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Introduction

The algebraic theory of quadratic forms, i.e., the study of quadratic forms
over arbitrary fields, really began with the pioneering work of Witt. In his paper
[139], Witt considered the totality of nondegenerate symmetric bilinear forms over
an arbitrary field F' of characteristic different from 2. Under this assumption, the
theory of symmetric bilinear forms and the theory of quadratic forms are essentially
the same. His work allowed him to form a ring W(F'), now called the Witt ring,
arising from the isometry classes of such forms. This work set the stage for further
study. From the viewpoint of ring theory, Witt gave a presentation of this ring as a
quotient of the integral group ring where the group consists of the nonzero square
classes of the field F'. Three methods of study arise: ring theoretic, field theoretic,
i.e., the relationship of W(F) and W (K) where K is a field extension of F', and
algebraic geometric. In this book, we will develop all three methods. Historically,
the powerful approach using algebraic geometry has been the last to be developed.
This volume attempts to show its usefulness.

The theory of quadratic forms lay dormant until the work of Cassels and then
of Pfister in the 1960’s when it was still under the assumption of the field being of
characteristic different from 2. Pfister employed the first two methods, ring theo-
retic and field theoretic, as well as a nascent algebraic geometric approach. In his
postdoctoral thesis [110] Pfister determined many properties of the Witt ring. His
study bifurcated into two cases: formally real fields, i.e., fields in which —1 is not a
sum of squares and nonformally real fields. In particular, the Krull dimension of the
Witt ring is one in the formally real case and zero otherwise. This makes the study
of the interaction of bilinear forms and orderings an imperative, hence the impor-
tance of looking at real closures of the base field resulting in extensions of Sylvester’s
work and Artin-Schreier theory. Pfister determined the radical, zero-divisors, and
spectrum of the Witt ring. Even earlier, in [108], he discovered remarkable forms,
now called Pfister forms. These are forms that are tensor products of binary forms
that represent one. Pfister showed that scalar multiples of these were precisely the
forms that become hyperbolic over their function field. In addition, the nonzero
value set of a Pfister form is a group and in fact the group of similarity factors
of the form. As an example, this applies to the quadratic form that is a sum of
2" squares. Pfister also used it to show that in a nonformally real field, the least
number s(F') so that —1 is a sum of s(F') squares is always a power of 2 (cf. [109]).
Interest in and problems about other arithmetic field invariants have also played a
role in the development of the theory.

The nondegenerate even-dimensional symmetric bilinear forms determine an
ideal I(F) in the Witt ring of F, called the fundamental ideal. Its powers I"(F') :=
(I (F))n, each generated by appropriate Pfister forms, give an important filtration
of W(F). The problem then arises: What ring theoretic properties respect this
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2 INTRODUCTION

filtration? From W (F') one also forms the graded ring GW (F’) associated to I(F’)
and asks the same question.

Using Matsumoto’s presentation of Ko(F') of a field (cf. [98]), Milnor gave an
ad hoc definition of a graded ring K, (F) := @,,~, Kn(F) of a field in [106]. From
the viewpoint of Galois cohomology, this was of great interest as there is a natural
map, called the norm residue map, from K, (F) to the Galois cohomology group
H"(T' g, u@") where I'p is the absolute Galois group of F' and m is relatively prime
to the characteristic of F'. For the case m = 2, Milnor conjectured this map to be
an epimorphism with kernel 2K, (F) for all n. Voevodsky proved this conjecture in
[136]. Milnor also related his algebraic K-ring of a field to quadratic form theory
by asking if GW(F) and K,.(F)/2K.(F) are isomorphic. This was solved in the
affirmative by Orlov, Vishik, and Voevodsky in [107]. Assuming these results, one
can answer some of the questions that have arisen about the filtration of W (F)
induced by the fundamental ideal.

In this book, we do not restrict ourselves to fields of characteristic different from
2. Historically the cases of fields of characteristic different from 2 and 2 have been
studied separately. Usually the case of characteristic different from 2 is investigated
first. In this book, we shall give characteristic free proofs whenever possible. This
means that the study of symmetric bilinear forms and the study of quadratic forms
must be done separately, then interrelated. We not only present the classical theory
characteristic free but we also include many results not proven in any text as well
as some previously unpublished results to bring the classical theory up to date.

We shall also take a more algebraic geometric viewpoint than has historically
been done. Indeed, the final two parts of the book will be based on such a viewpoint.
In our characteristic free approach, this means a firmer focus on quadratic forms
which have nice geometric objects attached to them rather than on bilinear forms.
We do this for a variety of reasons.

First, one can associate to a quadratic form a number of algebraic varieties:
the quadric of isotropic lines in a projective space and, more generally, for an
integer ¢ > 0, the variety of isotropic subspaces of dimension 7. More importantly,
basic properties of quadratic forms can be reformulated in terms of the associated
varieties: a quadratic form is isotropic if and only if the corresponding quadric has
a rational point. A nondegenerate quadratic form is hyperbolic if and only if the
variety of maximal totally isotropic subspaces has a rational point.

Not only are the associated varieties important but also the morphisms between
them. Indeed, if ¢ is a quadratic form over F' and L/F a finitely generated field
extension, then there is a variety Y over F' with function field L, and the form ¢ is
isotropic over L if and only if there is a rational morphism from Y to the quadric
of .

Working with correspondences rather than just rational morphisms adds fur-
ther depth to our study, where we identify morphisms with their graphs. Working
with these leads to the category of Chow correspondences. This provides greater
flexibility because we can view correspondences as elements of Chow groups and
apply the rich machinery of that theory: pull-back and push-forward homomor-
phisms, Chern classes of vector bundles, and Steenrod operations. For example,
suppose we wish to prove that a property A of quadratic forms implies a property
B. We translate the properties A and B to “geometric” properties A’ and B’ for
the existence of certain cycles on certain varieties. Starting with cycles satisfying
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A’ we can then attempt to apply the operations over the cycles as above to produce
cycles satisfying B’.

All the varieties listed above are projective homogeneous varieties under the
action of the orthogonal group or special orthogonal group of ¢, i.e., the orthogonal
group acts transitively on the varieties. It is not surprising that the properties of
quadratic forms are reflected in the properties of the special orthogonal groups. For
example, if ¢ is of dimension 2n (with n > 2) or 2n + 1 (with n > 1), then the
special orthogonal group is a semisimple group of type D,, or B,. The classification
of semisimple groups is characteristic free. This explains why most important
properties of quadratic forms hold in all characteristics.

Unfortunately, bilinear forms are not “geometric”. We can associate varieties
to a bilinear form, but it would be a variety of the associated quadratic form.
Moreover, in characteristic 2 the automorphism group of a bilinear form is not
semisimple.

In this book we sometimes give several proofs of the same results — one is clas-
sical, another is geometric. (This can be the same proof, but written in geometric
language.) For example, this is done for Springer’s theorem and the Separation
Theorem.

The first part of the text will derive classical results under this new setting. It is
self-contained, needing minimal prerequisites except for Chapter VII. In this chap-
ter we shall assume the results of Voevodsky in [136] and Orlov-Vishik-Voevodsky
in [107] for fields of characteristic not 2, and Kato in [78] for fields of characteristic
2 on the solution for the analog of the Milnor Conjecture in algebraic K-theory.
We do give new proofs for the case n = 2.

Prerequisites for the second two parts of the text will be more formidable. A
reasonable background in algebraic geometry will be assumed. For the convenience
of the reader appendices have been included as an aid. Unfortunately, we cannot
give details of [136] or [107] as it would lead us away from the methods at hand.

The first part of this book covers the “classical” theory of quadratic forms, i.e.,
without heavy use of algebraic geometry, bringing it up to date. As the character-
istic of a field is not deemed to be different from 2, this necessitates a bifurcation of
the theory into the theory of symmetric bilinear forms and the theory of quadratic
forms. The introduction of these subjects is given in the first two chapters.

Chapter I investigates the foundations of the theory of symmetric bilinear forms
over a field F'. Two major consequences of dealing with arbitrary characteristic are
that such forms may not be diagonalizable and that nondegenerate isotropic planes
need not be hyperbolic. With this taken into account, standard Witt theory, to
the extent possible, is developed. In particular, Witt decomposition still holds,
so that the Witt ring can be constructed in the usual way as well as the classical
group presentation of the Witt ring W(F'). This presentation is generalized to
the fundamental ideal I(F) of even-dimensional forms in W (F') and then to the
the second power I2(F) of I(F), a theme returned to in Chapter VIL. The Stiefel-
Whitney invariants of bilinear forms are introduced along with their relationship
with the invariants e, : I"(F)/I""(F) — K,(F)/2K,4+1(F) for n = 1,2. The
theory of bilinear Pfister forms is introduced and some basic properties developed.
Following [32], we introduce chain p-equivalence and linkage of Pfister forms as well
as introducing annihilators of Pfister forms in the Witt ring.



4 INTRODUCTION

Chapter II investigates the foundations of the theory of quadratic forms over
a field F'. Because of the arbitrary characteristic assumption on the field F', the
definition of nondegenerate must be made more carefully, and quadratic forms are
far from having orthogonal bases in general. Much of Witt theory, however, goes
through as the Witt Extension Theorem holds for quadratic forms under fairly weak
assumptions, hence Witt Decomposition. The Witt group I,(F') of nondegenerate
even-dimensional quadratic forms is defined and shown to be a W (F)-module. The
theory of quadratic Pfister forms is introduced and some results analogous to that
of the bilinear case are introduced. Moreover, cohomological invariants of qua-
dratic Pfister forms are introduced and some preliminary results about them and
their extension to the appropriate filtrant of the Witt group of quadratic forms are
discussed. In addition, the classical quadratic form invariants, discriminant and
Clifford invariant, are defined.

Chapter III begins the utilization of function field techniques in the study of
quadratic forms, all done without restriction of characteristic. The classical Cassels-
Pfister theorem is established. Values of anisotropic quadratic and bilinear forms
over a polynomial ring are investigated, special cases being the representation of
one form as a subform of another and various norm principles due to Knebusch
(cf. [82]). To investigate norm principles of similarity factors due to Scharlau (cf.
[119]), quadratic forms over valuation rings and transfer maps are introduced.

Chapter IV introduces algebraic geometric methods, i.e., looking at the theory
under the base extension of the function field of a fixed quadratic form. In par-
ticular, the notion of domination of one form by another is introduced where an
anisotropic quadratic form ¢ is said to dominate an anisotropic quadratic form )
(both of dimension of at least two) if ¢p(y) is isotropic. The geometric proper-
ties of Pfister forms are developed, leading to the Arason-Pfister Hauptsatz that
nonzero anisotropic quadratic (respectively, symmetric bilinear) forms in I;*(F)
(respectively, I"™(F)) are of dimension at least 2" and its application to linkage
of Pfister forms. Knebusch’s generic tower of an anisotropic quadratic form is in-
troduced and the W (F')-submodules J,(F) of I,(F) are defined by the notion of
degree. These submodules turn out to be precisely the corresponding I}'(F) (to
be shown in Chapter VII). Hoffmann’s Separation Theorem that if ¢ and 1 are
two anisotropic quadratic forms over F' with dim ¢ < 2" < dim for some n > 0,
then pp(y) is anisotropic is proven as well as Fitzgerald’s theorem characterizing
quadratic Pfister forms. In addition, excellent forms and extensions are discussed.
In particular, Arason’s result that the extension of a field by the function field of
a nondegenerate 3-dimensional quadratic form is excellent is proven. The chapter
ends with a discussion of central simple algebras over the function field of a quadric.

Chapter V studies symmetric bilinear and quadratic forms under field exten-
sions. The chapter begins with the study of the structure of the Witt ring of a
field F' based on the work of Pfister. After dispensing with the nonformally real F,
we turn to the study over a formally real field utilizing the theory of pythagorean
fields and the pythagorean closure of a field, leading to the Local-Global Theorem of
Pfister and its consequences for structure of the Witt ring over a formally real field.
The total signature map from the Witt ring to the ring of continuous functions from
the order space of a field to the integers is then carefully studied, in particular, the
approximation of elements in this ring of functions by quadratic forms. The be-
havior of quadratic and bilinear forms under quadratic extensions (both separable
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and inseparable) is then investigated. The special case of the torsion of the Witt
ring under such extensions is studied. A detailed investigation of torsion Pfister
forms is begun, leading to the theorem of Kriiskemper which implies that if K/F
is a quadratic field extension with I™(K) = 0, then I"™(F) is torsion-free.

Chapter VI studies u-invariants, their behavior under field extensions, and
values that they can take. Special attention is given to the case of formally real
fields.

Chapter VII establishes consequences of the result of Orlov-Vishik-Voevodsky
in [107] which we assume in this chapter. In particular, answers and generalizations
of results from the previous chapters are established. For fields of characteristic not
2, the ideals I (F') and J,, (F') are shown to be identical. The annihilators of Pfister
forms in the Witt ring are shown to filter through the I"™(F), i.e., the intersection
of such annihilators and I"(F') are generated by Pfister forms in the intersection.
A consequence is that torsion in I"™(F) is generated by torsion n-fold Pfister forms,
solving a conjecture of Lam. A presentation for the group structure of the I"™(F)’s
is determined, generalizing that given for I?(F) in Chapter I. Finally, it is shown
that if K/F is a finitely generated field extension of transcendence degree m, then
I"(K) torsion-free implies the same for I~ (F).

In Chapter VIII, we give a new elementary proof of the theorem in [100] that
the second cohomological invariant is an isomorphism in the case that the charac-
teristic of the field is different from 2 (the case of characteristic 2 having been done
in Chapter II). This is equivalent to the degree two case of the Milnor Conjecture
in [106] stating that the norm residue homomorphism

W K, (F)/2K,(F) — H"(F,7/27)

is an isomorphism for every integer n. The Milnor Conjecture was proven in full by
V. Voevodsky in [136]. Unfortunately, the scope of this book does not allow us to
prove this beautiful result as the proof requires motivic cohomology and Steenrod
operations developed by Voevodsky. In Chapter VIII, we give an “elementary”
proof of the degree two case of the Milnor Conjecture that does not rely either on
a specialization argument or on higher K-theory as did the original proof of this
case in [100].

In the second part of the book, we develop the needed tools in algebraic geom-
etry that will be applied in the third part. The main object studied in Part Two
is the Chow group of algebraic cycles modulo rational equivalence on an algebraic
scheme. Using algebraic cycles, we introduce the category of correspondences.

In Chapter IX (following the approach of [117] given by Rost), we develop the
K-homology and K-cohomology theories of schemes over a field. This generalizes
the Chow groups. We establish functorial properties of these theories (pull-back,
push-forward, deformation and Gysin homomorphisms), introduce Euler and Chern
classes of vector bundles, and prove basic results such as the Homotopy Invariance
and Projective Bundle Theorems. We apply these results to Chow groups in the
next chapter.

Chapter XI is devoted to the study of Steenrod operations on Chow groups
modulo 2 over fields of characteristic not 2. Steenrod operations for motivic co-
homology modulo a prime integer p of a scheme X were originally constructed by



6 INTRODUCTION

Voevodsky in [137]. The reduced power operations (but not the Bockstein op-
eration) restrict to the Chow groups of X. An “elementary” construction of the
reduced power operations modulo p on Chow groups (requiring equivariant Chow
groups) was given by Brosnan in [20].

In Chapter XII, we introduce the notion of a Chow motive that is due to
Grothendieck. Many (co)homology theories defined on the category of smooth
complete varieties, such as Chow groups and more generally the K-(co)homology
groups, take values in the category of abelian groups. But the category of smooth
complete varieties itself does not have the structure of an additive category as we
cannot add morphisms of varieties. The category of Chow motives, however, is
an additive tensor category. This additional structure gives more flexibility when
working with regular and rational morphisms.

In the third part of the book we apply algebraic geometric methods to the
further study of quadratic forms. In Chapter XIII, we prove preliminary facts about
algebraic cycles on quadrics and their powers. We also introduce shell triangles and
diagrams of cycles, the basic combinatorial objects associated to a quadratic form.
The corresponding pictures of these shell triangles simplify visualization of algebraic
cycles and operations over the cycles.

In Chapter XIV, we study the Izhboldin dimension of smooth projective quad-
rics. It is defined as the integer

dimpp(X) :=dim X — i1 (X) + 1,

where i;(X) is the first Witt index of the quadric X. The Izhboldin dimension
behaves better than the classical dimension with respect to splitting properties.
For example, if X and Y are anisotropic smooth projective quadrics and Y is
isotropic over the function field F'(X), then dimp,, X < dimp,, Y but dim X may
be bigger than dimY.

Chapter XV is devoted to applications of the Steenrod operations. The follow-
ing problems are solved:

(1) All possible values of the first Witt index of quadratic forms are deter-
mined.

(2) All possible values of dimensions of anisotropic quadratic forms in I"(F)
are determined.

(3) Tt is shown that excellent forms have the smallest height among all qua-
dratic forms of a given dimension.

In Chapter XVI, we study the variety of maximal isotropic subspaces of a
quadratic forms. A discrete invariant J(¢) of a quadratic form ¢ is introduced.
We also introduce the notion of canonical dimension and compute it for projective
quadrics and varieties of totally isotropic subspaces.

In the last chapter we study motives of smooth projective quadrics in the
category of correspondences and motives.

This book could not have been written without the help and encouragement of
many of our friends, collaborators, and students nor the many researchers whose
work was essential to producing this volume. These are too numerous to be listed
here individually. We do wish to mention those who gave us valuable advice in the
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preparation and writing of this tome and those who helped proofread the manu-
script: Jon Arason, Ricardo Baeza, Alex Boisvert, Detlev Hoffmann, Bryant Math-
ews, Claus Schubert, Jean-Pierre Tignol, Alexander Vishik, Maksim Zhykhovich.
In addition, we would like to thank the referees who made valuable suggestions to
improve the manuscript and Sergei Gelfand and the American Mathematical Society
for its encouragement. It also gives us great pleasure to thank the National Science
Foundation (grant DMS 0652316), as well as the Collaborative Research Centre 701
of the Bielefeld University, Ecole Polytechnique Fédérale de Lausanne, Institute for
Advanced Study in Princeton (The James D. Wolfensohn Fund and The Ellentuck
Fund), Institut des Hautes Etudes Scientifiques, Institut Universitaire de France,
and Max-Planck-Institut fiir Mathematik in Bonn, for their generous support. Fi-
nally, we wish to thank our families who put up with us through the long process
of bringing this volume to fruition.






Part 1

Classical theory of symmetric
bilinear forms and quadratic forms






CHAPTER 1

Bilinear Forms

1. Foundations

The study of (n x n)-matrices over a field F' leads to various classification
problems. Of special interest is to classify alternating and symmetric matrices. If
A and B are two such matrices, we say that they are congruent if A = P*BP for
some invertible matrix P. For example, it is well-known that symmetric matrices
are diagonalizable if the characteristic of F is different from 2. So the problem of
classifying matrices up to congruence reduces to the study of a congruence class
of a matrix in this case. The study of alternating and symmetric bilinear forms
over an arbitrary field is the study of this problem in a coordinate-free approach.
Moreover, we shall, whenever possible, give proofs independent of characteristic. In
this section, we introduce the definitions and notation needed throughout the text
and prove that we have a Witt Decomposition Theorem (cf. Theorem 1.27 below)
for such forms. As we make no assumption on the characteristic of the underlying
field, this makes the form of this theorem more delicate.

Definition 1.1. Let V be a finite dimensional vector space over a field F. A
bilinear form on V is amap b : V x V — F satisfying for all v,v,w,w’ € V and
ceF,

b(v+ v, w) = b(v,w) + b(v,w),
b(v,w + w/) = b(v,w) + b(vaw/)a
b(cv, w) = cb(v,w) = b(v, cw).

The bilinear form is called symmetric if b(v,w) = b(w,v) for all v,w € V and is
called alternating if b(v,v) = 0 for all v € V. If b is an alternating form, expanding
b(v+w, v+ w) shows that b is skew symmetric, i.e., that b(v, w) = —b(w, v) for all
v,w € V. In particular, every alternating form is symmetric if char F' = 2. We call
dim V' the dimension of the bilinear form and also write it as dimb. We write b is
a bilinear form over F' if b is a bilinear form on a finite dimensional vector space
over F' and denote the underlying space by V.

Let V* := Homp(V, F') denote the dual space of V. A bilinear form b on V'
is called nondegenerate if | : V. — V* defined by v +— 1, : w — b(v,w) is an
isomorphism. An isometry f : by — bs between two bilinear forms b;, i = 1,2,
is a linear isomorphism f : Vi, — Vg, such that by (v, w) = ba(f(v), f(w)) for all
v,w € Vp,. If such an isometry exists, we write by ~ by and say that b; and by are
1sometric.

Let b be a bilinear form on V. Let {v1,...,v,} be a basis for V. Then b is
determined by the matrix (b(vi7 Uj)) and the form is nondegenerate if and only if
(b(vi, vj)) is invertible. Conversely, any matrix B in the n X n matrix ring M, (F)

11



12 I. BILINEAR FORMS

determines a bilinear form based on V. If b is symmetric (respectively, alternating),
then the associated matrix is symmetric (respectively, alternating where a square
matrix (a;;) is called alternating if a;; = —aj; and a;; = 0 for all ¢, j). Let b and b’
be two bilinear forms with matrices B and B’ relative to some bases. Then b ~ b’
if and only if B’ = A*BA for some invertible matrix A, i.e., the matrices B’ and
B are congruent. As det B’ = det B - (det A)? and det A # 0, the determinant of
B’ coincides with the determinant of B up to squares. We define the determinant
of a nondegenerate bilinear form b by detb := det B - F*2 in F*/F*2 where B
is a matrix representation of b and F* is the multiplicative group of F' (and more
generally, R* denotes the unit group of a ring R). So the det is an invariant of the
isometry class of a nondegenerate bilinear form.

The set Bil(V) of bilinear forms on V is a vector space over F. The space
Bil(V) contains the subspaces Alt(V) of alternating forms on V and Sym(V') of
symmetric bilinear forms on V. The correspondence of bilinear forms and matrices
given above defines a linear isomorphism Bil(V') — Mg, v (F). If b € Bil(V), then
b — b’ is alternating where the bilinear form b’ is defined by b*(v,w) = b(w,v) for
all v,w € V. Since every alternating n x n matrix is of the form B — B* for some
B, the linear map Bil(V) — Alt(V) given by b — b — b’ is surjective. Therefore,
we have an exact sequence of vector spaces

(1.2) 0 — Sym(V) — Bil(V) — Alt(V) — 0.
Exercise 1.3. Construct natural isomorphisms
Bil(V)~ (V@r V) >V @p V", Sym(V) ~ S%(V)*,
A(V) = A2(V)* =~ A2(VF)
and show that the exact sequence (1.2) is dual to the standard exact sequence
0= N(V)=VeprV—S*(V)—=0
where A%(V) is the exterior square of V and S$?(V) is the symmetric square of V.

If b, c € Bil(V'), we say the two bilinear forms b and ¢ are similar if b ~ ac for
some a € F'*.

Let V' be a finite dimensional vector space over F' and let A\ = +1. Define the
hyperbolic A-bilinear form of V' to be the form Hy (V) = by, on V & V* defined by

br, (v1 + f1,v2 + f2) := fi(v2) + Afa(v1)

for all v1,vy € V and fi, fo € V*. If A = 1, the form H, (V) is a symmetric bilinear
form and if A = —1, it is an alternating bilinear form. A bilinear form b is called
a hyperbolic bilinear form if b ~ Hy (W) for some finite dimensional F-vector space
W and some A = £1. The hyperbolic form Hy(F) is called the hyperbolic plane
and denoted Hy. It has the matrix representation

(3 0

in the appropriate basis. If b ~ H, then b has the above matrix representation
in some basis {e, f} of V,. We call e, f a hyperbolic pair. Hyperbolic forms are
nondegenerate.

Let b be a bilinear form on V and W C V a subspace. The restriction of b to
W is a bilinear form on W and is called a subform of b. We denote this form by
blw.
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1.A. Structure theorems for bilinear forms. Let b be a symmetric or
alternating bilinear form on V. We say v,w € V are orthogonal if b(v,w) = 0. Let
W,U C V be subspaces. Define the orthogonal complement of W by

W :={veV|bww) =0 forall we W}.

This is a subspace of V. We say W is orthogonal to U if W C U+, equivalently
UCWL. IfV=WaU is a direct sum of subspaces with W C UL, we write b =
blw L b|y and say b is the (internal) orthogonal sum of bly and b|y. The subspace
VL is called the radical of b and denoted by rad b. The form b is nondegenerate if
and only if rad b = 0.

If K/F is a field extension, let Vi := K ®p V', a vector space over K. We have
the standard embedding V' — Vi by v — 1 ® v. Let bg denote the extension of b
to Vi, 80 bg(a ®v,c®@w) = acb(v,w) for all a,c € K and v,w € V. The form bg
is of the same type as b. Moreover, rad bz = (rad b) i, hence b is nondegenerate if
and only if bx is nondegenerate.

Let —:V — V := V/rad b be the canonical epimorphism. Define b to be the
bilinear form on V' determined by b(v7,73) := b(vy,v2) for all vy, v2 € V. Then b is
a nondegenerate bilinear form of the same type as b. Note also that if f: b; — by
is an isometry of symmetric or alternative bilinear forms, then f(rad b;) = rad bs.

We have:

Lemma 1.4. Let b be a symmetric or alternating bilinear form on V. Let W be
any subspace of V' such that V- =radb @ W. Then blw is nondegenerate and

b= E1|1radb L b‘W = 0|radb 4 b‘W

with bly =~ b, the form induced on V/radb. In particular, bly is unique up to
isometry.

The lemma above shows that it is sufficient to classify nondegenerate bilinear
forms. In general, if b is a symmetric or alternating bilinear form on Vand W C V'
is a subspace, then we have an exact sequence of vector spaces

0 Wt v v

where Iy is defined by v + l,|w : z + b(v, 7). Hence dim W+ > dim V — dim W.
It is easy to determine when this is an equality.

Proposition 1.5. Let b be a symmetric or alternating bilinear form on V. Let W
be any subspace of V. Then the following are equivalent:

(1) Wnradb =0.
(2) lw : V — W* is surjective.
(3) dimW+ =dimV — dim W.

PRrROOF. (1) holds if and only if the map Ij}, : W — V* is injective, if and only
if the map Iy : V — W™ is surjective, and if and only if (3) holds. O

Note that the conditions (1)-(3) hold if either b or by, is nondegenerate.
A key observation is:

Proposition 1.6. Let b be a symmetric or alternating bilinear form on V. Let
W be a subspace such that bly is nondegenerate. Then b = by L blyyr. In
particular, if b is also nondegenerate, then so is bly L.
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PRrROOF. By Proposition 1.5, dim W+ = dim V — dim W, hence V. =W @ W+.
The result follows. O

Corollary 1.7. Let b be a symmetric bilinear form on V. Let v € V satisfy
b(v,v) #0. Then b =b|p, L bip,r.

Let b; and by be two symmetric or alternating bilinear forms on V; and V5
respectively. Then their external orthogonal sum, denoted by by L b, is the form
on V; & V5 given by

(b1 L ba)((v1,v2), (w1, w2)) := by (v1,w1) 4 ba(va, ws)

for all v;,w; € V;, 1 =1,2.
If n is a nonnegative integer and b is a symmetric or alternating bilinear form
over F', abusing notation, we let

nb:=bL1L---16b.
—_——

n
In particular, if n is a nonnegative integer, we do not interpret nb with n viewed
in the field.
For example, H (V) ~ nH), for any n-dimensional vector space V over F.
It is now easy to complete the classification of alternating forms.

Proposition 1.8. Let b be a nondegenerate alternating form on'V. Then dimV =
2n for some n and b ~nH_q, i.e., b is hyperbolic.

PROOF. Let 0 # v € V. Then there exists w € V such that b(v,w) = a # 0.
Replacing w by a~'w, we see that v, w is a hyperbolic pair in the space W = Fv @®
Fuw, so by is a hyperbolic subform of b, in particular, nondegenerate. Therefore,
b ="b|w L b|yy+ by Proposition 1.6. The result follows by induction on dimb. O

The proof shows that every nondegenerate alternating form b on V has a
symplectic basis, i.e., a basis {v1,...,v2,} for V satisfying b(v;,v,4;) = 1 for all
iel,n:={ieZ|1<i<n}and b(v,v;) =0if i <jand j #n+i.

We turn to the classification of the isometry type of symmetric bilinear forms.
By Lemma 1.4, Corollary 1.7, and induction, we therefore have the following:

Corollary 1.9. Let b be a symmetric bilinear form on V. Then
b="0|raae L bly; L--- L by, Lblw

with V; a 1-dimensional subspace of V' and bly, nondegenerate for all i € [1, n] and
blw a nondegenerate alternating subform on a subspace W of V.

If char F' # 2, then, in the corollary, b|y is symmetric and alternating hence
W = {0}. In particular, every symmetric bilinear form b has an orthogonal basis,
ie., a basis {v1,...,v,} for V; satisfying b(v;,v;) = 0 if ¢ # j. The form is
nondegenerate if and only if b(v;, v;) # 0 for all 4.

If char F' = 2, by Proposition 1.8, the alternating form by in the corollary
above has a symplectic basis and satisfies b|y ~ nH; for some n.

Let a € F. Denote the bilinear form on F given by b(v,w) = avw for all
v,w € F by {a), or simply (a). In particular, (a) ~ (b) if and only if a =b =0 or
aF*? = bF*? in F*/F*2. Denote

() L--- L {an) by {a1,...,an)p orsimply by (aj,...,a,).
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We call such a form a diagonal form. A symmetric bilinear form b isometric to a
diagonal form is called diagonalizable. Consequently, b is diagonalizable if and only
if b has an orthogonal basis. Note that det(ai,...,a,) = ay -+ a,F*? if a; € F*
for all 7. Corollary 1.9 says that every bilinear form b on V satisfies

b~r0) L {(ar,...,a,) LB
with r = dim(rad b) and b’ an alternating form and a; € F* for all i. In particular,
if char F' # 2, then every symmetric bilinear form is diagonalizable.

Example 1.10. Let a,b € F*. Then (1,a) ~ (1,b) if and only if aF*? =
det(1,a) = det(1,b) = bF*2.

1.B. Values and similarities of bilinear forms. We study the values that
a bilinear form can take as well as the similarity factors. We begin with some
notation.

Definition 1.11. Let b be a bilinear form on V over F. Let
D(b) := {b(v,v) | v € V with b(v,v) # 0},
the set on nonzero values of b and
G(b) :=={a € F* | ab ~ b},
a group called the group of similarity factors of b. Also set
D(b) := D(b) U {0}.
We say that elements in ﬁ(b) are represented by b.

For example, G(H;) = F*. A symmetric bilinear form is called round if G(b) =
D(b). In particular, if b is round, then D(b) is a group.

Remark 1.12. If b is a symmetric bilinear form and a € D(b), then b ~ (a) L ¢
for some symmetric bilinear form ¢ by Corollary 1.7.

Lemma 1.13. Let b be a bilinear form. Then
D(b) - G(b) C D(b).
In particular, if 1 € D(b), then G(b) C D(b).

PROOF. Let a € G(b) and b € D(b). Let X : b — ab be an isometry and v € Vj
satisfy b = b(v,v). Then b(A(v),\(v)) = ab(v,v) = ab. O

Example 1.14. Let K = F[t]/(t* — a) with a € F, where F[t] is the polynomial
ring over F. So K = F @ F as a vector space over F' where 6 denotes the class
of t in K. If z = x + y0 with x,y € I, write Z = x — yf. Let s : K — F be the
F-linear functional defined by s(z +y60) = x. Then b defined by b(z1, 22) = s(z1%2)
is a binary symmetric bilinear form on K. Let N(z) = 2z for 2z € K. Then
D(b)={N(2) #0|2z€ K} ={N(2) | z € K*}. If z € K, then )\, : K — K given
by w — zw is an F-linear isomorphism if and only if N(z) # 0. Suppose that A, is
an F-isomorphism. As

b(Az21, Aze) = b(z21, 222) = N(2)s(z1Z2) = N(z)b(z1, 22),
we have an isometry N(z)b ~ b for all z € K*. In particular, b is round. Comput-

ing b on the orthogonal basis {1,6} for K shows that b is isometric to the bilinear
form (1, —a). If a € F*, then b ~ (1, —a) is nondegenerate.
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Remark 1.15. (1) Let b be a binary symmetric bilinear form on V. Suppose there
exists a basis {v, w} for V satisfying b(v,v) = 0, b(v,w) =1, and b(w,w) = a # 0.
Then b is nondegenerate as the matrix corresponding to b in this basis, is invertible.
Moreover, {w, —av + w} is an orthogonal basis for V' and, using this basis, we see
that b ~ (a, —a).

(2) Suppose that char F # 2. Let b = (a,—a) with a € F* and {e,g} an
orthogonal basis for V, satisfying a = b(e,e) = —b(f, f). Evaluating on the basis
{e+ f, 3 (e — f)} shows that b ~ H;. In particular, (a, —a) ~ H; for all a € F*.
Moreover, {(a, —a) ~ H; is round and universal, where a nondegenerate symmetric
bilinear form b is called universal if D(b) = F*.

(3) Suppose that char FF = 2. As Hy = H_; is alternating while (a,a) is
not, {a,a) # Hy for any a € F*. Moreover, H; is not round since D(H;) = 0.
As D({a,a)) = D({a)) = aF*?, we have G({(a,a)) = F*? by Lemma 1.13. In
particular, (a,a) is round if and only if @ € F*2, and (a,a) =~ (b,b) if and only if
aF*2 ~ pF*2,

(4) Witt Cancellation holds if char F' # 2, i.e., if there exists an isometry of
symmetric bilinear forms b 1L 6" ~ b L b” over F' with b nondegenerate, then
b’ ~ b”. (Cf. Theorem 8.4 below.) If char FF = 2, this is false in general. For
example,

1,1,-1) ~ (1) L H,
over any field. Indeed if b is 3-dimensional on V and V has an orthogonal basis
{e, f,g} with b(e,e) =1 =0b(f, f) and b(g,g) = —1, then the right hand side arises
from the basis {e + f + g,e + g, —f — g}. But by (3), (1,—1) £ H, if char F = 2.
Multiplying the equation above by any a € F*, we also have

(1.16) (a,a,—a) ~ {(a) L Hj.

Proposition 1.17. Let b be a symmetric bilinear form. If D(b) # 0, then b is
diagonalizable. In particular, a nonzero symmetric bilinear form is diagonalizable
if and only if it is not alternating.

PRrOOF. If a € D(b), then
b~ {a) L by~ {(a) Lradb; L¢; Ly

with b; a symmetric bilinear form by Corollary 1.7, and ¢; a nondegenerate diagonal
form, and ¢o a nondegenerate alternating form by Corollary 1.9. By the remarks
following Corollary 1.9, we have ¢o = 0 if char F' # 2 and ¢5 = mHj for some integer
m if char FF = 2. By (1.16), we conclude that b is diagonalizable in either case.

If b is not alternating, then D(b) # (), hence b is diagonalizable. Conversely, if
b is diagonalizable, it cannot be alternating as it is not the zero form. (I

Corollary 1.18. Let b be a symmetric bilinear form over F. Then b L (1) is
diagonalizable.

Let b be a symmetric bilinear form on V. A vector v € V is called anisotropic
if b(v,v) # 0 and isotropic if v # 0 and b(v,v) = 0. We call b anisotropic if there
are no isotropic vectors in V' and isotropic otherwise.

Corollary 1.19. Every anisotropic bilinear form is diagonalizable.

Note that an anisotropic symmetric bilinear form is nondegenerate as its radical
is trivial.
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Example 1.20. Let F be a quadratically closed field, i.e., every element in F'is a
square. Then, up to isometry, 0 and (1) are the only anisotropic forms over F. In
particular, this applies if F is algebraically closed.

An anisotropic form may not be anisotropic under base extension. However,
we do have:

Lemma 1.21. Let b be an anisotropic bilinear form over F. If K/F is purely
transcendental, then by is anisotropic.

PROOF. First suppose that K = F(¢), the field of rational functions over F' in
the variable ¢. Suppose that bg(;) is isotropic. Then there exist a vector 0 # v €
Vb (ry Such that by (v,v) = 0. Multiplying by an appropriate nonzero polynomial,
we may assume that v € F[t] @p V. Write v = vg +t @ v1 + -+ + t" ® v, with
V1,...,v, €V and v, # 0. As the t?" coefficient b(v,,v,) of b(v,v) must vanish,
vy, is an isotropic vector of b, a contradiction.

If K/F is finitely generated, then the result follows by induction on the tran-
scendence degree of K over F. In the general case, if by is isotropic there exists a
finitely generated purely transcendental extension Ky of F'in K with by, isotropic,
a contradiction. |

1.C. Metabolic bilinear forms. Let b be a symmetric bilinear form on V.
A subspace W C V is called a totally isotropic subspace of b if blyy = 0, i.e.,
if W c W+, If b is isotropic, then it has a nonzero totally isotropic subspace.
Suppose that b is nondegenerate and W is a totally isotropic subspace. Then
dim W 4 dim W+ = dim V' by Proposition 1.5, hence dim W < %dim V. We say
that W is a lagrangian for b if we have an equality dim W = % dim V, equivalently
WL = W. A nondegenerate symmetric bilinear form is called metabolic if it has
a lagrangian. In particular, every metabolic form is even-dimensional. Clearly, an
orthogonal sum of metabolic forms is metabolic.

Example 1.22. (1) Symmetric hyperbolic forms are metabolic.

(2) The form b L (—b) is metabolic if b is any nondegenerate symmetric bilinear
form.

(3) A 2-dimensional metabolic space is nothing but a nondegenerate isotropic
plane. A metabolic plane is therefore either isomorphic to {(a, —a) for some a € F*
or to the hyperbolic plane H; by Remark 1.15. In particular, the determinant of a
metabolic plane is —F*2. If char F # 2, then (a, —a) ~ H; by Remark 1.15, so in
this case, every metabolic plane is hyperbolic.

Lemma 1.23. Let b be an isotropic nondegenerate symmetric bilinear form over
V. Then every isotropic vector belongs to a 2-dimensional metabolic subform.

PROOF. Suppose that b(v,v) = 0 with v # 0. As b is nondegenerate, there
exists a w € V such that b(u,v) # 0. Then b|pyq . is metabolic. O
Corollary 1.24. Every metabolic form is an orthogonal sum of metabolic planes.
In particular, if b is a metabolic form over F, then detb = (—1)%FX2.

ProoOF. We induct on the dimension of a metabolic form b. Let W C V =V,
be a lagrangian. By Lemma 1.23, a nonzero vector v € W belongs to a metabolic
plane P C V. It follows from Proposition 1.6 that b = b|p L b|p. and by dimension
count that W N P+ is a lagrangian of b| p. as W cannot lie in P*. By the induction
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hypothesis, b|p1 is an orthogonal sum of metabolic planes. The second statement
follows from Example 1.22(3). O

Corollary 1.25. If char F' # 2, the classes of metabolic and hyperbolic forms co-
incide. In particular, every isotropic mondegenerate symmetric bilinear form is
universal.

ProoF. This follows from Remark 1.15(2) and Lemma 1.23. O

Lemma 1.26. Let b and b’ be two symmetric bilinear forms. If b L b and b' are
both metabolic, then so is b.

Proor. By Corollary 1.24, we may assume that b’ is 2-dimensional. Let W
be a lagrangian for b L b’. Let p: W — Vs be the projection and Wy = Ker(p) =
W N Vg. Suppose that p is not surjective. Then dim Wy > dim W — 1, hence Wy is
a lagrangian of b and b is metabolic.

So we may assume that p is surjective. Then dimWy = dimW — 2. As b’
is metabolic, it is isotropic. Choose an isotropic vector v’ € Vi and a vector
w € W such that p(w) = ¢/, i.e., w = v+ v/ for some v € V,. In particular,
b(v,v) = (b L b')(w,w) — b'(v/,v") = 0. Since Wy C Vj, we have v’ is orthogonal
to Wy, hence v is also orthogonal to Wy. If we show that v ¢ W, then v ¢ Wy and
Wy @ Fv is a lagrangian of b and b is metabolic.

So suppose v' € W. There exists v € Vi such that b'(v',v") # 0 as b’ is
nondegenerate. Since p is surjective, there exists w” € W with w” = u” + 0" for
some u"” € V. As W is totally isotropic,

0= (b L0 w)=(bLb),u +2")=0b "),
a contradiction. O

1.D. Witt Theory. We have the following form of the classical Witt Decom-
position Theorem (cf. [139]) for symmetric bilinear forms over a field of arbitrary
characteristic.

Theorem 1.27 (Bilinear Witt Decomposition Theorem). Let b be a nondegene-
rate symmetric bilinear form on V. Then there exist subspaces Vi and Vo of V
such that b = bly, L bly, with bly, anisotropic and bly, metabolic. Moreover, bly,
18 unique up to isometry.

PROOF. We prove existence of the decomposition by induction on dimb. If b
is isotropic, there is a metabolic plane P C V by Lemma 1.23. As b =b|p L b|pu,
the proof of existence follows by applying the induction hypothesis to b|p. .

To prove uniqueness, assume that b; L by ~ b} L b5 with by and b} both
anisotropic and bs and b} both metabolic. We show that by ~ b]. The form

by L (—=b}) L by~b) L (=b}) Lb)
is metabolic, hence by L (—b)) is metabolic by Lemma 1.26. Let W be a lagrangian
of by L (—b}). Since by is anisotropic, the intersection WNVy, is trivial. Therefore,
the projection W — Vi is injective and dimW < dim b}. Similarly, dimW <
dim b;. Consequently, dim b; = dim W = dim b} and the projections p : W — Vg,
and p’ : W — V4, are isomorphisms. Let w = v +v" € W, where v € V4, and
v e Vb/l As
0= (by L (b)) (w,w) = by(v,v) — bi(v',v),

1

the isomorphism p’ op™t : Vg, — Vi is an isometry between by and b]. (]
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Let b = bly; L b|y, be the decomposition of the nondegenerate symmetric
bilinear form b on V in the theorem. The anisotropic form b|y,, unique up to
isometry, will be denoted by b,, and called the anisotropic part of b. Note that the
metabolic form b|y, in Theorem 1.27 is not unique in general by Remark 1.15(4).
However, its dimension is unique and even. Define the Witt indexr of b to be
i(b) := (dim V3)/2 .

Remark 1.15(4) also showed that the Witt Cancellation Theorem does not hold
for nondegenerate symmetric bilinear forms in characteristic 2. The obstruction is
the metabolic forms. We have, however, the following:

Corollary 1.28 (Witt Cancellation). Let b, by, by be nondegenerate symmetric
bilinear forms satisfying by L b ~ by L b. If by and by are anisotropic, then
[11 ~ bg.

PROOF. We have by L b L (=b) ~ by L b L (—b) with b L (—b) metabolic.
By Theorem 1.27, by ~ bs. O

2. The Witt and Witt-Grothendieck rings of symmetric bilinear forms

In this section, we construct the Witt ring. The orthogonal sum induces an
additive structure on the isometry classes of symmetric bilinear forms. Defining
the tensor product of symmetric bilinear forms (corresponding to the classical Kro-
necker product of matrices) turns this set of isometry classes into a semi-ring. The
Witt Decomposition Theorem leads to a nice description of the Grothendieck ring
in terms of isometry classes of anisotropic symmetric bilinear forms. The Witt ring
W (F) is the quotient of this ring by the ideal generated by the hyperbolic plane.

Let b; and by be symmetric bilinear forms over F. The tensor product of by
and by is defined to be the symmetric bilinear form b := b; ® by with underlying
space Vp, ®F Vj, with the form b defined by

b(v1 @ va, w1 @ wa) = by (v, wr) - ba(va, w2)
for all v1,w; € Vi, and ve, we € Vp,. For example, if a € F, then (a) ® by ~ ab.

Lemma 2.1. Let by and by be two nondegenerate bilinear forms over F. Then
(1) by L by is nondegenerate.
(2) b1 ® by is nondegenerate.
(3) Hi(V) ® by is hyperbolic for all finite dimensional vector spaces V.

ProoF. (1), (2): Let V; = Vg, for ¢ = 1,2. The b; induce isomorphisms
l; : Vi = V* for ¢ = 1,2, hence by L by and b; ® by induce isomorphisms [; & [ :
VieVo— (Vi@ Vo) and 1 @1y : Vi @p Vo — (V1 ®F V2)* respectively.

(3): Let {e, f} be a hyperbolic pair for Hy. Then the linear map (F @ F*) @p
Vi — Vi@ V)" induced by e®v — v and fQ®uv +— 1, : w — b(w,v) is an isomorphism
and induces the isometry Hy ® b — Hy (V). O

It follows that the isometry classes of nondegenerate symmetric bilinear forms
over F'is a semi-ring under orthogonal sum and tensor product. The Grothendieck
ring of this semi-ring is called the Witt-Grothendieck ring of F' and denoted by
W(F) (Cf. Scharlau [121] or Lang [90] for the definition and construction of the
Grothendieck group and ring.) In particular, every element in W(F ) is a difference
of two isometry classes of nondegenerate symmetric bilinear forms over F. If b is a
nondegenerate symmetric bilinear form over F', we shall also write b for the class
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in W\(F ). Thus, if a € W\(F ), there exist nondegenerate symmetric bilinear forms
by and by over F such that a = by — by in W(F'). By definition, we have

by — by = b} — b, in W(F)

if and only if there exists a nondegenerate symmetric bilinear form b” over F' such
that

(2.2) by L b, Lb” ~b) LbyLb”

As any hyperbolic form H; (V') is isometric to (dim V)H; over F, the ideal con-
sisting of the hyperbolic forms over F' in /VI7(F ) is the principal ideal H; by Lemma
2.1(3). The quotient W (F) := W(F)/(Hl) is called the Witt ring of nondegener-
ate symmetric bilinear forms over F. Elements in W (F') are called Witt classes.
Abusing notation, we shall also write b € W(F) for the Witt class of b and often

call it just the class of b. The operations in W (F') (and W(F)) shall be denoted
by + and -.
By (1.16), we have
(a,—a) =0 in W(F)

for all ¢ € F* and in all characteristics. In particular, (—1) = —(1) = —1 in W(F),
hence the additive inverse of the Witt class of any nondegenerate symmetric bilinear
form b in W (F) is represented by the form —b. It follows that if & € W(F') then
there exists a nondegenerate bilinear form b such that o = b in W (F).

Exercise 2.3 (cf. Scharlau [121], p. 22). Let b be a metabolic symmetric bilinear
form and V a lagrangian of b. Show that

b L (—b)~H(V) L (—b).

In particular, b = H(V) in W(F) Use this to give another proof that ¢+ (—¢) =0
in W(F) for every nondegenerate form c.

The Witt Cancellation Theorem 1.28 allows us to conclude the following.

Proposition 2.4. Let by and bs be anisotropic symmetric bilinear forms. Then
the following are equivalent:

(1) bl ~ bg.
(2) by = by in W(F).
(3) bl = bz m W(F)

PrOOF. The implications (1) = (2) = (3) are easy.
(3) = (1): By definition of the Witt ring, b; + nH = by + mH in W(F) for
some n,m > 0. It follows from the definition of the Grothendieck-Witt ring that

by LnH Lb~by, LmHLGb

for some nondegenerate form b. Thus by L nH 1L b L (—=b)~by L mH L b L (—b)
and b; ~ by by Corollary 1.28. O

We also have:

Corollary 2.5. b =0 in W(F) if and only if b is metabolic.
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It follows from Proposition 2.4 that every Witt class in W (F') contains (up to
isometry) a unique anisotropic form. As every anisotropic bilinear form is diago-
nalizable by Corollary 1.19, we have a ring epimorphism

(2.6) ZIF*JF**] = W(F) givenby > ni(a:iF*?) — Y nifa;).
Proposition 2.7. A homomorphism of fields F — K induces ring homomorphisms

TK/FS/W(F)—)W\(K) and  rg/p: W(F) — W(K).
If K/F is purely transcendental, then these maps are injective.

PROOF. Let b be symmetric bilinear form over F. Define rg/¢(b) on K @ Vq

by
rr/r(0)(z®@v,y ®w) = ryb(v, w)

for all z,y € K and for all v,w € V. This construction is compatible with orthog-
onal sums and tensor products of symmetric bilinear forms.

As r/p(b) is hyperbolic if b is, it follows that b +— 7, p(b) induces the desired
maps. These are ring homomorphisms.

The last statement follows by Lemma 1.21. |

If K/F is a field extension, the ring homomorphisms g, defined above are
called restriction homomorphisms. Of course, the maps rg,p are the unique ho-
momorphisms such that 75, p(b) = bg.

3. Chain equivalence

Two nondegenerate diagonal symmetric bilinear forms a = (ay, as, ..., a,) and
b= (by,ba,...,b,), are called simply chain equivalent if either n = 1 and a; F*? =
b1F*2 or n > 2 and (@i, a;) ~ (b;,b;) for some indices ¢ # j and ax = by for every
k # i,7. Two nondegenerate diagonal forms a and b are called chain equivalent (we
write a ~ b) if there is a chain of forms by = a,bs,...,b,, = b such that b; and
b;+1 are simply chain equivalent for all ¢ € [1, m — 1]. Clearly, a ~ b implies a ~ b.

Note that as the symmetric group S, is generated by transpositions, we have

<a1,a2, ey Cln> ~ <a(,(1),ag(2), - ,ag(n)>

for every o € S,,.

Lemma 3.1. Every nondegenerate diagonal form is chain equivalent to an orthog-
onal sum of an anisotropic diagonal form and metabolic binary diagonal forms
(a,—a), a € F*.

PRrROOF. By induction, it is sufficient to prove that any isotropic diagonal form
b is chain equivalent to (a, —a) L b’ for some diagonal form b’ and a € F*. Let
{v1,...,v,} be the orthogonal basis of b and set b(v;,v;) = a;. Choose an isotropic
vector v with the smallest number & of nonzero coordinates. Changing the order
of the v; if necessary, we may assume that v = Ele ¢;v; for nonzero ¢; € F and
k > 2. We prove the statement by induction on k. If k = 2, the restriction of b to
the plane Fvy & Fus is metabolic and therefore is isomorphic to {a, —a) for some
a € F* by Example 1.22(3), hence b =~ (a, —a) L (as,...,an).

If &k > 2, the vector v] = ¢jv1+covy is anisotropic. Complete v} to an orthogonal
basis {v},v4} of Fu; @ Fuy by Corollary 1.7 and set a; = b(v},v}), i = 1,2. Then

1) 7
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(a1,a2) ~ {(a!,dy) and b ~ (a},a},as,...,a,). The vector v has k — 1 nonzero
coordinates in the orthogonal basis {v], v}, vs,...,v,}. Applying the induction
hypothesis to the diagonal form (a},a},as, ..., a,) completes the proof. O

Lemma 3.2 (Witt Chain Equivalence). Two anisotropic diagonal forms are chain
equivalent if and only if they are isometric.

PRrROOF. Let {vy,...,v,} and {uq,...,u,} be two orthogonal bases of the bilin-
ear form b with b(v;,v;) = a; and b(u;, u;) = b;. We must show that {aq,...,a,) =
(b1,...,bn). We do this by double induction on n and the number %k of nonzero
coefficients of u; in the basis {v;}. Changing the order of the v; if necessary, we
may assume that u; = Zle ¢;v; for some nonzero ¢; € F.

If k =1, ie, u; = cjvy, the two (n — 1)-dimensional subspaces generated
by the v;’s and w;’s respectively, with ¢ > 2, coincide. By the induction hy-
pothesis and Witt Cancellation (Corollary 1.28), (ag,...,a,) ~ (ba,...,by), hence
(al,ag,...,an> ~ <a1,b2,...,bn> ~ <b1,b2,...,bn>.

If £ > 2, set v = c1v1 + cav2. As b is anisotropic, a} = b(v],v]) is nonzero.
Choose an orthogonal basis {vi,v5} of Fvy @ Fve and set ah, = b(v),v5). We
have (a1, a2) ~ (a},ah). The vector u; has k — 1 nonzero coordinates in the basis
{v], vh,v3,...,v,}. By the induction hypothesis

(a1,az,a3,...,a,) ~ (a},ay,as,...,an) ~ (by,ba, b3, ..., by). O

Exercise 3.3. Prove that a diagonalizable metabolic form b is isometric to (1, —-1)®
b’ for some diagonalizable bilinear form b’.

4. Structure of the Witt ring

In this section, we give a presentation of the Witt-Grothendieck and Witt rings.
The classes of even-dimensional anisotropic symmetric bilinear forms generate an
ideal I(F) in the Witt ring. We also derive a presentation for it and its square,
I(F)2.

4.A. The presentation of /W(F) and W(F'). We turn to determining pre-

sentations of W(F ) and W(F). The generators will be the isometry classes of non-
degenerate 1-dimensional symmetric bilinear forms. The defining relations arise
from the following:

Lemma 4.1. Let a,b € F* and z € D({a,b)). Then (a,b) ~ (z,abz). In particu-
lar, if a+b # 0, then

(4.2) (a,b) ~ (a + b,ab(a + b)).
Proor. By Corollary 1.7, we have (a,b) ~ (z,d) for some d € F*. Comparing
determinants, we must have abF*? = dzF*? so dF*? = abzF*?. O

The isometry (4.2) is often called the Witt relation.

Define an abelian group W/(F) by generators and relations. Generators are
isometry classes of nondegenerate 1-dimensional symmetric bilinear forms. For any
a € F* we write [a] for the generator — the isometry class of the form (a). Note
that [az?] = [a] for every a,z € F*. The relations are

(4.3) [a] + [b] = [a + b] + [ab(a + b)]
for all a,b € F* such that a + b # 0.
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Lemma 4.4. If (a,b) ~ (c,d), then [a] + [b] = [c] + [d] in W'(F).

PROOF. As (a,b) =~ (c,d), we have abF'*? = det{a, b) = det{c,d) = cdF'*? and
d = abcz? for some z € F*. Since ¢ € D({(a,b)), there exist z,y € F satisfying
c=ax?+by? If =0 or y = 0, the statement is obvious, so we may assume that
z,y € F*. It follows from (4.3) that

[a] + [b] = [a2®] + [by®] = [d] + [az®by?c] = [c] + [d]. O
Lemma 4.5. We have [a] + [—a] = [b] + [=b] in W/(F) for all a,b € F*.
ProOOF. We may assume that a + b # 0. From (4.3), we have
[—a] + [a + 0] = [b] + [—ab(a+b)], [-b]+ [a+b] = [a] + [—ab(a + b)].
The result follows. (]

If char F' # 2, the forms (a, —a) and (b, —b) are isometric by Remark 1.15(2).
Therefore, in this case Lemma 4.5 follows from Lemma 4.4.

Lemma 4.6. If (a1,...,an) = {(by,...,by), then [a1] + -+ [an] = [b1] + - - + [bn]
in W/(F).

PROOF. We may assume that the forms are simply chain equivalent. In this
case the statement follows from Lemma 4.4. O

Theorem 4.7. The Grothendieck-Witt group /W(F) is generated by the isometry
classes of 1-dimensional symmetric bilinear forms that are subject to the defining
relations (a) + (b) = (a + b) + (ab(a + b)) for all a,b € F'* such that a + b # 0.

PRrOOF. It suffices to prove that the homomorphism W'(F) — W(F) taking
[a] to (a) is an isomorphism. As b L (1) is diagonalizable for any nondegenerate
symmetric bilinear form b by Corollary 1.18, the map is surjective. An element
in the kernel is given by the difference of two diagonal forms b = (ai,...,a,)
and b’ = (a},...,a,) such that b = b’ in /W(F) By the definition of /W(F)
and Corollary 1.18, there is a diagonal form b” such that b 1L b” ~ b L b".
Replacing b and b’ by b L 6" and b’ L b” respectively, we may assume that b ~ b’.
It follows from Lemma 3.1 that b ~ by L by and b = b} L b}, where by, b
are anisotropic diagonal forms and bs, b are orthogonal sums of metabolic planes
(a, —a) for various a € F*. It follows from the Corollary 1.28 that by ~ b%, and
therefore, by &~ b} by Lemma 3.2. Note that the dimension of by and b} are equal.
By Lemmas 4.5 and 4.6, we conclude that [a1] + -+ + [an] = [a}] + -+ + [a),] in
W'(F). O

Since the Witt class in W (F') of the hyperbolic plane Hj is equal to (1,—1) by
Remark 1.15(4), Theorem 4.7 yields:

Theorem 4.8. The Witt group W (F) is generated by the isometry classes of 1-
dimensional symmetric bilinear forms that are subject to the following defining re-
lations:

(1) (1) +(=1) =0.

(2) (a)+ (b) = {(a +b) + (ab(a + b)) for all a,b € F* such that a +b # 0.

If char F' # 2, the above is the well-known presentation of the Witt-Grothen-
dieck and Witt groups first demonstrated by Witt in [139].
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4.B. The presentation of I(F). The Witt-Grothendieck and Witt rings
have a natural filtration that we now describe. Define the dimension map

dim: W(F) - Z given by dimz =dimb; — dimby if = by — by.

This is a well-defined map by (2.2).
We let I(F') denote the kernel of this map. As

(@) = (b) = ((1) = () = (1) = {a)) in W(F)

for all a,b € F*, the elements (1) — (a) with a € F* generate I(F) as an abelian
group.

It follows that T (F) is generated by the elements (1) and (1)—
Let I(F) denote the image of I(F) in W(F). If a € F*, write ((a)); or simply ((a))
for the binary symmetric bilinear form (1, —a),. As f(F) N (Hy) = 0, we have
I(F) ~ f(F)/(f(F) N (Hy)) ~ I(F). Then the map /V[7(F) — W(F) induces an

isomorphism

x) with z € F*.

(
)

I(F) = I(F) givenby (1) — () — ().

In particular, I(F') is the ideal in W(F') consisting of the Witt classes of even-
dimensional forms. It is called the fundamental ideal of W (F') and is generated by
the classes ((a)) with a € F*. Note that if ' — K is a homomorphism of fields,
then r/p (I(F)) C I(K) and rg/p(I(F)) € I(K).

The relations in Theorem 4.8 can be rewritten as

{(@)) + (b)) = ((a + b)) + ({ab(a + b))
for a,b € F'* with a + b # 0. We conclude:

Corollary 4.9. The group I(F) is generated by the isometry classes of dimension
2 symmetric bilinear forms {(a)) with a € F* subject to the defining relations:

(1) (1) =
(2) (a >>+<< ) = {(a+b) + {(ab(a+Db))) for all a,b € F* such that a+b # 0.

Let I"( ):

A( F)"™ be the nth power of f(F) Then f"(F) maps isomorphically
onto I"(F') : )",

I(F)™, the nth power of I(F) in W (F). It defines the filtration
W(F)D>I(F)D>I*(F)>--->I"(F)>---

in which we shall be interested. L
For convenience, we let I°(F) = W (F) and I°(F) = W (F).

We denote the tensor product ({(a1)) ® ((a2)) ® -+ ® {(an)) by

(a1, az2,...,a,))p orsimply by  ((ar,as,...,a,)

and call a form isometric to such a tensor product a bilinear n-fold Pfister form.
(We call any form isometric to (1) a 0-fold Pfister form.) For n > 1, the isometry
classes of bilinear n-fold Pfister forms generate I"™(F) as an abelian group.

We shall be interested in relations between isometry classes of Pfister forms in
W (F). We begin with a study of 1- and 2-fold Pfister forms.

Example 4.10. We have ((a)) + (b)) = ((ab)) + {(a,b)) in W (F). In particular,
({a) + (b)) = {ab)) mod I*(F).
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As the hyperbolic plane is 2-dimensional, the dimension invariant induces a
map
eo: W(F)— Z/2Z defined by eg(b) = dimb mod 2.
Clearly, this is a homomorphism with kernel the fundamental ideal I(F), so it
induces an isomorphism

(4.11) &0 : W(F)/I(F) — Z/2Z.

By Corollary 1.24, we have a map

ey I(F) — F*/F*? defined by e1(b) = (—1)"%"

called the signed determinant.

The map e; is a homomorphism as det(b L b’) = det b - det b’ and surjective as
e1({(a)) = aF*2. Clearly, e;({(a,b))) = F*2, so e; induces an epimorphism
(4.12) e : I(F)/T*(F) — F*JF*2,

We have
Proposition 4.13. The kernel of ey is I*(F) and the map &, : I(F)/I*(F) —
F*/F*2 s an isomorphism.

PROOF. Let fi : FX/F*%2 — [(F)/I*(F) be given by aF*? — ((a)) + I*(F).
This is a homomorphism by Example 4.10 inverse to €1, since I(F) is generated by
{(a)), a € F*. O

For fields of characteristic different than 2 this is Pfister’s characterization of
I%(F) (cf. [110, Satz 13, Kor.]).

4.C. The presentation of I%(F). We turn to I%(F).
Lemma 4.14. Let a,b € F*. Then {(a, b>> =0 in (F) if and only if either

a € F*? orbe D({(a). In particular, {{a,1 — a)) W(F) for any a # 1 in
Fx.

PROOF. Suppose that ((a)) is anisotropic. Then ((a,b)) = 0 in W(F) if and
only if b((a)) ~ ((a)) by Proposition 2.4 if and only if b € G(((a ) D({(a))) by
Example 1.14. O

Isometries of bilinear 2-fold Pfister forms are easily established using isometries
of binary forms. For example, we have

Lemma 4.15. Let a,b € F* and x,y € F. Let 2 = ax?® + by?> # 0. Then:
(1) {a,b) ~ (a,b(y® — azx?))) if y*> — ax® # 0.
(2) (a,b)) =~ ((z, —ab)).
(3) ((a,b)) ~ ((z, abz)).
(4)

4) If z is a square in F, then {(a, b)) is metabolic. In particular, if char F' # 2,
then ({a, b)) ~ 2H;.

PrOOF. (1): Let w = y? — az?. We have

{a,b)) ~ (1, —a, —b,ab) ~ (1, —a, —by? abz?) ~ (1, —a, —bw, abw) ~ {(a, bw)).
(2): We have

{a,b)) ~ (1, —a, —b,ab) ~ (1, —ax? —by* ab) ~ (1, —z, —zab, ab) ~ ((z, —ab)).
(3) follows from (1)and (2) while (4) follows from (2) and Remark 1.15(2). O

1R
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Explicit examples of such isometries are:

Example 4.16. Let a,b € F*, then:

(1) {{a,1)) is metabolic.

(2) {{(a, —a)) is metabolic.

(3) (a,a) ~ ((a,-1)).

(4) (a,b)) + ((a, —b)) = (a, 1)) in W(F).

We turn to a presentation of I%(F) first done for fields of characteristic not 2
in [30] and rediscovered by Suslin (cf. [129]). It is different from that for I(F') as
we need a new generating relation. Indeed, the analogue of the Witt relation will
be a consequence of our new relation and a metabolic relation.

Let I,(F) be the abelian group generated by all the isometry classes [b] of
bilinear 2-fold Pfister forms b subject to the generating relations:

(1) [(1,1)] = 0.
(2) [((ab, c>>] + [((a,b))] = [((a,bc)}] + [((b, c))] for all a,b,c € F*.
We call the second relation the cocycle relation.
Remark 4.17. The cocycle relation holds in I?(F): Let a,b,c € F*. Then
{{ab, c)y + {a,b)) = (1, —ab, —c, abc) + (1, —a, —b, ab)
= (1,1, —¢, abc, —a, —b)
= (1, —a, —bc,abc) + (1,—b, —c, bc)
= {(a, bc)) + (b, c))
in I2(F).

We begin by showing that the analogue of the Witt relation is a consequence
of the other two relations.

Lemma 4.18. The relations
(1) [{a,1))] =0,
(2) [{{a,en] + [(b,en] = [((a+b), )] + [({(a+b)ab,c)]
hold in I,(F) for all a,b,c € F* ifa+b#0.
PrOOF. Applying the cocycle relation to a, a,1 shows that

[N + [(a,ad)] = [(a, a)] + [(a, 1)].
The first relation now follows. Applying Lemma 4.15 and the cocycle relation to
a, ¢, c shows that

[(=a.e)] + [({a. )] = [{ac, )] + [((a, )]

(4.19)
= [((~a,eN] + [(a, )] = [{~1.¢)]

for all c € F*.
Applying the cocycle relation to a(a 4 b), a, ¢ yields

(4.20) (o +, D] + [ale + b), a)] = [ala+b),ach] + [(a, )]
and to a(a + b), b, ¢ yields

(4.21) [(ab(a +b),e)] + [(ala +b),b)] = [(ala +b),be)] + [((b; c)]-
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Adding the equations (4.20) and (4.21) and then using the isometries

{(ala+1),a)) ~ (ala+1b),-b) and  ((a(a+b),ac)) ~ {(a(a+b),=bc))

derived from Lemma 4.15, followed by using equation (4.19) yields

[(a, )] + [(b, )] = [{{(a+0),e)] = [(a+b)ab, c))]

= [(lala+0),a)] + [{ala+0),b)] — [{(ala +b),ac))] — [(ala +b), be)]

= [(( (a+b),—b)) ] + [ a(a +b) b))] [((a(a +b), —bc))] — [((a(a +b), bc)}]

= [((a(a, +b),—1)) ] [ a(a + ), )ﬂ =0. O

Theorem 4.22. The ideal 1?(F) is generated as an abelian group by the isome-
try classes {{a,b)) of bilinear 2-fold Pfister forms for all a,b € F* subject to the
generating relations:

(1) (1,1)) =0.
(2) ((ab,c)) + ((a, b)) = {a, be)) + (b, c)) for all a,b,c € F*.
PRrROOF. Clearly, we have well-defined homomorphisms
g:I,(F) — I*(F) induced by [b] — b
and
j:I(F) = I(F) induced by  [{(a,b))] = {(a)) + (b)) — (b)),
the latter being the composition with the inclusion I?(F) C

4.10.
We show that the map g : I,(F) — I?(F) is an isomorphism. Define

v FYJF*2 x F*JF*? » I,(F) by (aF*?bF*?)— [{(a,b))].

I(F) using Example

This is clearly well-defined. For convenience, write (a) for aF'*2. Using (2), we see
that

7((0), (¢) =7 ((ab), (c)) +7((a), (be)) —~((a), (b))
= [(b.e)] = [(ab, )] + [((a, be))] — [((a,b)] =0,

so 7 is a 2-cocycle. By Lemma 4.18, we have [((1,a))] = 0 in I,(F), so v is a
normalized 2-cocycle. The map v defines an extension N = (F*/F*?2) x I,(F) of
L,(F) by F*/F*2 with

((a);0) + (), 8) = ((ab), @ + B + [{(a, b))])-
As v is symmetric, N is abelian. Let
h:N — I(F) bedefined by ((a),a) — {(a)) + j().
We see that the map h is a homomorphism:

h(((a),a) + ((b),8)) = h((ab), a+ﬁ+ (a,0))])
= ((ab)) + j(a) + 3 (B) + 5 ([{a, b)])
= {(a)) + (0) + ( ) +4(B)
= h((a), @) +h((0),5).

Thus we have a commutative diagram
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0 —— I,(F) N FX/F*?2 ——— 0
gl hJ( f1l
0 —— I?*(F) I(F) I(F)/I*(F) —— 0

where f is the isomorphism inverse of &; in Proposition 4.13.
Let
k:I(F)— N beinduced by ((a)) — ((a),()).
Using Lemma 4.15 and Corollary 4.9, we see that k is well-defined as
((a),0) + ((b),0) = ((ad), [{(a,b))]) = ((ab), [((a + b, ab(a + b)))])
= ((a+1b),0) + ((ab(a + b),0)
ifa+b#0. As

k(. b)) = E(((a) + (b)) — (ab)) = ((a),0) + ((b),
= ((ab), [{(a,b)]) = ((ab), 0) = ((ab), 0)

we have

) - ((ab)a 0)

_|_
—
—
=
)
=
N
f—
|
—~ O

(ko h)((c), [{a, b)) = k() + ((a. b)) = ((c), [({a, b))
Hence ko h is the identity on N. As (hok)({(a))) = ((a)), the composition ko k is
the identity on I(F'). Thus h is an isomorphism, hence so is g. O

5. The Stiefel-Whitney map

In this section, we investigate Stiefel-Whitney maps. In the case of fields of
characteristic different from 2, this was first defined by Milnor. We shall use facts
about Milnor K-theory (cf. §100). We write

ko (F) =[] kn(F)
n>0
for the graded ring K, (F)/2K.(F). Abusing notation, if {a1,...,a,} is a symbol
in K,,(F), we shall also write it for its coset {a1,...,a,} + 2K, (F).
The associated graded ring

GW.(F) =[] I"(F)/ 1" (F)
n>0

of W (F') with respect to the fundamental ideal I(F') is called the graded Witt ring
of symmetric bilinear forms. Note that since 2 - I"(F) = (1,1) - ["(F) C I"T}(F)
we have 2 - GW,(F) = 0.

By Example 4.10, the map F* — I(F)/I?(F) defined by a — ((a)) + I*(F) is
a homomorphism. By the definition of the Milnor ring and Lemma 4.14, this map
gives rise to a graded ring homomorphism

(5.1) fo: ko(F) — GW.(F)

taking the symbol {a1,as,...,a,} to {a1,az,...,a,)) +I"T1(F). Since the graded
ring GW,(F) is generated by the degree one component I(F)/I?(F), the map f.
is surjective.

Note that the map fo : ko(F) — W(F)/I(F) is the inverse of the map &p and
the map f1 : ki (F) — I(F)/I?(F) is the inverse of the map &; (cf. Proposition
4.13).
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Lemma 5.2. Let {{(a,b)) and {(c,d)) be isometric bilinear 2-fold Pfister forms. Then
{a,b} = {e,d} in ko F).

PRrOOF. If the form ((a,b)) is metabolic, then b € D({(a))) or a € F*? by
Lemma 4.14. In particular, if ((a,b)) is metabolic, then {a,b} = 0 in ko(F).
Therefore, we may assume that ((a,b)) is anisotropic. Using Witt Cancellation
1.28, we see that ¢ = ax? + by? — abz? for some x,y,z € F. If ¢ ¢ aF*2, let
w = y? —az? # 0. Then {{a,b)) ~ {((a,bw)) ~ {{c,—abw)) by Lemma 4.15 and
{a,b} = {a,bw} = {¢, —abw} in k2(F) by Lemma 100.3. Hence we may assume
that a« = ¢. By Witt Cancellation, (—b,ab) ~ (—d,ad), so bd € D({(a))), i.e.,
bd = 2% — ay? in F for some x,y € F. Thus {a,b} = {a,d} by Lemma 100.3. O

Proposition 5.3. The homomorphism
ey : I*(F) — ko(F)  given by {(a,b)) — {a,b}

is a well-defined surjection with Ker(eg) = I3(F). Moreover, ey induces an isomor-
phism
&y : I*(F)/I*(F) — kao(F).

PRrOOF. By Lemma 5.2 and the presentation of I?(F) in Theorem 4.22, the
map is well-defined. Since

{(a; b, ¢)) = ((a, ¢)) + (b, ¢)) = {(ad, c)),

we have I3(F) C Ker(ez). As & and f, are inverses of each other, the result
follows. ]

Let F(F) be the free abelian group on the set of isometry classes of nondegener-
ate 1-dimensional symmetric bilinear forms. Then we have a group homomorphism

w:F(F) — k(F)[[t]]* given by (a) — 1+ {a}t.
If a,b € F* satisfy a + b # 0, then by Lemma 100.3, we have
w((a) + (b)) = (1 + {a}t)(1 + {b}t)
=1+ ({a} + {b})t + {a, b}t
=1+ {ab}t + {a,b}t?
=1+ {ab(a+b)*}t + {a + b,ab(a + b)}t*
=w({a+b) + (ab(a + b))).

In particular, w factors through the relation (a) + (b) = (a + b) + (ab(a + b))
for all a,b € F* satisfying a + b # 0, hence induces a group homomorphism

(5.4) w: W(F) — k. (F)[[t]]*

by Theorem 4.7 called the total Stiefel- V/V\hitney map. If b is a nondegenerate sym-
metric bilinear form and « is its class in W (F') define the total Stiefel- Whitney class
w(b) of b to be w(a).

Example 5.5. If b is a metabolic plane, then b = (a) + (—a) in /W(F) for some
a € F*. (Note the hyperbolic plane equals (1) +(—1) in W(F') by Example 1.15(4),
sow(b) =1+ {-1}t as {a,—a} =1 in ky(F) for any a € F*.)
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Lemma 5.6. Let a = ((1) — (a1)) -~ ((1) = (a,,)) in W(F). Let m = 2"~ Then

w(a) = (1 +{a1,...,an,—1,...,—1 }tm)il.
—_——

PROOF. As

o= Y sl a),
g
where the sum runs over all € = (g1,...,&,) € {0,1}" and s. = (—1)=:° we have

w(a) = H (1+ Zei{ai}t)sa.

>4
Let
h=hty,... ta) = [[ U+ ettt + - +entnt)

g

in ((Z/2Z)[[t]])[[t1, - .., tn]], the ring of power series over Z/2Z in variables
£t .t
Substituting zero for any ¢; in h, yields one, so
h=1+t1-tog(ts,...,tn)t" forsome g€ ((Z/2Z)[[)])[[t1,- .-, ta]]-
As {a,a} = {a,—1}, we have

w(oz)_1 =1+{a4,..., an}g({al}, el {an})t"
=1+{a1,....an}g({-1},..., {-1})t".
We have with s a variable,
14+g(s,...,8)t" =h(s,...,s) = H (1+Z€ist)_sa =1+st)" =1+ s
€ i>1
as Y. &; = 1 in Z/27Z exactly m times, so g(s,...,s) = (st)”™ ™ and the result
follows. ]
Let wo(a) =1 and
w(a) =1+ Zwi(a)ti
i>1
for o € W(F) The map w; : W(F) — k;(F) is called the ith Stiefel-Whitney class.
Let o, 8 € W(F). As w(a+ ) = w(a)w(s), for every n > 0, we have the Whitney
Sum Formula
(5.7) wp(a+ G) = Z w;(a)w,; (B).
i+j=n
Remark 5.8. Let K/F be a field extension and « € /V[7(F) Then
resy/p(wi(@)) = wi(ag) in ki(F) forall 4.

Corollary 5.9. Let m = 2"~1. Then wj(f"(F)) =0 forje[l, m—1] and
Wy« T (F) — ko (F) is a group homomorphism mapping ((1)—(a1)) -+ ((1)—(an))
to{a,...,an,—1,...,—1}.

————

m—n
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PrROOF. Let v = ((1)—(a1)) -~ ((1)—(an)). By Lemma 5.6, we have w;(a) = 0
for i € [1, m — 1]. The result follows from the Whitney formula (5.7). O

Let j : I(F) — I(F) be the isomorphism sending (1) — (a) — ((a)). Let @y, be
the composition

Wmlin ()
_

I"(F) 2— I"(F) e (F).
Corollary 5.9 shows that w; = e; for ¢ = 1,2. The map Wy, : I"(F) — ky,(F) is a
group homomorphism with I"*1(F) C Ker(w,,) so it induces a homomorphism

Wy 2 I"(F) /TP F) — ko (F).

We have w; = ¢€; for ¢ = 1,2. The composition w,, o f, is multiplication by
{-1,...,—=1}. In particular, w; and Wy are isomorphisms, i.e.,
—_———
(5.10) I?(F) = Ker(w;) and I*(F) = Ker(us)
and
72
(5.11) I*(F) = Ker(w|7) and IP(F) = Ker(w2|f2(F)).

This gives another proof for Propositions 4.13 and 5.3.

Remark 5.12. Let char F' # 2 and h2 : ko(F) — H?(F) be the norm-residue
homomorphism defined in §101. If b is a nondegenerate symmetric bilinear form,
then hg o wa(b) is the classical Hasse-Witt invariant of b. (Cf. [89], Definition
V.3.17, [121], Definition 2.12.7.) More generally, the Stiefel-Whitney classes defined
above are compatible with Stiefel-Whitney classes defined by Delzant w} in [27],
i.e., h; ow; = wj for all 4 > 0.

Example 5.13. Suppose that K is a real-closed field. (Cf. §95.) Then k;(K) =
Z/2Z for all i > 0 and W(K) = Z @ Z€ with € = (—1) and ¢2 = 1. The Stiefel-
Whitney map w : W(F) — k. (K)[[t]]* is then the map n +m& — (1 +¢)™. In
particular, if b is a nondegenerate form, then w(b) determines the signature of b.
Hence if b and ¢ are two nondegenerate symmetric bilinear forms over K, we have
b ~ ¢ if and only if dim b = dim ¢ and w(b) = w(c).

It should be noted that if b = (a1, ...,ay)) that w(b) is not equal to w(a) =
w([b]) where a = ((1) — (a1)) -+ ((1) — (a,)) in W(F) as the following exercise
shows.

Exercise 5.14. Let m = 2"~1. If b is the bilinear n-fold Pfister form ((a, ..., a,)),
then
wb) =1+ ({-1,...,-1}+{ar,...,an, —1,..., =1 })t"
—_———— —_——
The following fundamental theorem was proved by Orlov-Vishik-Voevodsky
[107] in the case that char F' # 2 and by Kato [78] in the case that char F' = 2.
Fact 5.15. The map f. : k.(F) — GW.(F) is a ring isomorphism.

For i =0, 1,2, we have proven that f; is an isomorphism in (4.11), Proposition
4.13 , and Proposition 5.3, respectively.



32 I. BILINEAR FORMS

6. Bilinear Pfister forms

The isometry classes of tensor products of nondegenerate binary symmetric
bilinear forms representing one are quite interesting. These forms, called Pfister
forms, whose properties over fields of characteristic different from 2 were discovered
by Pfister in [108] and were named after him in [32], generate a filtration of the
Witt ring by the powers of its fundamental ideal I(F'). Properties of these forms
in the case of characteristic 2 were first studied by Baeza in [15]. In this section,
we derive the main elementary properties of these forms.

By Example 1.14, a bilinear 1-fold Pfister form b = ((a)), a € F*, is round,
i.e., D({(a))) = G({(a))). Because of this, the next proposition shows that there are
many round forms and, in particular, bilinear Pfister forms are round.

Proposition 6.1. Let b be a round bilinear form and let a € F*. Then:

(1) The form {{a)) ® b is also Tound.
(2) If ((a)) ® b is isotropic, then either b is isotropic or a € D(b).

PROOF. Set ¢ = ((a)) ® b.

(1): Since 1 € D(b), it suffices to prove that D(¢) C G(c). Let ¢ be a nonzero
value of ¢. Write ¢ = x — ay for some z,y € B(b) If y=0, we have c = = €
D(b) = G(b) C G(c¢). Similarly, y € G(c) if z = 0, hence ¢ = —ay € G(c) as
—a € G({{a))) C G(c).

Now suppose that z and y are nonzero. Since b is round, z,y € G(b) and,
therefore,

c=b 1 (—ab)~b L (—ayz~ )b = ((ayz™ ) @b.
By Example 1.14, we know that 1 — ayz™' € G({(ayz™'))) C G(c). Since z €
G(b) C G(c), we have ¢ = (1 — ayz~— 1)z € G(¢).

(2): Suppose that b is anisotropic. Since ¢ = b L (—ab) is isotropic, there exist
x,y € D(b) with x — ay = 0. Therefore a = zy~* € D(b) as D(b) is closed under
multiplication. O

Corollary 6.2. Bilinear Pfister forms are round.
PRrROOF. 0-fold Pfister forms are round. O
Corollary 6.3. A bilinear Pfister form is either anisotropic or metabolic.

PROOF. Suppose that ¢ is an isotropic bilinear Pfister form. We show that ¢ is
metabolic by induction on the dimension of the ¢. We may assume that ¢ = ({(a)) @ b
for a Pfister form b. If b is metabolic, then so is ¢. By the induction hypothesis,
we may assume that b is anisotropic. By Proposition 6.1 and Corollary 6.2, a €
D(b) = G(b). Therefore ab ~ b hence the form ¢ ~ b L (—ab) ~ b L (—b) is
metabolic. |

Remark 6.4. Note that the only metabolic 1-fold Pfister form is ((1)). If char F' #
2, there is only one metabolic bilinear n-fold Pfister form for all n > 1, viz., the
hyperbolic one. It is universal by Corollary 1.25. If char F' = 2, then there may
exist many metabolic n-fold Pfister forms for n > 1.

Example 6.5. If char F' = 2, a bilinear Pfister form ((a1,...,ay)) is anisotropic if
and only if aq, ..., a, are 2-independent. Indeed, [FQ(al, ceyQp) F2] < 2™ if and
only if ({(a1,...,a,)) is isotropic.
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Corollary 6.6. Let char F' # 2 and z € F*. Then 2™((z)) = 0 in W(F) if and
only if z € D(2"(1)).

PROOF. If z € D(2"(1)), then the Pfister form 2"((z)) is isotropic hence meta-
bolic by Corollary 6.3.

Conversely, suppose that 2"((z)) is metabolic. Then 2"(1) = 2"(z) in W(F).
If 27(1) is isotropic, it is universal as char F' # 2, so z € D(2"(1)). If 2"(1) is
anisotropic, then 2"(1) ~ 2"(z) by Proposition 2.4, so z € G(2"(1)) = D(2"(1))
by Corollary 6.2. O

As additional corollaries, we have the following two theorems of Pfister (cf.
[109]). The first generalizes the well-known 2-, 4-, and 8-square theorems arising
from quadratic extensions, quaternion algebras, and Cayley algebras.

Corollary 6.7. D(2"<1>) s a group for every nonnegative integer n.

The level of a field F is defined to be

5(F) := min {n | the element — 1 is a sum of n squares}

or infinity if no such integer exists.
Corollary 6.8. The level s(F') of a field F, if finite, is a power of two.

PROOF. Suppose that s(F) is finite. Then 2" < s(F) < 2""! for some n.
By Proposition 6.1(2), with b = 27(1) and @ = —1, we have —1 € D(b). Hence
s(F) = 2™, O

In [109], Pfister also showed that there exist fields of level 2" for all n > 0.
(Cf. Lemma 31.3 below.)

6.A. Chain p-equivalence of bilinear Pfister forms. Since the isometry
classes of 2-fold Pfister forms are easy to deal with, we use them to study n-
fold Pfister forms. We follow the development in [32] which we extend to all
characteristics. The case of characteristic 2 was also independently done by Arason
and Baeza in [6].

Definition 6.9. Let ay,...,a,,b1,...,b, € F* with n > 1. We say that the forms
{ay,...,a,)) and {{(by,...,b,)) are simply p-equivalent if n = 1 and a; F*? = by F*?
or n > 2 and there exist 7,5 € [1, n] such that

((ai,a;)) >~ ((b;,b;)) with ¢#j and a; =0 forall [ #4,j.

We say bilinear n-fold Pfister forms b and ¢ are chain p-equivalent if there exist
bilinear n-fold Pfister forms bo, ..., b,, for some m such that b = by, ¢ = b,, and
b; is simply p-equivalent to b;;1 for each ¢ € [0, m — 1].

Chain p-equivalence is clearly an equivalence relation on the set of anisotropic
bilinear forms of the type {(a1,...,a,)) with a1,...,a, € F* and is denoted by
~. As transpositions generate the symmetric group, we have {(a1,...,a,)) =
{(@o(1y, - --»ao(n))) for every permutation o of {1,...,n}. We shall show the fol-
lowing result:

Theorem 6.10. Let {({(a1,...,a,)) and

<<CL1, .. Cln>>

—

(b1,...,bn)) be anisotropic. Then

{(bry -+ bu))
if and only if
(a1, an)) = (b1, ..., bn)).
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Of course, we need only show isometric anisotropic bilinear Pfister forms are
chain p-equivalent. We shall do this in a number of steps. If b is an n-fold Pfister
form, then we can write b ~ b’ L (1). If b is anisotropic, then b’ is unique up to
isometry and we call it the pure subform of b.

Lemma 6.11. Suppose that b = {((a1,...,a,)) is anisotropic. Let —b € D(b').
Then there exist by, ..., b, € F* such that b = {(b,ba,...,by)).

PROOF. We induct on n, the case n = 1 being trivial. Let ¢ = ({(a1,...,an_1))
so b’ ~¢ 1L —a,c by Witt Cancellation 1.28. Write

—b=—z+ayy with —zeD(), —ye D).

If y = 0, then = # 0 and we finish by induction, so we may assume that 0 # y =
y1 + 22 with —y; € D(¢/) and 2z € F. If y; # 0, then ¢ = ({(y1,...,yn_1)) for some
y; € F* and, using Lemma 4.15, we get

(6.12) c= (Y1, Yn—1,an)) = (Y1, s Yn-1, —any) = {a1,...,Qn-1, —any)).

This is also true if y; = 0. If # = 0, we are done. If not ¢ = ((x,x2,...,Ty_1)) for
some z; € F* and

b~ <<£L’, T2y yTn—1, _any>> ~ <<an$y» T2yeveyTp—1, —AnY + il'>>
~ <<G/nIy, T2, ..y Tn—1, b>>
by Lemma 4.15(2) as needed. O

The argument to establish equation (6.12) yields:

Corollary 6.13. Let b = ((z1,...,2y)) andy € D(b). Let z € F*. If b @ ((2)) is
anisotropic, then {(T1,..., &y, 2)) = {(x1,...,2Tn,y2)).

We also have the following generalization of Lemma 4.14:

Corollary 6.14. Let b be an anisotropic bilinear Pfister form over F and let a €
F*. Then {{a)) - b = 0 in W(F) if and only if either a € F*? or b ~ (b)) ® ¢
for some b € D({(a))) and bilinear Pfister form c. In the latter case, ((a,b)) is
metabolic.

ProoF. Clearly ((a,b)) = 0 in W(F) if b € D({(a))). Conversely, suppose that
{{(a)) ® b = 0. Hence a € G(b) = D(b) by Corollary 6.2. Write a = 22 — b for
some x € F and —b € D(b'). If b = 0, then a € F*2. Otherwise, b € D(((a))) and
b ~ ((b)) ® ¢ for some bilinear Pfister form ¢ by Lemma 6.11. O

The following generalization of Lemma 6.11 is very useful in computation and
is the key to proving further relations among Pfister forms.

Proposition 6.15. Let b = ({(a1,...,am)) and ¢ = ((b1,...,byn)) be such that b ® ¢
is anisotropic. Let —c € D(b® '), then

<<a17"‘7a’m7b17"'abn>> ~ <<CL1,...,am761762,...76n,1,c>>
for some c¢y,...,chn_1 € F*.

Proor. We induct on n. If n = 1, then —¢ = yb; for some —y € D(b) and this
case follows by Corollary 6.13, so we assume that n > 1. Let 0 = ((by,...,bp—1)).
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Then g: ~ b0 L ? so bfcv’ ~b,b®0 L b®0. Write 0 # —c = b,y — z with
—yeDb®c)and —z € D(b® ). If z=0, then z # 0 and
{ary ... am,b1,y ... bn)) = (@1, ..y Qm, b1, ... bp—1, —ybn))
by Corollary 6.13 and we are done. So we may assume that z # 0. By induction
(a1, ..., amyb1, ... bp_1)) = (a1, ..., Qmy €1, C2y e ooy Creay 2))

for some cy,...,¢ch—2 € F*. If y = 0, tensoring this by (1,—b,) completes the
proof, so we may assume that y # 0. Then

<<a’17 R 7am7b17 A 7bn>> ~ <<a17 A "am7b17 . '7bn—17 —ybn>>

= (a1, m,y 1y ey Creay 2, —Yby)) = (a1, ..., Ay €y - ooy C—2,y 2 — Ybn, 2y ))
~ <<a11 ceey @y Cly ..., Cp—2,C, Zybn»
by Lemma 4.15(2). This completes the proof. O

Corollary 6.16 (Common Slot Property). Let
(a1, ...,apn—1,2)) and {(b1,...,bp_1,y))

be isometric anisotropic bilinear forms. Then there exists a z € F* satisfying
{ar, ... an—1,2)) = {a1,...,an—1,2)) and {by,...,bu_1,2)) = {{b1,...,bn_1,9)).

PRrROOF. Let b = {(a1,...,an—1)) and ¢ = {(by,...,bp—1)). Asab—yc=10b"—¢
in W(F), the form xb L —yc is isotropic. Hence there exists a z € D(xzb) N D(yc).
The result follows by Proposition 6.15. O

A nondegenerate symmetric bilinear form b is called a general bilinear n-fold
Pfister form if b ~ ac for some a € F* and bilinear n-fold Pfister form ¢. As Pfister
forms are round, a general Pfister form is a Pfister form if and only if it represents
one.

Corollary 6.17. Let ¢ and b be general anisotropic bilinear Pfister forms. If ¢ is
a subform of b, then b ~ ¢ ® 0 for some bilinear Pfister form 0.

PROOF. If ¢ = ccq for some Pfister form ¢; and ¢ € F*, then ¢; is a subform of
cb. In particular, cb represents one, so it is a Pfister form. Replacing b by cb and
¢ by cc, we may assume both are Pfister forms.

Let ¢ ~ ((a1,...,an)) with a; € F*. By Witt Cancellation 1.28, we have ¢ is
isometric to a subform of b’, hence b ~ {(a;))®0; for some Pfister form 9; by Lemma
6.11. By induction, there exists a Pfister form 0 satisfying b ~ (a1, ..., ax)) ® 0.
By Witt Cancellation 1.28, we have (a1, ...,ar)) ® {(ag+1,...,ay,)) is a subform
of ((a1,...,a)) ® 0 so —ap41 € D({(a1,...,ax)) ®0}). By Proposition 6.15, we
complete the induction step. [

Let b and ¢ be general Pfister forms. We say that ¢ divides b if b ~ ¢ ® 0 for
some Pfister form 0. The corollary says that ¢ divides b if and only if it is isometric
to a subform of b.

We now prove Theorem 6.10.

PrROOF. Let a = ((a1,...,ay)) and b = {(b1,...,b,)) be isometric over F'.

Clearly we may assume that n > 1. By Lemma 6.11, we have a = {(b1, a5, ..., a}))
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for some @) € F*. Suppose that we have shown a = ((b1,...,bn,a,, ,...,a})) for
some m. By Witt Cancellation 1.28,

(b1, bm)) @ (brg1s -5 b)) = (b1, b)) ® (a5 - - -5 an),
$0 —bm41 € D({(b1,...,bw) ® ({(al,41,...,al))’). By Proposition 6.15, we have

r'n

a= <<bl7 (AR bm+1a a/r:1+23 RN (ZZ»
for some a] € F*. This completes the induction step. O

We need the following theorem of Arason and Pfister (cf. [10]):

Theorem 6.18 (Hauptsatz). Let 0 # b be an anisotropic form lying in I™(F).
Then dimb > 2™,

We shall prove this theorem in Theorem 23.7 below. Using it we show:

Corollary 6.19. Let b and ¢ be two anisotropic general bilinear n-fold Pfister
forms. If b = ¢ mod I"TY(F), then b ~ ac for some a € F*. In addition, if
D(b) N D(c) # 0, then b ~ c.

PrOOF. Choose a € F* such that b 1 —ac is isotropic. By the Hauptsatz,
this form must be metabolic. By Proposition 2.4, we have b ~ ac.

Suppose that x € D(b) N D(¢). Then b 1 —c is isotropic and one can take
a=1. (I

Theorem 6.20. Let ay,...,an,b1,...,b, € F*. The following are equivalent:
(1) {ay,...,an)) = {{b1,...,by)) in W(F).
(2) {a1,...,an)) = {b1,...,by)) mod I"T1(F).
(3) {a1,...,an} {b1,...,bn} in K,(F)/2K,(F).

PROOF. Let b = {{a1,...,a,)) and ¢ = {((by,...,b,)). As metabolic Pfister
forms are trivial in W(F) and any bilinear n-fold Pfister form lying in I"!(F)
must be metabolic by the Hauptsatz 6.18, we may assume that b and ¢ are both
anisotropic.

(2) = (1) follows from Corollary 6.19.
(1) = (3): By Theorem 6.10, we have (a1, ...,an)) = (b1, ...,bn)), so it suffices
to show that (3) holds if
((as, a;j)) ~ ((b;, b;)) with i#j and a =0 forall [#4,j].
As {ai,a;} = {b;,b;} by Proposition 5.3, statement (3) follows.
(3) = (2) follows from (5.1). O

Arason proved and used the Common Slot Property 6.16 in [4] to give an
independent proof in the case of characteristic different from 2 of Theorem 6.20
which was first proven in [32].

6.B. Linkage of bilinear Pfister forms. We derive some further properties
of bilinear Pfister forms that we shall need later.

Proposition 6.21. Let by and by be two anisotropic general bilinear Pfister forms.
Let ¢ be a general r-fold Pfister form with r > 0 that is isometric to a subform of
b1 and to a subform of ba. If i(by L —bs) > 27, then there exists a k-fold Pfister
form 0 with k > 0 such that ¢ @0 is isometric to a subform of by and to a subform
of by. Furthermore, i(by L —by) = 27FF,
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Proor. By Corollary 6.17, there exist Pfister forms 0; and 05 such that b; ~
c®0; and by >~ ¢c® 0. Let b = b; L —bsy. As b is isotropic, b; and by have a
common nonzero value. Dividing the b; by this nonzero common value, we may
assume that the b; are Pfister forms. We have

b~c® (0] L —05) L (¢ L —c).

The form ¢ L —c is metabolic by Example 1.22(2) and i(b) > dime¢. Therefore,
the form ¢ ® (9} L —0}) is isotropic, hence there is a € D(¢ ® 0}) N D(c¢ ® 05). By
Proposition 6.15, we have by ~ ¢ ® {((—a)) ® ¢; and by ~ ¢ ® ((—a)) ® ey for some
bilinear Pfister forms ¢; and ey. As

b~ e®(ef L—e)) L (c®((—a)) L —c®(—a)),
either i(b) = 2" or we may repeat the argument. The result follows. O

If a general bilinear r-fold Pfister form ¢ is isometric to a common subform of
two general Pfister forms b; and bs, we call it a linkage of b; and bs and say that by
and by are r-linked. The integer m = max {r | by and by are r—linked} is called
the linkage number of b; and by. The proposition says that i(by L —by) = 2™. If
by and by are n-fold Pfister forms and r = n — 1, we say that by and by are linked.
By Corollary 6.17 the linkage of any pair of bilinear Pfister forms is a divisor of
each. The theory of linkage was first developed in [32].

If b is a nondegenerate symmetric bilinear form over F, then the annihilator of
bin W(F),

annyy (p)(b) :== {c € W(F) | b-c=0}
is an ideal in W(F'). When b is a Pfister form this ideal has a nice structure that
we now establish. First note that if b is an anisotropic Pfister form and x € D(b),
then, as b is round by Corollary 6.2, we have ((z)) @ b ~ b L —ab ~b L —bis
metabolic. It follows that ((x)) € anny (py(b). We shall show that these binary
forms generate annyy()(b). This will follow from the next result, also known as
the Pfister-Witt Theorem.

Proposition 6.22. Let b be an anisotropic bilinear Pfister form and ¢ a nonde-
generate symmetric bilinear form. Then there exists a symmetric bilinear form 0
satisfying all of the following:

(1) b-c=b-0in W(F).

(2) b® 0 is anisotropic. Moreover, dimd < dimc¢ and dimd = dim¢ mod 2.

(3) ¢ — 0 lies in the subgroup of W(F) generated by {(z)) with x € D(b).

PROOF. We prove this by induction on dime¢. By the Witt Decomposition
Theorem 1.27, we may assume that ¢ is anisotropic. Hence ¢ is diagonalizable by
Corollary 1.19, say ¢ = (x1,...,2,) with 2; € F*. If b ® ¢ is anisotropic, the
result is trivial, so assume it is isotropic. Therefore, there exist aq,...,a, € ﬁ(b)
not all zero such that aix1 + -+ anz, = 0. Let b; = a; if a; # 0 and b; = 1
otherwise. In particular, b; € G(b) for all i. Let ¢ = (bix1,...,b,x,). Then
c—e=z1({(b1)) + -+ 2,{(b,)) with each b; € D(b) as b is round by Corollary 6.2.
Since e is isotropic, we have b-¢ = b - (¢)sn, in W(F). As dim(e)s, < dime, by
the induction hypothesis there exists 0 such that b ® 0 is anisotropic and ¢ — 9 and
therefore ¢ — 0 lies in the subgroup of W (F') generated by ((z)) with = € D(b). As
b ® 0 is anisotropic, it follows by (1) that dimd < dimc. It follows from (3) that
the dimension of ¢ — ? is even. O
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Corollary 6.23. Let b be an anisotropic bilinear Pfister form. Then anny gy (b)
is generated by {(x)) with x € D(b).

If b is 2-dimensional, we obtain stronger results first established in [34].

Lemma 6.24. Let b be a binary anisotropic bilinear form over F and ¢ an anisotro-
pic bilinear form over F such that b ® ¢ is isotropic. Then ¢ ~ 0 L ¢ for some
symmetric binary bilinear form 0 annihilated by b and symmetric bilinear form e
over F.

PROOF. Let {e, f} be a basis for V. By assumption there exist vectors v, w €
V. such that e ® v + f ® w is an isotropic vector for b ® ¢. Choose a 2-dimensional
subspace W C V; containing v and w. Since ¢ is anisotropic, so is ¢|y . In particular,
¢|w is nondegenerate, hence ¢ = ¢|y L c|y+ by Proposition 1.6. As b® (c|w) is an
isotropic general 2-fold Pfister form, it is metabolic by Corollary 6.3. (]

Proposition 6.25. Let b be a binary anisotropic bilinear form over F and ¢ an
anisotropic form over F. Then there exist symmetric bilinear forms ¢; and co over
F such that ¢ >~ ¢; L ¢g with b ® ¢ anisotropic and ¢; ~ 0, L --- 1 0,, where each
0; is a binary bilinear form annihilated by b. In particular, if detd; = —d;F*2,
then d; € D(b) for each i.

PROOF. The first statement of the proposition follows from the lemma and the
second from its proof. O

Corollary 6.26. Let b be a binary anisotropic bilinear form over F and ¢ an
anisotropic form over F annihilated by b. Then ¢ ~ 0y L --- 1L 9, for some
symmetric binary forms 0; annihilated by b for i € [1, n).



CHAPTER 11

Quadratic Forms

7. Foundations

In this section, we introduce the basic properties of quadratic forms over an
arbitrary field F'. Their study arose from the investigation of homogeneous poly-
nomials of degree two. If the characteristic of F' is different from 2, then this study
and that of symmetric bilinear forms are essentially the same as the diagonal of a
symmetric bilinear form is a quadratic form and each determines the other by the
polar identity. However, they are different when the characteristic of F' is 2. In
general, quadratic forms unlike bilinear forms have a rich geometric flavor. When
studying symmetric bilinear forms, we saw that one could easily reduce to the study
of nondegenerate forms. For quadratic forms, the situation is more complex. The
polar form of a quadratic form no longer determines the quadratic form when the
underlying field is of characteristic 2. However, the radical of the polar form is
invariant under field extension. This leads to two types of quadratic forms. One is
the study of totally singular quadratic forms, i.e., those whose polar bilinear form
is zero. Such quadratic forms need not be trivial in the case of characteristic 2.
The other extreme is when the radical of the polar form is as small as possible
(which means of dimension zero or one), this gives rise to nondegenerate quadratic
forms. As in the study of bilinear forms, certain properties are not invariant under
base extension. The most important of these is anisotropy. Analogous to the bi-
linear case, an anisotropic quadratic form is one having no nontrivial zero, i.e., no
isotropic vectors. Every vector that is isotropic for the quadratic form is isotropic
for its polar form. If the characteristic is 2, the converse is false as every vector
is an isotropic vector of the polar form. As in the previous chapter, we shall base
this study on a coordinate free approach and strive to give uniform proofs in a
characteristic free fashion.

Definition 7.1. Let V be a finite dimensional vector space over F. A quadratic
formon V is a map ¢ : V — F satisfying:
(1) ¢(av) = a’p(v) forallv € V and a € F.
(2) (Polar Identity) b, : V x V — F defined by
by (v, w) = (v +w) — p(v) — p(w)
is a bilinear form.

The bilinear form b, is called the polar form of of . We call dim V' the dimension
of the quadratic form and also write it as dim . We write ¢ is a quadratic form
over F if ¢ is a quadratic form on a finite dimensional vector space over I’ and
denote the underlying space by V.

Note that the polar form of a quadratic form is automatically symmetric and
even alternating if char F' = 2. If b: V x V — F'is a bilinear form (not necessarily

39
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symmetric), let ¢y : V' — F be defined by ¢p(v) = b(v,v) for all v € V. Then
vp is a quadratic form and its polar form by, is b+ b'. We call pp the associated
quadratic form of b.

In particular, if b is symmetric, the composition b +— @y +— b
by 2 as is the composition ¢ +— b, — @y, .

Let ¢ and 1 be two quadratic forms. An isometry f : ¢ — 1 is a linear map
f: Vi, = Vi such that ¢(v) = L/J(f(v)) for all v € V,,. If such an isometry exists,
we write ¢ ~ ¢ and say that ¢ and 1) are tsometric.

o, 1s multiplication

Example 7.2. If ¢ is a quadratic form over F and v € V satisfies p(v) # 0, then
the (hyperplane) reflection

Tyip— @ givenby wsw—by,(v,w)e()
is an isometry.

Let V be a finite dimensional vector space over F'. Define the hyperbolic form
of V' to be the form H(V) = pg on V @ V* defined by

L)0]1']1<’U7 f) = f(’U)

for all v € V and f € V*. Note that the polar form of ¢ is by, =Hi (V). If p is a
quadratic form isometric to H(W) for some vector space W, we call ¢ a hyperbolic
form. The form H(F') is called the hyperbolic plane and we denote it simply by H.
If ¢ ~ H, two vectors e, f € V,, satisfying p(e) = ¢(f) = 0 and b, (e, f) =1 are
called a hyperbolic pair.

Let ¢ be a quadratic form on V and let {v1,...,v,} be a basis for V. Let
a;; = p(v;) for all ¢ and

s — b, (vi,v;) forall i < j,
* 0 for all ¢ > j.

As

n
e(D @) = Y aijzizy,
i=1 i
the homogeneous polynomial on the right hand side as well as the matrix (a;;)
determined by ¢ completely determines ¢.

Notation 7.3. (1) Let a € F. The quadratic form on F given by o(v) = av? for
all v € F will be denoted by (a), or simply (a).

(2) Let a,b € F. The 2-dimensional quadratic form on F? given by o(x,y) =
ar?® + xy + by? will be denoted by [a,b]. The corresponding matrix for ¢ in the

standard basis is
a 1
=5 3),

while the corresponding matrix for b, is

2a 1 _ +
(o D) oain
Remark 7.4. Let ¢ be a quadratic form on V over F. Then the associated polar
form b, is not the zero form if and only if there are two vectors v, w in V satisfying
b(v,w) = 1. In particular, if ¢ is a nonzero binary form, then ¢ ~ [a,b] for some
a,beF.
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Example 7.5. Let {e, f} be a hyperbolic pair for H. Using the basis {e,ae + f},
we have H ~ [0,0] ~ [0, a] for any a € F.

Example 7.6. Let char F =2 and p : F — F be the Artin-Schreier map p(z) =
22+z. Let a € F. Then the quadratic form [1, a] is isotropic if and only if a € p(F).

Let V be a finite dimension vector space over F'. The set Quad(V) of quadratic
forms on V is a vector space over F'. We have linear maps

Bil(V) — Quad(V) given by b +— @y
and
Quad(V) — Sym(V) given by ¢+ by,.
Restricting the first map to Sym(V') and composing shows the compositions
Sym(V) — Quad(V) — Sym(V) and Quad(V) — Sym(V) — Quad(V)

are multiplication by 2. In particular, if char F' # 2 the map Quad(V) — Sym(V)
given by ¢ ~— b, is an isomorphism inverse to the map Sym(V) — Quad(V) by
b — @p. For this reason, we shall usually identify quadratic forms and symmetric
bilinear forms over a field of characteristic different from 2.

The correspondence between quadratic forms on a vector space V of dimension
n and matrices defines a linear isomorphism Quad(V) — T, (F), where T, (F) is
the vector space of n x n upper-triangular matrices. Therefore by the surjectivity of
the linear epimorphism M, (F') — T,,(F) given by (a;;) — (b;;) with b;; = a;; +aj;
for all ¢ < j, and b;; = ay; for all 4, and b;; = 0 for all j < ¢ implies that the linear
map Bil(V) — Quad (V') given by b — ¢y is also surjective. We, therefore, have an
exact sequence

0 — Alt(V) — Bil(V) — Quad(V) — 0.
Exercise 7.7. The natural exact sequence
0= NV =V @pV* = S3(V*) =0
can be identified with the sequence above via the isomorphism
S2(V*) — Quad(V) givenby f-g— ppg:v— f(v)g(v).

If o, € Quad(V), we say @ is similar to ¢ if there exists an a € F* such that
Y~ ay.

Let ¢ be a quadratic form on V. A vector v € V is called anisotropicif p(v) # 0
and isotropic if v # 0 and p(v) = 0. We call ¢ anisotropic if there are no isotropic
vectors in V and isotropic if there are.

If W C V is a subspace, the restriction of ¢ on W is the quadratic form whose
polar form is given by by, = b,|w. It is denoted by ¢|w and called a subform of
¢. Define W+ to be the orthogonal complement of W relative to the polar form of

. The space W is called a totally isotropic subspace if |y = 0. If this is the case,
then by, |w = 0.

Example 7.8. If F' is algebraically closed, then any homogeneous polynomial in
more than one variable has a nontrivial zero. In particular, up to isometry, the only
anisotropic quadratic forms over F' are 0 and (1).

Remark 7.9. Let ¢ be a quadratic form on V over F. If ¢ = p} for some symmet-
ric bilinear form b, then ¢ is isotropic if and only if b is. In addition, if char F' # 2,
then ¢ is isotropic if and only if its polar form b, is. However, if char F' = 2, then
every 0 # v € V is an isotropic vector for b,.



42 II. QUADRATIC FORMS

Let 9 be a subform of a quadratic form . The restriction of p on (Vy,)* (with
respect to the polar form by,) is denoted by 1+ and is called the complementary form
of Y in . If V, = W @ U is a direct sum of vector spaces with W C U+, we write
¢ = ¢|lw L |y and call it an internal orthogonal sum. So p(w +u) = p(w) + ¢(u)
for all w € W and u € U. Note that |y is a subform of (¢|w )= .

Remark 7.10. Let ¢ be a quadratic form with rad b, = 0. If ¢ is a subform of ¢,
then by Proposition 1.5, we have dim " = dim ¢ — dim and therefore ¢+ = 1.

Let ¢ be a quadratic form on V. We say that ¢ is totally singular if its polar
form b, is zero. If char F' # 2, then ¢ is totally singular if and only if ¢ is the zero
quadratic form. If char F' = 2 this may not be true. Define the quadratic radical of
¢ by

rad ¢ := {v € rad by, | p(v) = 0}.
This is a subspace of rad b,. We say that ¢ is regular if rad ¢ = 0. If char F' # 2,
then radp = radb,. In particular, ¢ is regular if and only if its polar form is
nondegenerate. If char F' = 2, this may not be true.

Example 7.11. Every anisotropic quadratic form is regular.

Clearly, if f : ¢ — 9 is an isometry of quadratic forms, then f(rad b,) = rad by
and f(rad p) = rad .

Let ¢ be a quadratic form on V and = : V — V = V/rad ¢ the canonical
epimorphism. Let @ denote the quadratic form on V' given by (v) := ¢(v) for all
v € V. In particular, the restriction of % to rad b,/ rad ¢ determines an anisotropic
quadratic form. We have:

Lemma 7.12. Let ¢ be a quadratic form on'V and W any subspace of V' satisfying
V=radp® W. Then

Y = (P|rad<p uE <p|W = 0|rad<p L <P|W

with o|lw ~ @ the induced quadratic form on V/rad ¢. In particular, p|w is unique
up to isometry.

If ¢ is a quadratic form, the form ¢|y, unique up to isometry will be called its
regular part. The subform |y in the lemma is regular but b, may be degenerate
if char F = 2. To obtain a further orthogonal decomposition of a quadratic form,
we need to look at the regular part. The key is the following:

Proposition 7.13. Let ¢ be a reqular quadratic form on V. Suppose that V' con-
tains an isotropic vector v. Then there exists a 2-dimensional subspace W of V
containing v such that plw ~ H.

PRrOOF. As radp = 0, we have v ¢ radb,. Thus there exists a vector w € V
such that a = by, (v,w) # 0. Replacing v by a~'v, we may assume that a = 1. Let
W = Fv @ Fw. Then v,w — p(w)v is a hyperbolic pair. O

We say that any isotropic regular quadratic form splits off a hyperbolic plane.

If K/F is a field extension, let i be the quadratic form on Vi defined by
or(z ®v) = 2%p(v) for all z € K and v € V with polar form by, = (b,)xk.
Although (rad b,)x = rad(b,)x, we only have (rad )k C rad px with inequality
possible.
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Remark 7.14. If K/F is a field extension and ¢ a quadratic form over F, then ¢
is regular if @ is.

The following is a useful observation. The proof analogous to that for Lemma
1.21 shows:

Lemma 7.15. Let ¢ be an anisotropic quadratic form over F. If K/F is purely
transcendental, then @i is anisotropic.

7.A. Nondegenerate quadratic forms. To define nondegeneracy, we use
the following lemma.

Lemma 7.16. Let ¢ be a quadratic form over F'. Then the following are equivalent:

(1) px is reqular for every field extension K/F.
(2) @K is regular over an algebraically closed field K containing F.
(3) ¢ is reqular and dimrad b, < 1.

PROOF. (1) = (2) is trivial.
(2) = (3): As (rady)x C radgpx = 0, we have radp = 0. To show the
second statement, we may assume that F' is algebraically closed. As ¢|iadp, =

Dlraa b,/rad 1S anisotropic and over an algebraically closed field, any quadratic
form of dimension greater than one is isotropic, dimrad b, < 1.

(3) = (1): Suppose that rad px # 0. As radyx C radb,, and radb,, =
(rad by,)k is of dimension at most one, we have rad px = (radb,)x. Let 0 # v €
rad b,. Then v € rad gk, hence p(v) = 0 contradicting rad ¢ = 0. (]

Definition 7.17. A quadratic form ¢ over F' is called nondegenerate if the equiv-
alent conditions of the lemma are satisfied.

Remark 7.18. If K/F is a field extension, then ¢ is nondegenerate if and only if
@k is nondegenerate by Lemma 7.16.

This definition of a nondegenerate quadratic form agrees with the one given in
[86]. It is different than that found in some other texts. The geometric character-
ization of this definition of nondegeneracy explains our definition. In fact, if ¢ is
a nonzero quadratic form on V' of dimension at least two, then the following are
equivalent:

(1) The quadratic form ¢ is nondegenerate.

(2) The projective quadric X, associated to ¢ is smooth. (Cf. Proposition
22.1.)

(3) The even Clifford algebra Cy(p) (cf. §11 below) of ¢ is separable (i.e., is a
product of finite dimensional simple algebras each central over a separable
field extension of F). (Cf. Proposition 11.6.)

(4) The group scheme SO(yp) of all isometries of ¢ identical on rad ¢ is re-
ductive (semi-simple if dim¢ > 3 and simple if dimy > 5). (Cf. [86,
Chapter VIJ.)

Proposition 7.19. (1) The form {(a) is nondegenerate if and only if a € F*.

(2) The form [a,b] is nondegenerate if and only if 1 — 4ab # 0. In particular,
this binary quadratic form as well as its polar form is always nondegenerate if
char F' = 2.

(3) Hyperbolic forms are nondegenerate.

(4) Every binary isotropic nondegenerate quadratic form is isomorphic to H.
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PRrROOF. (1) and (3) are clear.

(2): This follows by computing the determinant of the matrix representing the
polar form corresponding to [a,b]. (Cf. Notation 7.3.)

(4) follows by Proposition 7.13. O

Let ¢; be a quadratic form on V; for i = 1,2. Then their external orthogonal
sum, denoted by ¢1 L 9, is the form on Vi & V4 given by

(o1 L p2)((v1,02)) = @1 (v1) + p2(v2)
for all v; € Vj, i = 1,2. Note that by, 1, = by, L by,.

Remark 7.20. Let char F' # 2. Let ¢ and ¢ be quadratic forms over F'.

(1) The form ¢ is nondegenerate if and only if ¢ is regular.

(2) If ¢ and 1 are both nondegenerate, then ¢ L 9 is nondegenerate as b, 4 =
b, L by.
Remark 7.21. Let char F' = 2. Let ¢ and @ be quadratic forms over F.

(1) If dim ¢ is even, then ¢ is nondegenerate if and only if its polar form by, is
nondegenerate.

(2) If dim ¢ is odd, then ¢ is nondegenerate if and only if dimrad b, = 1 and
¢|rad e, is nonzero.

(3) If ¢ and ¢ are nondegenerate quadratic forms over F' at least one of which
is of even dimension, then ¢ L ¢ is nondegenerate.

The important analogue of Proposition 1.6 is immediate (using Lemma 7.16
for the last statement):

Proposition 7.22. Let ¢ be a quadratic form on V. Let W be a vector subspace
such that by, is a nondegenerate bilinear form. Then @|w is nondegenerate and
o =oplw L olwr. In particular, (¢lw)* = ¢|w.. Further, if ¢ is also nondegen-
erate, then so is |y .

Example 7.23. Suppose that char ' = 2 and a,b,c € F. Let ¢ = [c,a] L [¢,b] and

{e, f, €, f'} be a basis for V,, satisfying p(e) = c = ¢(€'), o(f) =a, o(f') =10,
and by(e, f) =1="0b(¢, f’). Then in the basis {e, f + f',e+ €', f'}, we have

[e,a] L [e,b] = [c,a+b] L H
by Example 7.5.
If n is a nonnegative integer and ¢ is a quadratic form over F', we let
npi=pl.--- L.
————
n
In particular, if n is an integer, we do not interpret ne with n viewed in the field.
For example, if V' is an n-dimensional vector space, H(V') ~ nH.
We denote (a1)q L -+ L (an)q by
(@1,...,an)q orsimply (ai,...,an).

So ¢ =~ (ai,...,an) for some a; € F if and only if V, has an orthogonal basis.
If V, has an orthogonal basis, we say ¢ is diagonalizable.
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Remark 7.24. Suppose that char F' = 2 and ¢ is a quadratic form over F. Then
¢ is diagonalizable if and only if ¢ is totally singular, i.e., its polar form b, = 0. If
this is the case, then every basis for V,, is orthogonal. In particular, there are no
diagonalizable nondegenerate quadratic forms of dimension greater than one.

Exercise 7.25. A quadratic form ¢ is diagonalizable if and only if ¢ = ¢ for
some symmetric bilinear form b.

Example 7.26. Suppose that char F' # 2. If a € F'*| then (a, —a) ~ H.

Example 7.27. (Cf. Example 1.10.) Let char F = 2 and ¢ = (1,a) with a # 0.
If {e, f} is the basis for V, with ¢(e) = 1 and ¢(f) = a, then computing on the
orthogonal basis {e,re + yf} with z,y € F, y # 0 shows ¢ ~ (1,2% + ay?).
Consequently, (1,a) ~ (1,b) if and only if b = 22 + ay? with y # 0.

7.B. Structure theorems for quadratic forms. We wish to decompose a
quadratic form over a field F' into an orthogonal sum of nice subforms. We begin
with nondegenerate quadratic forms with large totally isotopic subspaces. Unlike
the case of symmetric bilinear forms in characteristic 2, 2-dimensional nondegener-
ate isotropic quadratic forms are hyperbolic.

Proposition 7.28. Let ¢ be an 2n-dimensional nondegenerate quadratic form on
V. Suppose that V' contains a totally isotropic subspace W of dimension n. Then
¢ ~ nH. Conversely, every hyperbolic form of dimension 2n contains a totally
isotropic subspace of dimension n.

PRrROOF. Let 0 # v € W. Then by Proposition 7.13 there exists a 2-dimensional
subspace V7 of V' containing v with ¢|y, a nondegenerate subform isomorphic to
H. By Proposition 7.22, this subform splits off as an orthogonal summand. Since
¢|v, is nondegenerate, W NV; is 1-dimensional, so dim W N V- = n — 1. The first
statement follows by induction applied to the totally isotropic subspace W N Vit of
V. The converse is easy. a

We turn to splitting off anisotopic subforms of regular quadratic forms. It is
convenient to write these decompositions separately for fields of characteristic 2
and not 2.

Proposition 7.29. Let char F' # 2 and ¢ a quadratic form on V over F. Then
there exists an orthogonal basis for V. In particular, there exist 1-dimensional
subspaces V; C V, 1 <i<n for somen and an orthogonal decomposition

¢ = @lrade, L wlvy L Loly,
with |y, ~ {a;), a; € F* for alli € [1, n]. In particular,
e ~7r(0) L {(a1,...,an)
with r = dimrad b,,.

PrOOF. We may assume that ¢ # 0. Hence there exists an anisotropic vector
0#wveV. As b, is nondegenerate, ¢|p, splits off as an orthogonal summand
of ¢ by Proposition 7.22. The result follows easily by induction. (]

Corollary 7.30. Suppose that char F' # 2. Then every quadratic form over F is
diagonalizable.
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Proposition 7.31. Let char F' = 2 and ¢ a quadratic form on V over F. Then
there exists 2-dimensional subspaces V; C V, 1 < i < n for some n, a subspace
W Cradb,, and an orthogonal decomposition

¥ = 90|rad(<p) 1 90|W 1 90|V1 Lol @‘Vn

with ¢lv, ~ [a;,b;] nondegenerate, a;,b; € F for all i € [1, n]. Moreover, ¢|w is
anisotropic, diagonalizable, and is unique up to isometry. In particular,

0 ~r0) L {c1,...,¢cs) L]a,b1] L -+ L [an,by)
with r = dimrad ¢ and s =dimW, ¢; € F*, 1 <i <s.

PROOF. Let W C V be a subspace such that radb, =radep & W and V' C V
a subspace such that V' = rad b, ©V’. Then ¢ = @l|raa(e) L @lw L ¢|ys. The form
¢|w is diagonalizable as b, = 0 and anisotropic as W Nrady = 0. By Lemma
7.12, the form ¢[w = (¢[rads,)|w is unique up to isometry. So to finish we need
only show that ¢|y+ is an orthogonal sum of nondegenerate binary subforms of the
desired isometry type. We may assume that V/ # {0}. Let 0 # v € V'. Then there
exists 0 # v’ € V' such that ¢ = b,(v,v’') # 0. Replacing v’ by ¢~'v', we may
assume that b,(v,v") = 1. In particular, ¢|rpygry = [@(v), ©(v')]. As [p(v), (V)]
and its polar form are nondegenerate by Proposition 7.19, the subform ¢|p,gr, is
an orthogonal direct summand of ¢ by Proposition 7.22. The decomposition follows
by Lemma 7.12 and induction. O

Corollary 7.32. Let char F' = 2 and let ¢ be a nondegenerate quadratic form over
F.

(1) If dimy = 2n, then
(Voas [al,bl] 4L [an,bn]

for some a;,b; € F, i € [1, n].
(2) If dimy =2n + 1, then

p~{c) Lay,b1] L -+ L [an,by]
for some a;,b; € F, i € [1, n], and c € F* unique up to F*2.

Example 7.33. Suppose that F' is quadratically closed of characteristic 2. Then
every anisotropic form is isometric to 0, (1) or [1,a] with a € F'\ p(F) where
p : F'— F is the Artin-Schreier map.

Exercise 7.34. Every nondegenerate quadratic form over a separably closed field
F is isometric to nH or (a) L nH for some n > 0 and a € F*.

8. Witt’s Theorems

As with the bilinear case, the classical Witt theorems are more delicate to as-
certain over fields of arbitrary characteristic. We shall give characteristic free proofs
of these. The basic Witt theorem is the Witt Extension Theorem (cf. Theorem 8.3
below). Witt’s original theorem (cf. [139]) has been generalized in various ways.
We use one similar to that given by Kneser (cf. [80, Th. 1.2.2]). We construct the
quadratic Witt group of even-dimensional anisotropic quadratic forms and use the
Witt theorems to study this group.
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To obtain further decompositions of a quadratic form, we need generalizations
of the classical Witt theorems for bilinear forms over fields of characteristic different
from 2.

Let ¢ be a quadratic form on V. Let v and v’ in V satisfy ¢(v) = (v'). If the
vector U = v — v’ is anisotropic, then the reflection (cf. Example 7.2) 75 : ¢ — ¢
satisfies

(8.1) ralv) = /.
What if v is isotropic?

Lemma 8.2. Let ¢ be a quadratic form on V with polar form b. Let v and v’
liein V and o = v —v'. Suppose that o(v) = (V') and p(¥) = 0. Ifw €V is
anisotropic and satisfies that both b(w,v) and b(w,v") are nonzero, then the vector
w' = v — 7, (v") is anisotropic and (T, 0 Ty ) (V) =0V’

PROOF. As w' =¥+ b(v', w)p(w) lw, we have
p(w') = @(0) + b(7, b(v', w)p(w) ~'w) + bV, w)*p(w) ™!
= b(v,w)b(v', w)p(w) ™t # 0.
It follows from (8.1) that 7, (v) = 7, (v"), hence the result. O

Theorem 8.3 (Witt Extension Theorem). Let ¢ and ¢’ be isometric quadratic
forms on V and V' respectively. Let W C V and W' C V' be subspaces such
that W Nradb, = 0 and W' Nradb, = 0. Suppose that there is an isometry
a:olw — @ |wr. Then there exists an isometry & : ¢ — ¢’ such that (W) = W'
and &lw = a.

ProOF. It is sufficient to treat the case V.= V’/ and ¢ = ¢’. Let b denote
the polar form of ¢. We proceed by induction on n = dim W, the case n = 0
being obvious. Suppose that n > 0. In particular, ¢ is not identically zero. Let
u € V satisfy ¢(u) # 0. As dim W N (Fu)t > n — 1, there exists a subspace Wy C
W of codimension one with Wy C (Fu)*. Applying the induction hypothesis to
B = alw, : lw, = ©lawy), there exists an isometry B : ¢ — o satisfying B(Wp) =
a(Wy) and Blw, = 8. Replacing W’ by 3~1(W’), we may assume that Wy C W’
and a|w, is the identity.

Let v be any vector in W \ Wy and set v/ = «a(v) € W'. It suffices to find
an isometry 7y of ¢ such that v(v) = v and v|w, = Id, the identity on Wy. Let
v =wv - as above and S = W;-. Note that for every w € Wy, we have a(w) = w,
hence

b(v,w) = b(v,w) — b(a(v), a(w)) =0,
ie,v€ES.

Suppose that ¢(v) # 0. Then 75(v) = v’ using (8.1). Moreover, 75(w) = w for
every w € Wy as v is orthogonal to Wy. Then v = 75 works. So we may assume
that ¢(7) = 0. We have

0=¢(v) = ¢(v) = b(v,0') + ¢(v) = b(v,v) = b(v,v') = b(v, V),
i.e., v is orthogonal to v. Similarly, v is orthogonal to v'.
By Proposition 1.5, the map Iy : V. — W™ is surjective. In particular, there
exists u € V such that b(u,Wy) = 0 and b(u,v) = 1. In other words, v is not
orthogonal to 9, i.e., the intersection H = (Fv)' NS is a subspace of codimension
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one in S. Similarly, H' = (Fv')* N S is also a subspace of codimension one in S.
Note that v € HN H'.

Suppose that there exists an anisotropic vector w € S such that w ¢ H and
w ¢ H'. By Lemma 8.2, we have (7, o 7,7 )(v) = v’ where

w =v—T7,(V) =0+ b, w)p(w) w e S.

Asw,w’ € S, the map 7, 0 7, is the identity on Wy. Setting v = 7, 0 T,y produces
the desired extension. Consequently, we may assume that ¢(w) = 0 for every
weS\(HUH).

Case 1: |F| > 2.

Let w; € HN H' and we € S\ (H U H’'). Then awy +wy € S\ (H U H') for
any a € F, so by assumption

0 = p(aw; +wy) = ach(wl) + ab(wy, wa) + p(ws).

Since |F| > 2, we must have ¢(w1) = b(w1, w2) = ¢(wz) = 0. So (HNH') =0,
©(S\(HUH')) =0, and HNH' isorthogonal to S\ (HUH’), (i.e., b(z,y) =0
forallz €e HNH and y € S\ (HUH')).

Let w € Hand w' € S\(HUH'). As |F| > 2, we see that w+aw’ € S\(HUH')
for some a € F. Hence the set S\ (H U H') generates S. Consequently, H N H' is
orthogonal to S. In particular, b(7, S) = 0. Thus H = H’. It follows that ¢(H) = 0
and (S \ H) =0, hence ¢(S) = 0, a contradiction. This finishes the proof in this
case.

Case 2: F =5, the field of two elements.

As HU H' # S, there exists a w € S such that b(w,v) # 0 and b(w,v") # 0.
As F =Ty, this means that b(w,v) = 1 = b(w,v’). Moreover, by our assumptions,
©(7) = 0 and p(w) = 0. Consider the linear map

v:V—=V givenby ~(x)=2x+b(7,2)w+ b(w,z)d.
Note that b(w,7) = b(w,v) + b(w,v’) = 1+ 1 = 0. A simple calculation shows

that 42 = Id and <p(’y(x)) = p(z) for any x € V, i.e., v is an isometry. Moreover,
v(v) = v+ o ='. Finally, v|w, = Id since w and o are orthogonal to Wj. O

Theorem 8.4 (Witt Cancellation Theorem). Let ¢, ¢’ be quadratic forms on V
and V' respectively, and ¥, ' quadratic forms on W and W' respectively, with
radby = 0 =rad by . If

pLly~¢ Ly and =i,
then o ~ .
PRrROOF. Let f : o - ¢’ be an isometry. By ‘the Witt Extension Theorem, f
extends to an isometry f: o L ¢ — ¢’ L)', As f takes V =W+ to V! = (W')+,
the result follows. (]

Witt Cancellation together with our previous computations allow us to derive
the decomposition that we want.

Theorem 8.5 (Witt Decomposition Theorem). Let ¢ be a quadratic form on V.
Then there exist subspaces Vi and Vi of V' such that ¢ = ¢lraaye L @lvi L ¢lv,
with @ly, anisotropic and vy, hyperbolic. Moreover, ¢|y, and ply, are unique up
to isometry.
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ProOOF. We know that ¢ = ¢|rad, L |y with ¢y on V/ unique up to isom-
etry. Therefore, we can assume that ¢ is regular. Suppose that ¢y is isotropic.
By Proposition 7.13, we can split off a subform as an orthogonal summand isomet-
ric to the hyperbolic plane. The desired decomposition follows by induction. As
every hyperbolic form is nondegenerate, the Witt Cancellation Theorem shows the
uniqueness of p|y, up to isometry hence ¢y, is unique by dimension count. ([

8.A. Witt equivalence. Using the Witt Decomposition Theorem 8.5, we can
define an equivalence of quadratic forms over a field F'.

Definition 8.6. Let ¢ be a quadratic form on V and ¢ = ¢lrady L ¢y, L ¢lv,
be the decomposition in the theorem. The anisotropic form ¢l|y,, unique up to
isometry, will be denoted ¢, and called the anisotropic part of ¢. As ¢y, is
hyperbolic, dim Vo = 2n for some unique nonnegative number n. The integer n
is called the Witt index of ¢ and denoted by ig(¢). We say that two quadratic
forms ¢ and ¢ are Witt-equivalent and write ¢ ~ 1 if dimrad ¢ = dimrad ¢ and
Van == Yan. Equivalently, ¢ ~ 1 if and only if ¢ L nH ~ 1 L mH for some n and
m.

Note that if ¢ ~ 1), then @i ~ ¥k for any field extension K/F.
Witt cancellation does not hold in general for nondegenerate quadratic forms
in characteristic 2. We show in the next result, Proposition 8.8, that

(8.7) [a,b] L (a) ~H L {a)

if charF = 2 for all a,b € F with a # 0. But [a,b] =~ H if and only if [a,}]
is isotropic by Proposition 7.19(4). Although Witt cancellation does not hold in
general in characteristic 2, we can use the following:

Proposition 8.8. Let p be a nondegenerate quadratic form of even dimension over
a field F of characteristic 2. Then p L {(a) ~ {(a) for some a € F* if and only if
p ~ la,b] for someb € F.

PROOF. The case char F' # 2 is easy, so we can assume that char F = 2.
Let ¢ = [a,b] L (a) with a,b € F and a # 0. Clearly, ¢ is isotropic and it is
nondegenerate as ¢[radp, = (a). It follows by Proposition 7.13 that [a,b] L (a) ~
H L {(a) ~ (a). Since p ~ [a,b], we have p L {(a) ~ (a).

Conversely, suppose that p L {(a) ~ {(a) for some a € F*. We prove the
statement by induction on n = dim p. If n = 0, we can take b = 0. So assume that
n > 0. We may also assume that p is anisotropic. By assumption, the form p L (a)
is isotropic. Therefore, a = p(v) for some v € V,, and we can find a decomposition
p=p L [a,d] for some nondegenerate form p’ of dimension n —2 and b € F. As
[a,d] L (@) ~H L (a) by the first part of the proof, we have

@) ~p L ()= L [a,d] L {a) ~ 4 L {a)
By the induction hypothesis, p’ ~ [a,c] for some ¢ € F. Therefore, by Example
7.23,
p=7p Lla,d] ~la,c] L[a,d ~a,c+d LH~ [a,c+d. O
Remark 8.9. Let ¢ and ¢ be quadratic forms over F.

(1) If ¢ is nondegenerate and anisotropic over F' and K/F a purely transcen-
dental extension, then ¢k remains anisotropic by Lemma 7.15. In particular, for
any nondegenerate ¢, we have iyp(¢) = ip(¢K).
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(2) Let a € F*. Then ¢ ~ av if and only if v, ~ at),, as any form similar to
a hyperbolic form is hyperbolic.

(3) If char FF = 2, the quadratic form ¢,, may be degenerate. This is not
possible if char F' # 2.

(4) If char F' # 2, then every symmetric bilinear form corresponds to a quadratic
form, hence the Witt theorems hold for symmetric bilinear forms in characteristic
different from 2.

8.B. Totally isotropic subspaces. Given a regular quadratic form ¢ on
V', we show that every totally isotopic subspace of V lies in a maximal isotropic
subspace of V of dimension equal to the Witt index of .

Lemma 8.10. Let ¢ be a reqular quadratic form on V. with W C V a totally
isotropic subspace of dimension m. If v is the quadratic form on W /W induced
by the restriction of ¢ on W=, then ¢ ~ 1 mH.

Proor. As W N radb, C rady, the intersection W N rad b, is trivial. Thus
the map V. — W* by v = l,|w : w — by (v,w) is surjective by Proposition 1.5 and
dimW+ = dimV — dimW. Let W’/ C V be a subspace mapping isomorphically
onto W*. Clearly, WNW' ={0}. Let U =W o W".

We show the form |y is hyperbolic. The subspace W @& W’ is nondegenerate
with respect to b,. Indeed, let 0 # v =w +w’ € W & W'. If w' # 0, there exists
a wg € W such that by (w',wg) # 0, hence by, (v,wy) # 0. If w’ = 0, there exists
wj € W’ such that b, (w,wy) # 0, hence by, (v, w() # 0. Thus by Proposition 7.28,
the form |y is isometric to mH where m = dim W.

By Proposition 7.22, we have ¢ = ¢lyr L ¢ly =~ ¢lyr L mH. As W and
U+ are subspaces of W+ and U N W+ = W, we have Wt = W @ U+. Thus
WL /W ~ Ut and the result follows. O

Proposition 8.11. Let ¢ be a regular quadratic form on V. Then every totally
isotropic subspace of V' is contained in a totally isotropic subspace of dimension

io()-

PRrROOF. Let W C V be a totally isotropic subspace of V. We may assume
that it is a maximal totally isotropic subspace. In the notation in the proof of
Lemma 8.10, we have ¢ = p|lyr L |y with ¢|y ~ mH where m = dim W. The
form |1 is anisotropic by the maximality of W, hence must be ¢, by the Witt
Decomposition Theorem 8.5. In particular, dim W = iy(y). O

Corollary 8.12. Let ¢ be a regular quadratic form on V. Then every totally
isotropic subspace W of V' has dimension at most ig(p) with equality if and only if
W is a mazimal totally isotropic subspace of V.

Let p be a nondegenerate quadratic form and ¢ a subform of p. If b, is
nondegenerate, then p = ¢ L @', hence p L (—¢) ~ ¢*. However, in general,
p# ¢ L pt. We do always have:

Lemma 8.13. Let p be a nondegenerate quadratic form of even dimension and ¢

a regular subform of p. Then p L (—¢) ~ = .

PROOF. Let W be the subspace defined by W = {(v,v) |v € V,,} of V, & V,.
Clearly W is totally isotropic with respect to the form p L (—¢) on V, @ V..
By the proof of Lemma 8.10, we have dim W+ /W = dim V, @V, —2dimW =
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dimV, — dimV,,. By Remark 7.10, we also have dim V;- =dimV, —dimV,. It
follows that the linear map W+ /W — V- defined by (v,v’) — v—1’ is an isometry.
On the other hand, by Lemma 8.10, the form on W= /W is Witt-equivalent to
pL (=) O

Let V and W be vector spaces over F. Let b be a symmetric bilinear form on
W and ¢ be a quadratic form on V. The tensor product of b and ¢ is the quadratic
form b ® ¢ on W ®p V defined by

(8.14) (b ®p)(w®v)=blw,w) - )

for all w € W and v € V with the polar form of b® ¢ equal to b&b,. For example,
if a € F, then {(a), ® ¢ ~ agp.

Example 8.15. If b is a symmetric bilinear form, then ¢, ~ b ® (1),.

Lemma 8.16. Let b be a nondegenerate symmetric bilinear form over F and ¢ a
nondegenerate quadratic form over F. In addition, assume that dim ¢ is even if
characteristic of F' is 2. Then:

(1) The quadratic form b ® @ is nondegenerate.
(2) If either ¢ or b is hyperbolic, then b ® ¢ is hyperbolic.

PRrROOF. (1): The bilinear form b, is nondegenerate by Remark 7.20 and by
Remark 7.21 if characteristic of F' is not 2 or 2, respectively. By Lemma 2.1, the
form b ® b, is nondegenerate, hence so is b ® .

(2): Using Proposition 7.28, we see that Vg, contains a totally isotropic space
of dimension 1 dim(b ® ¢). O

As the orthogonal sum of even-dimensional nondegenerate quadratic forms over
F' is nondegenerate, the isometry classes of even-dimensional nondegenerate qua-
dratic forms over F' form a monoid under orthogonal sum. The quotient of the
Grothendieck group of this monoid by the subgroup generated by the image of the
hyperbolic plane is called the quadratic Witt group and will be denoted by I,(F).
The tensor product of a bilinear with a quadratic form induces a W (F)-module
structure on I;(F) by Lemma 8.16.

Remark 8.17. Let ¢ and ¥ be two nondegenerate even-dimensional quadratic
forms over F. By the Witt Decomposition Theorem 8.5,

e~y ifandonlyif =19 in I (F) and dimp = dimy.

Remark 8.18. Let F' — K be a homomorphism of fields. Analogous to Proposi-
tion 2.7, this map induces the restriction homomorphism

TK/F: Iq(F) — Iq(K).

It is a group homomorphism. If K/F is purely transcendental, the restriction map
is injective by Lemma 7.15.

Suppose that char F' # 2. Then we have an isomorphism I(F) — I,(F) given
by b — . We will use the correspondence b — ¢; to identify bilinear forms in
W (F) with quadratic forms. In particular, we shall view the class of a quadratic
form in the Witt ring of bilinear forms when char F £ 2.
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9. Quadratic Pfister forms I

As in the bilinear case, there is a special class of forms built from tensor prod-
ucts of forms. If the characteristic of F' is different from 2, these forms can be
identified with the bilinear Pfister forms. If the characteristic is 2, these forms arise
as the tensor product of a bilinear Pfister form and a binary quadratic form of the
type [1, a] and were first introduced by Baeza (cf. [15]). In general, the quadratic
1-fold Pfister forms are just the norm forms of a quadratic étale F-algebra and the
2-fold quadratic Pfister forms are just the reduced norm forms of quaternion alge-
bras. These forms as their bilinear analogue satisfy the property of being round.
In this section, we begin their study.

9.A. Values and similarities of quadratic forms. Analogously to the sym-
metric bilinear case, we study the values that a quadratic form can take as well as
the similarity factors. We begin with some notation.

Let ¢ be a quadratic form on V over F. Let

D(p) == {p(v) |v eV, p(v) #0},
the set on nonzero values of ¢ and
G(p) := {CLEFX \agp:gp},

a group called the group of similarity factors of b. If D(p) = F*, we say that ¢ is
universal. Also set B
D(p) := D(p) U{0}.
We say that elements in D(y) are represented by . For example, G(H) = F* (as
for bilinear hyperbolic planes) and D(H) = F*. In particular, if ¢ is an regular
isotropic quadratic form over F', then ¢ is universal by Proposition 7.13.
The analogous proof of Lemma 1.13 shows:

Lemma 9.1. Let ¢ be a quadratic form. Then

D(p) - G(p) € D(g).
In particular, if 1 € D(p), then G(p) C D(y).

The relationship between values and similarities of a symmetric bilinear form
and its associated quadratic form is given by the following:

Lemma 9.2. Let b a symmetric bilinear form on F and ¢ = @p. Then:

(1) D(p) = D(b).
(2) G(b) C G(y).

PROOF. (1): By definition, ¢(v) = b(v,v) for all v € V.
(2): Let @ € G(b) and X : b — ab an isometry. Then ¢(A(v)) = b(A(v), A(v)) =
ab(v,v) = ap(v) for all v € V. O

A quadratic form is called round if G(p) = D(y). In particular, if ¢ is round,
then D(y) is a group. For example, any hyperbolic form is round.
A basic example of round forms arises from quadratic F-algebras (cf. §98.B):

Example 9.3. Let K be a quadratic F-algebra. Then there exists an involution
on K denoted by x — Z and a quadratic norm form ¢ = N given by z — zZ (cf.
§98.B). We have ¢(zy) = p(z)p(y) for all z,y € K. If x € K with ¢(z) # 0, then
x € K*. Hence the map K — K given by multiplication by x is an F-isomorphism
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and ¢(x) € G(p). Thus D(p) C G(p). As 1 € D(p), we have G(¢) C D(p). In
particular, ¢ is round.

Let K be a quadratic étale F-algebra. So K = F, for some a € F (cf. Examples
98.2 and 98.3). Denote the norm form N of F}, in Example 9.3 by ((a]] and call it
a quadratic 1-fold Pfister form. In particular, it is round. Explicitly, we have:
Example 9.4. For F, a quadratic étale F' algebra, we have:

(1) (Cf. Example 98.2.) If char F # 2, then F, = F[t]/(t* — a) with a € F*
and the quadratic form ((a]] = (1, —a)q ~ {(a))p ® (1), is the norm form of F,.

(2) (Cf. Example 98.3.) If char F' = 2, then F, = F[t]/(t> + t + a) with
a € F and the quadratic form ((a]] = [1,a] is the norm form of F,. In particular,
{a]] = (22 4+ = + a]] for any x € F.

9.B. Quadratic Pfister forms and round forms. Let n > 1. A quadratic
form isometric to a quadratic form of the type

(a1, ..., an]] == (a1, ..., an—1))p ® {an]]
for some aq,...,a,_1 € F* and a, € F (with a, # 0 if char F # 2) is called a
quadratic n-fold Pfister form. It is convenient to call the form isometric to (1), a

0-fold Pfister form. Every quadratic n-fold Pfister form is nondegenerate by Lemma
8.16. We let

P,(F) := {¢| ¢ a quadratic n-fold Pfister form},
P(F) = UPn(F)a
GP,(F):
GP(F) = JGP.(F).

F):={ap|a € F*, ¢ a quadratic n-fold Pfister form},

Forms in GP,(F) are called general quadratic n-fold Pfister forms.

If char F' # 2, the form {{a1,...,a,]] is the associated quadratic form of the
bilinear Pfister form ((ai,...,a,))» by Example 9.4 (1). We shall also use the
notation {(ay,...,a,)) for the quadratic Pfister form {{a1,...,a,]] in this case.

The class of an n-fold Pfister form (n > 0) belongs to

IMNF) :=I""Y(F) - I,(F).

As [a,b] = a[l,ab] for all a,b € F with a # 0, every nondegenerate binary
quadratic form is a general 1-fold Pfister form. In particular, GP;(F) generates
I,(F). Tt follows that G P, (F) generates I;(F) as an abelian group. In fact, as

(9-5) a((b, e} = ({ab, c]] = {a, ]
for all a,b € F* and ¢ € F (with ¢ # 0 if char ' # 2), P,(F) generates I}/(F) as
an abelian group for n > 1.

Note that in the case char F' # 2, under the identification of I(F') with I,(F),
the group I"(F) corresponds to I;(F') and a bilinear Pfister form ((ay,...,an))s
corresponds to the quadratic Pfister form ((a1,...,a,)).

Using the material in §98.E, we have the following example.

Example 9.6. Let A be a quaternion F-algebra.
(1) (Cf. Example 98.10.) Suppose that char F # 2. If A = (algb>, then the

reduced quadratic norm form is equal to the quadratic form (1, —a, —b, ab) = {(a, b)).
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(2) (Cf. Example 98.11.) Suppose that char F = 2. If A = {“};b], then the

reduced quadratic norm form is equal to the quadratic form [1,ab] L [a,b]. This
form is hyperbolic if a = 0 and is isomorphic to (1, a), ® [1, ab] = {(a, ab]] otherwise.

Example 9.7. Let L/F be a separable quadratic field extension and Q = (L/F,b),
ie., @ =L ® Lj a quaternion F-algebra with j2 = b € F* (cf. §98.E). For any
g=1+1U'j € Q, we have Nrdg(q) = N1 (1) —=bN(I"). Therefore, Nrdg ~ ((b)) ®N,.

Proposition 9.8. Let ¢ be a round quadratic form and a € F*. Then
(1) The form {(a)) ® ¢ is also round.
(2) If ¢ is reqular, then the following are equivalent:
(1) {(a)) ® ¢ is isotropic.
(ii) ((a)) ® ¢ is hyperbolic.
(iii) a € D(¢p).
PROOF. Set ¢ = ((a)) ® .
(1): Since 1 € D(y), it suffices to prove that D(¢)) C G(¢). Let ¢ be a

nonzero value of . Write ¢ =  — ay for some z,y € D(p). If y = 0, we have
c=z € D(p) =G(p) C G(¢). Similarly, y € G(¢) if x = 0, hence ¢ = —ay € G(¢)
as —a € G({(a))) C G(v).

Now suppose that x and y are nonzero. Since ¢ is round, z,y € G(y) and,
therefore,

=p L (—ap)~ ¢ L (—ayz)p = ((ayz™")) ® ¢,

By Example 1.14, we know that 1 — ayz™' € G({(ayz™'))) C G(¢). Since z €
G(p) C G(), we have ¢ = (1 — ayz~1)z € G(v).

(2): (i) = (iii): If ¢ is isotropic, then ¢ is universal by Proposition 7.13.
So suppose that ¢ is anisotropic. Since ¥» = ¢ L (—agp) is isotropic, there exist
z,y € D(y) such that x — ay = 0. Therefore a = xy~! € D(p) as D(y) is closed
under multiplication.

(iii) = (ii): As g is round, a € D(p) = G(¢) and ((a)) ® ¢ is hyperbolic.

(ii) = (i) is trivial. O
Corollary 9.9. Quadratic Pfister forms are round.
Corollary 9.10. A gquadratic Pfister form is either anisotropic or hyperbolic.

PROOF. Suppose that v is an isotropic quadratic n-fold Pfister form. If n =1,
the result follows by Proposition 7.19(4). So assume that n > 1. Then ¢ ~ {(a)) ® ¢
for a quadratic Pfister form ¢ and the result follows by Proposition 9.8. O

Let char F' = 2. We need another characterization of hyperbolic Pfister forms
in this case. Let p: F — F be the Artin-Schreier map defined by p(z) = 22 + =.
(Cf. §98.B.) For a quadratic 1-fold Pfister form we have ((d]] is hyperbolic if and
only if d € im(p) by Example 98.3. More generally, we have:

Lemma 9.11. Let b be an anisotropic bilinear Pfister form and d € F. Then
b ® ((d]] is hyperbolic if and only if d € im(p) + D(b').

PROOF. Suppose that b® ((d]] is hyperbolic and therefore isotropic. Let {e, f}
be the standard basis of ((d]]. Let v ® e + w ® f be an isotropic vector of b ® ((d]]
where v,w € V4. We have a + b + ¢d = 0 where a = b(v,v), b = b(v,w), and
¢ =b(w,w).
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As b is anisotropic, we have w # 0, i.e., ¢ # 0. Suppose first that v = sw for
some s € F. Then 0 = a+ b+ cd = c(s? + s+ d), hence d = s% + s € im(p).

Now suppose that v and w generate a 2-dimensional subspace W of V;,. The
determinant of bl is equal to F*? where x = b? + be + c2d. Hence bly ~ c((z))
by Example 1.10. As ¢ € D(b) = G(b) by Corollary 6.2, the form ({x)) is isometric
to a subform of b. By the Bilinear Witt Cancellation (Corollary 1.28), we have (x)
is a subform of b/, i.e., # € D(b'). Hence (b/c)? + (b/c) +d = x/c* € D(b') and
therefore d € im(p) + D(b').

Conversely, let d =  +y where z € im(p) and y € D(b'). If y = 0, then ((d]]
is hyperbolic, hence so is b ® ({(d]]. So suppose that y # 0. By Lemma 6.11 there is
a bilinear Pfister form ¢ such that b ~ ¢® ((y)). Therefore, b ® (d]] ~ ¢® ((y,d)) is
hyperbolic as {(y, d]] ~ {(y,y]] by Example 98.3 which is hyperbolic. |

9.C. Annihilators. If ¢ is a nondegenerate quadratic form over F', then the
annihilator of ¢ in W(F)

anny (p)(p) == {c € W(F) | c- o =0}

is an ideal. When ¢ is a Pfister form this ideal has the structure that we had
when ¢ was a bilinear anisotropic Pfister form. Indeed, the same proof yielding
Proposition 6.22 and Corollary 6.23 shows:

Theorem 9.12. Let ¢ be anisotropic quadratic Pfister form. Then anny g (¢) is
generated by binary symmetric bilinear forms (), with x € D(p).

As in the bilinear case, if ¢ is 2-dimensional, we obtain stronger results. Indeed,
the same proofs for the corresponding results show:

Lemma 9.13 (cf. Lemma 6.24). Let ¢ be a binary anisotropic quadratic form over
F and ¢ an anisotropic bilinear form over F such that ¢ ® ¢ is isotropic. Then

¢ >~ 0 L e for some binary bilinear form 0 annihilated by ¢ and bilinear form e over
F.

Proposition 9.14 (cf. Proposition 6.25). Let ¢ be a binary anisotropic quadratic
form over F and ¢ an anisotropic bilinear form over F. Then there exist bilinear
forms ¢1 and co over F such that ¢ ~ ¢; L ¢o with ¢co ® ¢ anisotropic and ¢; >~ 07 L
.-« 1 0, where each 0; is a binary bilinear form annihilated by ¢. In particular,
—detd; € D(y) for each i.

Corollary 9.15 (cf. Corollary 6.26). Let ¢ be a binary anisotropic quadratic form
over F' and ¢ an anisotropic bilinear form over F annihilated by b. Then ¢ ~ 0y L
-+ 1L 0y, for some binary bilinear forms 0; annihilated by b for i € [1, n).

10. Totally singular forms

Totally singular forms in characteristic different from 2 are zero forms, but in
characteristic 2 they become interesting. In this section, we look at totally singular
forms in characteristic 2. In particular, throughout most of this section, char F = 2.

Let char F' = 2. Let ¢ be a quadratic form over F'. Then ¢ is a totally singular
form if and only if it is diagonalizable. Moreover, if this is the case, then every
basis of V,, is orthogonal by Remark 7.24 and D(y) is a vector space over the field
F2,
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1/2

We investigate the F-subspace (D(y)) '~ of F'/2. Define an F-linear map

f:V,— (D(@)"? givenby f(v) = /o).
~ . \1/2

Then f is surjective and Ker(f) = rad ¢. Let ¢ be the quadratic form on (D(y))
over F' defined by ¢(y/a) = a. Clearly ¢ is anisotropic. Consequently, if @ is the
quadratic form induced on V,,/rad ¢ by ¢, then f induces an isometry between @
and . Moreover, ¢ ~ @.,. Therefore, if char F' = 2, the correspondence ¢ +— 15(90)
gives rise to a bijection

Isometry classes of totally singular ~ Finite dimensional
anisotropic quadratic forms F2_subspaces of F

Moreover, for any totally singular quadratic form ¢, we have
dim pq, = dim D(¢p)
and if ¢ and 1 are two totally singular quadratic forms, then
¢~ ifandonlyif D(¢)=D(y)) and dimp = dim.
We also have D(p L ) = D(p) + D(¥).

Example 10.1. If F is a separably closed field of characteristic 2, the anisotropic
quadratic forms are diagonalizable, hence totally singular.

Note that if b is an alternating bilinear form and v is a totally singular quadratic
form, then b®1 = 0. It follows that the tensor product of totally singular quadratic
forms ¢ ® ¥ := ¢ ® 1 is well-defined where ¢ is a bilinear form with ¢ = ¢.. The
space D(p ® ¢) is spanned by D() - D(¥) over F2,

Proposition 10.2. Let char F' = 2. If ¢ is a totally singular quadratic form, then
G(p) ={a€ F* | aD(p) C D(p)}.

PrROOF. The inclusion “C” follows from Lemma 9.1. Conversely, let a € F'*
satisfy aD(y) C D(¢). Then the F-linear map g : (5(@))1/2 — (13(@))1/2 defined
by g(b) = y/ab is an isometry between ¢ and a@. Therefore a € G(@) = G(p). O

It follows from Proposition 10.2 that G(p) := G(p) U {0} is a subfield of F
containing F2 and D(y) is a vector space over G(¢).

It is also convenient to introduce a variant of the notion of Pfister forms in
all characteristics. A quadratic form ¢ is called a quasi-Pfister form if there exists
a bilinear Pfister form b with ¢ ~ g, ie., ¢ =~ ((a1,...,a,)p ® (1)4. for some

ai,...,a, € F*. Denote

{at, .. ane ® 1)y by  {(a1,-..,an))q-

If char F' # 2, then the classes of quadratic Pfister and quasi-Pfister forms coincide.
If char I’ = 2 every quasi-Pfister form is totally singular. Quasi-Pfister forms have
some properties similar to those for quadratic Pfister forms.

Corollary 10.3. Quasi-Pfister forms are round.

PROOF. Let b be a bilinear Pfister form. As (1), is a round quadratic form,
the quadratic form b ® (1), is round by Proposition 9.8. O
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Remark 10.4. Let char F' = 2. Let p = {(a1,...,an))q be an anisotropic quasi-
Pfister form. Then l~)(p) is equal to the field F?(ay,...,a,) of degree 2" over F2.
Conversely, every field K such that F? C K C F with [K : F?] = 2" is generated
by n elements and therefore K = l~)(p) for an anisotropic n-fold quasi-Pfister form
p. Thus we get a bijection

Isometry classes of anisotropic Fields K with F2 C K C F
n-fold quasi-Pfister forms and [K : F?] =2"

12

Let ¢ be an anisotropic totally singular quadratic form. Then K = é(g@) is a field
with K - D(p) C D(p). We have [K : F?] < oo and D(p) is a vector space over

K. Let {b1,...,bn} be a basis of D(¢) over K and set ¥ = (b1,...,bn)q. Choose
an anisotropic n-fold quasi-Pfister form p such that D(p) = G(¢). As D(y) is the
vector space spanned by K - D(¢) over F2, we have ¢ ~ p ® 1. In fact, p is the
largest quasi-Pfister divisor of ¢, i.e., quasi-Pfister form of maximal dimension such
that p ~ p® .

11. The Clifford algebra

To each quadratic form ¢, one associates a Z/2Z-graded algebra by factoring
the tensor algebra on V,, by the relation ¢(v) = v®. This algebra, called the
Clifford algebra generalizes the exterior algebra. In this section, we study the basic
properties of Clifford algebras.

Let ¢ be a quadratic form on V over F. Define the Clifford algebra of ¢ to be
the factor algebra C(¢p) of the tensor algebra

T(V):=J]ver

n>0

modulo the ideal I generated by (v ® v) — ¢(v) for all v € V. We shall view
vectors in V' as elements of C(¢) via the natural F-linear map V' — C(p). Note
that v? = ¢(v) in C(yp) for every v € V. The Clifford algebra of ¢ has a natural
7. /2Z-grading
C(p) = Colp) ® Ci(yp)

as I is homogeneous if degree is viewed modulo two. The subalgebra Cy(y) is
called the even Clifford algebra of p. We have dim C(p) = 24 % and dim Cp(yp) =
2dime—1 Tf K/F is a field extension, C(px) = C(p)x and Cy(px) = Co(¢)k-

Lemma 11.1. Let ¢ be a quadratic form on V over F with polar form b. Let
v,w € V. Then b(v,w) = vw +wv in C(p). In particular, v and w are orthogonal
if and only if vw = —wv in C(p).

Proor. This follows from the polar identity. (I
Example 11.2. (1) The Clifford algebra of the zero quadratic form on V' coincides
with the exterior algebra A(V).

(2) Co({a)) = F.
(3) If char F # 2, then the Clifford algebra of the quadratic form {(a,b) is
C’((a,b)) = (’}b> and C’O(<a,b>) = F_,. In particular, C’O(<<b>>) = F,.
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(4) If char F = 2, then C’([a,b]) = [“I;b} and C’o([a,b}) = Fu. In particular,
Co({(b]]) = F.

By construction, the Clifford algebra satisfies the following universal property:
For any F-algebra A and any F-linear map f : V — A satisfying f(v)? = ¢(v) for
all v € V, there exists a unique F-algebra homomorphism f : C(p) — A satistying
f(v) = f(v) forallv e V.

Example 11.3. Let C(¢)° denote the Clifford algebra of ¢ with the opposite
multiplication. The canonical linear map V' — C(¢)° extends to an involution
~: C(p) — C(p) given by the algebra isomorphism C(p) — C(¢)°P. Note that if
T = v1Vg - VUy, then T = v, -+ - vov.

Proposition 11.4. Let ¢ be a quadratic form on V over F and let a € F*. Then
(1) Colayp) = Co(yp), i-e., the even Clifford algebras of similar quadratic forms
are isomorphic.
(2) Let ¢ = (a) L. Then Co(p) ~ C(—arp).

PROOF. (1): Set K = F[t]/(t> —a) = F & Ft with t the image of ¢ in K.
Since (v®1)? = p(v) @2 = ap(v)®1 in C(p)k = C(p)@F K, there is an F-algebra
homomorphism « : C(ayp) — C(p) i taking v € V to v®t by the universal property
of the Clifford algebra ay. Since

(D)W @) = @ =aw' @1 € Cp) C C(p)k,
the map « restricts to an F-algebra homomorphism Cy(ap) — Co(p). As this map
is clearly a surjective map of algebras of the same dimension, it is an isomorphism.
(2): Let V = Fv @ W with p(v) = a and W C (Fv)*. Since
(vw)? = —v*w® = —p(v)P(w) = —a(w)

for every w € W, the map W — Cy(p) defined by w — vw extends to an F-algebra
isomorphism C(—a1)) = Cy(¢) by the universal property of Clifford algebras. [

Let ¢ be a quadratic form on V over F'. Applying the universal property of
Clifford algebras to the natural linear map V' — V/rad ¢ — C(p), where @ is the
induced quadratic form on V/rad ¢, we get a surjective F-algebra homomorphism
C(¢) — C(@) with kernel (rad ¢)C(p). Consequently, we get canonical isomor-
phisms

C(p) =~ Clp)/(rad p)C(p),
Co(®) =~ Co(p)/(rad p)Cr ().

Example 11.5. Let ¢ = H(W) be the hyperbolic form of the vector space V =
W @& W* with W a nonzero vector space. Then

C(p) ~ Endp (/\(W)),

where the exterior algebra A(W) of V' is considered as a vector space (cf. [86, Prop.
8.3]). Moreover,

Co((p) = EndF (Ao(W)) X El’ldF (/\1 (W)),
where

Mo(W) =@ A (W) and  A(W) =P A (W).
120 i>0



11. THE CLIFFORD ALGEBRA 59

In particular, C'(y) is a split central simple F-algebra and the center of Cy(y) is
the split quadratic étale F-algebra F' x F'. Note also that the natural F-linear map
V — C(yp) is injective.

Proposition 11.6. Let ¢ be a quadratic form over F.
(1) If dimy > 2 is even, then the following conditions are equivalent:
(a) ¢ is nondegenerate.
(b) C(p) is central simple.
(c) Coly) is separable with center Z(yp), a quadratic étale algebra.
(2) If dimy > 3 is odd, then the following conditions are equivalent:
(a) ¢ is nondegenerate.

(b) Co(y) is central simple.

PrOOF. We may assume that F' is algebraically closed. Suppose first that ¢ is
nondegenerate and even-dimensional. Then ¢ is hyperbolic; and, by Example 11.5,
the algebra C(¢p) is a central simple F-algebra and Cy(¢p) is a separable F-algebra
whose center is the split quadratic étale F-algebra F' x F.

Conversely, suppose that the even Clifford algebra Cy(¢p) is separable or C(yp)
is central simple. Let v € rad ¢. The ideals I = vCi(p) in Cy(p) and J = vC(p) in
C(p) satisfy I? = 0 = J2. Consequently, I =0 or J = 0 as Cy(¢) is semi-simple or
C(¢) is central simple and therefore v = 0 thus rad ¢ = 0. Thus ¢ is nondegenerate.

Now suppose that dim ¢ is odd. Write ¢ = (a) L ¢ for some a € F and an
even-dimensional form 1. Let v € V,, be a nonzero vector satisfying ¢(v) = a with
v orthogonal to V. If ¢ is nondegenerate, then a # 0 and 1 is nondegenerate.
It follows from Proposition 11.4(2) and the first part of the proof that the algebra
Co(p) ~ C(—a) is central simple.

Conversely, suppose that the algebra Cy(yp) is central simple. As dimg > 3,
the subspace I := vCi(p) of Cy(p) is nonzero. If a = 0, then I is a nontrivial
ideal of Cy(p), a contradiction to the simplicity of Cy(p). Thus a # 0 and by
Proposition 11.4(2), Co(p) ~ C(—at)). Hence by the first part of the proof, the
form v is nondegenerate. Therefore, ¢ is also nondegenerate. [

Lemma 11.7. Let ¢ be a nondegenerate quadratic form of positive even dimension.
Then yx = Ty for every x € Z(p) and y € C1(p).

PROOF. Let v € V,, be an anisotropic vector hence a unit in C(p). Since
conjugation by v on C(yp) stabilizes Cy(p), it stabilizes the center of Cy(yp), i.e.,
vZ(p)v™t = Z(p). As C(yp) is a central algebra, conjugation by v induces a non-
trivial automorphism on Z(p) given by x +— Z otherwise, since Cy(¢) = Co(p)v,
the full algebra C(¢) would commute with Z(¢). Thus vz = Zv for all z € Z(y).
Let y € Cy(p). Writing y in the form y = zv for some z € Cy(p), we have
yx = zvr = zzv = Tzv = Ty for every x € Z(p). O

Corollary 11.8. Let ¢ be a nondegenerate quadratic form of positive even dimen-
sion. If a is a norm for the quadratic étale algebra Z(p) then C(ap) ~ C(p).

PROOF. Let z € Z(y) satisfy N(z) = a. By Lemma 11.7, we have (vz)? =
N(z)v? = ap(v) in C(y) for every v € V. By the universal property of the Clifford
algebra aep, there is an algebra homomorphism « : C(ap) — C(¢) mapping v to vz.
Since both algebras are simple of the same dimension, « is an isomorphism. O
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12. Binary quadratic forms and quadratic algebras

In §98.B and §98.E we review the theory of quadratic and quaternion algebras.
In this section, we study the relationship between these algebras and quadratic
forms.

If A is a quadratic F-algebra, we let Try and N4 denote the trace form and
the quadratic norm form of A, respectively. (cf. §98.B). Note that N4 is a binary
form representing 1.

Conversely, if ¢ is a binary quadratic form over F', then the even Clifford algebra
Co(y) is a quadratic F-algebra. We have defined two maps

Quadratic — Binary quadratic
F-algebras — forms representing 1

Proposition 12.1. The two maps above induce mutually inverse bijections of the
set of isomorphism classes of quadratic F-algebras and the set of isometry classes
of binary quadratic forms representing one. Under these bijections, we have:

(1) Quadratic étale algebras correspond to nondegenerate binary forms.
(2) Quadratic fields correspond to anisotropic binary forms.
(3) Semisimple algebras correspond to regular binary quadratic forms.

PROOF. Let A be a quadratic F-algebra. We need to show that A ~ Cy(N4).
We have C1(N4) = A. Therefore, the map o : A — Cyp(N4) defined by z — 1 -z
(where dot denotes the product in the Clifford algebra) is an F-linear isomorphism.
We shall show that « is an algebra isomorphism, i.e., (1-z)-(1-y) =12y for
all x,y € A. The equality holds if z € F or y € F. Since A is 2-dimensional over
F, it suffices to check the equality when z = y and it does not lie in F'. We have
l-x4+2-1=Nu(x+1) —Ny(x) = Na(1) = Tra(z), so

(1-z)-(1-2)=(1-2) (Tra(z)—z-1)=1-Tra(x)z —1-Ny(z)-1=1-2°

as needed.

Conversely, let ¢ be a binary quadratic form on V representing 1. We shall show
that the norm form for the quadratic F-algebra Cy(¢p) is isometric to ¢. Let vg € V/
be a vector satisfying p(vg) = 1. Let f : V — Cy(p) be the F-linear isomorphism
defined by f(v) = v -vg. The quadratic equation (98.1) for v - vy € Co(yp) in §98.B
becomes

2

(v-vg)*=v-(blv,ug) —v-vg) - vy = b(v,v9)(v-vy) — p(v),

50 Ny () (v - o) = @(v); hence

Neo (o) (f(v)) = Neg() (v - v0) = 9(v),

i.e., fis an isometry of ¢ with the norm form of Cy(p) as needed.

In order to prove that quadratic étale algebras correspond to nondegenerate
binary forms it is sufficient to assume that F is algebraically closed. Then a qua-
dratic étale algebra A is isomorphic to F' x F' and therefore N4 ~ H. Conversely,
by Example 11.5, Co(H) ~ F x F.

If a quadratic F-algebra A is a field, then obviously the norm form N4 is
anisotropic. Conversely, if N 4 is anisotropic, then for every nonzero a € A we have
aa = Ny(a) # 0, therefore a is invertible, i.e., A is a field.
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Statement (3) follows from statements (1) and (2), since a quadratic F-algebra
is semisimple if and only if it is either a field or F' x F', and a binary quadratic form
is regular if and only if it is anisotropic or hyperbolic. (]

Corollary 12.2. (1) Let A and B be quadratic F-algebras. Then A and B are
isomorphic if and only if the norm forms Ns and Np are isometric.

(2) Let ¢ and ¢ be nonzero binary quadratic forms. Then ¢ and i are similar
if and only if the even Clifford algebras Cy(p) and Co(v)) are isomorphic.

Corollary 12.3. Let ¢ be an anisotropic binary quadratic form and let K/F be a
quadratic field extension. Then g is isotropic if and only if K ~ Cy(p).

PrOOF. By Proposition 12.1, the form ¢k is isotropic if and only if the 2-
dimensional even Clifford K-algebra Cy(px) = Cy(¢)® K is not a field. The latter
is equivalent to K ~ Cy(¢p). O

We now consider the relationship between quaternion and Clifford algebras.

Proposition 12.4. Let Q be a quaternion F-algebra and o the reduced norm qua-
dratic form of Q. Then C(p) ~ Ma(Q).

x

2% = Nrd(z) = ¢(x), the F-linear map Q — My(Q) defined by = +— m, extends
to an F-algebra homomorphism « : C(p) — Ma(Q) by the universal property of
Clifford algebras. As C(ip) is a central simple algebra of dimension 16 = dim M (Q),
the map « is an isomorphism. ([

PrOOF. For every z € @, let m, be the matrix (g g) in My(Q). Since m?2 =

Corollary 12.5. Two quaternion algebras are isomorphic if and only if their re-
duced norm quadratic forms are isometric. In particular, a quaternion algebra is
split if and only if its reduced norm quadratic form is hyperbolic.

Exercise 12.6. Let (Q be a quaternion F-algebra and let ¢’ be the restriction of
the reduced norm quadratic form to the space Q' of pure quaternions. Prove that
¢’ is nondegenerate and Cy(p’) is isomorphic to Q. Conversely, prove that any
3-dimensional nondegenerate quadratic form v is similar to the restriction of the
reduced norm quadratic form of C(¢)) to the space of pure quaternions. Therefore,
there is a natural bijection between the set of isomorphism classes of quaternion
algebras over F' and the set of similarity classes of 3-dimensional nondegenerate
quadratic forms over F.

13. The discriminant

A major objective is to define sufficiently many invariants of quadratic forms.
The first and simplest such invariant is the dimension. In this section, using qua-
dratic étale algebras, we introduce a second invariant, the discriminant, of a non-
degenerate quadratic form.

Let ¢ be a nondegenerate quadratic form over F' of positive even dimension.
The center Z(p) of Co(p) is a quadratic étale F-algebra. The class of Z(p) in
Etg(F), the group of isomorphisms classes of quadratic étale F-algebras under the
operation - induced by x (cf. §98.B), is called the discriminant of ¢ and will be
denoted by disc(¢). Define the discriminant of the zero form to be trivial.
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Example 13.1. By Example 11.2, we have disc((a, b)) = F_g4 if char F' # 2 and
disc([a, b]) = Fyp if char F = 2. It follows from Example 11.5 that the discriminant
of a hyperbolic form is trivial.

The discriminant is a complete invariant for the similarity class of a nondegen-
erate binary quadratic form, i.e.,

Proposition 13.2. Two nondegenerate binary quadratic forms are similar if and
only if their discriminants are equal.

PRrROOF. Let disc(yp) = disc(y)), i.e., Co(p) ~ Co(yp). Write ¢ = ap’ and
1 = by)’, where ¢’ and 1’ both represent 1. By Proposition 12.1, the forms ¢’ and
¥’ are the norm forms for Cy(¢') = Co(¢) and Cy(¢)") = Co(1)), respectively. Since
these algebras are isomorphic, we have ¢’ ~ 9. O

Corollary 13.3. A nondegenerate binary quadratic form ¢ is hyperbolic if and
only if disc(p) is trivial.

Lemma 13.4. Let ¢ and ¢ be nondegenerate quadratic forms of even dimension
over F. Then disc(p L ¢) = disc(p) - disc(¢)).

PROOF. The even Clifford algebra Cy(¢ L 9) coincides with

(Co(w) @F Co(¥)) & (Ci(yp) ®F C1(¥))

and contains Z(¢) ®p Z(¢). By Lemma 11.7, we have yr = Ty for every = € Z(p)
and y € C1(p). Similarly, wz = Zw for every z € Z(¢)) and w € C1(¢). Therefore,
the center of Cy(p L 1) coincides with the subalgebra Z () x Z(v)) of all stable
elements of Z(p) ®p Z(1) under the automorphism x @ y — T ® 7. O

Example 13.5. (1) Let char F' # 2. Then
disc((ahag7 e ,a2n>) =F,

where ¢ = (—=1)"ajas...as,. For this reason, the discriminant is often called the
signed determinant when the characteristic of F' is different from 2.

(2) Let char F' = 2. Then
disc([al,bl] L L [an,bn]) =F,

where ¢ = a1by + - - - + a,b,. The discriminant in the characteristic 2 case is often
called the Arf invariant.

Proposition 13.6. Let p be a nondegenerate quadratic form over F'. If disc(p) = 1
and p L (a) ~ (a) for some a € F*, then p ~ 0.

PROOF. We may assume that the characteristic of F' is 2. By Proposition 8.8,
we have p ~ [a, b] for some b € F. Therefore, disc([a, b]) is trivial and [a,b] ~ 0. O

It follows from Lemma 13.4 and Example 11.5 that the map
e1: I,(F) — Ety(F)

taking a form ¢ to disc(p) is a well-defined group homomorphism.
The analogue of Proposition 4.13 is true, viz.,

Theorem 13.7. The homomorphism ey is surjective with kernel Ig (F).
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PROOF. The surjectivity follows from Example 13.1. Since similar forms have
isomorphic even Clifford algebras, for any ¢ € I;(F') and a € F*, we have

e1(((a)) - ¢) = e1(p) - e1(—ap) = 0.
Therefore, e; (IZ(F)) = 0.

Let ¢ € I;(F) be a form with trivial discriminant. We show by induction on
dim ¢ that ¢ € Ig(F). The case dim ¢ = 2 follows from Corollary 13.3. Suppose
that dim ¢ > 4. Write ¢ = p L ¢ with p a binary form. Let a € F'* be chosen so
that the form ¢’ = ap L 1 is isotropic. Then the class of ¢’ in I,(F) is represented
by a form of dimension less than dim ¢. As disc(¢’) = disc(yp) is trivial, ¢’ € IZ(F)
by induction. Since p = ap mod IZ(F), ¢ also lies in I7(F). O

Remark 13.8. One can also define a discriminant like invariant for all nondegene-
rate quadratic forms. Let ¢ be a nondegenerate quadratic form. Define the deter-
minant det ¢ of ¢ to be det by, in F* /F*? if the bilinear form b,, is nondegenerate.
If char F' = 2 and dim ¢ is odd (the only remaining case), define det ¢ to be aF*?
in F*/F*? where a € F* satisfies ¢|radp, ~ (a).

Remark 13.9. Let ¢ be a nondegenerate even-dimensional quadratic form with
trivial discriminant over F', i.e., ¢ € I7(F). Then Z(p) ~ F x F, in particular, C(¢)
is not a division algebra, i.e., C(p) ~ Mo (C“‘(gp)) for a central simple F-algebra
C*(¢) uniquely determined up to isomorphism. Moreover, Co(p) ~ CT(yp) x
C*(p).

14. The Clifford invariant

A more delicate invariant of a nondegenerate even-dimensional quadratic form
arises from its associated Clifford algebra.

Let ¢ be a nondegenerate even-dimensional quadratic form over F'. The Clifford
algebra C(y) is then a central simple F-algebra. Denote by clif(¢) the class of C(¢p)
in the Brauer group Br(F). It follows from Example 11.3 that clif(¢) € Bra(F).
We call clif(¢) the Clifford invariant of .

Example 14.1. Let ¢ be the reduced norm form of a quaternion algebra Q. It
follows from Proposition 12.4 that clif(¢) = [Q].

Lemma 14.2. Let p and ¥ be two nondegenerate even-dimensional quadratic forms
over F'. If disc(ip) is trivial, then clif(p L ¢) = clif(p) - clif (¥).

PROOF. Let e € Z(p) be a nontrivial idempotent and set s = e —e& =1 — 2e.
We have s = —s, s? =1, and vs = sv = —sv for every v € V,, by Lemma 11.7.
Therefore, in the Clifford algebra of ¢ L 1, we have (v®1+s®w)? = p(v)+1p(w) for
allv € V,, and w € V. It follows from the universal property of the Clifford algebra
that the F-linear map V, @V, — C(p) ®r C(¢) defined by vw — v®@1+s®@w
extends to an F-algebra homomorphism C(¢ L ¢) — C(p) @ C(¢b). This map
is an isomorphism as the Clifford algebra of an even-dimensional form is central
simple. ([l

Theorem 14.3. The map
e : Ig(F) — Bry(F)

taking a form ¢ to clif(p) is a well-defined group homomorphism. Moreover,
I3(F) C Ker(es).
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PROOF. It follows from Lemma 14.2 that e is well-defined. Next let ¢ € IZ(F)
and a € F*. Since disc(yp) is trivial, it follows from Corollary 11.8 that C(ap) ~
C(yp). Therefore, ex({(a) ® ¢) = ea(p) — e2(ayp) = 0. O

We shall, in fact, prove that I3(F) = Ker(ez) in §16 for fields of characteristic
2 and Chapter VIII for fields of characteristic not 2.

15. Chain p-equivalence of quadratic Pfister forms

We saw that anisotropic bilinear Pfister forms {((a1,...,ay,)) and {(b1,...,b,)
were p-chain equivalent if and only if they were isometric. This equivalence rela-
tion was based on isometries of 2-fold Pfister forms. In this section, we prove the
analogous result for quadratic Pfister forms. This was first proven in the case of
characteristic 2 by Aravire and Baeza in [12]. To begin we therefore need to estab-
lish isometries of quadratic 2-fold Pfister forms in characteristic 2. This is given by
the following:

Lemma 15.1. Let F be a field of characteristic 2. Then in I,(F), we have
(1) {a,d+ 0] = {a, 0] + ((a, V]
(2) {(ad’,b]] = {a,b]] + {(a’,b]] mod IS(F).

(3) (a+ 225 = fa, =]
(4) o +'b] = (o, 2] + (', ~22]) mod L3(F)

PRrROOF. (1): This follows by Example 7.23.

(2): Follows from the equality ((a)) + ((a')) = ((aa’)) + ((a,a’)) in the Witt ring
of bilinear forms by Example 4.10.

(3): Let ¢ =b/(a + 2?) and

|

a,c a+ xz, c
F F ’
By Corollary 12.5, it suffices to prove that A ~ B. Let {1,4,7,4j} be the standard
basis of A, ie., i2 = a, j2 = b and ij + ji = 1. Considering the new basis
{1,i+x,j,(i+ )5} with (i + 2)? = a + 2 shows that A ~ B.

(4): We have by (1)—(3):

} and B{

flat a ) = (5 + 1,80+ (Bl = (5, S]]+ ()
_ ab , ab ,
= (@, 0l + (o' =)+ (B
:<<a,$]}+<<a',%u mod I3(F). O

The definition of chain p-equivalence for quadratic Pfister forms is slightly more
involved than that for bilinear Pfister forms.

Definition 15.2. Let ay,...,ay,_1,b1,...,bp,_1 € F* and a,,b, € F with n > 1.
We assume that a,, and b,, are nonzero if char F' # 2. Let ¢ = {(a1,...,an—-1, ]|
and ¥ = ((b1,...,bp—_1,by]]. We say that the quadratic Pfister forms ¢ and ¢ are
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simply p-equivalent if either n = 1 and ((a1]] ~ ((b1]] or n > 2 and there exist i and
j with 1 <i < j <n satisfying
((as,a;j)) ~ ((b;,b;)) with j<n and a =28 forall {#4,j or
(ai, a]] >~ ((b;,b5]] with j=n and a; =2b forall |#4,j.
We say that ¢ and v are chain p-equivalent if there exist quadratic n-fold Pfister
forms g, ..., @m for some m such that ¢ = ¢g, ¥ = ¢, and @; is simply p-
equivalent to ;41 for each i € [0, m — 1].

Theorem 15.3. Let

o="{a1,...,an—1,a,]] and Y ={by,...,bp_1,by]]
be anisotropic quadratic n-fold Pfister forms. Then ¢ = ¢ if and only if ¢ ~ .

We shall prove this result in a series of steps. Suppose that ¢ ~ 1. The case
char F' # 2 was considered in Theorem 6.10, so we may also assume that char F' = 2.
As before the map g : F' — F is defined by p(r) = 22 + 2 when char F = 2.

Lemma 15.4. Let charF' = 2. If b = ((a1,...,ay)) s an anisotropic bilinear
Pfister form and dy,ds € F, then b ® ((d1]] ~ b ® {(da]] if and only if b ® ((d1]] =~
b ® ((da]]-

PROOF. Assume that b ® ((d1]] ~ b ® ((d2]]. It follows from Example 7.23
that the form b ® {(d; + ds]] is Witt-equivalent to b ® {(d1]] L b ® {{d2]] and hence
is hyperbolic. By Lemma 9.11, we have dy + dy = = + y where x € im(p) and
y € D). If y = 0, then ((d1]] ~ ((d2]] and we are done. So suppose that y # 0.
By Lemma 6.11, there is a bilinear Pfister form ¢ such that b ~ ¢ ® ((y)). As
{(y, da]] ~ ((y, d2]], we have

b ((d]] = ¢ ® (y,du]] = ¢ ® ((y, da]] = b & ((do]]- O
Lemma 15.5. Let char F = 2. If p = {(b,ba,...,by,d]] is a quadratic Pfister form,
then for every a € F* and z € D(p), we have ((a)) ® p = ((az)) @ p.

PrROOF. We induct on dimp. Let n = ((ba,...by,d]]. We have z = = + by
with z,y € D(n). If y = 0, then x = z # 0 and by the induction hypothesis
(@) @ n ~ ((az)) ©n, hence

(@) @ p = ((a,b) ® n = {(az,b)) @ n ~ (az)) @ p.
If z = 0, then z = by and by the induction hypothesis {{a)) ® n ~ {(ay)) ® 1, hence
{(a) ® p = ((a,b)) @ n ~ ((ay, b)) @ n ~ ((az,b)) @ n = ((az)) © p.
Now suppose that both x and y are nonzero. As 7 is round, zy € D(n). By the
induction hypothesis and Lemma 4.15,
((a)) @ p = ((a,b) ® n = {(a,ab)) @ n = (az, aby)) @7

~ ((az,bxy)) @1 = (az,b) @1 = (az)) @ p. O
Lemma 15.6. Let char F' = 2. Let b = ({a1,...,an)) be a bilinear Pfister form,
p = ({b1,...,bn,d]] a quadratic Pfister form with n > 0 (if n = 0, then p = {(d]]),
and c € F*. Suppose there exists an x € D(b) with c+x # 0 satisfying b {({(c+x))®@p
is anisotropic. Then

bR ({ct+a) @p=b& ()@Y

for some quadratic Pfister form .
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ProOF. We proceed by induction on the dimension of b. Suppose b = (1).
Then z = y? for some y € F. It follows from Lemma 15.1 that ((c + y?,d]] ~
{(c,cd/(c +y?)]], hence ((c+y?)) @ p = () @ (b1, ..., by, cd/(c + y?)]].

So we may assume that dimb > 1. Let ¢ = {(aa,...,an)) and a = a;. We have
2 =y + az where y,z € D(c). If ¢ = az, then ¢ + z = y belongs to D(b), so the
form b ® {(c + z)) would be metabolic contradicting hypothesis.

Let d := ¢+ az. We have d # 0. By the induction hypothesis,

c@{d+y)@p~c@{d)op and @ (ac+a®2) @ p~c® ((ac) @Y
for some quadratic Pfister forms u and . Hence by Lemma 4.15,
bo((ct+2) @p=b(d+y) @p=c® (a,d+y)®p
~e®{(a,d) @ p=c® {(a,c+az) @ p=c® ({a,ac+a’z)) ® u
R c® ((a,ac) @Y = c® ((a,c) @Y =b® () @ . O

If b is a bilinear Pfister form over a field F, then b ~ b’ L (1) with the
pure subform b’ unique up to isometry. For a quadratic Pfister form over a field
of characteristic 2, the analogue of this is not true. So, in this case, we have to
modify our notion of a pure subform of a quadratic Pfister form. So suppose that
char F = 2. Let ¢ = b ® ((d]] be a quadratic Pfister form with b = b’ L (1), a
bilinear Pfister form. We have ¢ = ((d]] L ¢° with ¢° = b’ ® ((d]]. The form ¢°
depends on the presentation of b. Let ¢’ := (1) L b’ ® ((d]]. This form coincides
with the complementary form (1)* in . The form ¢’ is uniquely determined by
@ up to isometry. Indeed, by Witt Extension Theorem 8.3, for any two vectors
v,w € V, with ¢(v) = ¢(w) = 1 there is an auto-isometry « of ¢ such that
a(v) = w. Therefore, the orthogonal complements of Fv and Fw are isometric.
We call the form ¢’ the pure subform of .

Proposition 15.7. Let p = {{b1,...,b,,d]] be a quadratic Pfister form, n > 1,
and b = {{a1,...,am)) a bilinear Pfister form. Set ¢ = b ® p. Suppose that ¢ is
anisotropic. Let ¢ € D(b® p') \ D(b). Then ¢ = b ® {(c)) @ ¢ for some quadratic
Pfister form .

PROOF. Let p = (b)) ® n with b = by and n = ((ba, ..., by, d]] (with n = (d]] if
n = 1). We proceed by induction on dim p. Note that if n = 1, we have ' = (1)
and D(b®n') = D(b). As

bop =0ban) L (bben),

we have ¢ =z + by with z € 5(6@17’), and y € ﬁ(b@n).
Ify=0,then c=x € D(b®n')\ D(b). In particular, n > 1. By the induction
hypothesis, b @ n = b ® {{c)) ® p for some quadratic Pfister form p. Hence

p=b@p=b3(b)@n~be () () ®p
Now suppose that y # 0. By Lemma 15.5,
(15.8) p=bRp=0bx (D) @n~b (by)) ®@n.

Assume that ¢ D(b). In particular, n > 1. By the induction hypothesis, b ® 1 ~
b ® ((z)) ® p for some quadratic Pfister form p. Therefore, by Lemma 4.15,

prb®(by) @n=b® ((z,by) @p=be (cbry) @ p.
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Finally, we assume that 2 € D(b). By Lemma 15.6 and (15.8),
prbe(by) @n="0 (ct+z)@n~ba () @y
for a quadratic Pfister form ). |

PrROOF OF THEOREM 15.3. Let ¢ and v be isometric anisotropic quadratic
n-fold Pfister forms over F' as in the statement of Theorem 15.3. We must show
that ¢ =~ 1). We may assume that char F' = 2.

Claim: For every r € [0, n — 1], there exist a bilinear r-fold Pfister form b and
quadratic (n — r)-fold Pfister forms p and p such that ¢ = b ® p and ¥ ~ b ® p.

We prove the claim by induction on r. The case r = 0 is obvious. Suppose we
have such b, p and p for some r < n — 1. Write p = ({¢)) ® ¢ for some ¢ € F* and
quadratic Pfister form 1, so ¢ ~ b ® {(c)) ® 1. Note that as ¢ is anisotropic, we
have ¢ € D(b® p') \ D(b).

The form b ® (1) is isometric to subforms of ¢ and ¢. As b, and b, are
nondegenerate, by the Witt Extension Theorem 8.3, an isometry between these
subforms extends to an isometry between ¢ and 1. This isometry induces an
isometry of orthogonal complements b ® p’ and b ® p’. Therefore, we have ¢ €
Db ®p)\ D) =D0beyu)\ D). It follows from Proposition 15.7 that ¢ =~
b ® {{c)) ® o for some quadratic Pfister form o. Thus ¥ ~ b ® ((¢)) ® o and the
claim is established.

Applying the claim in the case r = n — 1, we find a bilinear (n — 1)-fold Pfister
form b and elements di,ds € F such that ¢ = b ® ((d1]] and ¢ = b ® ((d2]]. By
Lemma 15.4, we have b ® ({(d1]] = b ® ((d2]], hence ¢ =~ 1. O

16. Cohomological invariants

A major problem in the theory of quadratic forms was to determine the rela-
tionship between quadratic forms and Galois cohomology. In this section, using the
cohomology groups defined in §101, we introduce the problem.

Let H™(F) be the groups defined in §101. In particular,

ne L | Eta(F), ifn=1,
H (F)_{ Bry(F), ifn=2.

Let ¢ be a quadratic n-fold Pfister form. Suppose that ¢ ~ ((a1,...,a,]].
Define the cohomological invariant of ¢ to be the class e, (p) in H*(F) given by
en(p) = {ar,a2,...,an—1} - [Fa,l,
where [F,] is the class of the étale quadratic extension F./F in Ety(F) ~ H(F).

The cohomological invariant e,, is well-defined on quadratic n-fold Pfister forms:

Proposition 16.1. Let ¢ and ¢ be quadratic n-fold Pfister forms. If ¢ ~ 1), then
en(p) = en(v) in H™(F).
PRrOOF. This follows from Theorems 6.20 and 15.3. (]
As in the bilinear case, if we use the Hauptsatz 23.7 below, we even have that
if
© = 1) mod I;LH(F), then e, (¢) = en(¥)

in H*(F). (Cf. Corollary 23.9 below.) In fact, we shall also show by elementary
means in Proposition 24.6 below that if 1, @92 and 3 are general quadratic n-fold
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Pfister forms such that ¢1 + 2 + @3 € Ig“(F), then e, (¢1) + en(p2) + enlps) =
0e€ H™(F).

We call the extension of e, to a group homomorphism e, : I;‘(F) — H™(F)
the nth cohomological invariant of I} (F).

Fact 16.2. The nth cohomological invariant e, exists for all fields F' and for all
n > 1. Moreover, Ker(e,) = Ig“‘l(F). Furthermore, there is a unique isomorphism

e, I'(F) /1) (F) — H™(F)

satisfying e, (gp + Ig‘*‘l(F)) = en(p) for every quadratic n-fold Pfister quadratic
form .

Special cases of Fact 16.2 can be proven by elementary methods. Indeed, we
have already shown that the invariant e; is well-defined on all of I, (F") and coincides
with the discriminant in Theorem 13.7 and ey is well-defined on all of I g(F) and
coincides with the Clifford invariant by Theorem 14.3. Then by Theorems 13.7 and
14.3 the maps €; and é5 are well-defined. For fields of characteristic different from 2,
es was shown to be well-defined, hence €3 by Arason in [4], and é3 an isomorphism
in [103], and independently by Rost [115]; and Jacob and Rost showed that e, was
well-defined in [65].

Suppose that char F' # 2. Then the identification of bilinear and quadratic
forms leads to the composition

B+ Kn(F)/2K,(F) 225 17(P) /14 (F) = 1(F) /14 (F) £ H"(F),

where h} is the norm residue homomorphism of degree n defined in §101.

Milnor conjectured that A% was an isomorphism for all n in [106]. Voevodsky
proved the Milnor Conjecture in [136]. As stated in Fact 5.15 the map f, is an
isomorphism for all n. In particular, e, is well-defined and €, is an isomorphism
for all n.

If char F = 2, Kato proved Fact 16.2 in [78].

We have proven that é; is an isomorphism in Theorem 13.7. We shall prove that
h% is an isomorphism in Chapter VIII below if the characteristic of F' is different
from 2. It follows that e5 is an isomorphism. We now turn to the proof that e, is
an isomorphism if char F' = 2. The following statement was first proven by Sah in
[118].

Theorem 16.3. Let char F = 2. Then & : I7(F)/I3(F) — Bry(F) is an isomor-
phism.

ProOOF. The classes of quaternion algebras generate the group Bra(F') by
[1, Ch. VII, Th. 30]. It follows that & is surjective. So we need only show
that e, is injective.

Let o € IZ(F) satisfy ea(o) = 1. Write o in the form Y7, di((as, b;]]. By
assumption, the product of all [all’;z} with ¢; = b;/a; is trivial in Br(F).
We prove by induction on n that e € I3 (F). If n = 1, we have a = ((a1, b1]] and

ai,c . .
es(a) = [ lF 1} = 1. Therefore, the reduced norm form « of the split quaternion

algebra [alﬁcl} is hyperbolic by Corollary 12.5, hence o = 0.
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In the general case, let L = F(a}m,... a/? ). The field L splits [a}cﬂ

) n—1

for all ¢ € [1, n — 1] and hence splits [anl;cn}. By Lemma 98.16, we have

Qp, C c,d . . .
[ nF n} = [ 2 }, where c is the square of an element of L, i.e., ¢ is the sum of

elements of the form g?m where g € F and m is a monomial in the a;, i € [1, n—1].
It follows from Corollary 12.5 that ((an,bs]] = (¢, cd]]. By Lemma 15.1, we have
(¢, ed]] is congruent modulo I3 (F) to the sum of 2-fold Pfister forms ((a;, f;]] with

i€[l, n—1], fi € F. Therefore, we may assume that o = S7""((a;, b}]] for some

i=1 [

b;. By the induction hypothesis, a € I3(F). O






CHAPTER III

Forms over Rational Function Fields

17. The Cassels-Pfister Theorem

Given a quadratic form ¢ over a field over F', it is natural to consider values
of the form over the rational function field F(t). The Cassels-Pfister Theorem
shows that whenever ¢ represents a polynomial over F(t), then it already does so
when viewed as a quadratic form over the polynomial ring F'[t]. This results in
specialization theorems. As an n-dimensional quadratic form 1 can be viewed as
a polynomial in F[T] := F[t1,...,t,], one can also ask when is ¢(T) a value of
or(r)? If both the forms are anisotropic, we shall also show in this section the
fundamental result that this is true if and only if ¢ is a subform of ¢.

Let ¢ be an anisotropic quadratic form on V over F' and b its polar form. Let
v and u be two distinct vectors in V' and set w = v — u. Let 7, be the reflection
with respect to w as defined in Example 7.2. Then ¢(7,(v)) = ¢(v) as 7, is an
isometry and

(17.1) T (V) = u + plw) — o),

p(w)
as by, (v,w) = by, (v, —w) = —p(u) + p(v) + ¢(w) by definition.
Notation 17.2. If T = (¢1,...,t,) is a tuple of independent variables, let
F[T]:= Flt1,...,t,] and F(T):= F(t1,...,tn).
If V is a finite dimensional vector space over F, let
VT :=F[T|®rV and V(T):=Vpr):=F(T)QrV.

Note that V(T) is also the localization of V[T] at F[T]\ {0}. In particular, if
v € V(T), there exist w € V[T] and a nonzero f € F[T] satisfying v = w/f. For a
single variable t, we let V[t] := F[t] @p V and V(1) := Vp) := F(t) @p V.

The following general form of the Classical Cassels-Pfister Theorem is true.

Theorem 17.3 (Cassels-Pfister Theorem). Let ¢ be a quadratic form on'V and let
h e Flt] 0N D(ep)). Then there is a w € V[t] such that p(w) = h.

PROOF. Suppose first that ¢ is anisotropic. Let v € V(¢) satisfy ¢(v) = h.
There is a nonzero polynomial f € F[t] such that fv € V[t]. Choose v and f so
that deg(f) is the smallest possible. It suffice to show that f is constant. Suppose
deg(f) > 0.

Using the analog of the Division Algorithm, we can divide the polynomial vector
fv by f to get fv = fu+r, where u,r € V[t] and deg(r) < deg(f). If r = 0, then

71
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v = u € V[t] and f is constant; so we may assume that r # 0. In particular,
o(r) # 0 as ¢ is anisotropic. Set w = v —u =r/f and consider the vector
p(u) —h
17.4 Tw(V) =u+ r
ey =
as in (17.1). We have ¢(7,(v)) = h. We show that f’' := ¢(r)/f is a polynomial.
As
FPh=o(fo) = p(fu+r) = fPo(u) + fog(ur) + o(r),
we see that ¢(r) is divisible by f. Equation (17.4) implies that f'7,(v) € V[t] and
the definition of r yields

deg(f') = deg @(r) — deg(f) < 2deg(f) — deg(f) = deg(f),

a contradiction to the minimality of deg(f).

Now suppose that ¢ is isotropic. By Lemma 7.12, we may assume that rad ¢ =
0. In particular, a hyperbolic plane splits off as an orthogonal direct summand of
© by Lemma 7.13. Let e, ¢’ be a hyperbolic pair for this hyperbolic plane. Then

o(he +¢€') =by(he,e’) = hb,(e,e') = h. U

The theorem above was first proved by Cassels in [22] for the form (1,...,1)
over a field of characteristic not 2. This was generalized by Pfister to nondegenerate
forms over such fields in [108] and used to prove the results through Corollary 17.13
below in that case.

Corollary 17.5. Let b be a symmetric bilinear form on V and let h € F[t] N
D(¢p)). Then there is a v € V[t] such that b(v,v) = h.

PROOF. Let ¢ be @y, i.e., p(v) = b(v,v) for all v € V. The result follows from
the Cassels-Pfister Theorem for . (]

Corollary 17.6. Let f € F[t] be a sum of n squares in F(t). Then f is a sum of
n squares in F[t].

Corollary 17.7 (Substitution Principle). Let ¢ be a quadratic form over F and
h € D(¢pry) with T = (t1,...,t,). Suppose that h(x) is defined for x € F™ and
h(z) # 0, then h(z) € D(yp).

PROOF. As h(z) is defined, we can write h = f/g with f,g € F[T] and g(z) #
0. Replacing h by g?h, we may assume that h € F[T]. Let 7" = (t1,...,tn_1)
and = (z1,...,zy,). By the theorem, there exists v(T”,t,) € V(T")[t,] satistying
o(v(T,t,)) = h(T’, t,,). Evaluating t,, at ,, shows that h(T",z,,) = ¢ (v(T",z,)) €
D(¢prry). The conclusion follows by induction on n. O

As above, we also deduce:

Corollary 17.8 (Bilinear Substitution Principle). Let b be a symmetric bilinear
form over F' and h € D(bp(r)) with T = (t1,...,t,). Suppose that h(x) is defined
for x € F™ and h(x) # 0, then h(x) € D(b).

We shall need the following slightly more general version of the Cassels-Pfister
Theorem.

Proposition 17.9. Let ¢ be an anisotropic quadratic form on V. Suppose that
seV and v € V(t) satisfy o(v) € F[t] and by,(s,v) € F[t]. Then there is w € Vt]
such that p(w) = ¢(v) and by(s,w) = by(s,v).
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ProOF. It suffices to show the value b, (s, v) does not change when v is modified
in the course of the proof of Theorem 17.3. Choose vy € V[t] satisfying b, (s, vo) =
by, (s,v).

Let f € F[t] be a nonzero polynomial such that fv € V[¢]. As the remainder r
on dividing fv and fv — fvg by f is the same and fv — fvy € (F(t)s)*, we have
r € (F(t)s)*. Therefore, b, (s,7(v)) = by (s,0). O

Lemma 17.10. Let ¢ be an anisotropic quadratic form and p a nondegenerate
binary anisotropic quadratic form satisfying p(ti,t2) +d € D(@p, 1,)) for some

d € F. Then ¢ ~ p L pu for some form p cmddef)(,u).

PROOF. Let p(t1,ta) = at? + btita + ct3. As p(ti,t2) + dt? is a value of ¢
over F'(ti,ts,t3), there is a u € V = V,, such that p(u) = a by the Substitution
Principle 17.7. Applying the Cassels-Pfister Theorem 17.3 to the form pp(,), we
find a v € Vi, [t1] such that ¢(v) = at? + bt1ts + ct3 + d. Since ¢ is anisotropic,
we have deg, v <1, i.e., v(t1) = vo + v1t1 for some vy, v1 € Vp(y,). Expanding we
get

o(vo) = a, blvg,v1) =bta, @(v1) = ct3 +d,
where b = b,,. Clearly, vy ¢ rad(bp(,))-
We claim that u ¢ rad(b). We may assume that u # vy and therefore

0 # ¢(u—wo) = ¢(u) + ¢(vo) — b(u,vo) = b(u,u — o)

as Qp(t,) 1s anisotropic by Lemma 7.15, hence the claim follows.

By the Witt Extension Theorem 8.3, there is an isometry 7 of ¢ p(y,) satisfying
~(vo) = u. Replacing vg and v1 by u = v(vo) and ~y(v1) respectively, we may assume
that vg € V.

Applying Proposition 17.9 to the vectors vg and vy, we find w € Vto] satisfying
o(w) = ct3 + d and b(vg, w) = bty. In a similar fashion, we have w = wg + w1tz
with wg,w; € V. Expanding, we have

o(vg) =a, bvg,w1)=0b, ¢(w)=c,

o(wg) =d, b(vg,wp) =0, bwy,w1)=0.
It follows that if W is the subspace generated by vy and wy, then ¢l ~ p and
d € D(u) where p = @|yo. O

Corollary 17.11. Let ¢ and ¥ be two anisotropic quadratic forms over F with
dime = n. Let T = (t1,...,t,). Suppose that Y(T) € D(¢pry). If v =p Lo
with p a nondegenerate binary form and T' = (t3,...,tn), then @ ~ p L u for some

Jorm piand p(T") € BF(T’)(SDF(T’))'

Theorem 17.12 (Representation Theorem). Let ¢ and ¢ be two anisotropic qua-
dratic forms over F with dimy = n. Let T = (t1,...,t,). Then the following are
equivalent:

(1) D(Wk) C D(pk) for every field extension K/F.
(2) ¥(T) € D(¢rr))-
(3) @ is isometric to a subform of .

In particular, if any of the above conditions hold, then dim < dim .
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Proor. (1) = (2) and (3) = (1) are trivial.

(2) = (3): Applying the structure results, Propositions 7.31 and 7.29, we can
write ¢ = 11 L 1o, where 11 is an orthogonal sum of nondegenerate binary forms
and 1y is diagonalizable. Repeated application of Corollary 17.11 allows us to
reduce to the case ¢ = )9, i.e., Y = {aq,...,a,) is diagonalizable.

We induct on n. The case n = 1 follows from the Substitution Principle 17.7.
Suppose that n = 2. Then we have a,t? + ay € D(¢r))- By the Cassels-Pfister
Theorem, there is a v € V[t] where V = V,, satisfying ¢(v) = a1t> + az. As ¢
is anisotropic, we have v = vy + vat for v1,v9 € V and therefore ¢(vi) = aq,
p(v2) = ag, and b(v1,v2) = 0. The restriction of ¢ on the subspace spanned by vy
and vy is isometric to 1.

In the general case, set T = (t1,to,...,tn), T' = (ta,...,tn), b= aot® +--- +
ant?. As ait? + b is a value of ¢ over F(T")(t), by the case considered above, there
are vectors vy, ve € Vp() satisfying

p(vr) =a1, @va)=>b and b(v,v2) =0.
It follows from the Substitution Principle 17.7 that there is w € V such that
p(w) = as.

We claim that there is an isometry v of ¢ over F(T") such that ¢(v1) = w. We
may assume that w # v1 as ¢p(7v) is anisotropic by Lemma 7.15. We have

0 # p(w —v1) = p(w) + (v1) = b(w, v1) = b(w,w —v1) = b(v1 — w,v1),
therefore w and v; do not belong to rad b. The claim follows by the Witt Extension
Theorem 8.3.

Replacing v; and vy by v(v1) = w and (vz) respectively, we may assume that
vy € V. Set W = (Fvp)*. Note that vy € Wg(rr), hence b is a value of @[y over
F(T"). By the induction hypothesis applied to the forms ¢/ = (ag,...,a,) and
©|w, there is a subspace V! C W such that ¢|ys ~ (as,...,a,). Note that vy is
orthogonal to V' and vy ¢ V’ as 1) is anisotropic. Therefore, the restriction of ¢ on
the subspace Fvy @ V' is isometric to . O

A field F is called formally real if —1 is not a sum of squares. In particular,
char F' = 0 if this is the case (cf. §95).

Corollary 17.13. Suppose that F is formally real and T = (to,...,tn). Then
t2+ 13+ +t2 is not a sum of n squares in F(T).

PROOF. If this is false, then ¢§ + 3 4+ - + 12 € D(n(1)). As (n+ 1)(1) is
anisotropic, this contradicts the Representation Theorem. O

The ideas above also allow us to develop a test for simultaneous zeros for
quadratic forms. This was proven independently by Amer in [2] and Brumer in
[21] for fields of characteristic not 2 and by Leep for arbitrary fields in [92].

Theorem 17.14. Let ¢ and ¥ be two quadratic forms on a vector space V over
F. Then the form op@) +tYpe) on V(t) over F(t) is isotropic if and only if ¢ and
1 have a common isotropic vector in V.

PRrROOF. Clearly, a common isotropic vector for ¢ and 1 is also an isotropic
vector for p 1= ©p@) +tYp@)-

Conversely, let p be isotropic. There exists a nonzero v € V[t] such that
p(v) = 0. Choose such a v of the smallest degree. We claim that degv = 0, i.e.,
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v € V. If we show this, the equality ¢(v) + t¢(v) = 0 implies that v is a common
isotropic vector for ¢ and .

Suppose n := degv > 0. Write v = w 4 t"u with u € V and w € V[t] of degree
less than n. Note that by assumption p(u) # 0. Consider the vector

v = plu) - T (v) = p(u)v — b,(v,u)u € V[t].

As p(v) =0, we have p(v') = 0. It follows from the equality
p(w)v —b,(v,w)w = p(v —t"u)v — b, (v,0 — t"u) (v — t"u) = *" (p(u)v — b, (v, u)u)
that

o = p(w)v — b, (v, w)w

t2n

Note that deg p(w) < 2n — 1 and degb, (v, w) < 2n. Therefore, degv’ < n, contra-
dicting the minimality of n. (I

18. Values of forms

Let ¢ be an anisotropic quadratic form over F'. Let p € F[T]| = F[t1,...,t,] be
irreducible and F(p) the quotient field of F[T]/(p). In this section, we determine
what it means for ¢p(,) to be isotropic. We base our presentation on ideas of
Knebusch in [82]. This result has consequences for finite extensions K/F. In
particular, the classical Springer’s Theorem that forms remain anisotropic under
odd degree extensions follows as well as a norm principle about values of pg.

Order the group Z" lexicographically, i.e., (i1,...,4,) < (j1,...,7n) if for the
first integer k satisfying i, # jr with 1 < k <n, we have iy, < ji. If ¢ = (i1,...,1,)
in Z" and a € F*, write aT* for ati1 -+t and call 4 the degree of aT®. Let
f = aT® + monomials of lower degree in F[T] with a € F*. The term aT* is
called the leading term of f. We define the degree deg f of f to be 2, the degree of
the leading term, and the leading coefficient f* of f to be a, the coefficient of the
leading term. Let Ty denote T* if 4 is the degree of the leading term of f. Then
f = f*Ty + f" with deg f* < degTy. For convenience, we view deg0 < deg f for
every nonzero f € F[T]. Note that deg(fg) = deg f +degg and (fg)* = f*g*. If
he F(T)* and h = f/g with f,g € F[T], let h* = f*/g*.

Let V be a finite dimensional vector space over F'. For every nonzero v € V[T
define the degree degv, the leading vector v*, and the leading term v*T, in a similar
fashion. Let deg0 < degv for any nonzero v € V[T)]. So if v € V[T] is nonzero, we
have v = v*T, + v’ with degv’ < degT,.

Lemma 18.1. Let ¢ be a quadratic form on'V over F and g € F[T). Suppose that
9 € D(¢pr)). Then g* € D(p). If, in addition, o is anisotropic, then degg € 27".

PROOF. Since ¢ on V and the induced quadratic form @ on V/rad ¢ have the
same values, we may assume that rad(¢) = 0. In particular, if ¢ is isotropic, it is
universal, so we may assume that ¢ anisotropic.

Let g = ¢(v) with v € V(T). Write v = w/f with w € V[T] and nonzero
f € F[T]. Then f%g = p(w). As (f29)* = (f*)%g*, we may assume that v € F[T].
Let v = v*T, + v’ with degv’ < degv. Then

g =p(v*T,) + by, (v*T,, ") + o(v') = p(v*)T2 + by, (v*, )T, + (V')

= p(v*)T? 4 terms of lower degree.
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As ¢ is anisotropic, we must have p(v*) # 0, hence g* = ¢(v*) € D(p). As the
leading term of g is ¢(v*)T?, the second statement also follows. ]

Let v € V[T]. Suppose that f € F[T] satisfies deg; f > 0. Let T" =
(t2y...,tn). Viewing v € V(T")[t1], the analog of the usual division algorithm
produces an equation

v=fw +r" with w' 1" € Vpi[t1] and deg,, r' < deg,, f.
Clearing denominators in F[1"], we get
hv = fw+r
(18.2) with w,r € V[T], 0#h e F[T'] and deg,, r < deg,, f,
so degh < deg f, degr < deg f.

If p is a quadratic form over F' let <D(g0)> denote the subgroup in F'* generated
by D(¢p).

Theorem 18.3 (Quadratic Value Theorem). Let ¢ be an arbitrary anisotropic qua-
dratic form on'V and f € F[T] a nonzero polynomial. Then the following conditions
are equivalent:

(1) f*fe <D(<PF(T))>-

(2) There exists an a € F* such that af € (D(¢r(r)))-

(3) @r(p) is isotropic for each irreducible divisor p occurring to an odd power
in the factorization of f.

PROOF. (1) = (2) is trivial.
(2) = (3): Let af € (D(¢p(r))), i.e., there are
0#heF[T] and v1,...,0, € VT

such that ah?f = []¢(v;). Let p be an irreducible divisor of f to an odd power.
Write v; = p¥v! so that v} is not divisible by p. Dividing out both sides by p?*,
with k = 3" k;, we see that the product [] ¢(v}) is divisible by p. Hence the residue
of one of the ¢(v]) is trivial in the residue field F(p) while the residue of v} is not
trivial. Therefore, fr(,) is isotropic.

(3) = (1): We proceed by induction on n and deg f. The statement is obvious
if f = f*. In the general case, we may assume that f is irreducible. Therefore,
by assumption ¢p(y) is isotropic. In particular, we see that there exists a vector
v € V,[T] such that f | o(v) and f)v. If deg, f =0, let T = (ta,...,t,) and
let L denote the quotient field of F[T’]/(f). Then F(f) = L(t1) so ¢y, is isotropic
by Lemma 7.15 and we are done by induction on n. Therefore, we may assume
that deg, f > 0. By (18.2), there exist 0 # h € F[T'] and w,r € V[I] such that
hv = fw+ r with degh < deg f and degr < deg f. As

p(hv) = o(fw +1) = frp(w) + foy(w,r) + (),

we have f | ¢(r). If r =0, then f | hv. But f is irreducible and f J v, so f | h. This
is impossible as deg h < deg f. Thus r # 0. Let ¢(r) = fg for some g € F[T]. As ¢
is anisotropic g # 0. So we have fg € D(¢p(r)), hence also (fg)* = f*g* € D(p)
by Lemma 18.1.

Let p be an irreducible divisor occurring to an odd power in the factorization
of g. As degy(r) < 2deg f, we have degg < deg f, hence p occurs with the same
multiplicity in the factorization of fg. By (2) = (3), applied to the polynomial
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fg, the form ¢,y is isotropic. Hence the induction hypothesis implies that g*g €
(D(¢rr))). Comsequently, f*f = f**-(f*¢*)™"-g%g- fg- 97 € (D(¢r(r))). O

Theorem 18.4 (Bilinear Value Theorem). Let b be an anisotropic symmetric bi-
linear form on'V and f € F[T] a nonzero polynomial. Then the following conditions
are equivalent:

(1) f*fe <D(hF(T))>~
(2) There exists an a € F* such that af € (D(bpr))).

(3) bp(p) is isotropic for each irreducible divisor p occurring to an odd power
in the factorization of f.

PROOF. Let ¢ = ¢p. As D(bg) = D(¢k) for every field extension K/F by
Lemma 9.2 and by is isotropic if and only if @k is isotropic, the result follows by
the Quadratic Value Theorem 18.3. (]

A basic result in Artin-Schreier theory is that an ordering on a formally real field
extends to an ordering on a finite algebraic extension of odd degree, equivalently
if the bilinear form n(1) is anisotropic over F' for any integer n, it remains so over
any finite extension of odd degree. Witt conjectured in [139] that any anisotropic
symmetric bilinear form remains anisotropic under an odd degree extension (if
char F' # 2). This was first shown to be true by Springer in [126]. This is in fact
true without a characteristic assumption for both quadratic and symmetric bilinear
forms.

Corollary 18.5 (Springer’s Theorem). Let K/F be a finite extension of odd de-
gree. Suppose that ¢ (respectively, b) is an anisotropic quadratic form (respectively,
symmetric bilinear form) over F. Then vk (respectively, by) is anisotropic.

PRrROOF. By induction on [K : F], we may assume that K = F'(6) is a primitive
extension. Let p be the minimal polynomial of § over F. Suppose that ¢g is
isotropic. Then ap € <D(gap(t))> for some a € F* by the Quadratic Value Theorem
18.3. It follows that p has even degree by Lemma 18.1, a contradiction. If b is a
symmetric bilinear form over F', applying the above to the quadratic form ¢ shows
the theorem also holds in the bilinear case. O

We shall give another proof of Springer’s Theorem in Corollary 71.3 below.

Corollary 18.6. If K/F is an extension of odd degree, then ri/p : W(F) —
W(K) and rg/p : 14(F) — 1,(K) are injective.

Corollary 18.7. Let ¢ and v be two quadratic forms on a vector space V' over F
having no common isotropic vector in V.. Then for any field extension K/F of odd
degree the forms ¢ and Vg have no common isotropic vector in Vi .

PRrROOF. This follows from Springer’s Theorem and Theorem 17.14. (]

Exercise 18.8. Let char F # 2 and K/F be a finite purely inseparable field ex-
tension. Then rg/p : W(F) — W(K) is an isomorphism.

Corollary 18.9. Let K = F(0) be an algebraic extension of F' and p the (monic)
minimal polynomial of 6 over F. Let ¢ be a reqular quadratic form over F. Suppose
that there exists a ¢ € F such that p(c) ¢ (D(p)). Then ¢k is anisotropic.
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ProOOF. As radyp = 0, if ¢ were isotropic it would be universal. Thus ¢ is
anisotropic. In particular, p is not linear, hence p(c) # 0. Suppose that ¢ is
isotropic. By the Quadratic Value Theorem 18.3, we have p € <D(<pF(t))>. By the
Substitution Principle 17.7, we have p(c) € (D(¢)) for all ¢ € F, a contradiction.

O

As another consequence, we obtain the following theorem first proved by Kneb-
usch in [81].

Theorem 18.10 (Value Norm Principle). Let ¢ be a quadratic form over F and
K/F a finite field extension. Then Nk, r(D(pxk)) C (D(p)).

Proor. Let V = V,. Since the form ¢ on V and the induced form ¢ on
V/rad(yp) have the same values, we may assume that rad(yp) = 0. If ¢ is isotropic,
then ¢ splits off a hyperbolic plane. In particular, ¢ is universal and the statement
is obvious. Thus we may assume that ¢ is anisotropic. Moreover, we may assume
that dimy > 2 and 1 € D(y).

Case 1: pg is isotropic.

Let € D(pk). Suppose that K = F(z). Let p € F[t] denote the (monic)
minimal polynomial of z so K = F(p). It follows from the Quadratic Value Theorem
18.3 that p € <D(<pp(t))> and degp is even. In particular, Ng/p(2) = p(0) and by
the Substitution Principle 17.7,

Ng/r(z) = p(0) € (D(y))-

If F(z) C K, let m = [K : F(x)]. If m is even, then Ny, p(z) € F*? C (D(y)). If
m is odd, then ¢p(,) is isotropic by Springer’s Theorem 18.5. Applying the above
argument to the field extension F'(x)/F yields

Ni/r(2) = Np@y/r(2)™ € (D(9))
as needed.

Case 2: g is anisotropic.

Let 2 € D(¢k). Choose vectors v, vg € Vi such that ¢ (v) = z and g (vg) =
1. Let V' C Vi be a 2-dimensional subspace (over K) containing v and vg. The
restriction ¢’ of @i to V' is a binary anisotropic quadratic form over K representing
x and 1. It follows from Proposition 12.1 that the even Clifford algebra L = Cy(¢')
is a quadratic field extension of K and x = N,k (y) for some y € L*. Moreover,
since Co(p}) = Co(¢') ® x L = L @k L is not a field, by the same proposition, ¢’
and therefore ¢ is isotropic over L. Applying Case 1 to the field extension L/F
yields

Ng/r(z) = Ng/r(Npyk(y) =Niye(y) € (D(p)). U

Theorem 18.11 (Bilinear Value Norm Principle). Let b be a symmetric bilinear
form over F and let K/ F be a finite field extension. Then Ng/r(D(bg)) C (D(b)).

PrOOF. As D(bg) = D(pp,) for any field extension E/F, this follows from
the quadratic version of the theorem. (I
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19. Forms over a discrete valuation ring

We wish to look at similarity factors of bilinear and quadratic forms. To do so
we need a few facts about such forms over a discrete valuation ring (DVR) which
we now establish. These results are based on the work of Springer in [127] in the
case of fields of characteristic different from 2.

Throughout this section, R will be a DVR with quotient field K, residue field
K, and prime element 7. If V is a free R-module of finite rank, then the definition
of a (symmetric) bilinear form and quadratic form on V' is analogous to the field
case. In particular, we can associate to every quadratic form its polar form b, :
(v,w) — p(v+w)—p() —e(w). Orthogonal complements are defined in the usual
way. Orthogonal sums of bilinear (respectively, quadratic) forms are defined as in
the field case. We use analogous notation as in the field case when clear. If I’ — R
is a ring homomorphism and ¢ is a quadratic form over F', we let o = R ®@F .

A Dbilinear form b on V is nondegenerate if I : V. — Hompg(V, R) defined by
v+ Iy : w — b(v,w) is an isomorphism. As in the field case, we have the crucial

Proposition 19.1. Let R be a DVR. Let V be a free R-module of finite rank and
W a submodule of V. If ¢ is a quadratic form on V with b, |w nondegenerate, then

e=9lw Lolwe.

PROOF. As by|w is nondegenerate, W N W= = {0} and if v € V, there exists
w’ € W such that the linear map W — F by w — by (v, w) is given by b, (v, w) =
b, (w',w) for all w € W. Consequently, v = w+ (v —w') € W& W+ and the result
follows. O

Hyperbolic quadratic forms and planes are also defined in an analogous way.
We let H denote the quadratic hyperbolic plane.

If Ris a DVR and V a vector space over the quotient field K of R. A vector
v € V is called primitive if it is not divisible by a prime element 7, i.e., the image
7 of vin K @g V is not zero.

Arguing as in Proposition 7.13, we have

Lemma 19.2. Let R be a DVR. Let ¢ be a quadratic form on V whose polar form
is nondegenerate. Suppose that V contains an isotropic vector v. Then there exists
a submodule W of V' containing v such that |y ~ H.

PROOF. Dividing v by 7" for an appropriate choice of n, we may assume that
v is primitive. It follows easily that V/Ruv is torsion-free, hence free. In particular,
V — V/Ruv splits, therefore, Rv is a direct summand of V. Let f : V — R be an
R-linear map satisfying f(v) = 1. Asl:V — Hompg(V, R) is an isomorphism, there
exists an element w € V such that f =1[,,, hence b, (v, w) = 1. Let W = Rv & Rw.
Then v, w — p(w)v is a hyperbolic pair. O

By induction, we conclude:

Corollary 19.3. Suppose that R is a DVR. Let ¢ be a quadratic form onV over R
whose polar form is nondegenerate. Then ¢ = plv, L |y, with Vi, Va submodules
of V satisfying plv, is anisotropic and |y, ~ mH for some m > 0.

Associated to a quadratic form ¢ on V over R are two forms: ¢ on K @g V
over K and p = ¢z on K Qg V over K.
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Lemma 19.4. Suppose that R is a complete DVR. Let ¢ be an anisotropic qua-
dratic form over R whose associated bilinear form by, is nondegenerate. Then ¢ is
also anisotropic.

PRrOOF. Let {vi,...,v,} be a basis for V,, and ty,...,t, the respective coordi-
nates. If w € V,,, then %(w) = by, (v;, w). In particular, if w # 0, there exists an
such that b, (v;,w) # 0. It follows by Hensel’s lemma that ¢ would be isotropic if
P is. (I

Lemma 19.5. Let ¢ and ¢ be two quadratic forms over a DVR R such that ¢ and
¥ are anisotropic over K. Then pi | ik is anisotropic over K.

PROOF. Suppose that ¢(u) + mp(v) = 0 for some u € V,, and v € V,; with
at least one of u and v primitive. Reducing modulo 7, we have ¢(u) = 0. Since
@ is anisotropic, u = ww for some w. Therefore, 7o(w) + ¥ (v) = 0 and reducing
modulo 7 we get ¢(v) = 0. Since v is also anisotropic, v is divisible by 7, a
contradiction. O

Corollary 19.6. Let ¢ and ¢ be anisotropic forms over F. Then ppy L thp@
18 anisotropic.

PROOF. In the lemma, let R = F[t](;), a DVR, 7 =t a prime. As $p = ¢ and
Yr = 1, the result follows from the lemma. U

Proposition 19.7. Let ¢ be a quadratic form over a complete DVR R such that
the associated bilinear form by, is nondegenerate. Suppose that px ~ wpr. Then
@ 1s hyperbolic.

PROOF. Write ¢ = 1) L nH with v anisotropic. By Lemma 19.4, we have 1) is
anisotropic. The form

ok L (—mpr) ~vx L (—m)K) L 2nH

is hyperbolic and ¥ L (—mk) is anisotropic over K by Lemma 19.5. We must
have ¢ = 0 by uniqueness of the Witt decomposition over K, hence ¢ = nH is
hyperbolic. It follows that ¢ is hyperbolic. O

Proposition 19.8. Let ¢ be a nondegenerate quadratic form over F of even di-
mension. Let f € F[T] and p € F[T] an irreducible polynomial factor of f of odd
multiplicity. If op(ry = forT), then ©p) is hyperbolic.

PROOF. Let R denote the completion of the DVR F[T](, and let K be its
quotient field. The residue field of R coincides with F'(p). Modifying f by a square,

we may assume that f = up for some u € R*. As op(r) =~ fop@), we have
Yr(T) = upppr)- Applying Proposition 19.7 to the form ¢r and 7 = up yields

(¢R) = @r(p) is hyperbolic. 0

We shall also need the following:

Proposition 19.9. Let R be a DVR with quotient field K. Let ¢ and v be two
quadratic forms on'V and W over R, respectively, such that their respective residue
forms @ and v are anisotropic. If px ~ Pk, then ¢ ~ 1 (over R).
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PROOF. Let f: Vi — Wgk be an isometry between ¢ and 9. It suffices to
prove that f(V) C W and f~1(W) C V. Suppose that there exists a v € V such
that f(v) is not in W. Then f(v) = w/7* for some primitive w € W and k > 0.
Since f is an isometry, we have ¥(w) = m2*p(v), i.e., 1(w) is divisible by 7, hence
w is an isotropic vector of ¢, a contradiction. Analogously, f~(W) C V. O

19.A. Residue homomorphisms. If R is a DVR, then for each z € K* we
can write = un™ for some u € R* and n € Z.

Lemma 19.10. Let R be a DVR with quotient field K and residue field K. Let ©
be a prime element in R. There exist group homomorphisms

0:W(K)—>W(K) and 0p:W(K)— W(K)
satisfying

n (@) nis even n 0 nis even,
8(<U7T >) B { 0 nisodd and 8ﬂ(<u7r >) B (@) nis odd

foru e R* andn € Z.

PROOF. It suffices to prove the existence of 0 as we can take 9, = o \; where
Ar is the group homomorphism A, : W(K) — W(K) given by b — wb.

By Theorem 4.8, it suffices to check that the generating relations of the Witt
ring are respected. As (1) + (—1) = 0 in W(K), it suffices to show if a,b € R with
a+b# 0, then

(19.11) d({(a)) +0((b)) = 0({a + b)) + O(({ab(a + b)))
in W(K).
Let
a=apr", b=byr™, a+b=rnlcy with ag,bg,co€ R,

and m,n,l € Z satisfying min{m,n} <I. We may assume that n < m.
Suppose that n < m. Then

a+b=mr"ag(l+ Wm_"Z—O) and  ab(a +b) = " "byad (1 + Z—me_").
0 0

In particular, d((a)) = 9({a + b)) and d((b)) = 0(({ab(a + b))) as needed.

Suppose that n =m. If n =1, then ag 4+ bg € R* and the result follows by the
Witt relation in W (K).

So suppose that n < I. Then @y = —bg so the left hand side of (19.11) is zero.
If [ is odd, then d({a+b)) = 0 = O(({ab(a+b))) as needed. So we may assume that
[ is even. Then (a + b) ~ (¢g) and {ab(a + b)) ~ (apboco) over K. Hence the right
hand side of (].9].1) is <Eo> + <d(]6050> = <E()> + <—EO> =0in W(K) also. ([l

The map 0 : W(K) — W(K) in the lemma is not dependent on the choice on
the prime element 7. It is called the first residue homomorphism with respect to
R. The map 0, : W(K) — W(K) does depend on 7. It is called the second residue
homomorphism with respect to R and 7.

Remark 19.12. Let R be a DVR with quotient field K and residue field K. Let 7
be a prime element in R. If b is a nondegenerate diagonalizable bilinear form over
K, we can write b as

b~ (up,...,up) La(vy,...,0m)
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for some wu;,v; € R*. Then 0(b) = (i1, ..., u,) in W(K) and 9:(b) = (v1,...,0m)
in W(K).

Example 19.13. Let R be a DVR with quotient field K and residue field K.
Let m be a prime element in R. Let b = ((a1,...,a,)) be an anisotropic n-fold
Pfister form over K. Then we may assume that a; = 7/éu; with j; = 0 or 1
and u; € R* for all i. By Corollary 6.13, we may assume that a; € R* for
all i > 1. As b = —a1{{aa,...,an) L {ag,...,ay), if a3 € R*, then 9(b) =
({@1,...,a,)) and 0(b) = 0, and if a; = 7uy, then 9(b) = ((as,...,a,)) and
0x(b) = —ur{(az, ..., an)).

As n-fold Pfister forms generate I"(F'), we have, by the example, the following:

Lemma 19.14. Let R be a DVR with quotient field K and residue field K. Let ©
be a prime element in R. Then for every n > 1:

(1) 5‘(["([()) c I""Y(K).

(2) 5‘,,(]"(1()) c I"Y(K).

Exercise 19.15. Suppose that R is a complete DVR with quotient field K and
residue field K. If char K # 2, then the residue homomorphisms induce split exact
sequences of groups:

0—W(K)— W(K)—W(K)—0

and
0— I"(K) — I"(K) — I""Y(K) — 0.

20. Similarities of forms

Let ¢ be an anisotropic quadratic form over F. Let p € F[T] := F[t1,...,tx]
be irreducible and F(p) the quotient field of F[T]/(p). In this section, we determine
what it means for ¢p(,) to be hyperbolic. We also establish the analogous result
for anisotropic bilinear forms over F'. We saw that a form becoming isotropic over
F(p) was related to the values it represented over the polynomial ring F[T]. We
shall see that hyperbolicity is related to the similarity factors of the form over
F[T]. We shall also deduce norm principles for similarity factors of a form over
F first established by Scharlau in [119] and Knebusch in [82]. To establish these
results, we introduce the transfer of forms from a finite extension of F' to F', an idea
introduced by Scharlau (cf. [119]) for quadratic forms over fields of characteristic
different from 2 and Baeza (cf. [15]) in arbitrary characteristic.

20.A. Transfer of bilinear and quadratic forms. Let K/F be a finite
field extension and s : K — F an F-linear functional. If b is a symmetric bilinear
form on V over K define the transfer s.(b) of b induced by s to be the symmetric
bilinear form on V over F given by

s.(0)(v,w) = s(b(v,w)) forall v,w e V.

If ¢ is a quadratic form on V over K, define the transfer s.(¢) of ¢ induced by s
to be the quadratic form on V over F given by s.(¢)(v) = s(p(v)) for all v € V
with polar form s, (b).

Note that dim s,(b) = [K : F]dimb.
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Lemma 20.1. Let K/F be a finite field extension and s : K — F an F-linear
functional. The transfer s, factors through orthogonal sums and preserves isome-
tries.

PROOF. Let v,w € V;. If b(v,w) = 0, then s,(b)(v,w) = s(b(v,w)) = 0. Thus
$4(b L ¢) = 5.(b) L s.(c). If 0 : b — b’ is an isometry, then

5.(b")(0(v), o(w)) = s(b'(c(v),0(w))) = s(b(v,w)) = s.(b)(v,w),
S0 0 : 84(b) — s.(b) is also an isometry. O
Proposition 20.2 (Frobenius Reciprocity). Suppose that K/F is a finite exten-
sion of fields and s : K — F an F-linear functional. Let b and ¢ be symmetric

bilinear forms over F' and K, respectively, and ¢ and ¢ quadratic forms over F
and K respectively. Then there exist canonical isometries:

(20.3a) Sx(bg QK ¢) 2 bR s.(c),
(20.3b) s:(bx Qg V) 2 b 5.(¥),
(20.3c) s+ (C QK Vi) =~ 5.(¢) QF p.

In particular,
$:(bg) ~b®p S*(<1>b).

PROOF. (a): The canonical F-linear map Vi, @k Vi — Vi ®p V. given by
(a®v) ®w— v® aw is an isometry. Indeed,

s(bx ® ) ((a®@v) ®w, (d @) @w') = s(aa’b(v,v)c(w,w))
= b(v,v")s(c(aw, a'w"))
= (b® sc)(v ® aw,v' ® a'w').

The last statement follows from the first by setting ¢ = (1).
(b) and (c) are proved in a similar fashion. O

Lemma 20.4. Let K/F be a finite field extension and s : K — F a nonzero F-
linear functional.

(1) If b is a nondegenerate symmetric bilinear form on V over K, then s.(b)
1s nondegenerate on 'V over F.

(2) If ¢ is an even-dimensional nondegenerate quadratic form on V over K,
then s.(¢) is nondegenerate on 'V over F.

PRrROOF. Suppose that 0 # v € V. As b is nondegenerate, there exists a w € V
such that 1 = b(v,w). As s is not zero, there exists a ¢ € K such that 0 #
s(c) = s+(b)(v, cw). This shows (1). Statement (2) follows from (1) and Remark
7.21(1). O

Corollary 20.5. Let K/F be a finite extension of fields and s : K — F a nonzero
F'-linear functional.

(1) If ¢ is a bilinear hyperbolic form over K, then s.(c) is a hyperbolic form
over F'.

(2) If ¢ is a quadratic hyperbolic form over K, then s.(¢) is a hyperbolic form
over F.



84 III. FORMS OVER RATIONAL FUNCTION FIELDS

PrOOF. (1): As s, respects orthogonality, we may assume that ¢ = H;. By
Frobenius Reciprocity,

S*(Hl) ~ S*((Hl)K) ~ (Hl)p X Sy (<1>)

As s,((1)) is nondegenerate by Lemma 20.4, we have s,.(H;) is hyperbolic by
Lemma 2.1.

(2): This follows in the same way as (1) using Lemma 8.16. O

Let K/F be a finite field extension and s : K — F a nonzero F-linear func-
tional. By Lemmas 20.4 and 20.5, the functional s induces group homomorphisms

st W(K) > W(F), s.:W(K)—W(F), and s, : I,(K) — I(F)
called transfer maps. Let b and ¢ be nondegenerate symmetric bilinear forms over
F and K, respectively, and ¢ and 1 nondegenerate quadratic forms over I’ and K,
respectively. By Frobenius Reciprocity, we have
Sy (TK/F(b) . C) =b- S*(C>

in W(F) and W(F), i.e., s : W(K) — W(F) is a W(F)—module homomorphism
and s, : W(K) — W(F) is a W(F)-module homomorphism where we view W (K)
as a W ([")-module via 7, p. Furthermore,

se(ri/p(B)-¥) =b-s.(¥) and  si(c-rr/p(p)) =s.(c) -
in I,(F). Note that s, (I(K)) C I(F).
Corollary 20.6. Let K/F be a finite field extension and s : K — F a nonzero
F-linear functional. Then the compositions
surc/p i W(F) = W(F), suric/p: W(F) — W(F), and s.rc/p : I,(F) — 1,(F)

are given by multiplication by s.((1);), i.e., b — b-s,((1)y) for a nondegenerate
symmetric bilinear form b and ¢ — s, ((1)1,) - for a nondegenerate quadratic form
©.

Corollary 20.7. Let K/F be a field extension and s : K — F a nonzero F'-
linear functional. Then im(s.) is an ideal in /W(F) (respectively, W(F')) and is
independent of s.

PROOF. By Frobenius Reciprocity, im(s,) is an ideal. Suppose that s; : K —
F is another nonzero F-linear functional. Let K — Hompg(K,F) be the F-
isomorphism given by a +— (:c — s(aa:)). Hence there exists a unique a € K*
such that s;(x) = s(ax) for all x € K. Consequently, (s1)«(b) = s.(ab) for all
nondegenerate symmetric bilinear forms b over K. (Il

Let K = F(x)/F be an extension of degree n and a = Nk, p(x) € F* the norm
of x. Let
s : K — F be the F-linear functional defined by

5(1) =1 and s(z*) =0 for all i € [1, n — 1].
Then s(z") = (—1)""a.
Lemma 20.9. The transfer induced by the F-linear functional s in (20.8) satisfies

5. (1)) = { Ly ifnis odd,

(1,—a), if n is even.

(20.8)
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PRrROOF. Let b = s*(<1>) Let V C K be the F-subspace spanned by z’ with
i € [1, n], a nondegenerate subspace. Then V+ = F, consequently K = F @& V.
First suppose that n = 2m + 1 is odd. The subspace of W spanned by 2,
i € [1, m], is a lagrangian of b|y, hence b|y is metabolic and b = b|y,. = (1) in
Next suppose that n = 2m is even. We have

b(z", 27) { O Hiti<m,

—a ifi+j=n.
It follows that detb = (—1)™aF*? and the subspace W’/ C W spanned by all x*
with ¢ # m and 1 < i < n is nondegenerate. In particular, K = W’ @& (W')+
by Proposition 1.6. By dimension count dim(W’)+ = 2. As the subspace of W’
spanned by z%, i € [1, m — 1], is a lagrangian of b|y, we have b|y is metabolic.
Computing determinants, yields b|y/)1 =~ (1, —a), hence in W(F'), we have b =
bl(W’)J- = (1,—a). (Il

Corollary 20.10. Suppose that K = F(x) is a finite extension of even degree over
F. Then Ker(rg,r) C anny ) ((Ng/r(2)))).

PROOF. Let s be the F-linear functional in (20.8). By Corollary 20.6 and
Lemma 20.9, we have

Ker(rK/F :W(F) — W(K)) C annyy () (S*(<1>)) = annW(F)(«NK/F(‘T)»)' U

Corollary 20.11. Let K/F be a finite field extension of odd degree. Then the map
ri/p: W(F) — W(K) is injective.

ProOF. If K = F(x) and s is as in (20.8), then by Corollary 20.6 and Lemma
20.9, we have

Ker(rg p: W(F) = W(K)) C anny(p) (s+((1))) = anny (g ((1)) = 0.
The general case follows by induction of the odd integer [K : F. O
Note that this corollary provides a more elementary proof of Corollary 18.6.

Lemma 20.12. The transfer induced by the F-linear functional s in (20.8) satisfies
a if n is odd,
selloh) ={ G0 4

0 ifn is even.

PROOF. Let b = s,((x)). First suppose that n = 2m + 1 is odd. Then

o(a', ) = {

It follows that det b = (—1)™aF>? and the subspace W C K spanned by all 2% with
i #m and 1 <14 < n is nondegenerate. In particular, K = W @ W+ by Proposition
1.6 and W+ is 1-dimensional by dimension count. Computing determinants, we
see that b|yy. ~ (a). As the subspace of W spanned by z%, i € [0, m — 1], is a
lagrangian of b|y, the form b|y is metabolic. Consequently, b = bly,. = (a) in

0 ifi+j<n—1,
a ifi+j=n-—1.

Next, suppose that n = 2m is even. The subspace of K spanned by z¢, i €
[0, m — 1], is a lagrangian of b so b is metabolic and b = 0 in W (F). O

Corollary 20.13. Let s, be the transfer induced by the F-linear functional s in
(20.8). Then s, ({(z))) = ({a)) in W(F).
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20.B. Similarity theorems. As a consequence, we get the norm principle
first established by Scharlau in [119].

Theorem 20.14 (Similarity Norm Principle). Let K/F be a finite field extension
and ¢ a nondegenerate even-dimensional quadratic form over F. Then

Nkr(G(ek)) C G(p).

PROOF. Let x € G(¢k). Suppose first that K = F(z). Let s be as in (20.8).
As (@) - o =0 in I,(K), applying the transfer s, : I,(K) — I,(F) yields

0=s.(((2) - o) = 5. ((2)) - 0 = {N/p (@) - ¢
in I,(F) by Frobenius Reciprocity 20.2 and Corollary 20.13. Hence Ng,p(z) €
G(v) by Remark 8.17.
In the general case, set k = [K : F(x)]. If k is even, we have

Ni/p(®) = Np@yr(@)F € G(y)

since F*2 C G(p). If k is odd, the homomorphism I, (F(z)) — I,(K) is injective
by Remark 18.6, hence (7)) -¢p(,) = 0. By the first part of the proof, Np(,y/r(z) €
G(yp). Therefore, N, p(x) € Npy/r(z)F*? C G(p). O

We turn to similarities of forms over polynomial rings. As with values, Kneb-
usch proved analogous results for similarities in [82].

Lemma 20.15. Let ¢ be a nondegenerate quadratic form of even dimension and
p € F[t] a monic irreducible polynomial (in one variable). If ppy) is hyperbolic,
then p € G(pp))-

PROOF. Let = be the image of ¢ in K = F(p) = F[t]/(p). We have p is the
norm of ¢ — x in the extension K(t)/F(t). Since pg () is hyperbolic, t —z €
G(¢xr(t)). Applying the Norm Principle 20.14 to the form ¢p) and the field
extension K (t)/F(t) yields p € G(pr@))- O

Theorem 20.16 (Quadratic Similarity Theorem). Let ¢ be a nondegenerate qua-
dratic form of even dimension and f € F|T) = F[t1,...,t,] a nonzero polynomial.
Then the following conditions are equivalent:

(1) f*f € Glerm)-
(2) There exists an a € F* such that af € G(opry).

(3) For any irreducible divisor p of f to an odd power, the form @p(,) is
hyperbolic.

PROOF. (1) = (2) is trivial.
(2) = (3) follows from Proposition 19.8.

(3) = (1): We proceed by induction on the number n of variables. We may
assume that f is irreducible and deg, f > 0. In particular, f is an irreducible
polynomial in t; over the field E = F(T') = F(ts,...,t,). Let g € F[T’] be the
leading term of f. In particular, g* = f*. As the polynomial f' = fg~! in E[t]
is monic irreducible and E(f’) = F(f), the form ¢psy is hyperbolic. Applying
Lemma 20.15 to ¢ and the polynomial f/, we have fg = f'- g € G(¢p(r))-

Let p € F[T'] be an irreducible divisor of g to an odd power. Since p does
not divide f, by the first part of the proof applied to the polynomial fg, the
form ¢ p(p)(z,) is hyperbolic. Since the homomorphism I,(F(p)) — I,(F(p)(t1))
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is injective by Remark 8.18, we have ¢g(,) is hyperbolic. Applying the induction
hypothesis to g yields g*g € G(¢p(r+y). Therefore, f*f = g*f = g*g- fg- g% ¢
G(pr(T))- O

Theorem 20.17 (Bilinear Similarity Norm Principle). Let K/F be a finite field
extension and b an anisotropic symmetric bilinear form over I of positive dimen-
sion. Then

Nip(G((bK)an)) C G(b).

PROOF. Let # € G((bx)an). Suppose first that K = F(z). Let s be as
in (20.8). Let b = (bi)an L ¢ with ¢ a metabolic form over K. Then zc is
metabolic, so

bK = (bK)an = -r(bK)an = x((bK)an + C) = l’bK

in W(K). Consequently, ((z))-bg = 0in I(K). Applying the transfer s, : W(K) —
W (F) yields

0= s.({(z)) - bx) = 5. ((x))) - b= (Ni/p(2))) - b

by Frobenius Reciprocity 20.2 and Corollary 20.13. Hence Ng/p(z)b = b in W (F')
with both sides anisotropic. It follows from Proposition 2.4 that Nk, p(z) € G(b).
In the general case, set k = [K : F(x)]. If k is even, we have

Ng/p(x) = Npyr(z)F € G(b)
since F*? C G(b). If k is odd, the homomorphism W (F(z)) — W (K) is injective
by Corollary 18.6, hence ((z)) - (bp()),, =0 in W(F(z)). Thus z € G((bp(z))an)

by Proposition 2.4. By the first part of the proof, Np() /r(z) € G(b). Conse-
quently, Ng/p(z) € Np(z),r(2)F*? C G(b). O

Lemma 20.18. Let b be a nondegenerate anisotropic symmetric bilinear form and
p € F[t] a monic irreducible polynomial (in one variable). If bp(, is metabolic,
then p € G(bpg))-

PROOF. Let = be the image of t in K = F(p) = F[t]/(p). We have p is the
norm of ¢ — z in the extension K(t)/F(t). Since by is metabolic, (bx))an = 0.
Thus z — t € G((bK(t))an). Applying the Norm Principle 20.17 to the anisotropic
form bp(;) and the field extension K (t)/F(t) yields p € G(bp(). O

Theorem 20.19 (Bilinear Similarity Theorem). Let b be an anisotropic bilinear
form of even dimension and f € F[T] = Fl[t1,...,tn] a nonzero polynomial. Then
the following conditions are equivalent:

(1) f*f € Glbper))-
(2) There exists an a € F* such that af € G(bp(r)).
(3) For any irreducible divisor p of f to an odd power, the form bp,) is
metabolic.
PRrROOF. Let ¢ = ¢y be of dimension m.
(1) = (2) is trivial.
(2) = (3): Let p be an irreducible factor of f to an odd degree. As F(T') is the
quotient field of the localization F[T,) and F[T], is a DVR, we have a group
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homomorphism 0 : W(F(T)) — W(F(p)) given by Lemma 19.10. Since p is a
divisor to an odd power of f,

brp) = 0(bp(r)) = d(afbrr)) =0

in W(F(p)). Thus bp(,) is metabolic.

(3) = (1): The proof is analogous to the proof of (3) = (1) in the Quadratic
Similarity Theorem 20.16 with Lemma 20.18 replacing Lemma 20.15 and hyperbol-
icity replaced by metabolicity. ([

Corollary 20.20. Let ¢ be a quadratic form (respectively, b an anisotropic bilinear
form) on'V over F and f € F[T| with T = (t1,...,t,). Suppose that f € G(¢r(r))
(respectively, f € G(bpr))). If f(a) is defined and nonzero with a € F", then
f(a) € G(p).

PROOF. We may assume that ¢ is anisotropic as G(¢) = G(@an). (Cf. Remark
8.9.) By induction, we may assume that f is a polynomial in one variable ¢. Let
R = Flt]4—a), @ DVR. As f(a) # 0, we have f € R*. Over F(t), we have
©rt) = for@), hence pr ~ for by Proposition 19.9. Since F' is the residue class
field of R, upon taking the residue forms, we see that ¢ = f(a)y as needed.

As in the quadratic case, we reduce to f being a polynomial in one variable.
We then have bpy =~ fbp). Taking 0 of this equation relative to the DVR
R = Ft];—q) yields b= fb=f(a)bin W(F) as f € R*. The result follows by
Proposition 2.4. O

Corollary 20.21. Let ¢ be an quadratic form (respectively, b an anisotropic bi-
linear form) on V over ' and g € F[T]. Suppose that g € G(¢op (1)) (respectively,
g € G(bpr))). Then g* € G(p) (respectively, g* € G(b)).

ProoOF. We may assume that ¢ is anisotropic as G(¢) = G(@an). (Cf. Remark
8.9.) By induction on the number of variables, we may assume that g € F[t].
By Lemma 18.1 and Lemma 9.1, we must have degg = 2r is even. Let h(t) =
t*"g(1/t) € G(ep))- Then g* = h(0) € G(p) by Corollary 20.20. An analogous
proof shows the result for symmetric bilinear forms (using also Lemma 9.2 to see
that deg g is even). O

21. An exact sequence for W (F(t))

Let AL be the 1-dimensional affine line over F. Let z € AL be a closed point
and F'(x) be the residue field of . Then there exists a unique monic irreducible
polynomial f, € F[t] of degree d = degx such that F(z) = F[t]/(fs). By Lemma
19.10, we have the first and second residue homomorphisms with respect to the
DVR Oy, and prime element f;:

W(F®) 2 W(F@) and  W(F@) 2 w(F()).

Denote 0y, by 0,. If g € F[t], then 0,({g)) = 0 unless f, | g in F[t]. It follows if b
is a nondegenerate bilinear form over F(¢) that d,(b) = 0 for almost all z € AL.
We have:
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Theorem 21.1. The sequence

0 — W(F) S5 w(Emw) 2 [ w(Fe) -0

z€AL
is split exact where @ = (9y).

PROOF. As anisotropic bilinear forms remain anisotropic under a purely tran-
scendental extension, r (), is monic. It is split by the first residue homomorphism
with respect to any rational point in Al

Let F[t]q :={g | g € F[t], degg < d} and Ly C W (F(t)) the subring generated
by (g) with g € F[t]g. Then Ly C Ly C Ly C --- and W(F(t)) = U, La- Note
that im(rp)/p) = Lo. Let Sg be the multiplicative monoid in F[t] generated by
F[t]a\ {0}. As a group Lg is generated by 1-dimensional forms of the type

(21.2) (fr-- fmg)
with distinct monic irreducible polynomials f1,..., fin € Ft] of degree d and g €
Sa—1-

Claim: The additive group Lg/Lq_1 is generated by (fg) + Lq—1 with f € FJt]
monic irreducible of degree d and g € S3_1. Moreover, if h € F[t]4— satisfies g = h
mod (f), then (fg) ~ (fh) mod L4_;.

We first must show that a generator of the form in (21.2) is a sum of the desired
forms mod L4 1. By induction on m, we need only do the case m = 2. Let f1, fo
be distinct irreducible monic polynomials of degree d and g € Sy_1. Let h = f1 — fa,
so deg h < d. We have

(fr) = () + (f2) = (frf2h)
in W(F(t)) by the Witt relation (4.2). Multiplying this equation by (f2g) and
deleting squares, yields

(fif29) = (f2gh) + (g) — (figh) = (fagh) — (figh) mod Lq—1
as needed.

Now suppose that g = gi1g2 with ¢1,92 € F[t]la—1. As f[fg by the Division
Algorithm, there exist polynomials g, h € F[t] with h # 0 and degh < d satisfying
g = fq+ h. It follows that deg ¢ < d. By the Witt relation (4.2), we have

(9) = (fa) + (h) = (fqhg)
in L4, hence multiplying by (f), we have

(fg) = (a) + (fh) — (qhg) = (fh) mod Lg_.
The Claim now follows by induction on the number of factors for a general g € Sy_.
Let € AL be of degree d and f = f,. Define
ag : W(F(z)) = La/La—1 by (g+(f)) = (9) + La—1 for g€ Flt]a1.

We show this map is well-defined. If h € F[t]4—; satisfies gh? =1 mod (f), with
| € Flt]q_1, then (fg) = (fgh?®) = (fl) mod Lyq_1 by the Claim, so the map is
well-defined on 1-dimensional forms. If g1,g2 € F[t]g—1 satisfy g1 + g2 # 0 and
h = (g1 + 92)g192 mod (f), then

(fg1) + (fg2) = (f(91 + 92)) + (f9192(91 + 92)) = (f(91 + g2)) + (fh) mod Lq_1

by the Claim. As (f) + (—f) = 0 in W(F(t)), it follows that a, is well-defined by
Theorem 4.8.
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Let 2’ € Al with degz’ = d. Then the composition
ag Oyt
W(F(m)) —= Lq/Lg—1 — W(F(a:'))

is the identity if x = 2/, otherwise it is the zero map. It follows that the map

I w(F@) Loa), Li/La-
degz=d

is split by (03)deg z=d- AS (o) is surjective by the Claim, it is an isomorphism with
inverse (0y)deg z=4- By induction on d, we check that

(Ox)degz<a * La/Lo — H W (F(z))
degx<d

is an isomorphism. As Ly = W(F'), passing to the limit yields the result. (]

It follows from Lemma 19.14 or Example 19.13 that 8, (I" (F(t))) C I"*(F(z))
for every z € Al.

Corollary 21.3. The sequence
0 — I"(F) =5 (k@) 2 [ 1" (F(x) — 0

zeAl
is split exact for each n > 1.

PROOF. We show by induction on d = dega that I"~!(F(z)) lies in im(9).
Let g, ..., gn € F[t] be of degree < d. We need to prove that b = ((ga, ..., g,)) lies
in im(9) where g; is the image of g; in F'(z). By Example 19.13, we have d;(c) = b
where ¢ = ((—fz, 92, -, gn)). Moreover, c—b € [ 40 ,ca I"'(F(z)) and therefore
¢ — b € im(9) by induction.

To finish, it suffices to show exactness at I"(F(t)). Let b € Ker(d). By
Theorem 21.1, there exists ¢ € W (F') satisfying rp()/p(c) = b. We show ¢ € I"(F).
Let € A}, be a fixed rational point and f = t—¢(x). Define p: W (F(t)) — W (F)
by p(d) = 0, ({(—f)) -9). By Lemma 19.14, we have p(I"(F(t)) C I"(F) as F(z) =
F. By Example 19.13, the composition p o rp(;,/r is the identity. It follows that
¢ =p(b) € I"(F) as needed. O

The above was proven by Milnor in [106] for fields of characteristic not 2. We
wish to modify the sequence in Theorem 21.1 to the projective line PL. If z € AL
is of degree n, let s, : F'(z) — F be the F-linear functional

sz (t"M(x)) =1 and s, (t(x)) =0 for i <n—1.
The infinite point oo corresponds to the 1/t-adic valuation. It has residue field F.
The corresponding second residue homomorphism 9 : W (F(t)) — W (F) is taken
with respect to the prime 1/t. So if 0 # h € F|[t] is of degree n and has leading
coefficient a, we have 0 ((h)) = (a) if n is odd, and ds((h)) = 0 otherwise.
Define (5c0)« to be —Id : W(F') — W(F). The following theorem was first proved
by Scharlau in [120] for fields of characteristic not 2.

Theorem 21.4. The sequence
0 — W(F) w(E®) 2 ] w(F@) 2 W(EF) -0

1
z€PE

TE(t)/F
_—

is ezact with 8 = (8,) and s, = ((54)+).
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PROOF. The map (S« )« is —Id. Hence by Theorem 21.1, it suffices to show
S, o 0 is the zero map.

As 1-dimensional bilinear forms generate W (F(t)), it suffices to check the result
on 1-dimensional forms. Let (afi--- f,) be a 1-dimensional form with f; € FJt]
monic of degree d; and a € F* for i € [1, n]. Let z; € AL satisfy f; = f,, and
8; = 84, for 1 <4 <n. We must show that

Z (82)« 0 (%((afl : fn>) = —(8500)x © 800(<af1 T fn>)

XeAl
in W(F). Multiplying through by (a), we may also assume that a = 1.
Set A= FIt]/(f1-- fn) and d = dim A. Then d = > d;. Let ~—: F[t] — A be
the canonical epimorphism and set g; = (f1 -+ fn)/fi- We have an F-vector space
homomorphism

n

a: HF(.’EZ) — A givenby  (hi(a;),... ho(2;)) — Z/_n(ji for all h € Ft].
i=1
We show that « is an isomorphism. As both spaces have the same dimension, it

suffices to show « is monic. As the g; are relatively prime in F[t], we have an
equation Y " | g;q; = 1 with all g; € F[t]. Then the map

A= [ F@:) given by h— (h(z1)g(@r), . ., h(wa)gn(@a)

splits «, hence « is monic as needed. Set A; = oz(F(xl)) for1 <i<n.

Let s : A — F be the F-linear functional defined by s(f%~!) = 1 and s(#') =
for 0 <i < d— 1. Define b to be the bilinear form on A over F' given by b(f,h)
s(fh) for f,h € F[t]. If i # j, we have

b(a(f(xi))ﬂ(h(xj))) = b(fq, hg;) = s(fhq;q;) = s(0) =0
for all f,h € F[t]. Consequently, b|4, is orthogonal to b|a; if i # j.
Claim: bla, == (5:). (05, ((f1 -+ fa))) for i € [1, n].
Let g, h € F[t]. Write

0

gigh = co+ -+ cag;—1t" 1+ fip

for some ¢; € F and p € FJt].
By definition, we have

()« (Op, ((fr -+ fu))) (9(@i), h(w2)) = silqi(2i)g(wi)h(2i)) = ca, 1.
As deg ¢; = d — d;, we have degq;t%~! =d — 1. Thus
b4, (a(g(xi))a Oé(h(l“z))) = b(3%i, h;) = 5(q; gh) = ca,—1,
and the claim is established.

As 9¢(f1--- fn) = 0 for all irreducible monic polynomials f # f;, ¢ € [1, n], in
F[t], we have, by the Claim,

n

i=1 zEAL

in W(F).
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Suppose that d = 2e is even. The form b is then metabolic as it has a totally
isotropic subspace of dimension e spanned by 1,%,...,#°~. We also have (s4)« ©
05 (b) = 0 in this case.

Suppose that d = 2e + 1. Then b has a totally isotropic subspace spanned by
1,%,...,t 1 so b~ (a) L ¢ with ¢ metabolic by the Witt Decomposition Theorem
1.27. Computing det b on the basis {1,,...,t4=1}, we see that (a) = (1). As
(S00)x © O (b) = —(1), the result follows. O

Corollary 21.5. Let K be a finite simple extension of F and s : K — F a non-
trivial F-linear functional. Then s.(I"(K)) C I"(F) for all n > 0. Moreover, the
induced map I"(K)/I" Y (K) — I"(F)/I""Y(F) is independent of the montrivial
F-linear functional s for all n > 0.

PROOF. Let z lie in AL, with K = F(z). Let b € I"(K). By Lemma 21.3,
there exists ¢ € 1" (F(t)) such that dy(c) = 0 for all y € A}, unless y = z in
which case 9,(c) = b. Tt follows by Theorem 21.4 that

0= 3" (5,0 09, (0) = (52):(6) — O ).
yePL

By Lemma 19.14, we have 0x(¢) € I™(F), so (sz)«(b) € I™(F). Suppose that
s : K — F is another nontrivial F-linear functional. As in the proof of Corollary
20.7, there exists a ¢ € K* such that (s).(c) = (s5)«(cc) for all symmetric bilinear
forms ¢. In particular, (s).(b) = (s;)«(cb) lies in I"(F). As {(c)) - b € I"T}(K), we

also have
$:(b) = (52)+(b) = (52)+ ({(c)) - b)
lies in I"*1(F). The result follows. O

The transfer induced by distinct nontrivial F-linear functionals K — F are
not, in general, equal on I"(F).

Exercise 21.6. Show that Corollary 21.5 holds for arbitrary finite extensions K/F.
Corollary 21.7. The sequence
0 — 1"(F) 2% (F)) & I 1 (F) 2 1N E) - 0
zePl

s exact.



CHAPTER IV

Function Fields of Quadrics

22. Quadrics

A quadratic form ¢ over F' defines a projective quadric X, over F. The
quadric X, is smooth if and only if ¢ is nondegenerate (cf. Proposition 22.1).
The quadric X, encodes information about isotropy properties of ¢, namely the
form ¢ is isotropic over a field extension E/F if and only if X, has a point over
E. In the third part of the book, we will use algebraic-geometric methods to study
isotropy properties of .

If b is a symmetric bilinear form, the quadric X, reflects isotropy properties of
b (and of pp as well). If the characteristic of F' is 2, only totally singular quadratic
forms arise from symmetric bilinear forms. In particular, quadrics arising from
bilinear forms are not smooth. Therefore, algebraic-geometric methods have wider
application in the theory of quadratic forms than in the theory of bilinear forms.

In the previous sections, we looked at quadratic forms over field extensions
determined by irreducible polynomials. In particular, we were interested in when a
quadratic form becomes isotropic over such a field. Viewing a quadratic form as a
homogeneous polynomial of degree two, results from these sections apply.

Let ¢ and 9 be two anisotropic quadratic forms. In this section, we begin our
study of when ¢ becomes isotropic or hyperbolic over the function field F/(Xy,) of the
integral quadric Xy. It is natural at this point to introduce the geometric language
that we shall use, i.e., to associate to a quadratic form a projective quadric.

Let ¢ be a quadratic form on V. Viewing ¢ € $?(V*), we define the projective
quadric associated to ¢ to be the closed subscheme

X, = Proj (§*(V")/(¢))

of the projective space P(V) = Proj S®*(V*) where S®(V*) is the symmetric algebra
of the dual space V* of V. The scheme X, is equidimensional of dimension dim V' —2
if o #0 and dimV > 2. We define the Witt index of X, by io(X,) := io(¢). By
construction, for any field extension L/F, the set of L-points X, (L) coincides with
the set of isotropic lines in V. Therefore, X, (L) = 0 if and only if ¢, is anisotropic.

For any field extension K/F we have X, = (X,)k-

Let 7 be a subform of ¢. The inclusion of vector spaces Vy, C V gives rise to
a surjective graded ring homomorphism

STV (p) = ST (V™) /(¥)
which in turn leads to a closed embedding X, — X,. We shall always identify X
with a closed subscheme of X,.

Proposition 22.1. Let ¢ be a nonzero quadratic form of dimension at least 2.
Then the quadric X, is smooth if and only if ¢ is nondegenerate.

93
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PrOOF. By Lemma 7.16, we may assume that F' is algebraically closed. We
claim that P(rad ¢) is the singular locus of X,. Let 0 # u € V be an isotropic vector.
Then the isotropic line U = Fu C V can be viewed as a rational point of X,. As
o(u+ev) = 0 if and only if u is orthogonal to v (where €2 = 0), the tangent space
Tx v is the subspace Hom(U, U+ /U) of the tangent space Tpvy,u = Hom (U, V/U)
(cf. Example 104.20). In particular, the point U is regular on X if and only if
dim Ty y = dim X = dimV — 2 if and only if UL # V, i.e., U is not contained in
rad ¢. Thus X, is smooth if and only if rad ¢ = 0, i.e., ¢ is nondegenerate. (]

We say that the quadratic form ¢ on V' is irreducible if ¢ is irreducible in the
ring S*(V*). If ¢ is nonzero and not irreducible, then ¢ = [ -1’ for some nonzero
linear forms [,I’ € V*. Then rad ¢y = Ker(l) N Ker(!') has codimension at most
2 in V. Therefore, the induced form @ on V/rady is either 1-dimensional or a
hyperbolic plane. It follows that a regular quadratic form ¢ is irreducible if and
only if dim¢ > 3 or dim ¢ = 2 and ¢ is anisotropic.

If ¢ is irreducible, X, is an integral scheme. The function field F'(X,,) is called
the function field of ¢ and will be denoted by F(y). By definition, F(p) is the
subfield of degree 0 elements in the quotient field of the domain S*(V*)/(¢). Note
that the quotient field of S*(V*)/(¢) is a purely transcendental extension of F'(¢) of
degree 1. Clearly, ¢ is isotropic over the quotient field of S*(V*)/(y) and therefore
is isotropic over F(¢p).

Example 22.2. Let o be an anisotropic binary quadratic form. As o is isotropic
over F(o), it follows from Corollary 12.3 that F'(o) ~ Cy(0).

If K/F is a field extension such that g is still irreducible, we simply write
K(p) for K(pgk).

Example 22.3. Let ¢ and ¥ be irreducible quadratic forms. Then
F(Xy x Xy) ~ F(o)(¥p)) = F()(@rw))-

Let ¢ and % be two irreducible regular quadratic forms. We shall be interested
in when ¢ gy is hyperbolic or isotropic. A consequence of the Quadratic Similarity
Theorem 20.16 is:

Proposition 22.4. Let ¢ be a nondegenerate quadratic form of even dimension
and ¥ be an irreducible quadratic form of dimension n over F. Suppose that T =
(t1,...,tn) and b € D(¢). Then ©py) is hyperbolic if and only if

b-Y(T)ppry ~ ¢rT)-
Proor. By the Quadratic Similarity Theorem 20.16, we have ¢y is hyper-

bolic if and only if *Y(T)¢pry ~ @pery. Let b € D(1). Choosing a basis for V'
with first vector v satisfying ¢ (v) = b, we have ¢¥* = b. O

Theorem 22.5 (Subform Theorem). Let ¢ be a nonzero anisotropic quadratic form
and v be an irreducible anisotropic quadratic form such that the form @pyy is hy-
perbolic. Let a € D(p) and b € D(¢). Then aby is isometric to a subform of ¢
and, therefore, dimy < dim ¢.

PROOF. We view ¢ as an irreducible polynomial in F[T]. The form ¢ is
nondegenerate of even dimension by Remark 7.18, so by Corollary 22.4, we have

b(T) € G(pr(r)). Since a € D(p), we have aby)(T) € D(op(ry). By the Repre-
sentation Theorem 17.12, we conclude that abiy is a subform of . (]
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By the proof of the theorem and Corollary 20.20, we have

Corollary 22.6. Let ¢ be an anisotropic quadratic form and i an irreducible
anisotropic quadratic form. If opy) is hyperbolic, then D(y)D(v) C G(p). In
particular, if 1 € D(v), then D(¢) C G(¢).

Remark 22.7. The natural analogues of the Representation Theorem 17.12 and
the Subform Theorem 22.5 are not true for bilinear forms in characteristic 2. Let
b = (1,b) and ¢ = (1, ¢) be anisotropic symmetric bilinear forms with b and ¢ =
22 + by? nonzero and bF*2 # cF*? in a field F of characteristic 2. Thus b  ¢.
However, @y ~ ¢ by Example 7.27. So ¢c(t1,t2) € D(Pop(s, 1,)) and cp(y,) is
isotropic, hence metabolic, but ac is not a subform of b for any a # 0.

We do have, however, the following:

Corollary 22.8. Let b and ¢ be anisotropic bilinear forms with dime¢ > 2 and b
nonzero. Let v be the associated quadratic form of ¢. If bp(y is metabolic, then
dime¢ < dimb.

PROOF. Let ¢ = ¢p. By the Bilinear Similarity Theorem 20.19 and Lemma 9.2,
we have ay)(T') € G(bpr)) C G(¢r(r)) for some a € F* where T' = (t1,...,tdimy)-
It follows that by)(T) € D(@p(ry) for some b € F'*. Consequently,

dim b = dim ¢ > dimy = dim¢
by the Representation Theorem 17.12. ([

We turn to the case in which a quadratic form becomes isotropic over the
function field of another form or itself.

Proposition 22.9. Let ¢ be an irreducible reqular quadratic form. Then the field
extension F(p)/F is purely transcendental if and only if ¢ is isotropic.

PROOF. Suppose that the field extension F(p)/F is purely transcendental. As
©F(p) is isotropic, ¢ is isotropic by Lemma 7.15.

Now suppose that ¢ is isotropic. Then ¢ = H L ¢’ for some ¢’ by Proposition
7.13. Let V =V, V' =V, and let h,h’ € V be a hyperbolic pair of H. Let
Y = ¢|ppey with b’ € (V). It suffices to show that X, \ Xy is isomorphic to
an affine space. Every isotropic line in X, \ Xy has the form F'(h + ah’ + ') for
unique a € F and v' € V' satisfying

0=@h+ah/ +v")=a+ k),
i.e., a = —p(v'). Therefore, the morphism X, \ Xy, — A(V’) taking F(h+ah’+v")
to v’ is an isomorphism with the inverse given by v’ — F(h — ¢(v')h’ + ). O

Remark 22.10. Let char F' = 2 and let ¢ be an irreducible totally singular form.
Then the field extension F(¢)/F is not purely transcendental even if ¢ is isotropic.

Proposition 22.11. Let ¢ be an anisotropic quadratic form over F and K/F a
quadratic field extension. Then g is isotropic if and only if there is a binary
subform o of ¢ such that F(o) ~ K.

PROOF. Let o be a binary subform of ¢ with F(¢) ~ K. Since ¢ is isotropic
over F'(0) we have ¢ isotropic over F (o) ~ K.

Conversely, suppose that ¢ (v) = 0 for some nonzero v € (V,)x. Since K
is quadratic over I, there is a 2-dimensional subspace U C V,, with v € Ug.
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Therefore, the form o = |y is isotropic over K. As o is also isotropic over F(o),
it follows from Corollary 12.3 and Example 22.2 that F'(o) ~ Cy(0) ~ K. g

Corollary 22.12. Let ¢ be an anisotropic quadratic form and o a nondegenerate
anisotropic binary quadratic form. Then ¢ ~ b® o L ¢ with b a nondegenerate
symmetric bilinear form and Y,y anisotropic.

PROOF. Suppose that ¢ (s is isotropic. By Proposition 22.11, there is a binary
subform ¢’ of ¢ with F(¢’) = F(c). By Corollary 12.2 and Example 22.2, we have
o’ is similar to o. Consequently, there exists an a € F* such that ¢ ~ ac L 1 for
some quadratic form . The result follows by induction on dim ¢. O

Recall that a field extension K/F' is called separable if there exists and inter-
mediate field E in K/F with E/F purely transcendental and K/FE algebraic and
separable. We show that regular quadratic forms remain regular after extending to
a separable field extension.

Lemma 22.13. Let ¢ be a regular quadratic form over F and K/F a separable
(possibly infinite) field extension. Then pg is regular.

Proor. We proceed in several steps.
Case 1: [K : F] = 2.
Let v € (V,)k be an isotropic vector. Then v € Ug for a 2-dimensional sub-

space U C V,, such that |y is similar to the norm form N of K/F (cf. Proposition
12.1). As N is nondegenerate, v ¢ rad b, therefore, rad px = 0.

Case 2. K/F is of odd degree or purely transcendental.

We have ¢ >~ ., L nH. The anisotropic part (,, stays anisotropic over K by
Springer’s Theorem 18.5 or Lemma 7.15, respectively; therefore ¢k is regular.

Case 8: |K : F] is finite.

We may assume that K/F is Galois by Remark 7.14. Then K/F is a tower of
odd degree and quadratic extensions.

Case 4: The general case.

In general, K/F is a tower of a purely transcendental and a finite separable
extension. 0

We turn to the function field of an irreducible quadratic form.

Lemma 22.14. Let ¢ be an irreducible quadratic form over F. Then there exists
a purely transcendental extension E of F with [F(p) : E] = 2. Moreover, if ¢ is not
totally singular, the field E can be chosen with F(p)/E separable. In particular,
F()/F is separable.

Proor. Let U C V,, be an anisotropic line. The rational projection f : X, --»
P = P(V/U) taking a line U’ to (U + U’)/U is a double cover, so F(p)/E is a
quadratic field extension where E is the purely transcendental extension F'(P) of
F.

Let 7 be the reflection of ¢ with respect to a nonzero vector in U. Clearly,
f(rU’) = f(U’) for every line U’ in X,. Therefore, 7 induces an automorphism
of every fiber of f. In particular, 7 induces an automorphism of the generic fiber,
hence an automorphism ¢ of the field F(¢) over E.
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If ¢ is not totally singular, we can choose U not in rad b,. Then the isometry 7
and the automorphism e are nontrivial. Consequently, the field extension F(p)/E
is separable. O

22.A. Domination relation. Let ¢ and v be anisotropic quadratic forms of
dimension at least 2 over F'. We say ¢ dominates ¢ and write o = 1 if pp(y) is
isotropic and write ¢ <> ¥ if ¢ = 1 and ¥ > ¢. For example, if ¢ is a subform of
©, then ¢ > .

We have ¢ = 1 if and only if there exists a rational map Xy --+ X,,.

We show that the relation > is transitive.

Lemma 22.15. Let ¢ and v be anisotropic quadratic forms over F. If ¢ > u,
then there exist a purely transcendental field extension E/F and a binary subform
o of vy over E such that E(c) = F(u).

PROOF. By Lemma 22.14, there exists a purely transcendental field extension
E/F such that F(u) is a quadratic extension of E. As v is isotropic over F(u), it
follows from Proposition 22.11 applied to the form g and the quadratic extension
F(u)/E that g contains a binary subform o over E satisfying E(c) = F(u). O

Proposition 22.16. Let ¢, v, and u be anisotropic quadratic forms over F. If
@ = = u, then @ = .

PrOOF. Consider first the case when p is a subform of .

We may assume that p is of codimension one in . Let T' = (t1,...,t,) be the
coordinates in V, so that V,, is given by t; = 0. By assumption, there is v € V[T
such that ¢(v) is divisible by ¢ (T) but v is not divisible by ¢ (T). Since ¢ is
anisotropic, we have deg, ¢ = 2 for every i. Applying the division algorithm by
dividing v by v with respect to the variable 3, we may assume that deg;,, v < 1.
Moreover, dividing out a power of t; if necessary, we may assume that v is not
divisible by ¢;. Therefore, the vector w 1= v|y, =g € V,,[T'] with T" = (ta,...,t,) is
not zero. As deg,, w < 1 and deg,, = 2, the vector w is not divisible by pu(7").
On the other hand, ¢(w) is divisible by ¥(T")|s;—0 = u(T"), i.e., ¢ is isotropic over
F(p).

Now consider the general case. By Lemma 22.15, there exist a purely tran-
scendental field extension E/F and a binary subform o of ¥ over E such that
E(0) = F(u). By the first part of the proof applied to the forms pg = ¥g > o, we
have g is isotropic over E(c) = F(u), i.e., ¢ > p. O

Corollary 22.17. Let ¢, ¥, and p be anisotropic quadratic forms over F. If
© <=1, then i, is isotropic if and only if gy is isotropic.

Proposition 22.18. Let 1 and p be anisotropic quadratic forms over F satisfying
Y = p. Let ¢ be a quadratic form such that @y is hyperbolic. Then @p(,) is
hyperbolic.

Proor. Consider first the case when p is a subform of 7). Choose variables T of
p and variables T' = (T",T") of ¢ so that u(T") = ¥ (T1",0). As @y is hyperbolic,
by the Quadratic Similarity Theorem 20.16, we have ¢pr) =~ ay)(T)pr) over
F(T) for some a € F*. Specializing the variables 7" = 0, we see by Corollary 20.20
that @pry ~ ap(T")epry over F(T'), and again it follows from the Quadratic
Similarity Theorem 20.16 that ¢ p(,) is hyperbolic.



98 IV. FUNCTION FIELDS OF QUADRICS

Now consider the general case. By Lemma 22.15, there exist a purely tran-
scendental field extension E/F and a binary subform o of ¥ over E such that
E(0) = F(u). As ¢p(y) is hyperbolic, by the first part of the proof applied to the
forms g = o, we have vp») = @) is hyperbolic. O

23. Quadratic Pfister forms II

The introduction of function fields of quadrics allows us to determine the main
characterization of general quadratic Pfister forms first proven by Pfister in [108]
for fields of characteristic different from 2. They are precisely those forms that
become hyperbolic over their function fields. In particular, Pfister forms can be
characterized as universally round forms.

If ¢ is an anisotropic general quadratic Pfister form, then g () is isotropic,
hence hyperbolic by Corollary 9.10. We wish to show the converse of this property.
We begin by looking at subforms of Pfister forms.

Lemma 23.1. Let ¢ be an anisotropic quadratic form over F and p a subform of
. Suppose that D(pk) and D(px) are groups for all field extensions K/F. Let
a = —p(v) for somev € V;-\V,. Then the form ((a)) ® p is isometric to a subform
of p.

PrOOF. Let T = (t1,...,ty) and T/ = (tp41, ... ,t2,) be 2n independent vari-
ables where n = dim p. We have

(1) ~ ap(T") = o) [ 470 ~ a].

p(T)

p(T")

D(ppr,rry)- As p(T") € D(pp(r,17)), We have
p(T) —ap(T') € D(err,1))D(errr)) = D(@erm,r))-

By the Representation Theorem 17.12, we conclude that ((a)) ® p is a subform of
- U

As D(pp(r,ry) is a group, we have € D(pp(r,17)), hence d
p

Theorem 23.2. Let ¢ be a nondegenerate (respectively, totally singular) anisotro-
pic quadratic form over F of dimension n > 1. Let T = (t1,...,t,) and T' =
(tnt1,---,tan) be 2n independent variables. Then the following are equivalent:

(1) n = 2% for some k > 1 and ¢ € Py(F) (respectively, ¢ is a quadratic

quasi-Pfister form).

(2) Glexr) = D(pk) for all field extensions K/F.

(3) D(¢k) is a group for all field extensions K/F.

(4) Ower the rational function field F(T,T"), we have

o(T)p(T") € D(err17))-
(5) »(T) € Glpr(r))-
) =

PROOF. (2 (3) = (4) are trivial.
(5) < (1) = (2): As quadratic Pfister forms are round by Corollary 9.9 and
quasi-Pfister forms are round by Corollary 10.3, the implications follow.

(5) = (4): We have o(T') € G(eopr)) C G(errr)) and o(T") € D(pr11).
It follows by Lemma 9.1 that o(T)¢(T") € D(@p 1))
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(4) = (3): If K/F is a field extension, then ¢(T)¢(T") € D(¢k (1)) By the
Substitution Principle 17.7, it follows that D(¢k) is a group.

(3) = (1): As 1 € D(yp), it is sufficient to show that ¢ is a general quadratic
(quasi-) Pfister form. We may assume that dim¢ > 2. If ¢ is nondegenerate, ¢
contains a nondegenerate binary subform, i.e., a 1-fold general quadratic Pfister
form. Let p be the largest quadratic general Pfister subform of ¢ if ¢ is nondegen-
erate and the largest quasi-Pfister form if ¢ is totally singular. Suppose that p # .
If ¢ is nondegenerate, then VpL # 0 and Vpl NV, =radb, = 0 and if ¢ is totally
singular, then VPJ- =V, and V, # V,,. In either case, there exists a v € VPJ- \ V.
Set @ = —p(v). By Lemma 23.1, we have ((a)) ® p is isometric to a subform of ¢,
a contradiction. ]

Remark 23.3. Let ¢ be a nondegenerate isotropic quadratic form over F. As
hyperbolic quadratic forms are universal and round, if ¢ is hyperbolic, then ¢(T") €
G(¢r(r))- Conversely, suppose p(T') € G(pr(r)). As

(er(T))an L io(P)H =~ opr) =~ @(T)prry = o(T)(Prr))an L io()p(T)H,

we have o(T') € G((¢r(r))an) by Witt Cancellation 8.4. If ¢ was not hyperbolic,
then the Subform Theorem 22.5 would imply dim ¢ gy < dim(apF(T))an7 a contra-
diction. Consequently, p(T') € G(pr(ry) if and only if ¢ is hyperbolic.

Corollary 23.4. Let ¢ be a nondegenerate anisotropic quadratic form of dimension
at least two over F. Then the following are equivalent:

(1) dim ¢ is even and i1(p) = dim ¢/2.

(2) wr(y) is hyperbolic.

(3) ¢ € GP,(F) for somen > 1.

PROOF. Statements (1) and (2) are both equivalent to ¢ (,) contains a totally
isotropic subspace of dimension 3 dim¢. Let a € D(p). Replacing ¢ by (a)p we
may assume that ¢ represents one. By Theorem 22.4, condition (2) in the corollary
is equivalent to condition (5) of Theorem 23.2, hence conditions (2) and (3) above
are equivalent. O

Corollary 23.5. Let ¢ and ¢ be quadratic forms over F with ¢ € P, (F) anisotro-
pic. Suppose that there exists an F-isomorphism F(p) ~ F(1). Then there exists
an a € F* such that ¥ ~ ap over F, i.e., ¢ and ¥ are similar over F.

PROOF. As ¢p(,) is hyperbolic, so is ¢p(yy. In particular, ay) is a subform of
¢ for some a € F* by the Subform Theorem 22.5. Since F(p) ~ F(1), we have
dim ¢ = dim ¢ and the result follows. O

In general, the corollary does not generalize to non-Pfister forms. Let F =
Q(t1,t2,t3). The quadratic forms ¢ = {(t1,t2)) L (—t3) and ¢ = {{t1,t3)) L (—t2)
have isomorphic function fields but are not similar. (Cf. [89, Th. XII.2.15].)

Let r : F — K be a homomorphism of fields. Denote the kernel of rg,p :
W(F) — W(K) by W(K/F) and the kernel of rg/p : I;(F) — I,(K) by I,(K/F).
If ¢ is a nondegenerate even-dimensional quadratic form over F', we denote by
W (F)e the cyclic W(F)-module in I,(F) generated by ¢.

Corollary 23.6. Let ¢ be an anisotropic quadratic n-fold Pfister form with n > 1
and ¥ an anisotropic quadratic form of even dimension over F. Then there is an
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isometry ¥ ~ b ® @ over F for some symmetric bilinear form b over F' if and only
if V() is hyperbolic. In particular, Io(F(¢)/F) = W (F)p.

PROOF. If b is a bilinear form, then (b ® ) p () = bp(,) ® @p(e) is hyperbolic
by Lemma 8.16 as ¢p(,) is hyperbolic by Corollary 9.10. Conversely, suppose that
Y r(p) is hyperbolic. We induct on dim ). Assume that dim > 0. By the Subform
Theorem 22.5 and Proposition 7.22, we have ¥ ~ ap L ~ for some a € F* and
quadratic form . The form v also satisfies yp(,,) is hyperbolic, so the result follows
by induction. O

23.A. The Hauptsatz. We next prove a fundamental fact about forms in
I"(F) and I} (F) due to Arason and Pfister known as the Hauptsatz and proven in
[10].

Theorem 23.7 (Hauptsatz). (1) Let 0 # ¢ be an anisotropic quadratic form lying
in I (F). Then dimg > 2".
(2) Let 0 # b be an anisotropic bilinear form lying in I"™(F'). Then dim(b) > 2.

Proor. (1): As I7'(F) is additively generated by general quadratic n-fold Pfis-
ter forms, we can write ¢ = > |_, a;p; in W(F) for some anisotropic p; € P, (F)
and a; € F*. We prove the result by induction on r. If » = 1, the result is triv-
ial as p; is anisotropic, so we may assume that » > 1. As (p;)r(,,) is hyperbolic
by Corollary 9.10, applying the restriction map rp(,.y/r : W(F) — W(F(pr))
to ¢ yields pp(,,) = Z::_ll ai(pi)p(p,y I I (F(p)). If @p(p,,) is hyperbolic, then
2" = dim p < dim ¢ by the Subform Theorem 22.5. If this does not occur, then by
induction 2" < dim(¢p(,,))an < dimp and the result follows.

(2): As I™(F) is additively generated by bilinear n-fold Pfister forms, we can
write b = Y ]_.;¢; in W(F) for some ¢; anisotropic bilinear n-fold Pfister forms
and ¢; € {#£1}. Let ¢ = ¢, be the quadratic form associated to ¢,. Then pp(,,
is isotropic, hence (¢,)p(,) is isotropic, hence metabolic by Corollary 6.3. If by ()
is not metabolic, then 2" < dim(bp(y))an < dimb by induction on r. If bp(,) is

metabolic, then 2" = dim ¢ < dim b by Corollary 22.8.

An immediate consequence of the Hauptsatz is a solution to a problem of
Milnor, viz.,

Corollary 23.8. (2, I"(F) =0 and ;2 I}(F)=0.

The proof of the Hauptsatz for bilinear forms completes the proof of Corollary
6.19 and Theorem 6.20. We have an analogous result for quadratic Pfister forms.

Corollary 23.9. Let p, € GP,(F). If ¢ = ¢ mod I(’;H(F), then ¢ ~ ay for
some a € F*, i.e., ¢ and ¢ are similar over F. If, in addition, D(¢) N D(¢) # 0,
then o ~ 1.

PRrROOF. By the Hauptsatz 23.7, we may assume both ¢ and 1 are anisotropic.
As ((a)) ® ¢ € GPyy1(F), we have ayp = ¢ mod I7F!(F) for any a € F*. Choose
a € F* such that ¢ L —a®) in I;”l(F) is isotropic. By the Hauptsatz 23.7, the
form ¢ 1 —at) is hyperbolic, hence ¢ = at) in I,(F'). As both forms are anisotropic,
it follows by dimension count that ¢ ~ at) by Remark 8.17. If D(p) N D(¢) # 0,
then we can take a = 1. (]
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If ¢ is a nonzero subform of dimension at least two of an anisotropic quadratic
form p, then pp(,) is isotropic. As ¢ must also be anisotropic, we have p = ¢. For
general Pfister forms, we can say more. Let p be an anisotropic general quadratic
Pfister form. Then pp(,) is hyperbolic, so it contains a totally isotropic subspace of
dimension (dim p)/2. Suppose that ¢ is a subform of p satisfying dim ¢ > (dim p)/2.
Then ¢p(,) is isotropic, hence ¢ = p also. This motivates the following:

Definition 23.10. An anisotropic quadratic form ¢ is called a Pfister neighbor if
there is a general quadratic Pfister form p such that ¢ is isometric to a subform of
p and dim ¢ > (dim p)/2.

For example, nondegenerate anisotropic forms of dimension at most 3 are Pfister
neighbors.

Remark 23.11. Let ¢ be a Pfister neighbor isometric to a subform of a general
quadratic Pfister form p with dim ¢ > (dim p)/2. By the above, p <> p. Let o be
another general quadratic Pfister form such that ¢ is isometric to a subform of o
and dim ¢ > (dimo)/2. As p <> ¢ <> o and D(p) N D(o) # B, we have o ~ p by
the Subform Theorem 22.5. Thus the general Pfister form p is uniquely determined
by ¢ up to isomorphism. We call p the associated general Pfister form of ¢. If ¢
represents one, then p is a Pfister form.

24. Linkage of quadratic forms

In this section, we look at the quadratic analogue of linkage of bilinear Pfis-
ter forms. The Hauptsatz shows that anisotropic forms in 7' (F) have dimension
at least 2”. We shall be interested in those dimensions that are realizable by
anisotropic forms in I;'(F). In this section, we determine the possible dimension of
anisotropic forms that are the sum of two general quadratic Pfister forms as well
as the meaning of when the sum of three general n-fold Pfister forms is congruent
to zero mod I;‘(F). We shall return to and expand these results in §35 and §82.

Proposition 24.1. Let ¢ € GP(F).
(1) Let p € GP,(F) be a subform of ¢ with n > 1. Then there is a bilinear
Pfister form b such that ¢ ~b® p.
(2) Let b be a general bilinear Pfister form such that vy is a subform of .
Then there is p € P(F) such that ¢ ~ b & p.

PROOF. We may assume that ¢ is anisotropic of dimension > 2.

(1): Let b be a bilinear Pfister form of the largest dimension such that b® p is
isometric to a subform 1 of . As b ® p in nondegenerate, VJ NVy =0. We claim
that 9 = . Suppose not. Then VJ # 0, hence VwL \ Vi # 0. Choose a = —9(v)
with v € V- \ V. Lemma 23.1 implies that ((a)) ® p is isometric to a subform of
, contradicting the maximality of b.

(2): We may assume that char F = 2 and b is a Pfister form, so 1 € D(ypp) C
D(¢). Let W be a subspace of V,, such that ¢|w ~ ¢p. Choose a vector w € W
such that gp(w) = 1 and write the quasi-Pfister form ¢y = (1) L ¢}, where V,,
is any complementary subspace of Fw in V,,,. Let v € V,, satisfy v is orthogonal
to Vi, but b(v,w) # 0. Then the restriction of ¢ on W & Fuv is isometric to
¢ = ¢y L [1,a] for some a € F*. Note that 1 is isometric to subforms of both
of the general Pfister forms ¢ and p := b ® {(a]]. In particular, ¢ and p are
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anisotropic. As dim > %dim u, the form v is a Pfister neighbor of u. Hence
¥ <> p by Remark 23.11. Since ¢pp(y) is hyperbolic by Proposition 22.18 so is
©F(u)- It follows from the Subform Theorem 22.5 that p is isomorphic to a subform
of p as 1 € D(u) N D(¢). By the first statement of the proposition, there is a
bilinear Pfister form ¢ such that ¢ ~ ¢® = c¢® b ® ((a]]. Hence ¢ ~ b ® p where
p=c® ((a]]. O

Let p be a general quadratic Pfister form. We say a general quadratic Pfister
form v (respectively, a general bilinear Pfister form b) is a divisor p if p ~ c® for
some bilinear Pfister form ¢ (respectively, p ~ b® p for some quadratic Pfister form
w). By Proposition 24.1, any general quadratic Pfister subform of p is a divisor of
p and any general bilinear Pfister form b of p whose associated quadratic form is a
subform of p is a divisor p.

Theorem 24.2. Let p1,p2 € GP(F) be anisotropic. Let p € GP(F) be a form of
largest dimension such that p is isometric to subforms of @1 and po. Then

io(p1 L —p2) = dimp.

PRrOOF. Note that ip := ip(¢1 L —¢2) > d := dimp. We may assume that
ig > 1. We claim that ¢; and @5 have isometric nondegenerate binary subforms.
To prove the claim let W be a 2-dimensional totally isotropic subspace of V,,, ®V_,,.
As o1 and ¢ are anisotropic, the projections U; and Us of W to V,,, and V_,, =
Vo, respectively, are 2-dimensional. Moreover, the binary forms 11 := ¢1|y, and
o = sy, are isometric. We may assume that ¢; and 1)y are degenerate (and
therefore, char(F') = 2). Hence 11 and 1y are isometric to g, where b is a 1-fold
general bilinear Pfister form. By Proposition 24.1(2), we have ¢ ~ b ® p; and
P2 >~ b ® po for some p; € P(F). Write p; = ¢; ® v; for bilinear Pfister forms ¢; and
1-fold quadratic Pfister forms v;. Consider quaternion algebras ()1 and )2 whose
reduced norm forms are similar to b ® 11 and b ® vs, respectively. The algebras Q1
and Q4 are split by a quadratic field extension that splits b. By Theorem 98.19, the
algebras Q1 and @)» have subfields isomorphic to a separable quadratic extension
L/F. By Example 9.7, the reduced norm forms of )7 and @2 are divisible by the
nondegenerate norm form of L/F. Hence the forms b® 14 and b ® 5 and therefore
1 and @9 have isometric nondegenerate binary subforms. The claim is proven.

By the claim, p is a general r-fold Pfister form with r > 1. Write 1 = p L 9¢»
and w2 = p L 1y for some forms 1)1 and 5. We have @1 L (—p2) ~ 91 L (—tp2) L
dH. Assume that igp > d. Then the form ¥; L (—s) is isotropic, i.e., ¥; and s
have a common value, say a € F*. By Lemma 23.1, the form ((—a)) ® p is isometric
to subforms of ¢ and ¢, a contradiction. O

Corollary 24.3. Let p1,02 € GP,(F) be anisotropic forms. Then the possible
values of i0(p1 L —p2) are 0,1,2,4,...,2™.

Let 1 € GP,(F) and @2 € GP,(F) be anisotropic forms satisfying
i(pr L —¢p2) = 2" > 0. Let p be a general quadratic r-fold Pfister form iso-
metric to a subform of ¢; and to a subform of 3. We call p the linkage of ¢1 and
o and say that p; and @9 are r-linked. By Proposition 24.1, the linkage p is a
divisor of 1 and @s. If m =n and r > n — 1, we say that o1 and @9 are linked.

Remark 24.4. Let ¢1 and @2 be general quadratic Pfister forms. Suppose that
1 and @2 have isometric r-fold quasi-Pfister subforms. Then ig(¢1 L —p2) > 27



25. THE SUBMODULE J, (F) 103

and by Theorem 24.2, the forms ¢, and @9 have isometric general quadratic r-fold
Pfister subforms.

For three n-fold Pfister forms, we have:

Proposition 24.5. Let @1, @2, o3 € Po(F). If ¢1 + 02 + @3 € IJTH(F) then
there exist a quadratic (n — 1)-fold Pfister form p and a1,as,a3 € F* such that
arazasz =1 and @; ~ ((a;)) ® p for i =1,2,3. In particular, p is a common divisor
of p; fori=1,2,3.

PrOOF. We may assume that all ¢; are anisotropic Pfister forms by Corollary
9.10. In addition, we have (¢3)r(y,) is hyperbolic. By Proposition 23.9, the form
(1 L —p2)p(py) is also hyperbolic. As 3 is anisotropic, ¢1 L —¢o cannot be
hyperbolic by the Hauptsatz 23.7. Consequently,

(p1 L —p2)an ~aps L 7
over F for some a € F* and a quadratic form 7 by the Subform Theorem 22.5
and Proposition 7.22. As dim7 < 2" and 7 € I;H’l(F), the form 7 is hyper-
bolic by Hauptsatz 23.7 and therefore ¢1 — 2 = ags in I (F). It follows that
io(¢1 L —¢p2) = 2" hence ¢; and s, are linked by Theorem 24.2.
Let p be a linkage of 1 and ¢5. By Proposition 24.1, we have ¢1 ~ ((a1)) ® p
and g ~ ((a2)) ® p for some ay,as € F*. Then 3 is similar to (¢1 L —p2)an =

—ai{{ara2)) ® p, i.e., p3 ~ ((a1as2)) ® p. O
Corollary 24.6. Let ¢1, pa2, 3 € P,(F). Suppose that

(24.7) @14 @2 + 3 =0 mod I} (F).

Then

en(‘Pl) + en(@2> + en(‘p3) =01n HH(F)-

PRrROOF. By Proposition 24.5, we have p; ~ {{a;)) ® p for some p € P,_1(F)
and a; € F* for ¢ = 1,2, 3 satisfying ajasas = 1. It follows from Proposition 16.1
that

en(91) + enli2) + en(ps) = en(((a1)) @ p) + en({(a2)) @ p) + en(((as)) @ p)
= {a1a2a3}en71(p) =0. 0

25. The submodule J,(F)

By Corollary 23.4, a general quadratic Pfister form has the following “intrin-
sic” characterization: a nondegenerate anisotropic quadratic form ¢ of positive
even dimension is a general quadratic Pfister form if and only if the form pp () is
hyperbolic. We shall use this to characterize elements of I}'(F'). Let ¢ be a form
that is nonzero in I,(F'). There exists a field extension K/F such that (¢x)an is
a general quadratic n-fold Pfister form for some n > 1. The smallest possible such
n is called the degree deg(y) of . We shall see in Theorem 40.10 that ¢ € I}'(F)
if and only if degp > n. In this section, we shall begin the study of the degree of
forms. The ideas in this section are due to Knebusch (cf. [83] and [84]).

We begin by constructing a tower of field extensions of F' with (¢x )an a general
quadratic n-fold Pfister form where K is the penultimate field K in the tower.

Let ¢ be a nondegenerate quadratic form over F. We construct a tower of
fields Fy C Fy; C -+ C Fj, and quadratic forms @ over Fy for all k € [0, h] as
follows: We start with Fy := F, ©g := @an, and inductively set Fy := Fi_1(¢or—1),
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0k = (pp, )an for k > 0. We stop at Fj, such that dim ey, < 1. The form ¢y, is
called the kth (anisotropic) kernel form of . The tower of the fields F is called
the generic splitting tower of . The integer h is called the height of ¢ and denoted
by h(p). We have h(¢) = 0 if and only if dim ¢, < 1.

Let h = h(y). For any k € [0, h], the k-th absolute higher Witt index ji () of ¢
is defined as the integer ip(¢r, ). Clearly, one has

0 <joly) <ji(p) <+ <inlp) = [(dimep)/2].
The set of integers {j,(¢),...,in(p)} is called the splitting pattern of ¢.

Proposition 25.1. Let ¢ be a nondegenerate quadratic form with h = §(p). The
splitting pattern {j, (), ..., in()} of ¢ coincides with the set of Witt indices io(pk )
over all field extensions K/F'.

PRrROOF. Let K/F be a field extension. Define a tower of fields Ky C K; C
-+ C Kp by Ko = K and Ky, = Ki_1(pk—1) for k > 0. Clearly, Fy, C K}, for all k.
Let £ > 0 be the smallest integer such that ¢y is anisotropic over Kj. It suffices to
show that io(px) = jr(#)-

By definition of ¢, and ji, we have g, = @i L jx(p)H. Therefore, vk, =
(pq) i, Lin(@)H. As ¢y is anisotropic over Ky, we have ig(¢k, ) = jr(¢)-

We claim that the extension Kj/K is purely transcendental. This is clear if
k = 0. Otherwise Ky = Kj_1(pk—1) is purely transcendental by Proposition 22.9,
since g _1 is isotropic over Kj_1 by the choice of k£ and is nondegenerate. It follows
from the claim and Remark 8.9 that io(¢x) = io(¢k,) = k(). O

Corollary 25.2. Let ¢ be a nondegenerate quadratic form over F and let K/F be
a purely transcendental extension. Then the splitting patterns of ¢ and @i are the
same.

Proor. This follows from Lemma 7.15. O

We define the relative higher Witt index ik (), k € [1,H(p)], of a nondegenerate
quadratic form ¢ to be the difference

() = jr(e) —ir-1()-
Clearly, ix() > 0 and ix(p) = i.(ps) for any r > 0 and s > 0 such that r + s = k.

Corollary 25.3. Let ¢ be a nondegenerate anisotropic quadratic form over F of
dimension at least two. Then

i1(¢) =Jj1(p) = min{ig(¢k) | K/F a field extension with g isotropic}.

Let ¢ be a nondegenerate nonhyperbolic quadratic form of even dimension over
F with h = h(p). Let Fy C Fy C -+ C F}, be the generic splitting tower of ¢. The
form pp_1 = (@p,_, )an is hyperbolic over its function field, hence a general n-fold
Pfister form for some integer n > 1 with iy, () = 2"~! by Corollary 23.4. The form
wn—1 is called the leading form of ¢ and n is called the degree of ¢ and is denoted
by deg . The field Fj,_; is called the leading field of . For convenience, we set
deg ¢ = oo if ¢ is hyperbolic.

Remark 25.4. Let ¢ be a nondegenerate quadratic form of even dimension with
the generic splitting tower Fy C Fy C -+ C Fy. If o, = (pF, )an With k € [0, h—1],
then deg i = deg .
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Notation 25.5. Let ¢ be a nondegenerate quadratic form over ' and X = X,,.
Let k£ € [0, h(p)]. We shall let X, := X, and also write j;(X) (respectively,
ir(X)) for ji(¢) (respectively, ix(¢)).

It is a natural problem to classify nondegenerate quadratic forms over a field

F of a given height. This is still an open problem even for forms of height two. By
Corollary 23.4, we do know

Proposition 25.6. Let ¢ be an even-dimensional nondegenerate anisotropic qua-
dratic form. Then h(v) =1 if and only if p € GP(F).

Proposition 25.7. Let ¢ be a nondegenerate quadratic form of even dimension
over F' and K/F a field extension with (px)an an m-fold general Pfister for some
m > 1. Then m > degy. In particular, deg is the smallest integer n > 1 such
that (@K )an 18 a general n-fold Pfister form over an extension K/F.

PRrROOF. It follows from Proposition 25.1 that
(dim e — 2™)/2 = io(pK) <ipp)-1(p) = (dimp — 29¢) /2,
hence the inequality. (Il

Corollary 25.8. Let ¢ be a nondegenerate quadratic form of even dimension over
F. Then deg g > degy for any field extension E/F.

For every n > 1 set
Jo(F) :={p € I,(F) | degp > n} C I(F).
Clearly, J1(F) = I,(F).

Lemma 25.9. Let p € GP,(F) be anisotropic withn > 1. Let ¢ € J,11(F). Then
deg(p L ¢) < n.

PrROOF. We may assume that ¢ is not hyperbolic. Let ¢ = p L ¢. Let
Fy, Fy,. .., Fy be the generic splitting tower of ¢ and let ¢; = (¢F,)an. We show
that pp, is anisotropic. Suppose not. Choose j maximal such that pr; is anisotropic.
Then pp,,, is hyperbolic so dim ¢; < dim p by the Subform Theorem 22.5. Hence

2" =dimp > dim ¢, > deg gdegpj — gdegy > gntl
which is impossible. Thus pp, is anisotropic.
As ¢ is hyperbolic over F}y, we have ¢p, ~ pp,. Consequently,
deg® < degyr, = degpr, =n,
hence deg vy < n as claimed. O

Corollary 25.10. Let ¢ and v be any even-dimensional nondegenerate quadratic
forms. Then deg(p L v) > min(deg ¢, deg ).

PrROOF. If either ¢ or v is hyperbolic, this is trivial, so assume that both
forms are not hyperbolic. We may also assume that ¢ L ¢ is not hyperbolic. Let
K/F be a field extension such that (¢ L ) ~ p for some p € GP,(K) where
n = deg(p L ¥). Then ¢x ~ p L (—k). Suppose that degy > n. Then
deg i > n and applying the lemma to the form p L (—¢ k) implies deg v < n.
Hence degp < n = deg(p L ). O

Proposition 25.11. J,(F) is a W(F')-submodule of I,(F') for every n > 1.
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ProoF. Corollary 25.10 shows that J,(F) is a subgroup of I,(F'). Since
deg v = deg(ay) for all @ € F*, it follows that J,(F) is also closed under multipli-
cation by elements of W (F). O

Corollary 25.12. I}'(F) C J,(F).

PROOF. As general quadratic n-fold Pfister forms clearly lie in J,, (F'), the result
follows from Proposition 25.11. 0

Proposition 25.13. IZ2(F) = J5(F).

PROOF. Let ¢ € Jo(F) and ¢ = ¢p, with Fy, k € [0, h], the generic splitting
tower. As degp > 2, the field Fj is the function field of a smooth quadric of
dimension at least 2 over Fjy_1, hence the field Fj_; is algebraically closed in F}.
Since the form ¢, = 0 has trivial discriminant, by descending induction on k, it

follows that ¢ = g has trivial discriminant. By Theorem 13.7 we conclude that
pel 3(F) O

Proposition 25.14. J3(F) = {¢ | dim ¢ is even, disc(p) = 1, clif(¢) = 1}.

PROOF. Let ¢ be an anisotropic form of even dimension and trivial discrimi-
nant. Then ¢ € IZ(F) = J5(F) by Theorem 13.7 and Proposition 25.13. Suppose
@ also has trivial Clifford invariant. We must show that degy > 3. Let K be the
leading field of ¢ and p its leading form. Then p € GP,(F) with n > 2. Suppose
that n = 2. As ex(p) = 0 in H?(K), we have p is hyperbolic by Corollary 12.5, a
contradiction. Therefore, ¢ € J3(F).

Let ¢ € J3(F). Then ¢ € IZ(F) by Proposition 25.13. In particular, disc(¢) =
lLand p = Y, p; with p; € GP2(F), 1 < i < r. We show that clif(y) = 1 by
induction on r. Let p, = b({a,d]] and K = Fy. Then ¢x € J3(K) and satisfies
YK = z:ll (pi)k as (pr)k is hyperbolic. By induction, clif (¢ ) = 1. Thus clif(¢)
lies in kernel of Br(F) — Br(K). Therefore, the index of clif(p) is at most two.
Consequently, clif(¢) is represented by a quaternion algebra, hence there exists a
2-fold quadratic Pfister form o satisfying clif(¢) = clif (o). Thus clif(¢ + o) = 1,
s0 ¢ + o lies in J3(F) by the first part of the proof. It follows that o lies in J3(F).
Therefore, o = 0 and clif(¢) = 1. O

As és is an isomorphism (cf. Theorem 16.3 if char F' = 2 and Chapter VIII
if char F' # 2), we have I*(F) = J3(F). We shall show that I"(F) = J,(F) for
all n in Theorem 40.10. In this section, we show the following due to Arason and
Knebusch (cf. [9]).

Proposition 25.15. I"(F)J,(F) C Jpim(F).

Proor. Clearly, it suffices to do the case that m = 1. Since 1-fold bilinear
Pfister forms additively generate I(F'), it also suffices to show that if ¢ € J,(F)
and a € F*, then {(a)) @ ¢ € J,41(F). Let ¢ be the anisotropic part of {a)) ® ¢.
We may assume that ¢ # 0.

First suppose that ¢» € GP(F). We prove that degt > n by induction on the
height h of . If h = 1, then ¢ € GP(F) and the result is clear. So assume that
h > 1. Suppose that ¢ p(,) remains anisotropic. Applying the induction hypothesis
to the form ¢p(,), we have

degy = degp(y) > n.



26. THE SEPARATION THEOREM 107

If ¥p(y) is isotropic, it is hyperbolic and therefore dim > dim ¢ by the Subform
Theorem 22.5. As h > 1, we have

29°8% = dim ) > dim ¢ > 29°8% > 27,
hence deg vy > n.

Now consider the general case. Let K/F be a field extension such that ¢ is
Witt-equivalent to a general Pfister form and degvx = deg. By the first part of
the proof

deg ) = degpx > n. O

26. The Separation Theorem

There are anisotropic quadratic forms ¢ and ¢ with dim ¢ < dim+ and @p(y)
isotropic. For example, this is the case when ¢ and 1 are Pfister neighbors of the
same Pfister form. In this section, we show that if two anisotropic quadratic forms
o and v are separated by a power of two, more precisely, if dimy < 2" < dim
for some n > 0, then ¢ F(y) Témains anisotropic.

We shall need the following observation.

Remark 26.1. Let ¢ be a quadratic form. Then V,;, contains a (maximal) totally
isotropic subspace of dimension ij()) := ig(¢)) + dim(rad ¢)). Define the invariant
s of a form by s(¢) := dim ¢ — 2i{(¢)) = dim 4, — dim(rad ). If two quadratic
forms ¢ and p are Witt-equivalent, then s(¢)) = s(u).

A field extension L/F is called unirational if there is a field extension L'/L
with L'/F purely transcendental. A tower of unirational field extensions is unira-
tional. If L/F is unirational, then every anisotropic quadratic form over F' remains
anisotropic over L by Lemma 7.15.

Lemma 26.2. Let ¢ be an anisotropic quadratic form over F satisfying dim ¢ < 27
for some n > 0. Then there exists a field extension K/F and an (n + 1)-fold
anisotropic quadratic Pfister form p over K such that

(1) @K is isometric to a subform of p.
(2) The field extension K(p)/F is unirational.

PrROOF. Let Ky = F(t1,...,tn41) and let p = ((t1,...,tp41]]. Then p is
anisotropic. Indeed, by Corollary 19.6 and induction, it suffices to show ((¢]] is
anisotropic over F'(t). If this is false, there is an equation f? + fg + tg? = 0 with
f,g € F[t]. Looking at the highest term of ¢ in this equation gives either a?t?" = 0
or b?t?"+1 = 0 where a, b are the leading coefficients of f, g, respectively. Neither
is possible.

Consider the class F of field extensions E/Kj satisfying:

(1) p is anisotropic over E.
(2') The field extension E(p)/F is unirational.

We show that Ky € F. By the above p is anisotropic. Let L = K0(<<1,t1]]).
Then L/F is purely transcendental. As pj is isotropic, L(p)/L is also purely
transcendental and hence so is L(p)/F. Since Ko(p) C L(p), the field extension
Ky(p)/F is unirational.

For every field E € F, the form ¢g is anisotropic by (2'). As pg is nondegen-
erate, the form pg L (—pg) is regular. We set

m(E) =io(pe L (—¢E)) =i(pe L (—¢E))
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and let m be the maximum of the m(E) over all E € F.

Claim 1: We have m(F) < dim¢ and if m(E) = dim ¢, then ¢g is isometric to a
subform of pg.

Let W be a totally isotropic subspace in V,, L V_,, of dimension m(E).
Since pg and ¢g are anisotropic, the projections of W to V,, and V_,, = V.,
are injective. This gives the inequality. Suppose that m(E) = dim . Then the
projection p : W — V,,, is an isomorphism and the composition

Voo Lo W V),
identifies ¢ with a subform of pg.
Claim 2: m = dim .
Assume that m < dimy. We derive a contradiction. Let K € F be a field

satisfying m = m(K) and set 7 = (px L (—¢K)),, . As the form pr L (—¢k) is
regular, we have 7 ~ px L (—pk) and

(26.3) dim p + dim ¢ = dim 7 + 2m.

Let W be a totally isotropic subspace in V,, L V_,, of dimension m. Let o
denote the restriction of pg on V,,, NW=. Thus o is a subform of px of dimension
> 27+l ;> 27, In particular, o is a Pfister neighbor of px. By Lemma 8.10,
the natural map V,,, "W+ — WL /W identifies o with a subform of 7.

We show that condition (2) holds for K (7). Since o is a Pfister neighbor
of pk, the form o and therefore 7 is isotropic over K(p). By Lemma 22.14, the
extension K (p)/K is separable, hence 7k ,,) is regular by Lemma 22.13. Therefore,
by Lemma 22.9 the extension K (p)(7)/K(p) is purely transcendental. It follows
that K(p)(T) = K(7)(p) is unirational over F', hence condition (2") is satisfied.

As 7 is isotropic over K (7), we have m(K (7)) > m, hence K(7) ¢ F. There-
fore, condition (1’) does not hold for K(7), i.e., px is isotropic and therefore hy-
perbolic over K(7). As ) # D(o) C D(pk) N D(7), the form 7 is isometric to a
subform of pg by the Subform Theorem 22.5. Let 7+ be the complementary form
of 7 in pg. It follows from (26.3) that

dim 7t = dim p — dim7 = 2m — dim ¢ < dim ¢.
As pxg L (—7) ~ 7t by Lemma 8.13,
(26.4) TL(=7)~pr L (—pr) L (-T)~ ™+ L (—¢K).

We now use the invariant s defined in Remark 26.1. Since the space of 7 L (—7)
contains a totally isotropic subspace of dimension dim 7, it follows from (26.4) and
Remark 26.1 that

S(TL L (—¢k)) =s(r L(-7)) =0,
i.e., the form 7+ | (—¢x) contains a totally isotropic subspace of half the dimension
of the form. Since dim ¢ > dim 71, this subspace intersects Vi nontrivially, con-
sequently @ is isotropic contradicting condition (2'). This establishes the claim.

It follows from the claims that @ is isometric to a subform of pg. O

Theorem 26.5 (Separation Theorem). Let ¢ and v be two anisotropic quadratic
forms over F'. Suppose that dim ¢ < 2" < dim®) for some n > 0. Then @p(y) is
anisotropic.
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PROOF. Let p be an (n + 1)-fold Pfister form over a field extension K/F as
in Lemma 26.2 with ¢x a subform of p. By the lemma g, is anisotropic.
Suppose that ¢y is isotropic. Then pg (4 is isotropic, hence hyperbolic. By the
Subform Theorem 22.5, there exists an a € F such that ayk is a subform of p.
As dim > %dim p, the form avk is a neighbor of p, hence atyk (,) and therefore
YK (p) 18 isotropic. This is a contradiction. (Il

Corollary 26.6. Let ¢ and v be two anisotropic quadratic forms over F with
dime > 2. Ifdimy > 2dim ¢ — 1, then pp(y) is anisotropic.

The Separation Theorem was first proved by Hoffmann in [53] for fields of
characteristic different from 2 and by Hoffmann and Laghribi in [58] for fields of
characteristic 2. We shall give another, more geometric proof, in 79.8 below.

27. A further characterization of quadratic Pfister forms

In this section, we give a further characterization of quadratic Pfister forms
due to Fitzgerald (cf. [44]) used to answer a question of Knebusch in [84] for
fields of characteristic different from 2. Knebusch and Scharlau showed in [85] that
Fitzgerald’s theorem implied that if a nondegenerate anisotropic quadratic form
p becomes hyperbolic over the function field of an irreducible anisotropic form ¢
satisfying dim ¢ > % dim p, then p is a general quadratic Pfister form. Hoffmann and
Laghribi showed that this characterization was also true for fields of characteristic
2 in [57].

For a nondegenerate nonhyperbolic quadratic form p of even dimension, we set
N(p) = dim p — 29°87. Since the splitting patterns of p and pr(+) are the same, by
Corollary 25.2, we have N(pp)) = N(p).

Theorem 27.1. Let p be a nonhyperbolic quadratic form and ¢ a subform of p of
dimension at least 2. Suppose that:

(1) ¢ and its complementary form in p are anisotropic.

(2) pr(y) is hyperbolic.
(3) 2dimp > N(p).

Then p is an anisotropic general Pfister form.

PRrOOF. Note that p is a nondegenerate form of even dimension by Remark
7.18 as pr(y) is hyperbolic.

Claim 1: For any field extension K/F with ¢k anisotropic and pg not hyperbolic,
vk is isometric to a subform of (px)an.

By Lemma 8.13, the form p L (—¢) is Witt-equivalent to v := ¢*. In partic-
ular, dim p = dim ¢ + dim¢. Set p' = (pK )an. It follows from (3) that

dim(p’ L (—pk)) > 29¢8# 1 dim ¢ > dim p — dim ¢ = dim 1.

As p' L (—pk) ~ ¢k it follows that the form p' L (—¢k) is isotropic, therefore
D(p') N D(pk) # 0. Since p’K(SD) is hyperbolic, the form g is isometric to a
subform of p’ by the Subform Theorem 22.5 as needed.
Claim 2: p is anisotropic.

Applying Claim 1 to K = F implies that ¢ is isometric to a subform of p’ = pgp,.
Let ¢’ be the complementary form of ¢ in p’. By Lemma 8.13,

V'~ p L)~ pL(—p) ~ .
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As both forms v and 1’ are anisotropic, we have 1’ ~ 1. Hence
dim p = dim ¢ + dim ) = dim ¢ + dim ' = dim p’ = dim pgy, .

Therefore, p is anisotropic.

We now investigate the form ¢ (). Suppose it is isotropic. Then ¢ <> p, hence
PF(p) is hyperbolic by Proposition 22.18. It follows that p is a general Pfister form
by Corollary 23.4 and we are done. Thus we may assume that ¢p(,) is anisotropic.
Normalizing we may also assume that 1 € D(¢). We shall prove that p is a Pfister
form by induction on dim p. Suppose that p is not a Pfister form. In particular,
p1 = (PF(p))an is nonzero and dim p; > 2. We shall finish the proof by obtaining
a contradiction. Let 1 = @p(,).

Note that deg p; = deg p and dim p; < dim p, hence N(p1) < N(p).

Claim 8- p; is a Pfister form.

Applying Claim 1 to the field K = F(p), we see that ¢ is isometric to a
subform of p;. We have

2dim 1 = 2dime > N(p) > N(p1).

By the induction hypothesis applied to the form p; and its subform, ¢1, we conclude

that the form p; is a Pfister form proving the claim. In particular, dimp; =
9degp1 — gdegp_

Claim 4: D(p) = G(p).

Since G(p) C D(p), it suffices to show if z € D(p), then z € G(p). Suppose that
x ¢ G(p). Hence the anisotropic part § of the isotropic form ((x)) ® p is nonzero.
It follows from Proposition 25.15 that deg 8 > 1 + deg p.

Suppose that Bp(, is hyperbolic. As p— 3 = —xp in I;(F), the form p L (—/3)
is isotropic, hence D(p) N D(B) # 0. It follows from this that p is isometric to a
subform of 3 by the Subform Theorem 22.5. Let §~p Ly~ p L (—xp) for some
form p. By Witt cancellation, u ~ —zp. But dim 8 < 2dim p, hence dim p < dim p.
As p is anisotropic, this is a contradiction. It follows that the form 31 = (Bp(,))an
is not zero and hence dim §; > 2de88 > gl+degp,

Since p is hyperbolic over F(y), it follows from the Subform Theorem 22.5 that
¢ is isometric to a subform of zp. Applying Claim 1 to the form xpp(,), we conclude
that ¢ is a subform of zp1. As 1 is also a subform of p1, the form {(z))®p; contains
1 L (—¢1) and therefore a totally isotropic subspace of dimension dim ¢; = dim .
Therefore, dim ({(z)) ® p1) < 2dim p; — 2dim . Consequently,

an
oltdegr < qim By = dim(((m)) ® pl)an < 2dim p; — 2dim g < 21Fdesr,

a contradiction. This proves the claim.

Let F(T) = F(t1,...,t,) with n = dimp. We have degppry = degp and
N(pp(r)) = N(p). Working over F/(T) instead of F', we have the forms ¢p(r)
and pp(r) satisfy the conditions of the theorem. By Claim 4, we conclude that
G(pr(ry) = D(pp(r)). It follows from Theorem 23.2 that p is a Pfister form, a
contradiction. O

Corollary 27.2. Let p be a nonzero anisotropic quadratic form and @ an irre-
ducible anisotropic quadratic form satisfying dim ¢ > %dim p- 1If pr(y) is hyper-
bolic, then p € GP(F).
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PROOF. As pp(y) is hyperbolic, the form p is nondegenerate. It follows by
the Subform Theorem 22.5 that ap is a subform of p for some a € F'*. As p is
anisotropic, the complementary form of ap in p is anisotropic.

Let K be the leading field of p and 7 its leading form. We show that ¢k is
anisotropic. If ¢ p(,) is isotropic, then ¢ <> p. In particular, pp(,) is hyperbolic by
Proposition 22.18, hence K = F' and ¢ is anisotropic by hypothesis. Thus we may
assume that ¢p(,) is anisotropic. The assertion now follows by induction on h(p).
As Tg(p) ~ PK(p) is hyperbolic, dim ¢ = dimpx < dim7 = 2deg# by the Subform
Theorem 22.5. Hence N(p) = dim p —29¢6# < dim p — dim ¢ < 2dim . The result
follows by Theorem 27.1. O

The restriction dim ¢ > & dim p above is best possible (cf. [85]).
A further application of Theorem 27.1 is given by:

Theorem 27.3. Let ¢ and i be nondegenerate quadratic forms over F' of the same
odd dimension. If ig(pr) = o(VYK) for any field extension K/F, then ¢ and v are
simaelar.

PROOF. We may assume that ¢ and 3 are anisotropic and have the same
determinant