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Abstract. Based on the order theory, a study of the differences between the preordering and the 
ordering and a discussion of the isotone map and homomorphism map are obtained. According to 
the differences of the constructions of the algebraic lattice and the ordering lattice, we prove the 
algebraic sublattice and the ordering sublattice are equivalent with the strengthen condition. 

Introduction 
George Grätzer gives a concise development of the basic concepts of lattice theory. Generally, 

our focus is on lattice structure theory, however, this paper intends to illustrate if the algebraic 
sublattice and the ordering sublattice are equivalent. We draw conclusions from “General Lattice 
Theory”, “The Congruence of a Finite Lattice”[3] by George Grätzer: 
Theorem 1  

(1)Let the poset ( )= ,L L ≤ be a lattice. Set inf{ }a b a b∧ = , , sup{ }a b a b∨ = , .Then the 

algebra ( )aL L= ,∧,∨ is a lattice.  
(2)Let the algebra ( )L L= ,∧,∨ be a lattice. Set a b≤  iff a b a∧ = .Then ( )PL L= ,≤ is a poset, 

and the poset is a lattice.  
(3)Let the poset ( )L L= ,≤  be a lattice. Then ( )a PL L= .  
(4)Let the algebra ( )= , ,L L ∧ ∨ be a lattice. Then ( ) =

aPL L . 

In other words, a lattice as an algebra and a lattice as a poset are “equivalent” concepts. We 
wonder if the concepts of a sublattice as an algebra and a sublattice as a poset are the same.  We 
will discuss about it later. 
Theorem 2 [1]Every homomorphism map is an isotone map. 
Theorem 3 Let P  be a finite order. Then a b≤ if and only if a b= or if there exists a finite 
sequence of elements 1 2 nx x x, , ⋅ ⋅ ⋅,  such that 1 2 na x x x b= ⋅⋅⋅ =   . 

Preliminaries 
Definition 1 [2] A preorder is a nonempty set Q  with a binary relation ≤  that is reflexive and 
transitive.  
Definition 2 A partially ordered set is a system consisting of a nonempty set P  and a binary relation 
≤  in P  such that the following conditions are satisfied for all x y z P, , ∈ : 

(1) Reflexivity x x≤   
(2) Antisymmetry x y≤ , y x x y≤ ⇒ =   
(3) Transitivity x y≤ , y z x z≤ ⇒ ≤    
The relation ≤  is a partial order in the set P , and P  is said to be partially ordered by the 

relation≤ . 
Definition 3 ( )P , ≤ is a poset, S is a subset of P , a P∈ : 

(1)If s S∀ ∈ , ( )a s s a≤ ≤ ,then a  is a lower(upper) bound of S ; 
(2)If s S∀ ∈ , a S∈ , ( )a s s a≤ ≤ ,then a  is called the least(greatest) element of S ;  
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(3)A lower bound a of S  is the greatest lower bounder of S , for any lower bound b of S ,we 
have a b≥ . An upper bound a of S  is the least upper bounder of S , for any upper boundb of S , 
we have a b≤ . 
Definition 4 [5] A poset ( , )L L= ≤ is a lattice, if ,a b L∈ , { }sup ,a b and inf{ }a b, exist.  
Definition 5 If L  is a lattice, then it is readily verified that the following conditions hold for 
all , ,a b c L∈  

(1) a a a a a a∧ = , ∨ =   
(2) a b b a a b b a∧ = ∧ , ∨ = ∨   
(3) ( ) ( )a b a a a b a a∧ ∨ = , ∨ ∧ =  
(4) ( ) ( ) ( ) ( )a b c a b c a b c a b c∧ ∧ = ∧ ∧ , ∨ ∨ = ∨ ∨   

Definition 6 A lattice 1 1( , )L L= ∧ ,∨ is called a algebraic sublattice of ( , )L L= ∧ ,∨  if it satisfies 
the following two conditions: 

(1) 1L L⊆ is a nonvoid subset of L  
(2) 1L is closed under the same ∨  and ∧   

Definition 7 A lattice 1 1( )L L= ,≤ is called a partially sublattice of ( )L L= ,≤ , if it satifies the 
following two conditions: 

(1) 1L L⊆  is a nonvoid subset of L  
(2) ( )1,L ≤  is a suborder of ( ),L ≤   

Definition 8 A homomorphism ϕ of the lattice 0L  into a lattice 1L  is a map of 0L  into 1L  
satisfying both ( ) ( ) ( )=a b a bϕ ϕ ϕ∨ ∨ and ( ) ( ) ( )=a b a bϕ ϕ ϕ∧ ∧ . 
Definition 9 The map 0 1: P Pϕ → is an isotone map of the poset 0P  into the poset 1P  iff a b≤  
in 0P  implies that ( ) ( )a bϕ ϕ≤ in 1P . 
Definition 10 A chain is an order with no incomparable elemets. 
Definition 11 There exists a finite sequence of elements 1 , , nx x Q⋅ ⋅⋅ ∈ such that 

1 1(n>1)nx x x⋅ ⋅ ⋅   , then Q  is called a circle.  
Definition 12 The subset K of the lattice L is called convex iff , ,a b K c L∈ ∈ ,and a c b≤ ≤ imply that 
c K∈ .  

Algebraic Sublattices and Partial Sublattices 
As we know, a lattice as an algebra and a lattice as a poset are “equivalent” concepts. There are 

some differences between algebraic construction and partial construction [4] . 
Theorem 1 1L is a partial sublattice of L ,if 1,a b L∀ ∈ , { }inf ,a b , { } 1sup ,a b L∈ and { }inf ,a b , 

{ }sup ,a b L∈  are equivalent, then partial sublattice 1L  and algebraic sublattice 1L  are equivalent.  
Proof: Let L be a lattice, 1L is an algebraic sublattice of L . 1L is also a lattice. The conclusion of 
theorem1, 1

PL is a partial lattice. In view of the results, =a b a b a≤ ⇔ ∧ . 
Certainly ( ) =a b a a b∧ ∧ ∧ implies a b a∧ ≤ . Similarly  ( ) =a b b a b∧ ∧ ∧ implies a b b∧ ≤ .It is 
very easy to infer a b∧ is a lower bound of ,a b . Let d  be a lower bounder of ,a b , so 
d a≤ and d b≤ .    Certainly =d a d∧ and =d b d∧  , thus we can infer 

( )=( ) = =d a b d a b d b d∧ ∧ ∧ ∧ ∧ .So we get d a b≤ ∧ ,then a b∧ is the greatest lower bound 
of ,a b in 1

PL .In the definition of algebraic sublattice, a b∧ is also the greatest lower bound of 
,a b in L .  
In view of the results, = =a b a b a b a b≤ ⇔ ∧ ⇔ ∨ . Since ( ) =a b a a b∨ ∨ ∨ ,we infer 
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a a b≤ ∨ .Obviously ( ) =a b b a b∨ ∨ ∨  implies b a b≤ ∨ .we can also infer that a b∨ is an upper 
bound of ,a b . Let d ′ is an upper bound of ,a b .Since a d ′≤ and b d ′≤ , 
thus =a d d′ ′∨ and =b d d′ ′∨ , thus ( )=( ) = =d a b d a b d b d′ ′ ′ ′∨ ∨ ∨ ∨ ∨ . Thus a b∨ is the least upper 
bound of ,a b in 1

PL and in L .  
We conclude that 1L is a partial sublattice of L , if 1,a b L∀ ∈ , { }inf ,a b , { } 1sup ,a b L∈ and 

{ }inf ,a b , { }sup ,a b L∈  are equivalent, then partial sublattice 1L  and algebraic sublattice 1L  are 
equivalent.  
Theorem 2 Every algebraic sublattive is the partial sublattice.  
Proof: Let L  be a lattice and 1L  be a partial sublattice of L .Assume 1L does not satisfy the 
definition of partial sublattice. However, 1,a b L∀ ∈ , 1,a b a b L∧ ∨ ∈ , in the view of the preceding 
results, we get the conclusion that { }=inf ,a b a b∧ , { }=sup ,a b a b∨ ,contrary to the assumption. 
Consequently, every algebraic sublattice is the partial sublattice. 
Theorem 3 Every convex partial sublattice is the partial sublattice.  
Proof: Let K be the convex partial sublattice of L , a b K≤ ∈ for all [ ],c a b∈ satisfies c K∈ . 
Assume that K  does not satisfy the definition of algebraic sublattice. There 
exists ,a b K∈ but a b∧ or a b K∨ ∉ . Thus a b K≤ ∈ , [ ]1 2, ,c c a b∈ , and 1 2a c c b≤ ≤ ≤ . In the 
view of the preceding results, =a b a b a≤ ⇔ ∧ and =a b b∨ ,  so we infer that 1 2 1=c c c∧ and 

1 2 2=c c c K∨ ∈ ,contrary to the assumption . Therefore every convex partial sublattice is the partial 
sublattice.  

In fact, we can have the more general conclusion:  
Theorem 4 Let 1L be a parital sublattice of ( , )L L= ∧ ,∨ ,then 1L is an algebraic sublattice iff for 
all 1,a b L∈ satisfy a b∧ and 1a b L∨ ∈ （ ,∧ ∨ in L）.  
Proof:⇒  obviously.  

⇐ 1L is a partial sublattice, according to the definition, for all 1,a b L∈ , 
then { }inf a,b and { } 1sup a,b L∈  . Let { } 1= inf ,d a b L∈ , according to the theorem, 

{ }=inf , =d a b a b L′ ∧ ∈ .Since 1d L′∈ , thus d d ′≥ . If >d d ′ , contrary to the fact { } 1= inf ,d a b L∈  , 
thus =d d ′ .  

Similarly, for all 1,a b L∈ , let { } 1= sup ,d a b L∈  and { }=sup , =d a b a b L′ ∨ ∈ . Since 1d L′∈ , 

so d d ′≤ . If <d d ′ , contrary to the fact { } 1= sup ,d a b L∈ , therefore =d d ′ . 

Ordering and its Properties 
A preorder is a nonempty set Q  with a binary relation ≤  that is reflexive and transitive. We 

can add some conditions on the preorder in order that the preorder and the poset are equivalent.  
Theorem 1 The finite preorder is a poset iff there does not exist circle. 
Proof: Assume that there is a circle 0 na x x a⋅ ⋅ ⋅    .We get 0a x≤ , according to the 
transitivity , 0x a≤ . Combining the antisymmetry, , =a b b a a b≤ ≤ ⇒ , then 0=a x , contrary to 

0a x .  
For all ,a b , a b≤ andb a≤ , we have two situations:  
(1) =a b   
(2) a b≠ , then 1a x b⋅ ⋅ ⋅   and 1b x a′ ⋅ ⋅ ⋅   .  
If a b≠ , we get 1 1a x b x a′⋅ ⋅ ⋅ ⋅ ⋅ ⋅      ,contrary to the fact that there does not exist circle. 

Therefore, for all ,a b  if a b≤ and b a≤ , we have =a b .  
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Theorem 2 Every isotone map of the finite chain is a homomorphism. 
Proof: LetC be a finite chain. There exists a finite sequence of elements 1 2, , , nx x x C⋅ ⋅⋅ ∈ such 
that 1 2 nx x x⋅ ⋅ ⋅   .Since ϕ is an isotone map ofC into P ,thus ( ) ( ) ( )1 2 nx x xϕ ϕ ϕ⋅⋅⋅   . For 

all 1 2,x x C∈ if 1 2x x , we infer that 1 2 1=x x x∧  and 1 2 2=x x x∨ . Similarly, for all ( ) ( )1 2,x x Pϕ ϕ ∈ , 

we get ( ) ( ) ( )1 2 1=x x xϕ ϕ ϕ∧ and ( ) ( ) ( )1 2 2=x x xϕ ϕ ϕ∨ .  
For all ,a b C∈ , there are only two situations, a b  or b a . If a b , 

then ( ) ( ) ( ) ( )= =a b a a bϕ ϕ ϕ ϕ∧ ∧ and ( ) ( ) ( ) ( )= =a b a a bϕ ϕ ϕ ϕ∨ ∨ .  

On the other hand, if b a , then ( ) ( ) ( ) ( )= =b a b b aϕ ϕ ϕ ϕ∧ ∧ and 

( ) ( ) ( ) ( )= =b a b b aϕ ϕ ϕ ϕ∨ ∨ . Therefore every isotone map of the finite chain is a homomorphism. 
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