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Mathematical morphology is a theory of image transformations and functionals deriving 

its tools from set theory and integral geometry. This paper deals with a general algebraic 

approach which both reveals the mathematical structure of morphological operations and 

unifies several examples into one framework. The main assumption is that the object space 

is a complete lattice and that the transformations of interest are invariant under a given 

abelian group of automorphisms on that lattice. It turns out that the basic operations 

called dilation and erosion are adjoints of each other in a very specific lattice sense and 

can be completely characterized if the automorphism group is assumed to be transitive on 

a sup-generating subset of the complete lattice. The abstract theory is illustrated by a 

large variety of examples and applications. 
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1. INTRODUCTION AND MATHEMATICAL BACKGROUND 

1.1. What is mathematical morphology? 

1 

Mathematical morphology is a particular discipline in the field of image processing, which has 

been applied to analyse the structure of materials in various disciplines such as mineralogy, 

petrography, angiography, cytology, etc.. It was born in 1964 when Matheron started to 

investigate the relationships between the geometry of porous media and their permeabilities, 

· and Serra was asked to quantify the petrography of iron ores in order to predict their milling 

properties. This initial research led to the formation of a team at the Paris School of Mines 
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at Fontainebleau, the 'Centre de Morphologie Mathematique', which combined theoretical 

work with the design of practical applications, such as the 'texture analyser'. 

Following the publication of [14] and [23], and also the work of Sternberg in the USA 

[25,26], this discipline gained an increasing popularity inside the image processing commu
nity, as is witnessed by a special issue of the journal Computer Vision, Graphics, and Image 
Processing devoted to mathematical morphology [27], and the increasing number of articles 

in technical journals referring to it (for example the tutorial [6]). 

While some recent contributions to the subject do not always give any new insight, it 

is interesting to have a deeper reflexion on the nature of mathematical morphology and its 

basis. What is it? What are its methods? 

Broadly speaking, one can consider that mathematical morphology is an approach for 
the analysis of structure based on set-theoretic concepts. It has three aspects: an algebraic 

one, dealing with image transformations derived from set-theoretical operations, a proba
bilistic one, dealing with models of random sets applicable to the selection of small samples 
of materials, and an integral geometrical one, dealing with image functionals. 

This paper addresses the first aspect: the algebraic study of a body of image transfor
mations based on operations similar to those of set theory, which are in particular non-linear. 
This raises several questions: What is the importance of transformations in image analysis? 
What have algebraic properties to do with this? Why non-linear operations? Why the 

similarity with set theory? 

1.1.1. The importance of transformations and their algebraic properties. One of the basic 
intuitions of mathematical morphology is that the the analysis of an image does not reduce 
to a simple measurement. Instead, it relies on a succession of operators which transform 
it in order to make certain features apparent. As says Serra [23], "to perceive an image, is 
to transform it". Indeed, a picture usually contains an unstructured wealth of information, 
most of which is of no use to us. From it we have to extract what interests us, obtaining 
thus a structure which is in fact a simplified sketch (a caricature) of the original image. 
In particular, its recognition involves a controlled loss of information, since we eliminate 
irrelevant features from it. For example in optical character recognition, one can simplify the 
task by first performing on a binary digital image representing a typed text a skeletonization, 
which reduces each connected component to a one-pixel thick skeleton retaining its shape; 
this discards all (useless) information about the thickness of characters, and the reduced 
amount of information contained in such an image makes further recognition steps quicker 
and easier. 

Many transformations have been applied to the analysis of images: linear filtering (in 

Fourier analysis), median filtering, skeletonization, histogram equalization, etc.. An often 
overlooked fact is that simple algebraic properties can be important criteria for as.sessing the 

validity of transformations involved in the analysis of images. Let us return to the example 

given above of the skeletonization of binary images. A good skeletonization algorithm must 

transform a shape in the same way whatever its position in the plane, in other words the 
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skeletonization operator S must commute with any translation T of the plane: T · S = S · T. 

It must not change a connnected component which is itself a skeleton, in other words S must 

be idempotent: S · S = S. H that algorithm is based on thinning, that is a succession of 

stages where border pixels are removed, we must have a garantee that on any given digital 

image, the algorithm will stop after a finite number of thinning steps, in other words we 

have to know the convergence properties of these steps. Other important algebraic properties 

will be considered later, for example increasingness, extensivity, etc., and we will give in the 

second part of this study [21] practical examples of their usefulness in digital subtraction 

angiography. 

A more detailed discussion on the importance of transformations in image analysis can 

be found in (17) and in the first pages of (23). 

1.1.2. Why non-linear transformations? This problem certainly deserves more discussion 

than we can afford here, and it will be considered in detail in (20). Let us only give here a 

brief explanation. 

The whole field dealing with the processing of sound signals (in particular speech) 

is based on linearity. Indeed, sound signals combine linearly by superposition. Therefore 

commercial 'Hi-Fi' devices for the rendition of sound signals must preserve the ratio between 

different sound sources, in other words they are based on the constraint of linearity. It is thus 

no wonder that the two basic operations in the theory of sound processing, the convolution 

and the Fourier transform, are linear. 

Workers in image processing have attempted to apply linear techniques to the analysis 

of images. One thought for example that the global structure of an image would be derived 

from a low-pass filtering, and the finer details from a high-pass filtering. 

Such a simple view did not pass the challenge of experimental practice, and was soon 

abandoned. As said Marr [13), "these ideas based on Fourier theory are like what is wanted, 

but they are not what is wanted". Indeed arguments have been advanced from the point 

of view of both human psychophysics and texture analysis to show that Fourier analysis is 

inappropriate for modeling visual processes. 

So why should the analysis of images not be based on the same linear operations as 

the processing of sound signals? Arguments have been advanced by Serra (24] about the 

difference of behavior between light and sound waves when interacting with objects. But 

there is a more fundamental reason: the two human senses of vision and audition have not 

the same purpose. The goal of audition is the analysis of sound waves, while the goal of 

vision is not the analysis of light waves, but rather the recognition of objects and scenes in 

three-dimensional space from the light waves that they reflect. In particular vision is a more 

difficult task than audition, since the information we wish to obtain (the shape of objects) 

is only indirectly provided by an image. The difference in purpose between these two senses 

leads therefore to differences in the processes they sustend. 

1.1.3. Mathematical morphology based on set theory. We can generally identify a scene 
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from a (two-tone) pencil drawing of it, where we have only simple elements such as contours, 
bars, blobs, shadows, etc .. It is also widely accepted that one of the earliest goals oflow-level 
visual perception is the detection of significant features in images, such as edges (that is, 
lines formed by points of significant intensity changes), and the construction from them of 
elementary structural. primitives. 

It should be noted that the 'pencil drawing', that is the image representing elementary 
features (contours, edges, bars, blobs, etc.), and also the more elaborate images built from 
it in order to represent structural primitives, are Boolean images. Therefore any further 
processing of them cannot be linear, but must be related to Boolean algebra. For example 
if object X is behind object Y, this means that in the 'pencil drawing' we see the contour 
of X minus Y (in the set-theoretical sense) [24]. Or the shadow of a union of objects will be 
the union of their shadows. 

This line of analysis shows the relationship between certain properties of images and 
set-theoretic concepts, and explains why image transformations can be based on the Boolean 
algebra of set operations. This is more evident in the case of binary images, as we have just 
explained above. In fact mathematical. morphology was first developed for the analysis of 
binary images, and its extension to grey-level images was a later development. Let us thus 
for the time being concentrate on this particular case. 

In a simplified way, let us say that one can analyse the structure of a binary image 
by looking at patterns of a certain form at various places. For example in the study of 
texture discrimination in preattentive vision, Julesz and Bergen [10] proposed to characterize 
textures by elementary primitives called textons having a simple shape: a bar, a cross, a. 
T-junction, etc .. 

This idea of describing structure by linking similar patterns at various locations is 
quantified in mathematical. morphology by the concept of a structuring element. We consider 
Boolean images as subsets of a Euclidean or digital. space e. A structuring element is 
basically a subset B of e. Now we suppose that we have fixed the origin o in&; then to 
each point p of e corresponds the translation mapping o to p, and this translation maps 
B onto Bp, the translate of B by p. For a structuring element B, we consider in fact all 
its translates Bp. This is because we assume that the space e in which Boolean images 
are represented is homogeneous under the group of translations. Note that other groups 
of transformations than the one of translations can be considered, according to the type of 
structure one is studying. (This will be discussed in Sections 3 and 4 of this paper). 

Given a subset X of e, we can see how the translates Bp of a structuring element B 
interact with X. For this purpose two basic operations are introduced by mathematical. 
morphology. The first one derives from X and B the set X © B defined by 

x © B = {:ll + b I :z: E x,b E B} = LJ Ba:= LJ xb. (1.1) 
a:EX bEB 

This operation dates in fact from Minkowski [18], and it is thus called the Minkowski ad
dition. The second one, its dual, was introduced by Hadwiger [4,5] under the name of 



Minkowski subtraction. It associates to X and B the set X 8 B defined by 

x e B = {z Ee I Bz ~ X} = n x-b· 
bEB 
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(1.2) 

The transformation of X into X E9 B is called a dilation, and the transformation of X into 

X e Bis called an erosion. (N.B. In the works of Matheron and Serra, X 8 Bis defined in 

a slightly different way, while in those by Sternberg, it is defined as here. These two types 

of notation differ in that for some operations one has to replace B by fJ = {-b I b E B}, see 

Section 4 for more details.) We illustrate these two operations in Figure 1. 

In [23] it is shown how a large class of transformations of subsets of a digital space e can 

be built from these two basic operations using simple structuring elements: skeletonization, 

thinning, thickening, connected component extraction, etc.. We give here only two well

known examples. The erosion by B followed by the dilation by B gives the opening by B, 

an idempotent operation which transforms every set X into XB, the union of all translates of 

B contained in X. It can be used to delete narrow portions of a set. On the other hand the 

dilation by B followed by the erosion by B gives a closing, another idempotent operation, 

which can be used to fill narrow holes in a set. 

At this point, mathematical morphology can be seen as a set of tools for analysing 

Boolean images by the use of set-theoretic transformations based on dilations and erosio~s. 

The object space, the space of all Boolean images, can be represented by 'P( t:), the set 

of all subsets of e. Often one is only interested in a smaller object space, e.g. the space 

Conv(t:) of all convex subsets of e (where e is the d-dimensional Euclidean space Rd or the 

discrete space zd with a notion of convexity defined on it). The intersection of convex sets is 

again convex but the union is not, in general. To a great extent, however, the basic notions 

of mathematical morphology carry over to the smaller object space Conv(t:) by replacing 

U
3 

X3 by CH(U3 X3), where for a subset A of e, CH(A) denotes the convex hull of A. 

1.1.4. Grey-level images. Meyer [16] and Sternberg [25] were among the first to extend 

mathematical morphology to grey-level images. In this subsection we shall present the 

underlying ideas. A more thorough discussion including some of the problems which arise 

if the set of grey-levels is finite can be found in Section 4. 

Let e be the Euclidean or discrete space and let g be a set of grey-levels. In this 

subsection we assume that g = R = RU {-oo, +oo} or g = Z = Z U {-oo, +oo }. A 

grey-level image is represented by a function F : e --4 Q, i.e. an element of the object 

space ge. If both F and G are members of ge, then we can define the addition F (9 G and 

subtraction F 8 G as follows: (a) the graph of F E9 G (which is a subset of e x Q) is obtained 

by associating to each point (re, F( re)) a translate of the graph of G, and taking the upper 

envelope of this set of translates; (b) the graph of Fe G is obtained by associating to each 

point (y, F(y)) a translate of the graph of G (defined by G( :z:) = -G( -:z: )), and taking the 

lower envelope of this set of translates. In other words, 

(F E9 G){re) = sup(F(:z: - h) + G(h)); 
hee 

(1.3) 



6 

(F 8 G)(:c) = inf (F(z + h) - G(h)). 
hee 

{1.4) 

These two operations are illustrated in Figure 2. (N.B. Again, in the works of Matheron 
and Serra, F 8 G is defined in a slightly different way, while in those by Sternberg, it is 
defined as here. This will be discussed in Section 4 in more detail.) 

In practice, the structuring function G will have finite values on a compact support 

S and will be equal to -oo outside S. It is obvious that the operations F 1-+ F Ea G, the 

dilation by G, and F 1-+ F 8 G, the erosion by G, are invariant under translations on the 

space e and on the set g of grey-levels (see Section 4). 

In the literature one often gives a geometric interpretation of these operations by 

considering so-called umbras. An umbra is a subset U of e x g satisfying: ( :c, t) E U if and 

only if (:c, s) E U for every s < t. The umbra U(F) of the function Fis defined as: 

U(F) = {(z,t) Ee x g It:::; F(z)}, 

and ( 1.3) restated in terms of umbras has the form: 

U(F Ea G) = U(F) Ea U(G), 

where the second Ea is the original Minkowski set addition. Exploiting the fact that the space 
of umbras is homeomorphic to the space ge one can alternatively use either characterization. 

In this paper we have chosen to work with functions only. 

Morphological operators can be applied to the analysis of several types of grey-level im
ages, those for which local configurations of grey-levels directly represent material properties 
of the objects pictured. One such type of images occurs in X-ray angiography. A contrast
enhancing product is injected in blood vessels (for example coronary arteries) before taking 

a X-ray photograph of them. Then narrow lines brighter than their surrounding are likely 
to correspond to these blood vessels, and they can be extracted with the use of structuring 
functions modeling such lines. Another type is given by tomographic images, which display 
a flat section of a given material photographed under a constant illumination. Then clearly 
the grey-level of each point indicates the intrinsic brightness of the corresponding point in 
the object photographed, and represents thus directly a material property of it. For example 
in cytology, nuclei and walls of cells form particular configurations of grey-levels having a 
certain shape. Or in petrography, pores are represented by small dots having a different 
grey-level than the rest of the image. Or in mineralogy, blobs of different grey-levels can 

represent particles of various metals. All these can be extracted by the use of apropriate 
structuring functions. 

It will be argued in [20] that mathematical morphology is not suited to the analysis in 

depth of three-dimensional scenes from their two-dimensional pictures.· 

1.2. From sets to complete lattices 

From the above discussion, mathematical morphology appears as a set of tools for analysing 
images by the use of transformations based on set-theoretical operations which are invariant 
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under translations. This is, however, a rather vague description. A more precise description 

would involve ( i) a characterization of the object space, and (ii) a choice of the basic 

operations (e.g. translations) which should commute with the transformations one wishes to 

consider. There are several choices of the object space conceivable. We have already seen 

some of them: 'P(e), the space of all subsets of e, Conv(e) the space of all convex subsets, 

and ge, the space of all grey-level functions with values in Q. Another important example is 

F(e), the space of all closed subsets of e (here e must be a topological space). This latter 

space naturally arises if one wishes to supply the space 'P( e) with a topology: see (14] or (23]. 

In all these cases it is possible to define transformations like in (1.1) and (1.2) although the 

algebraic structure of the underlying spaces is quite different. There is, however, one major 

resemblance: all given spaces form so-called complete lattices. A complete lattice is a space 

C on which a partial order relation is defined such that every subset of C has a supremum 

(least upper bound) and infimum (greatest lower bound) in C (see Subsection 1.3). In the 

case where C = P( e), the supremum coincides with the union whereas the infimum coincides 

with the intersection. Here dilations and erosions are precisely the transformations which 

commute respectively with the union and the intersection. Indeed, for every family of subsets 

Xj of e (even a void one) and any structuring element B we have 

and (1.5) 

j j j j 

The 'special' relation which links the Minkowski addition and subtraction is that for every 

subsets X, Y of e and any structuring element B we have 

X~YeB. (1.6) 

Moreover (1.5) follows from {1.6), as we will see in Section 2. It will be a consequence of 

Section 3 that the Minkowski addition and subtraction are the only translation-invariant 

dilations and erosions of a Euclidean or digital space e. Formulas (1.5) and (1.6) form 

the basis for an abstract definition of dilation and erosion on an arbitrary complete lattice, 

and general properties of these operations do not depend on their particular form, but on 

general properties pertaining to the order relation and the two operations of supremum and 

infimum. 

Such abstract definitions also allow us to define new types of dilations and erosions 

which share the properties of the standard ones. Heijma.ns [8] for example considers dilations 

and erosions on the Euclidean plane invariant under rotations and scalar multiplications, and 

Herman [9] has introduced a new type of dilations and erosions for grey-level images based 

on multiplicative structuring functions: see also Section 4. This is our main motivation for 

the generalization of mathematical morphology to complete lattices: it unifies a number 

of particular examples into one abstract mathematical framework. A second motivation 

intimately connected to the previous one is that an abstract approach provides a deeper 

insight into the essence of the theory (which assumptions are minimally required to have 
" 
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certain properties?) and links it to other, sometimes rather old, mathematical disciplines. 

For example, a theorem by Matheron on the decomposition of an increasing operator as 

a supremum of erosions will contain as particular case a well-known theorem in switching 

theory on the decomposition of an increasing Boolean function as a maximum of minima. 

In [19] it is shown with concrete examples that even a practical engineering approach 

to the computer implementation of morphological operations must take into account the 

complete lattice structure of the object space. 

The expression of mathematical morphology in the general framework of complete 

lattices was initiated by Matheron [15] and Serra [24]. Our aim is to pursue this work in a 

systematic way, and to link it with classical results oflattice theory [1,3]. By this we hope to 

give a sound basis to current research on mathematical morphology, to allow the design and 

validation of new types of morphological operators, and also to help preventing the periodic 

'reinvention of the wheel' happening too often in applied mathematics and engineering, 

where 'new ideas' are sometimes particular cases of 'old ideas' in pure mathematics. 

This paper represents the first part of our work. It is devoted to basic concepts con

cerning complete lattices and operators, to the analysis of dilations and erosions, and to the 

generalization of the property of translation-invariance. In a second paper [21] we will deal 

with openings and closings, including their relations with translation-invariance. 

The rest of this section is devoted to the recall of basic definitions and results concerning 

complete lattices, and to the introduction of our notation. In Section 2 we give a general 

analysis of dilations and erosions, which contains important results from [24], but also well

known ones from [3]. Section 3 is to our knowledge entirely new. In it we show how 

to generalize the Euclidean notion of translation-invariance to complete lattices having an 

abelian group of automorphisms with certain properties. This will allow us to introduce a 

generalization of the Minkowski addition and subtraction, and to characterize in terms of 

them dilations and erosions which commute with that group. In Section 4 we will illustrate 

our approach with several examples and applications. 

1.3. Complete lattices 

In this subsection we will introduce the mathematical background needed for the rest of 

the paper. As the notion of a complete lattice is not familiar to the image processing 

community, it is worth recalling its definition and main properties in some detail. For a 

thorough exposition, the reader is referred to [1], especially Chapters 1 and 5. 

1.3.1. Basic notions. Consider a set£; a binary relation ::; on£ is called a partial order 
relation if it is 

(i) reflexive: for any X E £, X::; X; 

(ii) antisymmetric: for any X,Y E £,if X::; Y and Y::; X, then X = Y; 

(iii) transitive: for any X, Y, Z E £,if X::; Y and Y:::; Z, then X:::; z. 
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We say then that (£,:::;)is a partially ordered set, or in brief a poset. The reverse relation ~ 

(defined by X ~ Y if and only if Y :::; X) is also a partial order relation. When X :::; Y and 

X =f: Y, we write X < Y or Y > X. The negation of X:::; Y is written X 1:. Y or Y l X. 

Given L, U E C and IC ~ £, we say that U is an upper bound of IC if for any K E IC 

we have U ~ K, and that L is a lower bound of IC if for any K E IC we have L :::; K. A 

supremum of IC in (£,:::;)is a least upper bound of IC, in other words an upper bound X 

of IC such that X :::; U for any other upper bound U of IC. Conversely, an infi.mum of IC in 

(£,:::;)is a greatest lower bound of IC, in other words a lower bound Y of IC such that Y ~ L 

for any other lower bound L of£. By the antisymmetry of:::;, the supremum and infi.mum 

of IC in(£,:::;) are unique whenever they exist. 

The supremum of IC in(£,:::;) will be written sup IC or VIC, while the infimum will be 

written inf IC or A IC. When there can be an ambiguity on the poset in which the supremum 

and infi.mum are taken, we can be more precise and write supc or even sup(C,:$) for the 

supremum, and similarly for the infimum. 

Now we will say that the poset £is a complete lattice if every nonvoid subset IC of£ 

has a supremum and an infimum. Two elements of the complete lattice£ are important: 

the universal bounds. They are the greatest element I and the least element 0, defined by 

0 :::; X :::; I for every X E £. Their existence and uniqueness follow from the equalities 

I= sup£ and 0 = inf £. Let us give some examples of complete lattices: 

( 1°) R = R U { + oo, -oo}, with the usual order :::; , infimum, supremum, and with universal 

bounds +oo and -oo. 

(2°) The set of natural integers, ordered by the relation 'divides'; the supremum is the 

lowest common multiple, the infimum the highest common divisor, and the greatest 

and least elements are 0 and 1 respectively. 

( 3°) The set of parts of a set E, ordered by set inclusion, where the supremum and infimum 

are the union and the intersection respectively, and the universal bounds are 0 and E. 

(4°) If Eis a topological space and C is the set of closed sets of E, then the infimum and 

supremum of a sttbset IC of£ are n IC and LJ IC respectively, where for every X ~ E, 

X is the topological closure of X; the universal bounds are E and 0. 

In a complete lattice £, any element of£ is both an upper and a lower bound of the empty 

subset 0 of£. Thus the least upper bound of 0 is the least element, and the greatest lower 

bound of 0 is the greatest element. In other words, 

and I= f\ 0. (1.7) 

Thus every subset of£ has a supremum and an infimum, not only nonvoid ones. 

Given the complete lattice£, there are some other usual conventions for the notation. 

If a subset IC of£ is written under the form of a set of expressions satisfying some condition, 

then V IC can be written with the condition under the V sign, for example 

for 
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and similarly for f\K,. When J(, is finite and we have J(, = {X1, ... ,Xn}, we will write 

X1 V •• • V Xn and X1 /\. · · · /\.Xn respectively. These two expressions use the binary operations 

v and/\. (the supremum and infimum of two elements of£). 

We have the following well-known characterization of complete lattices (see Theorem 3 

in Chapter 5 of [1]): 

PROPOSITION 1.1. Let(£, :S) be a poset. Then the following three statements are equiva

lent: 

( i) £ is a complete lattice. 

(ii) £ has a least element 0 and every subset of£ has a supremum. 

(iii) £ has a greatest element I and every subset of£ has an infi.mum. 

Note that in (ii) 0 = sup 0 and in (iii) I = inf 0. Moreover in (ii) the infunum of a subset 

}(, of£ is defined as the supremum of the set LB(K,) of its lower bounds, while in (iii) the 

supremum of J(, is defined as the infunum of the set UB(K,) of its upper bounds. 

Given a set E, the set ,eE of functions E ~ £inherits the complete lattice structure 

of£. For any X,Y E ,eE, we set 

Ve EE, X(e) :S Y(e). 

Then ,eE is a complete lattice, with the supremum and infimum given by 

(supK,)(e) = sup{X(e) IX EK,} 
J:,B .C 

and (inf K,)( e) = inf{X( e) I X E K,} 
J:,B .C 

for any J(, ~ ,eE and e E E. This power structure intervenes for examp1e in the set ge 

of grey-level functions from the Euclidean or digital space e to a complete lattice g of 

grey-levels, and in the rest of the paper we will consider the complete lattice 0 = ,e.c of 

transformations of£. 

Finally, given two complete lattices (£, :S) and (£', ::;), an isomorphism from£ to £ 1 

is a bijection 'I/; : £ ~ £' which induces a bijection between their order relations, in other 

words such that for any X, YE£, X::; Y if and only if 'l/;(X)::; 'l/;(Y). Clearly 'I/; commutes 

then with V and /\: 

and 
jEJ jEJ jEJ jEJ 

An isomorphism£~£ is called an automorphism of£. 

1.3.2. The principle of duality. We said above that the reverse ~ of an order relation ::; 

is itself an order relation. This reversion extends then to the supremum and infimum, since 

we have for any J(, ~ £: 

sup J(, = inf K,; 
{.C,?:) {.C,:5) 

inf J(, = sup K,. 
(.C,?:) (.C,:5) 
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The universal bounds of(£,~) are those of (.C, $),but interchanged. 

Thus if(£,$) is a complete lattice, with supremum V, infimum /\,least element 0, 

and greatest element I, then (.C, ~)is also a complete lattice, but this time with supremum 

/\, infimum V, least element I, and greatest element 0. We call it the dual lattice of(£,$). 

Note that conversely (.C, $)is the dual lattice of(£,~). 

Thus to every definition, property, or statement on (.C, $) corresponds a dual one on 

(£,~),where we interchange$ and~' V and/\, 0 and I. This trivial but important fact 

is called the duality principle. It will be illustrated throughout the sequel For example we 

will see in Section 2 that dilations and erosions are dual concepts. 

Given a second lattice (£', $), a dual isomorphism from C to C' is a bijection t/J : 
C -+ C' such that for any X, Y E .C, X $ Y if and only if tfJ(X) ~ tfJ(Y). This makes 

(C, $)isomorphic to the dual(£',~) of(£',$). For example the set complementation on a 

topological space e induces a dual isomorphism between the complete lattice .r(e) of closed 

subsets of e and the complete lattice 9( e) of open subsets of e, both ordered by inclusion. 

1.3.3. Closed subsets and complete sublattices. Given a complete lattice .C, a subset M 

of C is called inf-closed if for any subset U of M (including 0), /\ U E M. In particular it 

contains /\ 0 = I. The dual concept is that of a sup-closed subset, it is defined similarly 

with V instead of /\. 

From Proposition 1.1, an inf-closed subset M is itself a complete lattice, with the same 

infunum as in .C, but with a different supremum than V. For K. ~ M we have 

and sup K. = j\ UBM(K.), 
M 

where UBM(JC) is the set of upper bounds of K. in M. Moreover M has I= /\ 0 as greatest 

element, but its least element is not necessarily 0. 

Consider for example a vector space V; let C be the set of parts of V, ordered by 

inclusion, and let M be the set of vector subspaces of V. Then C is a complete lattice with 

the union as supremum and the intersection as infunum, and Mis an-closed subset in C. 

In other words V is a vector subspace of V, and the intersection of vector subspaces of V 

is itself a vector subspace of V. Then M is a complete lattice, with again the intersection 

as infimum, but with a supremum which is not the union, but the sum of vector subspaces. 

Moreover, M has the same greatest element Vas .C, but not the same least element: the 

null vector space {O} instead of 0. 

What we have said here can be dually transposed to sup-closed subsets. 

A subset M of C is called a complete sublattice of C if it is a complete lattice with V 
and /\ as supremum and infunum, in other words if it is both sup- and inf-closed. 

1.3.4. Generating families and atomic lattices. We end this subsection with some con-

cepts that will be used extensively in Sections 3 and 4. 
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A subset l of .C is called sup-generating if every element of .C can be written as a 

supremum of elements of l. We use lower-case letters for elements of l. For every X E .C 

we set l(X) {a: E l I a: :s; X}, and then x = v l(X). We have the following general 

properties: 

l( f\ Xj) = n l(Xj), 
jEJ jEJ 

l( V Xj) 2 LJ l(Xj), 
jEJ jEJ 

(1.8) 

The dual concept is that of a inf-generating subset, which is defined in an analogous way. 

For example if ( .C, ~) is the set of parts of a set E, the set l of singletons is LJ-generating, 

and l( X) is the set of singletons corresponding to elements of X. This is a particular case of 

an important class of lattices for which a sup-generating family exists, namely the so-called 

atomic complete lattices. An element A of: 0 of .C is called a point or an atom if for any 

YE .C, 0 :SY :s; A implies that Y = 0 or Y =A, in other words if there is no YE .C such 

that 0 < Y < A. Note that atoms are always members of any sup-generating subset of .C. 

Now the complete lattice .C is called atomic if the set of its atoms is sup-generating, in other 

words if every element of .C is the supremum of the atoms less than or equal to it. 

The complete lattice .C is Boolean if it satisfies the distributivity laws X V (Y A Z) = 

(XV Y) A (XV Z) and X A (Y V Z) = (X A Y) V (X A Z) for all X, Y, Z E .C, and if 

every element X has a complement X', defined by X' V X =I and X' AX= 0. By the 

distributivity laws, such a complement is unique (see Theorem 10 in Chapter 1 of [1]). 

The set P(E) of parts of a set Eis an atomic Boolean complete lattice. It can be shown 

that an atomic complete lattice .C in which every element X has a unique complement X', is 

isomorphic to the set of parts P( A) of the set A of atoms of .C (see Theorem 18 in Chapter 5 

of [1]). In other words, an atomic complete lattice is Boolean if and only if it is isomorphic 

to the set of parts of its set of atoms. 

2. OPERATORS, DILATIONS, AND EROSIONS 

We take a complete lattice .C with the order relation :s;, supremum V, infimum /\, least 

element 0 and greatest element I. Elements of .C will be written as capital letters X, Y, Z, 
etc .. In practice .C will correspond to a particular set of pictures we work with. For example, 

if we consider binary images on a Euclidean or digital space e, we take .C = P(£), and if we 

consider grey-level images on e' we take .c = ge' the set of functions e -+ g' where the set 

Q of grey-levels is itself a complete lattice. 

We consider the set 0 of all transformations on .C, in other words the set .Cc of functions 

.C -+ .C. Given X E .C and 0 E 0, 0 maps X to O(X), which will be called the transform 

of X by 0. Elements of 0 will be called operators. Three particular operators are worth 

mentioning right now: 



13 

- the identity id defined by id(X) = X for every X E £; 

- the constant operators 0 and I, defined by O(X) = 0 and I(X) = I for every X E £. 

Other operators will be written by lowercase greek letters /3, ;, etc., with the letters a, 5, 

e, cp, r being reserved to openings, dilations, erosions, closings, and 'translations'. 

Since 0 is a power of £, the complete lattice structure of £ extends to 0, as we have 

explained at the end of Section 1. The order relation ~ on £ can be extended to an order 

relation on 0 by setting for 1}, fJ E 0 ( cfr. Subsection 1.3): 

\:/X E £, TJ(X) ~ O(X). (2.1) 

Then 0 is a complete lattice, and we will write V and A for the supremum and infimum in 

0, as we do in£. For any X E £and Q ~ 0 we have (cfr. Subsection 1.3): 

<V Q)(X) = V TJ(X) 
1'/EQ 

and (f\ Q)(X) = f\ TJ(X). 
(2.2) 

1'/EQ 

Moreover (0, ~)has least element 0 and greatest element I. 

The composition T]fJ of the operator (J by the operator 1J is defined by setting 

TJfJ(X) = TJ(O(X)) (2.3) 

for every X E £. This operation is associative, in other words f3(TJ0) = (f3TJ)0 for any 

/3, TJ, fJ E 0. Whenever a composition of operators appears in an expression, it must be 

considered as forming a group, as if it was surrounded by parentheses. 

From {2.1) it follows that for any /3, T/, (J E 0, 

T/ ~ (J ==> TJ/3 ~ 0/3. (2.4) 

It also is an easily shown consequence of (2.2) that for any /3 E 0 and Q ~ 0 we have 

and (/\ Q)/3 = /\ TJ/3. 
(2.5) 

1'/EQ 

2.1. Increasing operators, dilations, and erosions 

We will now introduce three classes of operators having certain properties related to the 

order~ and the operations V and A: 

DEFINITION 2.1. Let /3 E 0. Then we say that: 

(a) /3 is increasing if for every X,Y E £, X ~ Y implies that f3(X) ~ f3(Y). 

(b) /3 is a dilation if for every T ~ £, /3(V T) = V xeT /3(X). 

(c) f3 is an erosion if for every T ~ £, /3(AT) = AxeT/3(X). 
" 
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Note that in (b) and (c) we must also take into account the case where T is empty. Thus (by 

( 1. 7)) a dilation preserves 0 and an erosion preserves I. Dilations will be written 5, 5', 51, 
etc., while erosions will be written e, e', e1 , etc.. This general definition of dilations and 

erosions is due to Serra [24]. It includes as particular cases the Minkowski operations (see 

(1.5)) and the grey-level dilations and erosions by structuring functions. 

The concept of increasingness is its own dual, while the concept of a dilation is the 

dual of that of an erosion. An operator f3 is an automorphism if and only if f3 is a bijection 

and both f3 and 13-1 are increasing. Note that an automorphism f3 is both a dilation and 

an erosion. 

It is easily seen (by (2.1) and (2.2)) that for any f3 E 0 the following hold: 

- If /3 is increasing, then for any 'f/, (} E 0, 'f/ :::; (} ==> /3TJ :::; /30. 

- If /3 is a dilation, then for every Q ~ 0, /3(V Q) = V 'YEQ. /31. 

- If /3 is an erosion, then for every Q ~ 0, /3(/\. Q) = /\."'IEQ./31· 
These equalities represent in some-way a mirror-image property of (2.4) and (2.5). 

Let us first give a few elementary properties of increasing operators. Afterwards we 

will deal with dilations and erosions. 

LEMMA 2.1. Let /3 E 0. Then the following three statements are equivalent: 

( i) /3 is increasing. 

(ii) For every T ~ C, /3(V T) ~ V xeT /3(X). 
(iii) For every T ~ C, /3(/\. T):::; A.xeT /3(X). 
In particular dilations and erosions are increasing. 

PROOF. We only show that (i) is equivalent to (ii), the equivalence between (i) and (iii) 
follows then by duality. 

( i) implies (ii): Given T ~ C, for every X E T we have V T ~ X, and as f3 is increasing, 

/3(V T) ~ /3(X). By definition of the supremum, /3(V T) ~ V XET /3(X). 

(ii) implies (i): Let Y, Z EC with Y ~ Z. Take T = {Y, Z}. Then Y = Z v Y = VT, 
and by (ii) we have 

/3(Y) = /3(V T) ~ V /3(X) = /3(Y) v /3(Z), 
XET 

which implies that /3(Y) ~ f3(Z). 

As dilations satisfy (ii) and erosions satisfy (iii), they are increasing. Ill 

PROPOSITION 2.2. The set of increasing operators is 

( i) closed under composition, and it contains id; 

(ii) a. complete sublattice of 0. 

PROOF. Take X, YE C such that X:::; Y. 

( i) It is obvious that id is increasing. Let TJ, (} be increasing operators. As (} is increasing, 

we get O(X) :::; O(Y), and as 'f/ is increasing, we obtain TJ(8(X)) :::; TJ(8(Y)). Thus 'f/8 is 
increasing. 
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(ii) It is obvious that 0 and I are increasing. Consider now a non-empty set Q of increasing 

operators. Let us show that f3 = V Q is increasing. For every TJ E Q, as TJ is increasing, we 

have TJ(X) ::; TJ(Y). Now TJ ::; f3 (since TJ intervenes in the V-decomposition of /3), and so 

TJ(Y) ::; f3(Y). Thus TJ(X) ::S f3(Y). Hence 

f3(X) = V TJ(X) ::S f3(Y), 
11EQ 

and so f3 is increasing. 

By duality, A Q is also increasing. Hence the set of increasing operators is a complete 

sublattice of 0. I 

Let us now turn to dilations and erosions. By duality, it is sufficient to prove results about di

lations only, and dual results about erosions will follow immediately. The following analogue 

of Proposition 2.2 comes from [24]: 

PR.OPOSITION 2.3. The set of dilations is 

( i) closed under composition, and it contains id; 

(ii) a sup-closed subset of 0. 

Pa.ooF. ( i) Consider two dilations 5, 5'. For any T ~ C, 

(55')(V T) = 5(5'(V T)) = 5( v 5'(X)) = v 5(5'(X)) = v (55')(X), 
XE'T XET XET 

and so 55' is a dilation. Now clearly 

id(v T) = VT= V X = V id(X), 
XET XET 

and so id is a dilation. 

(ii) We must show that for any set Q of dilations (including a void one) V Q is a dilation, 

in other words that for any T ~ C, 

(V Q)(Vr) = V ((V Q)(x)). 
XET 

Indeed we have 

(by definition, see(2.2)); 

6EQ 

(since each 5 E Q is a dilation); 

6EQ XET 

= V ( V 5(X)) (by the commutativity of V); 

XET 6EQ 

= V ( (V Q)(x)) (by c2.2)). 
XET 

(Note that this argument is also valid if Q or T is empty.) I 
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The statement of the dual result concerning erosions is left to the reader. 

A particular consequence of Proposition 2.3 (and its dual) is that the set of dilations 

and the set of erosions are complete lattices (thanks to Proposition 1.1, see Subsection 1.3). 

The least dilation is 0, while the greatest one fixes 0 and transforms every other X E C 

into I. The supremum for dilations is V, but the infunum is not /\. Similarly, the greatest 

erosion is I, while the least one fixes I and transforms every other X E C into 0. The 

infunum for erosions is /\, but the supremum is not V. 
Let us illustrate Proposition 2.3 in the case of Minkowski operations on a Euclidean 

space e. For any structuring element B ~ e' write 5 B for the dilation x ~ x $ B' and e B 

for the erosion X ~ X 8 B. Write o for the origin. Take any X, B, B' ~ e. We have the 

following: 

(a) x $ {o} = x e {o} = x, in other words 5{o} = e{o} =id. 

(b) (X$B)$B 1 = X$(B$B') and (X8B)8B' = Xe(BEaB'), that is 5B5B' = 5BeB' 

and eBeB' = eBeB'· 

Hence ( i) holds for Minkowski addition and subtraction. Take now a family of structuring 

elements B;, where j E J. We have the following: 

(c) x $ (UjEJ B3) = UjeAX $ B3) and x e (UjeJ B3) = njeAX e B3), in other words 

5u;eJB; = V jEJ 5B; and eu;eJB; = /\3eJ eB;. 

{ d) X Ea 0 = 0 and X 8 0 = e, that is 50 = 0 and e0 = I. 

Therefore (ii) holds for Minkowski addition and subtraction. 

2.2. Matheron 's Theorem 

Matheron proved [14] that if 1/l is an increasing translation-invariant transformation of the 

set 'P(e) of parts of the Euclidean space e (with origin o), then for every X ~ewe have 

'l/l(X) = LJ (X 8 B), 
BEV(.P] 

where V['l/l] = {B ~ e I o E 1/l(B)}. (2.6) 

In other words an increasing translation-invariant transformation of e is a supremum of 

translation-invariant erosions. By duality, it is ·also an infunum of translation-invariant 

dilations. 

In Section 3 we will generalize this result to complete lattices having a certain type of 

abelian group of automorphisms generalizing translations. However, in the case where we 

omit translation-invariance, the corresponding result for complete lattices was obtained by 

Serra [24]. We will give here a slightly modified proof of Serra's result. 

THEOREM 2.4. Let 1/l E 0. Then the following two statements are equivalent: 

( i) 1/l is increasing and 1/l( I) = I. 

(ii) 1/J is the supremum of a non-empty set of erosions. 

PROOF. (ii) implies (i): Let Q be a non-empty set of erosions. First, we have 

(V Q)(I) = V e(I) = VI= I. 
e:EQ e:EQ 
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(The last equality follows from the fact that the set in which one takes the supremum is 

non-empty). Second, Proposition 2.1 implies that every e E Q is increasing, and so by 

Proposition 2.2 (ii) V Q is increasing. 

(i) implies (ii): Suppose that 'l/J is increasing and preserves I. For any B E £,consider 

the two operators e'1 and e}:, defined as follows: 

0 ( ) {I if Z =I, 
e B z = 'lfJ(B) if Z <I, 

1 ( ) {I if Z ~ B, 
eB z = 0 if Z£B. 

It is easily checked that they are erosions. Thus their infimum eB = e'1 A e}:, is an erosion 

by the dual of Proposition 2.3 (ii). In fact, the two previous equalities imply that for Z E £ 

we have 

{

I if Z =I, 
eB(Z) = 'l/Jo(B) if I> z ~ B, 

if Z l B. 

Let;= V BE.C eB. We must show that;= 'l/J. 

(2.7) 

First it is clear by {2.7) that eB(I) = I for any B E £, and so that ;(I) = I = 

'lfJ(J). Take now B,Z E £such that Z < I. If Z ~ B, then by (2.7) eB(Z) = 'lfJ(B); 

as 'lfJ is increasing, this implies that eB(Z) = 'l/J(B) ~ 'l/J(Z). If Z l B, then by (2.7) 

eB(Z) = 0 ~ 'lfJ(Z). Thus eB(Z) ~ 'lfJ(Z) for any B E £, and as ez(Z) = 'lfJ(Z), we have 

;(Z) = V BE.C eB(Z) = 'l/J{Z). Hence;= 'l/J and so 'l/J is a supremum of erosions. I 

There is of course a dual result with an infimum of dilations. In Subsection 2.4 we will 

show how Matheron's Theorem contains as a particular case a fundamental result in the 

theory of Boolean functions. In Section 4 we will illustrate it in the case of Euclidean 

translation-invariant operators. Let us give here an example of Theorem 2.4 in a complete 

lattice unrelated to the Euclidean plane. Let N = {O, 1, 2, ... }, the set of natural integers, 

ordered by the relation 'divides'. We write a\b for 'a divides b'. Then N is a complete 

lattice with the lowest common multiple as supremum and the highest common divisor as 

infimum, 1 as least element, and 0 as greatest element. Let TI be the set of primes, and for 

every n E N, let 7r(n) = {p E TI I p\n} (the set of prime divisors of n). Let 'l/J be the map 

defined by 'l/J(O) = 0, and 'lfJ(n) =II 7r{n) (the product of prime divisors of n) for an integer 

n > 0. Clearly 'lfJ{m)\'lfJ(n) when m\n, in other words 'l/J is increasing. For every prime p, 

the map ep corresponding to (2.7) is defined by e(O) = 0 and ep(n) = p An for n > 0. It is 

an erosion, and for every n > 0 we have 'l/J( n) = V pEII (p A n). 

2.3. Adjunctions and Galois connections 

We said above that dilation and erosion are dual concepts from the lattice point of view. 

We will show that for any complete lattice£, we always have a dual isomorphism between 

the complete lattice of dilations on £ and the complete lattice of erosions on £. This dual 

isomorphism is called by Serra [24] the morphological duality. In fact it is linked to what one 

calls Galois connections in lattice theory (1,3], as we will see at the end of this subsection. 
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2.3.1. Adjunctions. We take the following definition from [3]: 

DEFINITION 2.2. Let 5,e E 0. Then we will say that (e,5) is an a.djunction iffor every 

X,Y E £,we have 

5(X) ::::; Y ~ X ::::; e(Y). (2.8) 

In an adjunction (e, 5), e will be called the upper a.djoint and 5 the lower a.djoint. 

For example in the case ofMinkowski operations on Boolean images, the erosion and dilation 

by a structuring element B form an adjunction (compare (1.6) with (2.8)). The grey-level 

erosion and dilation defined in (1.3) and (1.4) also form an adjunction. 

Note that (2.8) can be expressed in a dual form with 2:: instead of::::;: 

e(Y) 2:: X ~ Y 2:: 5(X). (2.9) 

Thus ( e, 5) is an adjunction in(£,::::;) if and only if ( 5, e) is an adjunction in the dual lattice 

(C, 2::). Hence 5 and e will play dual roles. As is hinted by our notation and our examples 

above, in an adjunction (e, 5), 5 will be a dilation, and e an erosion. This is shown by our 

next result, which comes from [3] (see their Theorem 3.3): 

PROPOSITION 2.5. Let 5,e E 0. If(e,5) is an adjunction, then Ii is a dilation and e is an 

erosion. 

PROOF. We have only to show that 5 is a dilation. The fact that e is an erosion follows then 

by duality. As we have 0 ::::; e(O) anyway, (2.8) implies that 5(0)::::; 0, and so li(O) = 0. 

Take now a non-empty T ~ C, and let Y be any element of C. We obtain the following 

succession of equivalent statements: 

V XET li(X)::::; Y; 

VX ET, 5(X)::::; Y (by definition of V); 

VX ET, X::::; e(Y) (by (2.8)); 

VT ::::; e(Y) (by definition of V); 

li(V T) ::::; y (by (2.8)). 

Thus for any Y E £, V xer 5(X) ::::; Y if and only if li(V T) ::::; Y. Taking successively 

Y = V XET 5(X) and Y = li(V T), we obtain V XET li(X) = li(V T), in other words Ii is a 

dilation. I 

This result explains why for Minkowski operations on Boolean images, {1.6) implies (1.5), 

as we said in Subsection 1.2. In [24] an adjunction is called a morphological duality, because 

the set of adjunctions will constitute a dual isomorphism between the two complete lattices 

of dilations and of erosions. We will give equivalent definitions of adjunctions. But this 

requires a further definition: 

DEFINITION 2.3. Given TJ E 0, we define iJ E 0 by setting 

iJ(Y) = V{z E c I TJ(Z)::::; Y} (2.10) 
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for every Y E .C, and we define 1J E 0 by setting 

1J(X) = /\ {Z E .c Ix s 17(Z)} (2.11) 

for every X E .C. 

Note that(}= iJ in (.C, s) if and only if(} = 17 in (.C, ~). Thus the two definitions (2.10) and 

(2.11) are dual. We will see that in an adjun~tion (e,fi), e = 6 and 5 = ~· Let us indeed give 

equivalent definitions of an adjunction: 

PROPOSITION 2.6. Let 5, e E 0. If(e, 5) is an adjunction, then the following four statements 

hold: 

(i) e is increasing and ids e5. 

(i') e = 6 (see (2.10)). 

(ii) 5 is increasing and fie s id. 

(ii') 5 = ~ (see {2.11)). 

Conversely, if ( i) or ( i') holds, and (ii) or (ii') holds, then ( e, 5) is an adjunction. 

PROOF. It is sufficient to show that: (1°) if (e,5) is an adjunction, then (i') and (ii') hold; 

{2°) ( i') implies ( i), and (ii') implies (ii); (3°) if ( i) and (ii) hold, then ( e, 5) is an adjunction. 

( 1 °) If ( e, 8) is an adjunction, then ( i') and (ii') hold: It is obvious that for every Y E .C, 

e(Y) = v{z E .c I z s e(Y)}. 

Now by the adjunction (e,5) the inequality Z s e(Y) is equivalent to 5(Z) s Y (see (2.8)). 

Thus the previous equation becomes: 

e(Y) = v{z E .C I 5(Z) SY} 

for every Y E .C, in other words e = 6, that is {i'). Finally (ii') is obtained a similar way 

(or follows by duality). 

(2°) (i') implies (i), and (ii') implies (ii): We only show that (i') implies (i); the fact that 

(ii') implies (ii) follows by duality. For every YE .C, we define 

E(Y) = {Z E .C I 5(Z) s Y}. 

Then by (i') e(Y) = 6(Y) = V E(Y). Now if Y s Y', then clearly E(Y) ~ E(Y'), and so 

V E(Y) s V E(Y'). Thus e is increasing. Moreover, for every YE .C, 5(Y) s 5(Y), and so 

YE E(5(Y)). Thus Y s V E(5(Y)) = e(5(Y)), and so ids e5. 

(3°) If(i) and (ii) hold, then (e,5) is an adjunction: Suppose that (i) holds and t5(X) s Y. 

Then the fact that e is increasing implies that e5(X) s e(Y), and the fact that id s e5 

implies that X s eli(X). Thus 5(X) s Y implies X s e(Y) when (i) holds. One shows 

similarly that X s e(Y) implies 5(X) s Y when (ii) holds. Thus when (i) and (ii) hold 

together, ( e, 5) is an adjunction. II 



20 

In [3], it is shown that the fact that (e,5) is an adjunction is equivalent to {i) and {ii'), to 

(i') and (ii), and to {i) and {ii) (see their Theorems 3.2 and 3.6). 

Let us illustrate ( i') in the case of Minkowski operations on Boolean images. Here ( i') 

can be expressed as: 

It is easy to see that this is equivalent to the definition given in (1.2), namely: 

x e B = { z E e I B z ~ X}. 

We can now state our main result on the relation between dilations and erosions induced by 

adjunctions: 

THEOREM 2. 7. The set of adjunctions constitutes a dual isomorphism between the two 

complete lattices of erosions and dilations. In other words: 

( i) For any dilation 5, there is exactly one erosion e such that ( e, 5) is an adjunction. We 

have e =Ii. 
(ii) For any erosion e, there is exactly one dilation 5 such that ( e, 5) is an adjunction. We 

have 5 = ~· 

(iii) Given two dilations 5,51 and two erosions e,e' such that (e,5) and (e',51
) are adjunc-

tions, we have 5 ::; 5' if and only if e 2:: e'. 

In particular this implies that: 

(iv) If (e3, 53) is an adjunction for every j E J, then (f\30 e3, V 3EJ 53) is an adjunction. 

Moreover, this dual isomorphism reverses the law of composition. In other words: 

(v) Given two dilations 5,51 and two erosions e,e' such that (e,5) and (e',5') are adjunc

tions, ( e1 e, 55') is an adjunction. 

PROOF. (i) Let 5 be a dilation. Take e = Ii (see (2.10)). Clearly 5 is increasing, and for 

every Y E C the fact that 5 is a dilation implies that 

5e(Y) = 5(li(Y)) = 5CV{z E c 15(z)::; Y}) = v{5(z) 1 z E c,5(z) ~ Y} ~ Y, 

in other words 8e ~ id. Thus 5 and e satisfy conditions ( i') and (ii) of Proposition 2.6, and 

so (e, 5) is an adjunction. By Proposition 2.5 e is an erosion. Given another erosion e' such 

that ( e', 5) is an adjunction, then e' = Ii = e by condition ( i') of Proposition 2.6. 

(ii) is proved in the same way as ( i), or can be deduced from it by duality. 

(iii) The following statements are equivalent: 

5 ~ 5' j 

VX E £, 5(X) ~ 5'(X); 

VX, YE£, 5'(X) ~ Y ==:} 5(X) ~ Y; 

VX,Y E £, X ~ e'(Y) ==:} X ~ e(Y) 

VY E £, e'(Y) ~ e(Y); 

(by definition of adjunctions ); 
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e' :::; e. 

(iv) As the dual isomorphism reverses the order, it associates to a greatest lower bound of 

erosions a least upper bound of dilations. By Proposition 2.3, the greatest upper bound of 

erosions ej is AJEJ ei and the least upper bound of dilations 5j is V JEJ 5i. 

(v) For any X, YE C we have by (2.8): 

66'(X) :::; Y ~ 6'(X):::; e(Y) ~ X:::; e'e(Y), 

in other words (e'e,66') is an adjunction. I 

Note in particular that (I, 0) is an adjunction. Serra [24] proved (i), (ii) and (iii); there 

the dual isomorphism linking dilations and erosions is called morphological duality, and the 

upper adjoint of a dilation is called its morphological dual. The existence of a lower adjoint 

for every erosion, and of an upper adjoint for every dilation is also shown in Theorem 3.4 

and Corollary 3.5 of [3]. 

The following result is well-known (see [24] or Theorem 3.6 of [3]): 

PROPOSITION 2.8. Given an adjunction (e, 5), 6e6 = 6 and e6e =e. 

PROOF. By Proposition 2.6 (i) and (ii) we have id:::; e6, 6e:::; id, and 6 is increasing. Hence 

6 = 6id:::; 6(e6) = (5e)6:::; id6 = 6, 

that is 6e6 = 6. The other equality e6e = e follows by duality. I 

We said in Subsection 2.1 that an automorphism is both a dilation and an erosion. We can 

thus describe its upper and lower adjoints. The following result will be used in Section 3: 

PROPOSITION 2.9. Given an automorphism 'l/J of£, 'l/J is both a dilation and an erosion, 

and -if, = 1f! = 'l/J-1 

The proof is left to the reader. It can be achieved with {2.8) or with Proposition 2.6. 

2.3.2. The relation with Galois connections. As we have seen above, several results 

proved here about adjunctions can also be found in sources dealing with the mathematical 

theory of complete lattices (3], although they are expressed there in very different terms. 

This is no mere coincidence. Indeed, the concept of adjunctions betweexi. dilations and 

erosions in mathematical morphology is closely linked to the concept of Galois connections 

between posets, which has been investigated for more than 40 years (bibliographic references 

on Galois connections can be found in [3], particularly in p. 29). 

We will explicit this link here. Readers interested only in mathematical morphology 

can skip this portion and go directly to Subsection 2.4. 

In Galois theory one considers a field K, an extension K' of K, and a group G of 

automorphisms of K' fixing all elements of K. Usually K' is the extension of K generated 

by the roots of an irreducible polynomial on K, and G is the group of permutations of these 
,, 
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roots. We have the complete lattice }(, of subfields of K' containing K, and the comple.te 

lattice 9 of subgroups of G. The two maps ; : }(, --? 9 and "' : 9 --? }(, are defined by 

VL E }(,, ;(L) = {g E G I Vk E L,g(k) = k}, 

VH E 9, K.(H) = {k EK' I Vg E H,g(k) = k}. 

Then for every L E }(, and H E 9 we have 

L ~ K.(H) ~ Vk E L,Vg E H,g(k) = k ~ H ~ ;(L). 

The pair of maps ; and "' is the Galois connection between }(, and 9. 

This concept can be generalized to arbitrary posets [1]. We consider two posets ('P, ~) 

and (Q, ~),and two maps 'T/: 'P--? Q and (: Q--? 'P. Then this pair of maps forms a Galois 

connection between ('P,~) and (Q,~) iffor every PE 'P and Q E Q we have 

p ~ ((Q) ~ Q ~ 'IJ(P). (2.12) 

This is a symmetric relation between 'P and Q. It can be shown that 'T/ and (form a Galois 

connection if and only if for every P, P' E 'P and Q, Q' E Q we have: 

P ~ P' ==> 'IJ(P);::: 'IJ(P'), 

Q ~ Q' ==> ((Q);::: ((Q'), 

p ~ ('IJ(P), 

and Q ~ 'IJ((Q). 

(2.13) 

Let us now return to our complete lattice £. Then clearly an adjunction in C is a 

Galois connection between(£,~) and its dual(£,;:::) (indeed, compare (2.12) and (2.8)). In 
this context, statements (i) and (ii) in Proposition 2.6 correspond together to (2.13). 

Note that in [3] the term 'adjunction' is considered as a synonym of 'Galois connection', 

but this does not correspond to the definition of Galois connections given above in accordance 

with [Birkhoff]. 

2.4. The decomposition of dilations and erosions 

So far we have limited ourselves to operators 'I/; : C --? C. But most of what we have said 

can be generaljzed to operators mapping one lattice £ 1 to a second one £ 2. Of course, one 

has to take care that expressions still make sense. For instance, in an adjunction (e,5), if 

e : £1 --? £2 then 5 : £2 --? £1. If £1 or £2 or both can be decomposed as a product of 

lattices (in particular, if £1 or £2 is a power lattice) then a dilation, and hence an erosion, 

can be decomposed. We illustrate this by means of the following situation. 

Let e1, e2 be arbitrary sets, and let 9 be a complete lattice. Let 5 : 9e1 --? 9E2 be a 

dilation. For Ill E e1 and t E 9 (notice the different notation for elements of 9), we define 

f a:,t E 9ei as: 

f ( ) { 
t if y = Ill, 

a:,t y = 0 if y -:f; re. (2.14) 
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Here 0 is the least element of Q. Every FE gei can be written as: 

F = v fa:,F(:z:)> (2.15) 

:z:ee 

in other words, {f:z:,t I :i: E £i, t E Q} is a sup-generating family in gei (see the end of 

Subsection 1.3). For :i: E £i and y E £2 we define 5y,:z:: g -t gas: 

5y,a:(t) = 5(/:z:,t)(Y), t E Q. (2.16) 

We show that every 5y,:z: is a dilation on Q. Obviously, 5y,a:(O) = 0. Now let t; E Q, j E J. 

Then 

5y,a:(supt;) =:= 5(/a:,sup;e.rt;){Y) = 5(supf:z:,t;){Y) = sup5(/:z:,t;}(Y) = sup5y,a:(t;). 
jEJ jEJ jEJ jEJ 

This proves the assertion. Now let F E gei. Then for y E £2, 

Conversely, every operator 5 : gei -t ge2 which has this form is a dilation by Proposi

tion 2.3 (ii). 

PROPOSITION 2.10. Let ei,£2 be arbitrary sets and let g be a complete lattice. Then the 

operator 5 : ge1 -t ge2 is a dilation if and only if for every :c E £i and y E £2 there exists a 

dilation 5a:,y : g -t g such that for Fi E gei and y E £2: 

5(Fi)(y) = V 5y,a:(Fi(z)}. {2.17) 

:z:EE1 

The upper adjoint erosion e : ge2 -t ge1 is given by 

e(F2)(:i:) = /\ ea:,y(F2(y)}, (2.18) 

yEE2 

for F2 E ge2 and :c E £i, where e:z:,y is the upper adjoint of 5y,:z:· 

PROOF. Apart from the statement about the adjoint erosion we have proved this proposition 

above. Let Fi E gei and F2 E ge2 • We show that 

where 5, e are given by (2.17) and (2.18) respectively. 

5(F1)::;; F2 <====} Vy E £2, sup 5y,a:(Fi(z)} ::;; F2(Y) 
:z:EE1 

<====} Vy E £2, Vz E £1, 5y,a:(F1(z)} ::;; F2(Y) 

<====} V:c E Ei,Vy E £2, Fi(:c)::;; ea:,y(F2(y)) 

<====} V:c E E1, F1(z)::;; inf ea:,y(F2(y)} 
yE£2 
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This result can in particular be applied to grey-level functions. Here e = e1 = e2 is an 

arbitrary set (e.g. e =Rd) and g is the set of grey-levels (e.g. g = R). For example in the 

grey-level dilation and erosion by a structuring function G given in (1.3) and (1.4), we have 

5:i:,y(t) = t + G(z - y) and ey,:i:(t) = t - G(z - y). 

As a second example we consider Boolean functions 'l/J : Be --+ B where B = {O, l}. 

Note that every dilation B --+ B is either constant 0 or the identity mapping id. From 

Proposition 2.10 it follows that every dilation 5: Be --+ B can be written as 

5(F) = V 5:i:(F(z)), FE Be, 
:i:ee 

where 5:i: : B --+ B is a dilation for every z E e. Let e' be the subset of e such that 5:i: = id 

for z Ee'. Then 

5(F) = V F(z). 
:i:EV 

In other words, a dilation is either constant 0 or a partial supremum function. Now Math

eron's Theorem for dilations (Theorem 2.4 in its dual form) says that any increasing operator 

preserving the least element is an infunum of dilations. But it is easy to see that an increasing 

operator which does not preserve the least element is constant 1. Moreover, in an infunum of 

dilations, if at least one of them is constant O, then the infunum is also constant 0. In other 

words, we have shown that every non-constant increasing function Be --+ B is an infunum 

of partial suprema, or if e is finite, a minimum of partial maxima: we obtain in this way a 

well-known result in the theory of Boolean functions (see e.g. [7], page 189). 

3. TRANSLATION-INVARIANCE 

In [14] and [23] mathematical morphology in the Euclidean space was studied in the frame

work of translation-invariance, in other words every morphological operator was required 

to commute with any translation. We want to generalize this property to our general 

framework, that of an arbitrary complete lattice £. Readily, the role of translations of 

the Euclidean space will be played by certain automorphisms of £. If we do not impose 

any particular conditions on these automorphisms, we can prove only generalities (Subsec

tion 3.1). On the other hand, if we assume a sup-generating family l of£, and an abelian 

group T of automorphisms of£, which acts transitively on l {for example in the Euclidean 

case, T is the group of all translations, and l is the set of all singletons), then T-invariant 

dilations and erosions will take a form analogous to Minkowski operations, and we can 

generalize certain results, such as Matheron's theorem for erosions: see Subsection 3.2. 

3.1. Generalities 

Write Aut(C) for the set of automorphisms of£. Given an automorphism TE Aut(C) and 

an operator 17 E 0, we will say that 17 commutes with T, or that 17 is T-invariant, if 17r = r17. 

Given a subset T of Aut(C), we will say that 17 is T-invariant if 17 commutes with every 

TE T. 
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It is an elementary fact from group theory that Aut(.C) is a group, and that for any 

Q ~ 0, the automorphisms of .C with which every element of Q commutes, form a subgroup 

of Aut(.C). Thus when we consider T-invariant operators for some subset T of Aut(.C), we 

can assume that T is in fact a group, since 'T-invariant' is equivalent to '(T}-invariant', 

where (T) is the subgroup of Aut(.C) generated by T. 

Given a subset (or rather subgroup) T of Aut(.C), we will use the prefix 'T-' for 'T

invariant'. We will speak thus of T-operators, T-dilations, T-erosions, etc .. The structure 

of the set of T-operators is summarized in the following result: 

PROPOSITION 3.1. Given a group T of automorphisms of .C, the set ofT-operators is 

( i) closed under composition, and it contains id; 

(ii) a complete sublattice of 0. 

PROOF. (i) is straightforward. Let us prove (ii). Let OT be the set of T-operators. Take 

any r E T and any subset Q of OT. By (2.5) we have (V Q)r = suptJEQ 17r. As T is a 

dilation, we have (see the remark after Definition 2.1): r(V Q) = suptJEQ r17. As 17r = r17 

for T/ E Q, the two preceding equalities imply that (V Q)r = r(V Q), in other words Q is 

r-invariant for any TE T. Hence V Q E OT. We prove similarly that A Q E OT. Thus OT 

is a. complete sublattice of 0. I 

Comparing this result with Propositions 2.2 and 2.3, it is easy to see that they remain true if 

we replace 'increasing operators' and 'dilations' by 'increasing T-operators' and 'T-dilations'. 

An interesting thing is that T-invariance is preserved by a.djunctions: 

PROPOSITION 3.2. Given an adjunction (e,8) and a group T of automorphisms of .C, 8 is 

T-invariant if and only if e is T-invariant. 

PROOF. Suppose that e commutes with every TE T. Then it commutes with r-1. So for 

any X, YE .C we have: 

8r(X) ~ Y ~ r(X) ~ e(Y) ~ X ~ -r-1e(Y) 

~ X ~ e-r-1 (Y) ~ 8(X) ~ r- 1(Y) ~ rfi(X) ~ Y. 

Thus 8r(X) = rfi(X), and so fi commutes with T (for every TE T). We have shown that if 

e is T-invariant, then fi is T-invariant. The reverse implication is proved in a similar way. I 

We will thus call a T-adjunction an adjunction (e,fi) such that fi is a T-dilation and e a 

T-erosion. By Proposition 3.2, Theorem 2.7 remains valid if we replace in it 'dilations', 

'erosions', and 'adjunctions', by 'T-dilations', 'T-erosions', and 'T-adjunctions'. In partic

ular, an operator fi is a T-dilation if and only if there is some e E 0 such that (e,8) is a 

T-adjunction, and an operator e is a T-erosion if and only if there is some fi E 0 such that 

(e, 8) is a T-adjunction. 

In the case where .C = P(e), the set of parts of a Euclide~ space e, translation

invariant dilations and erosions can be built with translations. If we fix the origin o, every 
€.· 
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point a E e determines the unique translation Ta defined by Ta( 0) 
Ta(X) = Xa. Then for every X, A~ e, (1.1) and {1.2) mean that 

X E9 A = LJ Ta(X) and X 8 A= n r;1 (X). 
a EA a EA 

a. For X c e, 

(3.1) 

Thus the dilation 8 A : x I-+ x E9 A and the erosion e A : x I-+ x e A have the following 

decomposition in terms of translations: 

and {3.2) 

It is not hard to see that all translation-invariant dilations and erosions in the Euclidean 

space e take this form. 

It would be interesting to see how far this can be generalized to an arbitrary complete 
lattice £. Given a subset A of Aut(C), we define 

A-1 = {r-1 IT EA}. 

By Proposition 2.9, (r-1,T) is an adjunction for every automorphism r. Hence by Theo
rem 2.7 (iv),(/\ A-1

, VA) is an adjunction for every A~ Aut(£). Now if T is an abelian 
subgroup of Aut(£) (that is, every two elements of T commute), then Proposition 3.1 implies 
that an adjunction 

with A~ T, (3.3) 

is in fact a T-adjunction. Here we have the analogy with (3.2). 

However, the converse is not always true. Given an abelian group T of automorphisms 
of£, not every T-adjunction takes the form (3.3). An extreme case is when T is reduced 

to the identity, and every adjunction is a T-adjunction, but only the trivial adjunctions 
(I,O) and (id,id) take the form {3.3). As we will see in the next subsection, we need 
an assumption on T which corresponds to the fact that in a Euclidean space the group of 
translations is transitive on the set of points. 

3.2. Transitivity on a sup-generating family 

In a Euclidean space, we have two particular features: first, all subsets can be built from 

singletons with the union operation; second, the group of translations is abelian and tran
sitive on the set of singletons. This leads to the following generalization. We consider the 

complete lattice £ and an abelian group T of automorphisms of £, and make the: 

BASIC ASSUMPTION. £ h.as a sup-generating subset l such. that: 

( i) T leaves l invariant, in other words for every T E T and z E l, T( z) E l; 

(ii) T is transitive on l, in other words for every z, y E l, there exists T E T such. that 

T(z) = y. 
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Elements of l will be written as lower-case letters x, y, z, etc .. We recall that for any X E C 

we define 

l(X) = {x El Ix:::; X}, 

and so the fact that l is sup-generating means that X = V l(X). In particular (1.8) holds. 

The above assumption is satisfied in the Euclidean case by taking l to be the set of 

singletons. Other examples will be given in Section 4, in particular the set of grey-level 

functions Rn--+ R. 

Now, as in the Euclidean case, the basic assumption implies that T acts regularly on 

l, in other words that for every x,y El, there is a unique TE T such that r(:e) = y. Indeed, 

suppose that r1(x) = r 2(x) = y; then r1-
1r2(x) = x. Now for any z E l, there is some 

r3 El such that r3(x) = z, and so r1-
1r2(z) = (r11r2)ra(x) = ra(r1-

1r2)(x) = ra(x) = z. 

Thus r1-
1r 2 :fixes every element of l, and as r1-

1r2 commutes with the supremum and l is 

sup-generating, this means that r1-
1r2 :fixes every element of C, that is r1 = T2. 

Thanks to this fact, we can build a bijection between l and T. Indeed, we :fix some 

o E l, and for every x E l we define T:z: as the unique element of T such that T:z:(o) = x. 

Now with this bijection we can endow l with the structure of a group isomorphic to T. We 

define the binary addition+ on l by 

This gives indeed T:z:+y = T:z:Ty, i.e., the isomorphism with T. In particular (l,+) is an 

abelian group with neutral element o. We write -y for the inverse of yin this group, that 

is r -y = r;;1
. We define then the subtraction - by 

Note that o - y = -y. 

REMARK 3 .1. In fact in a Euclidean space £, the group T of translations acting on 'P ( £) is 

first of all a group of translations on the set e of points, which forms naturally an additive 

abelian group. Here the action of Ton 'P(E) is derived from this basic group structure. More 

generally if C = 'P(S), the set of parts of an arbitrary set S, and if S is an abelian group, 

then we can view it as a transitive abelian group of permutations of itself, and so it becomes 

naturally a group of automorphisms of C satisfying the basic assumption. However if C is 

not isomorphic to some 'P(S), then it may be inadequate to start with a group structure on 

l, since a permutation of l does not necessarily extend into an automorphism of C. Take 

for example the Euclidean plane e, and let the set C consist of e, all lines passing through 

the origin o, all singletons {p} in e, and 0. It is easy to see that C, ordered by inclusion, 

is a complete lattice. Here the set l of singletons is sup-generating, and has the translation 

group structure of£; now this group of permutations of l does not extend to a group of 

automorphisms of C, because a translation does not preserve the set of lines passing through 

the origin. 
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Our next goal is to use this group structure to define on C a generalization of the Minkowski 
operations. But we need the following two lemmas in order to lay a sound basis for this 

generalization: 

LEMMA 3.3. Let X,Y ~land let X = supX and Y = supY. Then 

v Ta:(Y) = v (:i: + y) = v Ty(X). 
a:EX a:EX ,yEY yEY 

PROOF. We only prove the second identity, the first one is shown in the same way. For every 

y E Y we have 

which leads to the result. Ill 

LEMMA 3.4. Let Zj E l (j E J) and z E l. Then the following three statements are 

equivalent: 

(i) Z = v Zj. 

jEJ 

(ii) Tz = V Tz;• 
jEJ 

( .;.;.;) -1 /\ -1 ••• Tz = Tz; • 
jEJ 

PROOF. (i) implies (ii): Let Y E C and Y = l(Y). Then Y = sup Y, and so applying 

Lemma 3.3 with X = {z} and X = z, we get Tz(Y) = supyEl(Y) Ty(z). As z = supjEJ z3, ap
plying Lemma 3.3 with X = {z3 I j E J} andX = z, we get supjEJTz;(Y) = supyEl(Y) Ty(z). 
Combining both equalities, we obtain Tz(Y) = supjEJ Tz; (Y). As Y was arbitrary, (ii) fol
lows. 

(ii) implies (i): If Tz = supjEJTz;> then z = Tz(o) = supjEJTz;(o) = SUP3oz3. 

(ii) is equivalent to (iii): Clearly (r;1 ,rz) and (inf3or_;;1,supjEJTz;) are adjunctions 
{see {3.3)). By Theorem 2.7 the two upper adjoints are equal if and only if the two lower 

adjoints are equal. I 

For X E C and h E l we set 

(as in the Euclidean case). We now define the binary operations $ and e on C by: 

X@Y= V Xy; 
yEl(Y) 

XeY = f\ X-y· 
yEl(Y) 

Compare with (1.1) and (1.2). The following basic properties hold: 

{3.4) 

(3.5) 



PROPOSITION 3.5. For x, y E c and a, b E l we have: 

(i) a E9 b =a+ b, a e b =a - b. 

(ii) x m b = xb, x e b = x-b· 
(iii) X E9 Y = Y E9 X = V{z + y I z E l(X), y E l(Y)}. 

(iv) x e y = V{z EL I Yz ~ X}. 
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PROOF. (i) and (ii) follow from Lemma 3.4, and (iii) from Lemma 3.3. We prove (iv): We 

set W = sup{z E l I Yz ~ X}. Let z E l such that Yz ~ X. Then for every y E l(Y), 

Zy = y + z = Yz ~ Yz ~ X, and so z = (zy)-y ~ X-y; by (3.5) this means then that 

z ~ X e Y. We have thus shown that W ~ X 8 Y. Now let z E l(X 8 Y). Then z ~ X_ 11 

for every y E l(Y) (see (3.5)), and so Yz = y + z = Zy ~ (X-y)y = X; as Yz = supyEl(Y) Yz, 

we get Yz ~ X, and so z ~ W. We have thus shown that X 8 Y ~ W. Hence the equality 

follows. I 

Statements (iii) and (iv) generalize similar expressions in (1.1) and (1.2). For A E C we 

define the operators 5A, eA E 0 by 

5A = v Ta 
aEl(A) 

and 
/\ 

-1 
eA = Ta . 

a El( A) 

(Cfr. (3.2) in the case where C = P(e).) By (3.4) and (3.5) we have obviously 

and eA(X) = X 8 A 

for any X E C. We are now ready to prove the main theorem of this section: 

(3.6) 

THEOREM 3.6. For any A E C, (eA,5A) is a T-adjunction. Moreover, any T-adjunction 

has this form. 

PROOF. Given A EC, if A= {Ta I a E l(A)}, then by (3.6) the pair (eA, 5A) is as in (3.3), 

and so it is a T-adjunction. 

Conversely assume that (e,5) is a T-adjunction on C. Let A= 5(o). We show that 

5 = 5 A. For z E l, 

Hence, for X E C, 

5(X)=5(supl(X))= sup 5(z)= sup Tm(A)=AE9X=XE9A=5A(X). 
a:El(X) a:El(X) 

By the uniqueness of the upper adjoint of a dilation, this implies also that e = eA. I 

PROPOSITION 3. 7. For x, Y, z E c we have: 

(i) (X E9 Y) E9 Z = X E9 (Y E9 Z) = V{z + y + z I z E l(X), y E l(Y), z E l(Z)}. 

(ii) (X e Y) e z = x e (Y E9 Z). ,, 
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PROOF. (i): We have the following decomposition: 

(X ED Y) ED Z = sup Tz(X ED Y); 
zEl(Z) 

= sup Tz{sup{z + y I z E l(X), y E l(Y)}); 
zEl(Z) 

= sup sup{rz(z + y) I z E l(X), y E l{Y)}; 
zEl(Z) 

= sup{z + y + z I z E l(X), y E l(Y), z E l(Z)}. 

By the commutativity of+, X ED (Y $ Z) = (Y ED Z) ED X has the same decomposition. 

(ii): Clearly (i) means that 5z5y = 5nu, and so 5y5z = 5zmY = 5ymz· Now ey, ez, 

and eymz are the upper adjoints of 5y, 5z, and 5ymz respectively; by Theorem 2.7 (v), 

ezey is the upper adjoint of 5y5z. By the unicity of the upper adjoint, 5y5z = 5ymz 

implies that ezey = eymz· Applying both terms to X, we get the result. I 

We know that the set of T-dilations is sup-closed in 0. It is therefore a complete lattice 

with V as supremum operation, but with an infunum operation distinct from A (see Sub

section 1.3). As each T-dilation is of the form 5A for some A E £,the following result is not 

surprising: 

THEOREM 3.8. The map A 1-+ 5A defines an isomorphism between C and the complete 

lattice ofT-dilations. In particular, given A3 E C, (j E J), we have 

v 5A; = bsup;eJ A;· 
jEJ 

(3.7) 

PROOF. Write '.DT(C) for the set of T-dilations. The map .6. : '.DT(C) -+ C defined by 

-6.(A) = 5A is surjective by Theorem 3.6. As 5A(o) = A for any A E £, this implies that 

5 A -I 5 B for A -I B' in other words a is injective. It is thus a bijection between c and 

'.DT(C). Now for A,B E £,if AS B, then l(A) ~ l(B), and so by (3.6) we have 5A S 5B. 

On the other hand, if 5A S 5B, then A= 5A(o) s 5B(o) =B. Thus As B ~ 5A s 5B, 

in other words .6. is an isomorphism. In particular, it must preserve the supremum operation 

V. Thus (3.7) holds. I 

Equation (3.7) means that 

for all X E C. By the dual isomorphism 5A 1-+ eA between the two complete lattices of 

T-dilations and T-erosions, we derive from Theorem 3.8 the following: 

COROLLARY 3.9. The map A 1-+ eA defines a dual isomorphism between C and the complete 

lattice ofT-erosions. In particular, given A3 E C, (j E J), we have 

/\ eA; = esup;eJ A;. 
jEJ 

(3.8) 
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Equation (3.8) means that 

j\(XeAj) =Xe(V Aj) 
jEJ jEJ 

for all X E £. As we explained in the proof of Proposition 3.7, the following additional 

properties hold: 

(3.9) 
eAeB = eBeA = eA$B· 

We shall now be concerned with increasing T-operators and Matheron's theorem. We will 

indeed prove a generalization of (2.6) for increasing T-operators. But we need first the 

following: 

LEMMA 3.10. Let 'I/; E 0 be an increasing T-operator. Then 

'l/;(X) E9 B :S 'l/;(X E9 B) and 'l/;(X) e B ~ 'l/;(X e B) 

forX,B E £. 

PROOF. Let X, BE£. Then by Lemma 2.1 and T-invariance we have: 

'l/;(X E9 B) = 7/J( sup Tb(X)) ~ sup 7/J(1b(X)) = sup Tb'l/;(X) = 'l/;(X) E9 B. 
bEl(B) bEl(B) bEl(B) 

The other inequality is proved in the same way. I 

Given an increasing T-operator 'I/;, the kernel V['I/;] of 'I/; is defined by 

V['I/;] = {X E £I 0 :S 'l/;(X)}. (3.10) 

It is not difficult to see that V['I/;] is sup-hereditary, that is, X E V['I/;] and X :S Y implies 

that YE V['I/;] as well (see [14], p.218). 

THEOREM 3.11. Let 'I/; E 0 be an increasing T-operator with kernel V['I/;]. Then 

1/J = v eA, 

AEV[,P) 

in other words 

'l/;(X) = V (X 6 A) 
AEV[,P) 

for every X E £. 

PROOF. Given X E £,let Z = supAEV[1/IJ(X 6 A). 

(a) 'l/;(X) ~ Z: Let A E V['I/;], that is, o :S 'l/;(A). By Proposition 2.6 (ii) we have 

5AeA :Sid, and so (X 6 A) E9 A :S X. Then by Lemma 3.10 we get: 

x e A= (X e A) E9 0 :S (X e A) €91/;(A) :S 1/J((X e A) E9 A) :S 'l/;(X). 

Therefore Z :S 'l/;(X). 

(b) 'l/;(X) :S Z: Take al E l('l/;(X)). As al :S 'l/;(X), we have o :S 'l/;(X)-:c = 'l/;(X-:c), and 

so X_:c E V('I/;]. As al E9 X_:c = X-:c+:c = X, we obtain by adjunction al :S X 6 X-:c· As 

X_:c E V('I/;], we have X 6 X_:c :S Z. Hence al :S Z for :c E l('l/;(X)), and so 'l/;(X) :S Z. I 
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REMARK 3.2. (i) It is not always necessary to take the whole kernel of 1/J. Indeed, given 

a subset V' of V[,,P] such that for every A E V[,,P], there is some A' E V' with A' ::; A, then 

we have also ,,P(X) = supA'ev•(X 8 A'). Indeed, for A E V[,,P) \ V', given A' E V' with 

A' ::; A, we have X 8 A' 2::: X 8 A, and so A is redundant in the decomposition of ,,P(X). 

This question is discussed in [12] in the Euclidean case. 

(ii) In Theorem 2.4 we required that ,,P(I) =I in order to deco~pose 'ljJ into the supremum 

of a non-empty set of erosions. Here we do not make any such requirement, because if 

,,P(I) < I, then 'ljJ = 0 and V[,,P] = 0. Indeed, as I = sup l, ,,P(I) < I implies that 

there is some :z: E l such that :z: 1: ,,P(I); by T-invariance this means that for every y E l, 

y = :z: + (y - :z:) 1: ,,P(I)y-:e = ,,P(Iy-:e) = ,,P(I), that is ,,P(J) = 0, and so 'ljJ = 0. But then 

o 1: ,,P(X) for every X E £, and so V[,,P] = 0. 

(iii) If 0 E V[,,P], then V[,,P] = C and 'ljJ =I. Indeed o::; ,,P(O) implies, by the increasingness 

of ,,P, that V[,,P] =C. By T-invariance, we have :z:::; ,,P(O):e = 'if;(O:e) = ,,P(O) for every :z: El, 

that is ,,P(O) =I, and so 'ljJ =I. 

(iv) A corresponding version of Matheron's theorem for T-dilations does not hold in general. 

In Section 4 we will give an example of an increasing T-operator which is not decomposable 

as an infunum of T-dilations. From the duality principle it is clear that such a corresponding 

result for T-dilations is obtained if one assumes the dual of the basic assumption, namely 

the existence of an inf-generating family on which T is transitive. If C is a Boolean lattice 

then both the basic assumption and its dual are equivalent, and Matheron's theorem holds 

in both versions (see Section 4 ). 

We end this section by considering a minor problem: are there other automorphisms of C 

with which all T-dilations commute? Given <T E Aut(C), by Proposition 3.1 and Theo

rem 3.6, the following three statements are equivalent: 

- Every T-dilation is u-invariant. 

- Every element of T commutes with u. 

- Every T-erosion is u-invariant. 

We will see in Section 4 that in certain cases this is possible for some u <f. T. However it 

is impossible in the case where l is the set of atoms of C, for example if C = 'P( e), the set 

of parts of a Euclidean space, with the usual group of translations. We can generalize this 

negative fact as follows: 

PROPOSITION 3.12. Suppose that l U {O,J} is inf-closed. If <TE Aut(C) and u commutes 

with every element of T, then <T E T. 

PROOF. Clearly <Tisa T-erosion, and we have thus <T = eA for some A E C. Then u(o) = 

0 e A= inf{-a I a E l(A)}. As l u {O,I} is inf-closed, we have u(o) El u {O,J}. As 

0 < o <I and <T is an automorphism, 0 < u(o) <I, and so u(o) = :z: El. Now u is also a 

T-dilation, and sou= 5s for some BE C. In fact B = u(o) = :z:, and sou= b:e = T:e ET. I 

4. EXAMPLES AND APPLICATIONS 

In this section we apply the abstract results of the previous two sections to some practical 
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examples. In Subsection 4.1 we study the Boolean case. Here we have an extra duality 

relation between dilations and erosions deriving from the fact that in a Boolean lattice 

every element has a unique complement. In Subsection 4.2 we consider the complete atomic 

lattice consisting of the closed subsets of Rd. There we give also an example of an increasing 

translation-invariant transformation which cannot be written as an infimum of translation

invariant dilations. Finally, in Subsection 4.3 we give a characterization of dilations and 

erosions on grey-level functions which are invariant under spatial or under both spatial 

and grey-level translations. There we deal also with the so-called multiplicative structuring 

functions studied by Herman (9]. 

4.1. The Boolean case 

Suppose that C is a complete lattice and that the basic assumption of Subsection 3.2 is 

satisfied. Before restricting to the Boolean case we give alternative characterizations of 

dilations and erosions by the so-called reflected structuring element, which is defined as 

follows: 

A= v{-a I a E l{A)} {4.1) 

for A EC. 

LEMMA 4.1. For A, X E C we have 

XEaA= v X_a 

aE.l(A) 

and XeA= /\ Xa. 
(4.2) 

aEl(A) 

PROOF. Let us show the first equality. By {4.1), A = supaE.t(A)(-a), and so by (3.7) we 

have 6 A = SUPae.t(A) La· Aplying this to X we get: 

x Ea A= 6.A(X) = v La(X) = v X-a· 
aEl(A) aEl(A) 

The other equality in ( 4.2) is proved in the same way (using ( 3.8)), or is derived by adjunction 

(see (3.3) and Theorem 3.6). Ill 

Now let for the rest of this subsection C be a Boolean complete lattice. We denote by X' 

the complement of the element X. Clearly O'(X') = O'(X)' for every automorphism O' of C, 

and in particular {X')a = (Xa)' for a E A. We have the following: 

PROPOSITION 4.2. Let VC be Boolean and satisfying the basic assumption of Subsection 3.2. 

Then for every A EC, A= A, 

(X' Ea A)' = X e A, 

and (X' e A)'= x Ea A. 
(4.3) 
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PROOF. By (4.2) we have: 

X 1 $A= sup (X')a = sup (Xa)1 = ( inf Xa)1 = (X e A)'. 
aEL(A) aEl(A) aEl(A) 

This proves the first equality of ( 4.3), and the second one is shown in the same way. But 
then 

x El1 .A= (X 1 e A.)'= (x 11 
E11 A) 11 = x El1 A, 

which implies that A = A. I 

By ( 4.1) the map A i--+ A is increasing, and as it is its own inverse, it is an automorphism of 
C. We will now see that Theorem 3.11 can be expressed in the dual form. If 1/J: £ -+£is 
an increasing T-operator, then t/l1 defined by 

tfl'(X) = (1/J(X 1))1, X E £, {4.4) 

is an increasing T-operator as well. It follows then from Theorem 3.11 that 

tfl'(X) = V (X e A), 
AEV' 

where V' is the kernel of 1/J1
• This yields that 

t/l(X) = ('efl(X1
))

1 = { V (X 1 
9 A))

1 

AEV' 
(4.5) 

= f\ (X' e A)1 = f\ (X $A). 
AEV' AEV' 

We have thus the following: 

COROLLARY 4.3. Suppose that£ is Boolean and satisfies the basic assumption of Sub
section 3.2. Then every increasing T-operator can be written as a supremum ofT-erosions 
and, alternatively, as an infimum of T-dilations. 

In Subsection 4.2 we construct an example which shows that in this corollary the assumption 
that £ is Boolean cannot be dropped. 

4.1.1. Translation-invariance. Let£= P(Rd), the space of all subsets of Rd. Then£ 
is a complete Boolean lattice, the complement of an element X E £ being given by the 
ordinary set complement xc. The lattice £ is atomic, the family l of atoms being given by 
the set of singletons: 

In particular, l is a sup-generating family. 

For h E Rd we define the operator Th on £ by 
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Thus Th translates every set X along the vector h. It is clear that every Th is an automor

phism on .C, and that T ={Th I h E Rd} is an abelian group of automorphisms on .C which 

is transitive on l. The corresponding group operation on Rd is the vector addition. The 

extension of+ to .C as defined in (3.4) is 

X EB A= {:i: +a I z E X,a EA}= LJ Xa, 
a EA 

which is the Minkowski addition defined in Subsection 1.1.3. Furthermore 

X8A = n X_a, 
a EA 

which is the Minkowski subtraction. Thus in this example T-erosions and T-dilations corre

spond to the notions of erosion and dilation defined by Serra [23] in the translation-invariant 

case. Here A= {-a I a EA}. 

However, as we mentioned already in Subsection 1.1.3, our notation is slightly different 

from the notation used by Serra [23] and Matheron [14] for the Boolean complete lattice 

'P(Rd). Their definition of the Minkowski addition EB is the same as ours, but they call 

the operator X -t X EB A the dilation by A. Moreover, their definition of the Minkowski 

subtraction differs from ours in the sense that they put x 8 A= naEA Xa, which is in fact 

xe.A in our notation. Furthermore, they call x -t xeA the erosion by A and this coincides 

with our nomenclature (although we write X 8 A). Our definition coincides with Hadwiger's 

original definition (see [4,5]; to our knowledge, Minkowski never defined the subtraction) and 

with the terminology used by Sternberg [25]. Our motivation for our conventions lies in the 

fact that the duality relation between dilations and erosions induced by adjunctions is a 

general one, whereas the duality obtained by taking complements in the Boolean case (see 

(4.3); in Serra's notation this would amount to the formula X 8 A= (X' EB A)') cannot be 

extended to the non-Boolean case. 

In the digital case we replace the continuous space Rd by the digital grid zd, and 

everything works in the same way. 

4.1.2. Invariance under rotations and scalar multiplications. Certain types of images 

do not correspond to a translation-invariant material structure, but rather to a circular 

one, which is invariant under rotations. An example is given in Figure 1.8 of [23], which 

represents the amount of sunshine in a forest, obtained by making a photograph of the sky 

from the ground. Another example is given by radar displays. 

In order to express such a structure in the framework of Section 3, we take .C to be the 

complete atomic Boolean lattice 'P(IT), where IT= R 2 
\ {O}, whose points will be indexed by 

polar coordinates (r,O), with r being the radius (r > 0) and 0 the angle (taken modulo 271'). 

Let l be the set of atoms (singletons). We must build an abelian group T of automorphisms 

of .C which is transitive on l. This can be achieved by endowing IT with the structurP , ,f an 
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abelian group (see Remark 3.1). Let R+ = {r E R I r > O}, and suppose that R+ is an 

abelian group for a binary operation*· Then TI is a group for the product ·defined by 

(r,O) · (s,<p) = (r * s,O + <p), (4.6) 

where 0 + <p is taken modulo 211". In group-theoretical terms, TI is the direct product of R+ 

and of the group of rotations. Here T is the set of automorphisms of£, of the form Tr,8, 

where we have 

Tr,8(X) = {(r,O) · (s,ip) I (s,ip) EX} 

for X E £. 

As a particular case, we can take * to be the ordinary multiplication in R +. Then each 

Tr,8 E T is the composition of a scalar multiplication relative to the origin with a factor r, 

and a rotation around the origin by an angle 0. If to each ( r, 0) E TI we associate the complex 

number rei8
, then the product operation · on TI (see ( 4.6)) corresponds to the multiplication 

in the complex plane. We can define the Minkowski operations as in the previous example 

of Subsection 4.1.1, with ·instead of+. Although the resulting formulas for T-erosions and 

T-dilations are the same, their action is completely different: see Figure 3. 

If we want to implement such a circular morphology on a machine, we must replace 

the continuous space TI= R 2 
\ {O} by a discrete polar grid (in the same way as we replace 

the continuous space Rd by the digital grid zd in the translation-invariant case). It is built 

as follows. We choose an integer s > 1 and an element r > 1 of R+;. then the polar grid 

consists of all points p[ m, n] having polar coordinates ( rm, n 2;) for m, n E Z (with n taken 

modulo s ). We illustrate such a grid in Figure 4. 

Polar grids are used in theoretical neurology to model the topography of the layer of 

retinal ganglion cells (the neurons in the retina which feed the optic nerve). Corresponding 

visual areas in the cerebral cortex are modeled as a rectangular grid where pixel ( m, n) 

corresponds approximately (for m large enough) to the point p[m, n] of the polar grid with 

polar coordinates (rm,n 2
;). See [22,28] for more details. 

4.2. The complete lattice of closed subsets of Rd 

Define£,= F(Rd), the family of all closed subsets of Rd. Then£, is a complete lattice and 

the supremum and infimum of the collection X 3 E £, where j runs through the (finite or 

infinite) index set J, are respectively given by 

V X3 = LJ X3 
jEJ jEJ 

and A X3 = n x j· 
jEJ jEJ 

(N.B. We write U and U 0 respectively for the closure and the interior of a Euclidean set 

U.) Again C is atomic, the atoms being the singletons of Rd (essentially, one uses that Rd 

is a topological Ti-space: see Birkhoff [1] or Kelley [11]). However,£, is not Boolean. 
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Let T be the automorphism group of translations. Then T is transitive on l. Again, 

the group operation induced on l is the ordinary vector addition. The operations in C 

corresponding to $ and 8 in 'P(Rd) are written ffi and 8 (to avoid confusion); they are 

defined by setting for X,A EC: 

a EA aEA 

and X8A= f\X-a= nx-a. 
a EA a EA 

Note that X ffi A = X ffi A, while X 8 A = X 8 A. 

Theorem 3.11 states that every increasing T-operator on C can be obtained as a supre

mum of T-erosions. We now show by means of a counterexample that Matheron's theorem 

for T-dilations (see Corollary 4.3) is not valid in this case: we define an increasing T-operator 

'ljJ on C = F(R d) which cannot be obtained as an infimum of T-dilations. 

For r > 0 we define Fr E C by: 

For every closed subset X of Rd we define p( X) as the radius of the smallest circumscribing 

circle (which is +oo if X is unbounded). Let A ~ Rd be closed. We have the following 

equivalence: 

if and only if p(A) ~ r. (4.7) 

Indeed, by the symmetry of Fr and Rd, Fr ffi A= Rd if and only if Fr ffi A= Rd. Now let 

be the complement of Fr; it is an open disk of radius r. Using Proposition 4.2 in 'P(Rd) we 

get: 

Hence Fr ffi A = Rd if and only if (Br 8 A) 0 = 0. If p(A) < r, then A ~ Ta(B 8 ) for some 

s < r and some point a, and so 

Now T_a(Br 8 Ba) is a closed disk of radius r - s, and its interior is not empty. Thus 

(Br 8 A) 0 -=/: 0 when p(A) < r, and in this case Fr ffi A-=/: Rd. Suppose now that p(A) ~ r. 

Then no translate of A is a subset of Br: this is obvious if p(A) > r, while if p(A) = r, 

this follows from the fact that A is closed and the disk Br is open. By Proposition 3.5 (iv), 

Br 8 A is the set of points z E Rd such that Az ~ B, and so Br 8 A= 0 when p(A) ~ r, 

which implies that Fr ffi A = Rd. This shows ( 4. 7). 
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We define now our counterexample. Let the operator 1/J be given by 

(4.8) 

for X E F(Rd). In other words 1/l(X) is the intersection of all translates of Fi containing 

it. Clearly 1/J is increasing and T-invariant. (In Part II we will pay more attention to this 

operator which turns out to be an example of what we will call a structural closing). 

Now suppose that 1/J is an infimum of a family of T-dilations, and let 5A be a member 

of this family; then 5 A ;::: 1/J. Obviously, 1/J( Fr) = Rd if r < 1. Hence Fr 61 A = 5 A (Fr) = Rd 

if r < 1. From ( 4.7) we conclude that p(A) ;::: r if r < 1, and therefore p(A) ;::: 1. Applying 

( 4. 7) once more we get that 5 A ( F1 ) = Rd. Since this holds for every dilation greater than 

1/J we may conclude that 1/J( Fi) = Rd, a contradiction since 1/J( Fi) = Fi. Thus 1/J cannot be 

written as an infimum of T-dilations. 

4.3. Grey-level functions 

Although the formalism of Section 3 was built by analogy with the Boolean case, it can 

also be applied to grey-level functions. We obtain in this way both the usual translation

invariant dilation and erosion given in (1.3) and (1.4), but also Berman's operators [9]. We 

finally consider a more general type of dilations and erosions, which do not satisfy the basic 

assumption of Subsection 3.2, but are invariant under spatial translations. 

4.3.1. Additive structuring functions. Let C be the complete lattice of all functions 

mapping Rd into R =Ru {+oo,-oo}. Clearly C is a power lattice (see Subsection 1.3), 

and so the supremum and infimum of a family Fj, j E J, are as follows: 

( V Fj) ( :v) = sup Fj ( :v), :v E Rd 
jEJ jEJ 

( f\ Fj )(z) = ~~F;(:v ), :v E Rd. 
jEJ JE 

Let l be the family of functions fa:,t (:v E Rd, t ER) given by 

f ( ) { 
t, if y = z; 

a:,t y = -oo, if y f. z. 

(Cfr. (2.14).) It is obvious that l is a sup-generating family. For h E Rd and v E R ('h' 

stands for horizontal and 'v' for vertical) we define the automorphism Th,v on C as follows: 

(rh,v(F})(z) = F(z - h) + v for FE C, 

i.e., Th,v translates the graph of a function along the vector (h,v). Then 
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is an abelian automorphism group on£, and moreover T is transitive on l. To be precise, 

Th,v(/a:,t) = fz+h,t+v· The corresponding group operation on l is given by: 

This leads to the operations $ and e on£ defined in (1.3) and (1.4), namely: 

(F $ G)(re) = sup (F(re - h) + G(h)) 
hERd 

and (Fe G){re) = inf (F(re + h) - G(h)), 
hERd 

(4.9) 

with the further conventions, in cases of ambiguous expressions of the form +oo - oo, that 

F(z-h)+G(h) = -oo when F(re-h) = -oo or G(h) = -oo, and that F(z+h)-G(h) = +oo 

when F(re + h) = +oo or G(h) = -oo. The operations Fi-+ F $ G and Fi-+ Fe G are the 

so-called grey-level dilation and erosion respectively. Both are invariant under translations 

in the spatial (=horizontal) and grey-level (=vertical) direction. 

Although the complete lattice of grey-level functions Rd --t R is not Boolean, some of 

the ideas of Subsection 4.1 can still be applied here. We do not have the complementation, 

but the grey level inversion F 1-+ -Fis a dual automorphism of£. For any GE£ we define 

(G)(:c) = G(-re), 

and G takes the role of the reflected structuring element A. Indeed we have G = G, and the 

following relations hold: 

- ( ( -F) $ G) = F e G 

and - ((-F)eG) = F$G. 
(4.10) 

Compare with Proposition 4.2. We can apply the same argument as in the proof of Corol

lary 4.3 (see {4.4) and (4.5)), to show that in this case too Matheron's theorem holds both 

for T-erosions and T-dilations. Note also that grey-level inversion transforms l into an 

inf-generating family l' on which T acts transitively, so that the results of Section 3 can be 

applied in their dual form, leading in particular to Matheron's theorem for T-dilations. 

We mentioned above in Subsection 4.1.1 that for the Boolean complete lattice 'P(Rd) 

Serra and Matheron derived erosions from dilations by complementation, leading to a differ

ent notation as ours, while Sternberg defined erosions as us. Similarly in (23], Serra defines 

the addition F $ G of grey-level functions as we do here, but the subtraction Fe G is defined 

by addition and grey-level inversion, in other words as -( ( -F) $ G). Hence F 8 Gin Serra's 

nomenclature corresponds to Fe G in ours. On the other hand Sternberg's notations (25,26] 

are in concordance with ours. 

In Proposition 3.12, we have seen that under the assumption that l U {O,J} is inf

closed, the only automorphisms which commute with every T-dilation and every T-erosion 

are the elements of T. The following example shows that the condition on l may not be 

dropped. Suppose that we take 

and 
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Then the basic assumption of Subsection 3.2 is again satisfied, however every Th,v with v rf_ Q 

is an automorphism on C which commutes with every T-dilation and every T-erosion, but 

which is not in T. 

REMARK 4.1. One can define a topology on the space of grey-level functions if one restricts 

oneself to the complete lattice of upper semi-continuous (in brief, u.s.c.) functions mapping 

Rd into R. These functions generalize the closed sets in the sense that F is u.s.c. if and 

only if its umbra U(F) is closed: see [2]. Note that the functions f:-e,t are u.s.c. and that the 

family l defined above is sup-generating in the complete lattice of u.s.c. functions. So our 

theory also works in this case. 

4.3.2. Multiplicative structuring functions. In this subsection we assume that .C is the 

complete lattice of functions mapping Rd into [O, +oo]. Let R+ = {r E R I r > O}. The 

family 

is sup-generating, and we choose 

where 

(fh,v(F))(:c) = v · F(z - h) for FE .C, 

i.e., Th,v translates the graph of a function by h in the spatial domain, and magnifies it by a 

factor v in the grey-level domain. Then T is an abelian automorphism group on C which is 

transitive on l. In fact, Th,v(/:-e,t) = f:-e+h,t·v· The group operation + induced on l is given 

by 

This leads to the operations$ and e on .C given by 

(F $ G)(z) = sup ((F(z - h) · G(h)) 
hER" 

and {Fe G)(z) = inf ((F(:e + h)/G(h)), 
hER" 

(4.11) 

with the further conventions, in cases of ambiguous expressions of the form 0 · oo, oo / oo, or 

0/0, that F(:e-h)·G(h) = 0 when F(z-h) = 0 or G(h) = O, and that F(re+h)/G(h) = +oo 

when F(re+h) = +oo or G(h) = 0. These two operations lead to a morphology for grey-tone 

functions based on multiplicative structuring functions. See [9]. The relation with$ and 8 

defined in Subsection 4.3.1 is given by: 

F $ G = elog F$log G for F,G E £, 



and a similar relation holds fore and e. Given G{aJ) = G{-aJ), we have 

and 

·- 1 
Fe G = 1/ F 6:J G 

.- 1 

FG) G = 1/FeG 
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( 4.12) 

Compare with ( 4.10). We can apply the same reasoning as there, and so Matheron's theorem 

holds both for T-erosions and T-dilations. 

Multiplicative structuring functions can be used as an alternative to additive ones, and 

Herman [9] applied them for edge enhancement in X-ray images. 

4.3.3. A general class of grey-level dilations and erosions. When implementing grey-level 

morphological operations on a computer, one has to choose the grey-level set g finite, say 

g = {O, 1, 2, ... , m - 1}, or at best g can contain approximations of real numbers in a 

bounded interval. For many practicioners this does not present a real problem, they simply 

apply formulas like ( 4.9) with grey-levels belonging to a bounded interval of R or Z. However 

it is easy to see that when the grey-levels of the function F are bounded by a maximum M 

and/or by a minimum m, the functions F G) G and Fe G given by (4.9) will be similarly 

bounded if and only if the structuring function G satisfies the following condition: 

sup G(h) = 0. ( 4.13) 
hER4 

In particular everything works well with a fl.at structuring function, that is a function G 

defined on a restricted support S, where G(h) = 0 for each h E S. Similarly, if one uses 

multiplicative structuring functions, formulas given in ( 4.11) require that: 

sup G(h) = 1. 
hER4 

(4.14) 

On the other hand, applying formulas (4.9) or (4.11) with arbitrary structuring functions, 

and truncating the grey-levels of resulting functions whenever they exceed the bounds is not 

serious. 

We might also attempt to apply Section 3 to the object space ge, where e = Rd and 

g is a bounded interval of Z or of R (for example { 0, 1, 2, ... , m - 1}). A short moment 

of reflection learns that this leads to an essential difficulty: how to define an abelian group 

operation* on g which preserves the ordering of Q, i.e., if 9,91,92 E g and 91 ~ 92, then 

9 * 91 ~ 9 * 92. The addition modulo m (or one of its permutations) does not have this 

property. Confronted with this problem the only way out is to drop the invariance in the 

"grey-level direction" and to require invariance in the spatial direction only. This is not as 

bad as it may seem. In contrast with the spatial translation-invariance there is no physical 

reason for requiring additive (if g = R) or multiplicative (if g = [O, oo]) invariance. Even 

more, such a requirement only restricts the class of operations which are permitted. In this 
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subsection we investigate the class of dilations and erosions which is obtained if only spatial 

invariance is required. We assume for simplicity that g = R, but the approach works equally 

well for any complete lattice g. 

Let C be the complete lattice of grey-level functions F : Rd -+ R, let l be the sup

generating family of Subsection 4.3.1, i.e., l = {f:e,t I z E Rd,t E R}, and let T be the 

automorphism group of spatial translations: 

Note that T is not transitive on i. Nevertheless we will be able to give a characterization 

of all T-dilations and T-erosions on C. First we remark that in an adjunction ( e, d) on the 

complete lattice R, dis an increasing function on R with d(-oo) = -oo which is continuous 

from the left, and e is an increasing function on R with e( +oo) = +oo which is continuous 

from the right. From (2.10) and (2.11) it follows that 

e(t) = sup{s ER I d(s)::; t} 

and d(t) = inf{s ER It::; e(s)}. 

THEOREM 4.4. The pair (e,5) is a T-adjunction on C if and only if there exists for every 

h E Rd an adjunction (eh,dh) on R such that for FE C 

5(F)(:c) = sup dh(F(z - h)) 
hERd 

and e(F)(:c) = inf eh(F(z + h)). 
hERd 

(4.15) 

PROOF. (a) if: Let (eh, dh) be an adjunction on R for every h E Rd, and let 5, e be defined 

by (4.15). It is clear that e,5 are T-invariant. We prove that 

for all F, G E C: 

5(F)::; G ~ F::; e(G) 

5(F)::; G ~ sup dh(F(z - h)) ::; G(:c) 
hERd 

~ Vh E Rd, dh(F(z - h)) ::; G(:c) 

~ Vh E Rd, F(z - h)::; eh(G(z)) 

~ Vh E Rd, F(:c)::; eh(G(z + h)) 

~ F::; e(G). 

(b) only if: We only have to prove that any T-dilation is of the form (4.15). Let 5 be a 

T-dilation and define dh: R-+ R by 

dh(t) = 5(/o,t)(h). 



Then 

dh(supti) = 5(/o,sup·eJt;)(h) = 5(supfo,t;)(h) = sup(5(fo,t;)(h)) = supdh(t3), 
jEJ ' jEJ jEJ jEJ 

hence dh is a dilation on R. From the observation that any F E £ can be written as 

we get 

F = sup fy,F(y)' 
yERd 

5(F)(z) = o( sup fy,F(y))(z) = 5( sup fy-a:,F(y))(o) = o( sup f-h,F(a:-h))(o) 
yERd yERd hERd 

= sup (oU-h,F(a:-h))(o)) = sup (o(fo,F(a:-h))(h)) = sup dh(F(z - h)).11 
hERd hERd hERd 
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REMAR.K 4.2. We can shorten the proof given above considerably by using the results of 

Subsection 2.4, in particular Proposition 2.10. This result says that o can be written as 

o(F)(z) = v Oa:,y(F(y)), 
yERd 

where every Da:,y is a dilation on R. Now the spatial translation-invariance implies that 

5a:,y = Da:-y,O• Substitution of dh = oh,O yields the result. 

If we choose dh(t) = t + G(h), where G E £, then o(F) = FEB G and we are back in the 

translation-invariant case considered in Subsection 4.3.1. Note that o given by (4.15) is 

invariant under ro,v ( v E R) if and only if 

dh(t + v) = dh(t) + v, t, v E R, 

which yields that 

dh(t) = t + G(h), t ER, 

where G(h) = dh(O). 

If we choose dh(t) = t · G(h), where G maps Rd into R+, then we end up with 

multiplicative structuring functions: note however that here negative grey-levels are also 

allowed, whereas they had to be positive in Subsection 4.3.2. 
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FIGURE 1. Dilation and erosion of a set X by a structuring element B. 
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c) 

.a 

FIGURE 3. Dilation a.nd erosion invariant under rotations and scalar multiplications: 

(a) a set X, a structuring element B, and refi.ected one B; (b) X EBB = U{B:i: I z E X}; 

(c) X e B = (Xc EB fJy. 

FIGURE 4. Polar grid ma.de of points p[m,n] having polar cot:rdinates (rm,n 2;), where 

r = v'2 and s = 8 . . 




