2017 A/ 4oy as— a2
— 1 and v = Y—_——>2, we have the representative (Vi+V5+V;:+
a104/4aros—ad a10
Vio).
(ii) If oy # 0 and a3 = 4aqas, by choosing x = 22, w = =92,y = ] and v = 2427,

10 10

we have the representative (V; + V7 + V10>.

(iii) If @y = 0 and ay # 0, by choosing x = 2L, w = —o5y=1landv = 32, we

aio’ a1)
have the representative (Vo + V7 + V). (
(iv) If a; = s = 0, we obtain the representatives (Vs + V7 + Vi) and (V7 + Vyp).
(b) Suppose a; = 0 and a4 # 0. By choosing w = z = v = 1, we return to the case a; # 0.
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(c) Suppose a; = a4 = 0. If a5 # 0, then by choosing w = z = v = 1 and y =

A /a§—4a1 as—a9 . 0

o , We can suppose o =
(@) If ap # 0, by choosing z = y =1,z = =gt and v = "
representative (Vo + Vyg).
(ii) If ay = 0, we have the representatives (V; + Vo) and (V).
Summarizing, we have the following distinct orbits
(Vs + V1), (Vs + Vs), (Vs + V5 + V), (Vs + V7 + V), (aV4 + Vi + Vs),
(Vl — V4 -+ V6 -+ Vg), <V6 —+ V11>, <V1 —+ VG —+ v11>, <Oév1 -+ V4 -+ V6 —+ v11>, <V10>,
(Vi+ Vi), (Vo + Vio), (V:+ Vi), (Vi + Vi 4+ Vi), (Vo + Vi + Vi), (Vs + V7 + Vi),
(Vi+Vs5+V:+ Vi),
which give the following new algebras:

, we obtain the

ZOG . €169 = €3 €1€3 = €5 €9€1] = —€3 €264 = €5
Z-()7 . €169 = €3 €13 = €5 €9€1 — —€3 €4€1 = €5
Z-()g . €169 = €3 €13 = €5 €9€1 — —€3 €9€9 = €5 €461 = €5
Zog . €169 = €3 €1€3 = €5 €9€1 — —€3 €9€4 — €5 €461 — €5
(1)40 . €169 = €3 €164 — (X€y €9€1 — —€3 €9€3 — €5 €461 — €5
Z'll . €1€1 = €5 €169 = €3 €1€4 = —€5 €9€1 — —€3 €9€3 — €5 €4€1 = €5
Z-12 . €169 = €3 €9€1 — —€3 €9€3 = €5 €164 = €5
Zlg . €161 = €5 €1€9 =— €3 €9€1 — —€3 €9€3 — €5 €464 = €5
(1)44 . €161 = ey €1€9 — €3 €1€4 — €5 €2€] = —€3 €263 = €5 €464 = €5
215 . €169 = €3 €9€1 — —€3 €4€3 — €5
Z’lﬁ . €161 = €5 €169 = €3 €9€1 — —€3 €4€3 = €5
Z-17 I €16y = €3+ €5 €961 = —€3 €463 = €5
Zlg . €16 = €3 €9€1 — —€3 €9€4 — €5 €463 = €5
Zlg . €161 = €5 €1€9 = €3 €9€1 — —€3 €9€4 — €5 €463 — €5
Z-QQ I €16y = €3+ €5 €961 = —€3 €364 = €5 €4€3 = €5
2-21 . €169 = €3 €9€1 — —€3 €969 = €5 €9€4 = €5 €463 = €5
ZQQ . €161 = €5 €1€9 — €3 €9€1 — —€3 €9€9 — €5 €2€4 = €5 €4€3 = €5

1.2.4. Central extensions of Yy;. Let us use the following notations:

v1 = [All]a V2 = [A22]7 V3 = [A13 - A14 - A23 + A24 - 2A32]-

3
Take 6 = >~ ;V; € H2(MNo7). The automorphism group of 9y is generated by invertible matrices
i=1
of the form
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z 0 0 0
0z 0 O
o=1r s 22 0
t o u 0 22
Since
a0 Qg az  —og
o7 0 a —a3 a3 a* —i— ay —oy o5
0 —2a3 0 —2a3 0 0 ’
0 0 0 0 0
we have that the action of Aut(9%7) on the subspace <Z a;V;) is given by (Z afV;), where

*

af = az(r —t)r + aq2?, ah = awr® — 2a3(r + sz, af = aza®.
Since a3 # 0, we suppose that az = 1. Then, by choosingz = 1,7 = %> and t = %‘1%, we
obtain the representative (V3), which gives the following new algebra:

2»23 . €162 = €3 €13 = €5 €164 — —€5 €9€1 = €4
€9€y = —€3 €963 = —€5 €964 = €5 e3ey = —2e5

1.2.5. Central extensions of H*(Mg). Let us use the following notations:

Vi=[Anl], Vi=[Ay— A1z — 203 + Azz + Ay,
VQ = [A12]> V4 = [A24 - A14 — Agg — A41 + 2A42].

1
Take 0 = > o;V; € H*(M{g). The automorphism group of N} is generated by invertible matrices
izl

of the form
a x 0 0
6= a+T—Yy vy 0 0
z t a(y — ) r(y — )
v v (atr—y)ly—z) yly—2
Since
o Qo —a3 —ay af+ay o ta; —az —aog
o7 0 0 a3 oy b= —a —o™ o oy
—203 az3—oy 0 0 —203 az3—a; 0 0o |’
ag— oy 204 0 0 oz — 20 0 0

4

4
we have that the action of Aut(9}g) on the subspace (>~ a;V,) is given by (> a;V;), where
i=1 i=1

af = (g +an)a® + (z + 2000 — sy +az(u+v —t —2) +ag(u+v—t—2))at
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(or + az(t + 2) — ay(t —2u — 2v + 2))(z — y),
a; = ai(z®+ az) + ao(zy + ay) + as(2uy + 20y — yz — uxr — vr — ty)+
ag(uzr + v + ty — 2t — 2xz + yz),
a; = ((as+ag)at oz —y))(z—y)>
o = (azz+ agy)(z —y)*

Note that we can not have (a3, ay) = (0,0) and by the action of Aut(91}g), we need to consider
only the following two cases:

(1) If ay = 0 and a3 # 0, by choosing x = 1, t = —g—z and u = —%{f”, we obtain the
representative (V).
(2) Suppose azay # 0.
(@) If ag # —ay, by choosing a = — ?{71_4, r = 320‘3%14 y = ;3/%—3, z = 20‘%2if5534),
oz3 oz3 - -
. 2(2&1&4—&2(&3—&4) . (20420{3-‘,—041(043—044))044 . (al(a3—a4)—2a2a3)(3a3+a4)
t= Yas(astan? > LT 23/ 0k (as+au)? and v = 23/ ok (as+au)? > We

obtain the representative (V).
(b) Suppose a3 = —ay.

(i) If oy # —a, by choosing & = #+92 and v = 70‘1(02‘;?2)
tive <V1 + V3 — V4>

(i) If oy = —a, by choosing x = —1 and v = 7%, we obtain the representative
(—V3+ Vy).

Summarizing, we have the distinct orbits
(Va), (Vi+ V3= Vy), (V3 = Vy),
which give the following new algebras:

, we obtain the representa-

Zos : €16 = e3 €162 = €4 €1€4 = —€5 €261 = —€3 €263 = —€4
e9ey = €5 €369 = —€5 €461 = —€5 €469 = 2€5

Zg5 ioeep =e3+ €5 e16a =ey €1€3 — —€5 €164 = €5 €9€1 — —€3 €9€9 — —€4
€9€3 — €5 €9y — —€5 €361 — —265 €36y — 265 €q1€61 — 265 €469 — —265

Zog 1 €1e = e3 €162 = €4 €1€3 = —€5 €164 = €5 €2€1 = —€3 €26 = —€4
€9€3 — €5 €9y — —€5 €361 — —265 €3€9 — 265 €q1€61 — 265 €469 — —265

1.2.6. Central extensions of 115. Let us use the following notations:

V1 = [All]a V2 = [A22]a VS = [A14 - A13]a v4 = [A24 - A23]~

4
Take 6 = >~ o;V; € H?(My5). The automorphism group of 91y, is generated by invertible matrices
i=1
of the form
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0Oz 0 O zx 0 0 0

y 0 0 0 0y 0 O

o1 = z t 0 zy and ¢, = z t zy O

u v xy 0 u v 0 2y

Since
ap 0 —a3 a3 o] of —a3 o5
|l 0 oy —ay ay B —a aj
1o 0o o o|? o o o ol
0 0 0 0 0 O 0 0

4 4
we have that the action of Aut(9%;2) on the subspace (> «;V;) is given by (> a;'V;), where
=1 i=1

*

* * * 2 _ 2
of = (apy + auu — au2)y, a3 = (T —azt + azv)r, @ = —auTy’, O = —a3TY.

Since H?(Myy) = <[A11], [Ags], [A1s — Ayz], [Agy — A23]> and we are interested only in new
algebras, we must have (ag, o) # (0,0). Then

(1) if agag # 0, then by choosing z = a4, y = as, 2 = O‘;—Z" and t = “&—2‘4, we have the
representative (V3 + V).
(2) if ayar; # 0 and a3 = 0, then by choosing © = —ay, y = jTsz; and z = %f’, we have the

representative (Vy + V).
3) if ay # 0 and oy = a3 = 0, then by choosing z = y = 1 and z = g—j, we have the
representative (V).
(4) if a3 # 0 and ay = 0, by applying ¢, we obtain the case a;; = 0 which has been considered
above.
Summarizing, we have the following distinct orbits

(Vz+ Vi), (Va+V3), (Va),
which give the following new algebras:

Zo7 @ €16y = €3 €163 = —€5 €184 = €5 €2€] = €4 €263 = —€5 €264 = €5
2’28 . €169 — €3 €163 = —€5 €164 — €5 €9€1 — €4 €9€9 = €5
2»29 . €169 — €3 €163 = —€5 €164 — €5 €9€1 = €4

1.2.7. Central extensions of ‘ﬂ‘f‘f ~'. Let us use the following notations:

Vl = [An], Vg = [Agl], Vg = [A23 -+ 2A32], V4 = [2OAA24 + (Oé + 1) (Alg + 20&A31 + 2A42)]

4
Take ) = S ;V; € H2(957 ). The automorphism group of M%7 " consists of invertible matri-
i=1
ces of the form
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r Yy 0 0

o > 0 0

= t u 22 0

v ow yzla+1) zz
Since
ay 0 (a+1)oy 0 oy B8* (a+ 1)y 0
¢T a2 0 as 2aa4) & ( ab + af* 'y** fo%s 2a) 7

20(or 4+ 1)oy 203 0 0 2a(a + 1)og 2aj 0 0
0 2a+ 1)ay 0 0 0 2a + s 0 0

4 4
we have that the action of Aut(91%7 ') on the subspace (3" o, V) is given by (3 a*V;), where
i=1 =1

af = (qz+ (202 + 3a + 1)ayt)z,
ay = (a+1)(1-2a%)asty + ala+ 1)aguz+
(1 - a)azy — 2d%aqvz + azzz + (1 — 2a)astz,
a; = (azz+ (202 4+ 3o+ 1)ayy)2?,
) = T2

Since H(M7 ') = <[A11], [Ag1], [Agz + 2A35], 2004 + (0 + 1) (Arz + 203 + 2A42)]> and
we are interested only in new algebras, we must have oy # 0. Then

(1) if @ # 0,—1, then by choosing z = z = —au(2a* + 3a+ 1),y = a3, t = oy and v =
ooy (4a®+8a%+5a+1)+araz (40 —a—1)
202 (2a+1)ay

, we have the representative (V).
Q) ifa=—1

(a) Supp20$e ag = 0.
(i) If a3 = 0, then by choosing z = z = 1 and u = %, we obtain the representative
(Va).
(ii) If ay # 0, then by choosing * = ajay, 2 = a7 and u =
representative (V; + V).
(b) Suppose a3 # 0.
(1) If ay = 0, then by choosing © = a3, z = a4 and u = 4, we obtain the represen-
tative (Vs + V).
(ii) If oy # 0, then by choosing z = a;f;g, z = 193 and u = 1199 we obtain the
representative (V1 + V3 + V). ' ' !
(3) if = 0 and sy — ayavg # 0, then by choosing z = ay, y =

4oy g
ayg

we obtain the

o«’3(051053_0420!4) _ oo —o10a3
a3 » 2= a?
and t = —ay, we have the representative (V, + V).
(4) if @« = 0 and asry — ayag = 0, then by choosing z = 2z = a4, y = —az and t = —aq, we
have the representative (V).

Summarizing, we have
(Va)az—1, (Vo + Vi)a=o, (V1 + V4>a:_%, (Vs + V4>a:_%, (Vi+ Vs + V4>a:_%,
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which give the following new algebras:

ng_l Doejeg = ey eres = (a+ 1)es €9e] = ey €96y = €3
esey = 2aes eze; = 2a(a+ 1)es egen = 2(a+ 1)es
Z-gl . €169 = €4 €13 = €5 €9€1 = €5 €9€y — €3 €49 = 265
Z-32 . €161 = €5 €163 = €4 €13 = %65 €9€1 = —%64
€9€9 — €3 €9€4 — —€5 €361 — —%65 €469 — €5
Z:33 . €163 = €4 €1€3 = %65 €2€1 = —%(34 €2€2 = €3 €2€3 = €5
€964 = —€5 €36] = —%eg, €36y = 2es €469 = €5
Z-34 . €161 = €5 €163 = €4 €13 = %65 €9€1 = —%64 €9€9 = €3
€9€3 — €5 €9€4 — —€5 €361 — —%65 €3y — 265 €4€9 — €5

1.2.8. Central extensions of N7, Let us use the following notations:

V1 = [A11]7 V2 = [A14]7 V3 = [A21]7 V4 = [A24]7 V5 = [A23 + 2A32]-

5
Take 0 = 3" a;V; € H2(M,}'). The automorphism group of N} consists of invertible matrices of
i=1

the form
z y 0 O
0 z 0 O
¢= t u 22 0
v w 0 xz
Since
ar 0 0 ay o] gr 0 o
o as 0 a5 ay 6= af — B v ol o
0 205 0 O 0 200 0 0 )’
0O 0 0 0 0 0O 0 O

5
we have that the action of Aut(91;;") on the subspace (3 «;V;) is given by (3 a;V;), where
: ~

i=1 )
* __
af = (r + agv)z,
ah = apr’z,
o5 = 2002y + VY + awx + asxz + vz + Jastz,
of = (apy + ayz)zz,
al = az2’.

Since H2(M}}) = <[A11], [Ao1], [Ar4], [Asa], [Aas + 2A32]> and we are interested only in new
algebras, we must have a5 # 0 and (a2, o) # (0,0). Then:
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(1) If ay # 0, then by choosing & = \/anas, Y = —y, 2 = (g, UV = —m—\/g and w = 20‘10“&%,

we have the representative (Vo + V).

2

10 5 5
L5, 2 = %5 and ¢t = — 2135 we have the
ay ay 3064

(2) If e = 0 and ayv; # 0, then by choosing © =
representative (V, + V4 + V).
(3) If ay # 0 and s = a; = 0, then by choosing x = a5, 2 = ag and t = —O‘—;, we have the
representative (V4 + V).
Summarizing, we have the following distinct orbits:
(Vo +Vs), (Vi+V4+Vs5), (Vi+Vs),
which give the following new algebras:

Zg5 . €16 = €4 €164 = €5 €9€1 — —€4 €9€9 — €3 €9€3 — €5 €369 — 265
Z-gﬁ . €161 — €5 €169 = €4 €9€1 — —€4 €E9€9 — €3 €9€3 — €5 €92€4 — €5 €3€y — 265
Z-37 . €169 = €4 €9€1 = —€4 €9€9 = €3 €9€3 — €5 €9€4 — €5 €369 — 265

1.2.9. Central extensions of 31. Let us use the following notations:

Vi =[A134+ 302 +3As1], Va=[Au]l, Vs=[Ay], Vi=[Awu]

4
Take 6 = > o;V; € H?(3;). The automorphism group of 3; is generated by invertible matrices of
i=1

the form
x 0 0 0
|y 22 0 0
I vy 3 t
uw 0 0 w
Since
0 0 o o B o) o
o 0 37 0 O 6= 28 307 0 O
3a; 0 0 O o7 0 0 O |’
Qa3 0 0 iy OK§ 0 0 OKZ

4 4

we have that the action of Aut(3;) on the subspace (> «;V;) is given by (> «
i=1 i=1

*V,), where

)

alf = ayrt, a3 = art + (aox + ayu)v,
a3 = (Bagt + azv)z + aqvu,  of = auv?.

Since H%(3,) = <[A13 + 3A9 + 3As1], [A14], [As], [A44]> and we are interested only in new
algebras, we must have o; # 0 and (a2, a3, o) # (0,0,0). Then
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(1) If ay # 0, then by taking x = 1, ¢t = %, u = %ﬁ” and v = g—i, we obtain the
representative (V; + V).

(2) If oy = 0 and a3 # 3as, then by taking z = 1, ¢t = ﬁ and v = 3;;%&3, we obtain the
representative (V; + V).

(3) If ay = 0 and a3 = 3aw, then by taking x = v = land t = —g—f, then we obtain the rep-
resentative (V), which does not satisfy condition (ao, a3, ay) # 0. So we will not consider
it.

Summarizing, we have the following distinct orbits:
(Vi+Vy), (Vi+ Va),
which give the following new algebras:

Zgg . €161 —m €2 €16 = e3 €163 = e €E92€] — 263 €o€o — 365 €361 — 365 €4€4 — €5
Z3g © €161 = €3 €169 = €3 €163 = €5 €164 = €5 €9€] = 203 €96y = 35 €361 = 3¢5

1.3. Classification theorem for 5-dimensional Zinbiel algebras. Thanks to [23] each complex
finite-dimensional Zinbiel algebra is nilpotent. Hence, the algebraic classification of complex 5-
dimensional Zinbiel algebras consists of two parts:

(1) 5-dimensional algebras with identity xyz = 0 (also known as 2-step nilpotent algebras) is
the intersection of all varieties of algebras defined by a family of polynomial identities of
degree three or more; for example, it is in intersection of associative, Zinbiel, Leibniz, etc,
algebras. All these algebras can be obtained as central extensions of zero-product algebras.
The geometric classification of 2-step nilpotent algebras is given in [33]. It is the reason why
we are not interested in it.

(2) 5-dimensional Zinbiel (non-2-step nilpotent) algebras, which are central extensions of Zinbiel
algebras with nonzero product of a smaller dimension. These algebras are classified by several
steps:

(a) split complex 5-dimensional Zinbiel algebras are classified in [23,135]];

(b) non-split complex 5-dimensional Zinbiel algebras with 2-dimensional annihilator are
classified in [35]];

(c) non-split complex 5H-dimensional Zinbiel algebras with 1-dimensional annihilator are
classified in Theorem A (see below).

Theorem A. Let Z be a non-split complex 5-dimensional Zinbiel (non-2-step nilpotent) algebra. Then
Z is isomorphic to one algebra from the following list:

Z()l . e1e1p = €9 €1€9 = €5 €1€3 — €5 €9€1 = 265 €464 = €5
282 .o e1e1p = e9 €1€9 = €5 €2€1 — 265 €364 = €5 €463 = (Q€y
Z-()g . €161 = €9 €169 = €5 €o2€1 = 265

€363 = €5 €364 = €5 €4€3 = —€5
Zoa L6161 = €62 €162 = €5 €1€4 = €5

ese; = 2es €364 = €5 es€3 = 2es
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Z15
217
218
Z19
Z:20

ZQ2

224

Z25

ZQG

€161
€2€4
€162
€162
€162
€1€2
€1€2
€161
€2€1
€162
€161
€161
€2€1
€162
€161
€1€2
€1€2
€161
€162
€162
€161
€2€2
€162
€2€2
€161
€2€4
€161
€2€1
€3€1
€161
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€1€2
€2€1
€162
€162
€162
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€1€2
€161
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€5

€3
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€5
(675
€3

€5
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€3
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—-265
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——265
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€162
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€162
€2€1
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€162
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€162
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€269
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?feg €262
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: €2€4
??65 €164
€4€1
?fes €1€3
€2€3
?f64 €4€1
265 e
€2€3
?f64 €4€1
265 v
S €2€4
S €164
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€5
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2. THE GEOMETRIC CLASSIFICATION OF ZINBIEL ALGEBRAS

2.1. Definitions and notation. Given an n-dimensional vector space V, the set Hom(V ®@ V| V) =
V* ® V* ® V is a vector space of dimension n®. This space has the structure of the affine variety c,
Indeed, let us fix a basis ey, . . ., e, of V. Then any 1 € Hom(V ®V, V) is determined by n? structure

constants ¢}; € C such that p(e; ® €;) = > ¢};ex. A subset of Hom(V ® V., V) is Zariski-closed if it
i=1

can be defined by a set of polynomial equations in the variables cfj 1 <i,5,k<n).

Let 7" be a set of polynomial identities. The set of algebra structures on V satisfying polynomial
identities from 7" forms a Zariski-closed subset of the variety Hom(V @ V, V). We denote this subset
by L(T"). The general linear group GL(V) acts on IL(T") by conjugations:

(gxp)(z®y)=gulg 'z ® g y)

forz,y € V, u € L(T) C Hom(V® V,V)and g € GL(V). Thus, L(7T") is decomposed into GL(V)-
orbits that correspond to the isomorphism classes of algebras. Let O(y) denote the orbit of € I(T")

under the action of GL(V) and O(y) denote the Zariski closure of O(u).
Let A and B be two n-dimensional algebras satisfying the identities from 7', and let u, A € L(7T)

represent A and B, respectively. We say that A degenerates to B and write A — B if A € O(u). Note

that in this case we have O(\) C O(u). Hence, the definition of a degeneration does not depend on
the choice of 1 and A. If A 22 B, then the assertion A — B is called a proper degeneration. We write
A A Bif M€ O(p).

Let A be represented by p € L(7). Then A is rigid in L(T) if O(u) is an open subset of (7).
Recall that a subset of a variety is called irreducible if it cannot be represented as a union of two
non-trivial closed subsets. A maximal irreducible closed subset of a variety is called an irreducible
component. It is well known that any affine variety can be represented as a finite union of its ir-
reducible components in a unique way. The algebra A is rigid in L(7") if and only if O(u) is an
irreducible component of IL(7').

Given the spaces U and W, we write simply U > W instead of dim U > dim W.

2.2. Method of the description of degenerations of algebras. In the present work we use the meth-
ods applied to Lie algebras in [30,31,/46]. First of all, if A — B and A % B, then Der(A) < Der(B),
where Det(A) is the Lie algebra of derivations of A. We compute the dimensions of algebras of
derivations and check the assertion A — B only for A and B such that Der(A) < Der(B).

To prove degenerations, we construct families of matrices parametrized by ¢. Namely, let A and
B be two algebras represented by the structures 1 and A from LL(7") respectively. Let ey, ..., e, be a
basis of V and cfj (1 <, 4,k < n) be the structure constants of \ in this basis. If there exist a? (t) € C

(1 <i,j5<mn,te C*suchthat B! = > af(t)ej (1 <4 < n) form a basis of V for any t € C*,
j=1
and the structure constants of j in the basis E?, ..., E! are such rational functions cfj (t) € C[t] that

ck;(0) = cf;, then A — B. In this case £}, ..., El is called a parametrized basis for A — B. To
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simplify our equations, we will use the notation A; = (e;,...,e,), i = 1,...,n and write simply
ApA, C Ay instead of ¢f; =0 > p,j > q, k <7).

Since the variety of 5-dimensional Zinbiel algebras contains infinitely many non-isomorphic alge-
bras, we have to do some additional work. Let A(x) := {A(«)}.cs be a series of algebras, and let B
be another algebra. Suppose that for o € I, A(«) is represented by the structure u(a) € L(7') and
B € L(T) is represented by the structure A. Then we say that A(x) — B if A € {O(u())}aer, and
Ax) # Bif A € {O(u(@)) }aer-

Let A(x), B, u(a) (v € I) and X be as above. To prove A(x) — B it is enough to construct a
family of pairs (f(t), g(t)) parametrized by ¢ € C*, where f(t) € I and ¢g(t) € GL(V). Namely, let

e1,...,e, be abasis of V and cfj (1 < 1,7,k < n) be the structure constants of A in this basis. If we
n

construct a? : C* — C (1 <4,j <mn)and f : C* — I such that Ef = 3" a!(t)e; (1 < i < n)form a
j=1
basis of V for any ¢ € C*, and the structure constants of /¢, in the basis EY, ..., E!, are such rational
functions cf;(t) € C[t] that ¢};(0) = ¢}, then A(x) — B. In this case EY, ..., E} and f(t) are called
a parametrized basis and a parametrized index for A(x) — B, respectively.
We now explain how to prove A(x) 4 B. Note that if Der A(a) > Der B for all @ € [ then
A(x) # B. One can also use the following Lemma, whose proof is the same as the proof of Lemma

1.5 from [30].

Lemma 8. Let B be a Borel subgroup of GL(V) and R C L(T') be a B-stable closed subset. If
A(x) — B and for any o € I the algebra A(a) can be represented by a structure j(c) € R, then
there is \ € R representing B.

2.3. The geometric classification of 5-dimensional Zinbiel algebras. The main result of the
present section is the following theorem.

Theorem B. The variety of complex 5-dimensional Zinbiel algebras has dimension 24 and it has 16
irreducible components defined by

€ ={O0Wu1)}, Co={0(Ws12)}, C3=0(PU]3s), Ci= O(NT[3s), Cs={0(Z5)},

e6 = 0(205)7 6'7 - {0(2?4)}7 88 = 0(222)7 (‘39 = 0(223)7 6'10 = 0(224)7 6'11 = 0(227)7

Ci2 ={0(2%))}, Ciz = 0(Z34), Cra=0(Zs5), Ci5=0(Z3s), Ci6 = O(Zuo).
In particular, the variety of complex 5-dimensional Zinbiel algebras has 11 rigid algebras
[ml](z)& [‘ﬁ(ﬂ%ﬁ, 205, L22, Zo3, Zads Zo1, L34, L35, L3s and Zyg.

Proof. Thanks to [33], the variety of 5-dimensional 2-step nilpotent algebras has only three irreducible
components defined by

Vi1 @ e1e3 =e;5 €261 = Aeé5 €364 = €5 €463 = [U€5
Usio @ ere1 =¢y €1€2 = [11€5 €1€3 = U2€5 €2€1 = U3€5 €269 = [U4€5
€2€3 = U565 €3e1 = [lge5 €362 = Aey + [i7es €3€3 = €5

s:Ug_i_g i elep =ez+ )\65 €1€o = €3 €2€1 — €4 €9€9 — €5
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Thanks to [33,38]], all 5-dimensional split Zinbiel algebras are in the orbit closure of the families
0,1 and U3, , and the algebras [31]}, D]}, (M),
Let us give some useful degenerations for our proof.

2(3t2-1)

t _
ZO4 — Z’Ol El =e _'_ 9t2 64
t 2(3t2-1) .
L _ 3t—1 t
E;l 1_ 62 + 3t2 FTEE e BN T Ey = 65
— >
Z2 — Zo3 El =¢
By =e Ly =e3+ ;e
Et = €4 Et =e5
t+z t — .
Z — 2:04 El =€ — ¥€3
Et = €3 El = eq
t+2 2
t VAt2—5
e o o JIE—E By = e\l/gtz Bes + gt
t t tV4t2 =5 t _ tV/4t2-5 t
E2 — 201 t2)€1 + 2(2-1) €9 E3 = 5@ €3 — ) es
t ¢ :
By = 5 4 Ey = z+es5

t(4t2 —t
P Ros Ef:eﬁ%%ﬁ\/ime

VAR —t—4) N

t ot . .
E; = 2(1—12) 1 + 202_1)  ©2 E5 = STy ©3 + T 65
EZ = 2t\/%64 Eé — ﬁ€5

T
210’ — Zog El =€+ ey
EL =tey B = tes
Bl = ¢y + tey EL = tes

tZ
Z(a 1) /4 Ef (a—1) er + aT_164
El = ey Bl = (a—1)2 e
E,=(a—1)e E! = (a_tl)2 ex

T
Zy4 — Zn E! = Zel — %64
Eé = 62 E§ — 263
El = —2¢, Bl = de;

2;22 — 2;17 E{ — %61
2_
E§:2t261+T62 Egz%e?)_ﬁ%
Ef = oA 1e, B Ao
2’22 — 2;20 E{ =e
By =4 e1+‘/r E:g):;ﬂl;i—le?)_%%
S iy
pen — 25 Bl =—(t+1)es— (t+1)t(t+2) o5 — (t-lt-1)€4




Ly = —te; +e
2 t_
B = (14 Dy — (1 + s + B2

El = —
Z4 t(t+1es + (t+1)ey El = —(t+1)%;
2t7 — Zog B — ¢
E2:t61+63 E%_ 2
EZ = t€3 E:z B t64 o
=—t
2y o 2w o
E2 = ey 1= t+161 + ey
Et - Eé = €3
Z4 t+1€4+2(t+1) Ei = —2t%
. 5
E?z5_ 1 236 B = Ve, — Les +
i—%€1+€2 E§:€3 3t3 \/64
E4 = \/¥€4 - %65 Et _
7 5 — 65
35 — Zg7 Et —
Ft = Lle 4+ 1= \/1_56’1
b= et B
Ly = Viey Bt — 63
Z?ZS — 39 Ei’ = 65 ¥ 3
By =es+ %(25 Ei BRI
t_ =e€
E4<c_2 —%63 +Vtey E% _ 63
B;}]% - [mc]z’a E? = iel + =
_ o a—1 ﬁes
i (o= ez + oo )3 1+ Goncs Ei{ = ﬁeg (a=T1)
. g )364 Eé = (;65
T a—1)%
T~ [, Bmtor
EY =2 2 1 = ter —tes
62—|—t64——65 Bt — 42 9
Ef = e, : 3= len e
Bpt=t
C12 o 5 €5
Nree — [m(lc]oé; El = iL 1
El = e @ eam T (@1 T a-1¢s)
(a=1)2(20—2t2—1)2 (62 + g4+ 265>
Ef=— 263 1 @D
o (a—1)2(280tz6—2t2—1) (2a—2t2—162 + 6’3)
4= =
(a—1)3(2a—202—1)3 €4 Et — 445
E A % = ey (et + or%)
By = te, St
EZ = €4 g:z - teg
=te
[ml]m — [ Ei —
By = e P e
Et— 1, b3 = —63
4 t2 4 Et — es +
E;}l]os 2—> RICYAH E? t3614 T 65
2 e
2= Ve El = tm
t\/4t2— 37 @ 1)6’4

Bt = A
B =

e
5 t2(4t2 i)} 4+ t2\/4t27€5
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2 2 - I
[9}1]10 _>1 RIE E% =e + ?5’2
E2:62—?63 E3:€3—¥€5
t 1 1 b
2 2 T
Mulge  — [Duliy E} =tey —tes
Et = —t261 E§ = t363 — t3€5
Efl = t365 Eé = t464
2 T T
Ml — Duln El =te
E! = Vtey EL = Vtdes
EZ = t€4 Eé = —e4+V t3€5
T2 TIT T 1
RIS 1_> RIS IAES ?61
t t
Ly = o2 Ly = =5es
t 1 t 1 1
by = t—13 %4 Ly = e T ez
t _ 1 3(2+9X) 6(2+9N)
Zao — Yoys El=e — €2+ —gm €3 — —gm €4
t _ 3 t _ 3 9 27(2+9))
Ez——zeg E3__§€3+t_264_T
t _ 3 9 9(2+9X) t 27
E4 = —263 + t_264 — T€5 E5 = t_264
For the rest of degenerations, in case of E, ... E! is a parametric basis for A — B, it will be
(Et7"'7Et)
denote as A —— "5 B.
1
(te1,eg,t83,t2e4,t285) (te1,e2,tes,t2 eq,tes)
Z09 206 213 212
T 2 2 2
- (te1,e2,t“es,teq,t“es) (te1,e2,tes,ea,tes)
Z14 - 213 216 . Z15
1 3 1
(t7le1,t Zea,t” Zes,t” Zey,t™2es) (e1,e2,e3,t teq,t ™ es)
Zi29 216 Z92 218
1 1 1
(e1,tea,tes,t™ ey e5) (e1,t” Zea,t” 2e3,t” Zeq,t les)
Z:29 219 222 21
(t7 et Lea,t—2e3,t~2eq,t " 3es5) (e1,te,tes,teq,tes)
225 26 208 ” 229
(t72e1,t 7 tea,t "% es,t 3eq,t ™ Yes) (tLer,tLea,t2e3,t~2es,t Ses)
234 - Z:39 234 = g3
1 2 3 —1 -2 —1 -3 -2
C12:% (te1,tea,e3,t%eq,e5) C12 C12 (t~ter,t %ea,t tes,t Ceq,t " “es) C12
[m1]02 [m1]01 RS ]06 [m1]03
2 —1 -2 -2 -3 —4
C12 (e1,e2,tes,eq,t?es) C12 cro (T lertTent T es tTeq t T es) C12
%
[0 ]05 RIS ]04 RS ]06 [0 ]05
2 4 2
Z,l (t§ e1,t3 62,t83,t264,t§65) (61,t62,t63,t64,t65)
RIS ’ [NT]5s | U3 ’ DU
1 I
]2, oo lonls), Dl |Pulj,  ereretelte myg,
2 —1
9 (te1,ez,tes,tes,t?es) 9 (e1,e2,e3,e4,t ™ es5) 1
(D156 (D] | Za0 311

The following dimensions of orbit closures are important for us:
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dim O(Q]3+2) = 24, dim O(Zgg) = 22, dim 0(2?4) = 21, dim O([‘ﬁﬂ&) = 2]_,
dim O(Vyy1) = 20, dim O(2%,) =20, dimO(2%) =20,  dim O(Zes) = 20,
dim O(Zgg) = 20, dim 0(2»24) = 20, dim O(ZQ ) = 20, dim 0(2-35) = 20,
dim O(Zgg) = 20, dim 0(240) = 20, dim O([WC]OG) = 20, dim 0(234) = 19.

Let us, also, give the list of dimensions of the square of principal algebras:

d1m A2 = 2 2?4, 282, 2:22, ‘I]3+2
dim A2 =3 [ml]g& [m(%](?)ﬁ’ Z’OB) 2'237 Z’247 2’277 Z-gl()» 2'347 2’357 Z’38
dim A2 =4 Z40

Hence, and taking into account the annihilator dimension of this algebras (see item (2) in the
beginning of Section, [‘ﬁl]gs, 2»05, 2»22, 2-23, 2-24, 2»27, Z’%O? 2-35, 2'387 2»40 and m3+2 give 11 irre-
ducible components. Below we have listed all necessary reasons for non-degenerations, which imply
that [N%)3,, 28, 24, Z34 and U, give another 5 irreducible components.

Non-degenerations reasons

A2 C A, AjA + AAL =0
N, 12 N2 R:{ 1S 3714 4 A1 ,}
Mulos 7 Dilos 01% =0, =0, ¢}y = —c5
A2 CA3 A A2+A2A1 C Ay A4A3+A3A4_0 }
Z Z R= ’ ’
o 7 i { Cl; 6217 Cl2 = C%l = Cz2 0, 2024 042, 2C14 = Cil
2 A C Ay, AYAL =0
Za 029 :R: 45 4411
i 7 Vi1 { new base for 27 : fi=e1, fa=e3, fzs=es, fs=€3,f5 = €5
Zog /7 égzz’ A2 C Ay, AjAs+ AsAy + A2 C As, AyAL + A1As =0,
22 %144;1 new base for Zoy : f1 = ey, fo =2, fs=e4, fs = €3, f5 = ¢5
Zos A  Zay { A} C A3, AJA3 + A3A; C A5, 1A + AA =0 }
A2 C Az, AjAy C Ay,
A1A3 + A3A1 g A5, A1A5 + A5A1 — 0,
Zoa /2w R = 0320?1 = Cilzcglv 0330?1 = 0?30317 20%20?4 = 0%20227

15 "5 5 3 _ 45
642116%4 ‘:L‘ C120‘%4 +401§021 —501??0417 s 4 s
L C11C1aCo1 T+ cii (Clacly + c13¢1) = ciiciach
— A2 —
Zor 7+ Zsa R = {A] C 43, A34, =0}
4
A} C As, AjAs + AsA; C As, AjAs + AsAy =0,
3 3 5.5 5 5
70 D R = ) €12 T G215 Co3Ca2 = CouCia;
0 77 R - 0505(0 (c3,)? + 3¢3,¢3,655 — 2¢3,c3,¢5,) =
31624\ C12(C14 11614623 11613624

2C14(012014 + 2011023)(0?4033 0?3034)
R—{A C A, AjA1 + A5+ A1 A5 =0, }
C‘?1(012 + C21) = 2C11012> C32(012 + C21) = 2031032

2’35 7L) Z’34
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A3 C As, AjAs + Ay Ay C Ay,

A% + A1A4 + A4A1 - A5, A1A5 + A5A1 = O,

C?40‘111 + C?lcgl = 20:1)’10?37 20112 = 031

new base for 25 : fi = ey, fo =4, fa =€, s =e3, f5s = €5
A3 C Ay, AjAs + A3A + A3 C Ay,

ApAz + AzAy C As, AsA1 + A1 A5 =0,

40?4 = 04511’ 3023 = 2C§2> 30113 = C%la Cgl = 2021)’2

=
Il

Z’38 7L) Z’34

Zio 7+ Zsa R
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