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Abstract

We present a novel algebraic combinatorial view on low-rank matrix completion based on
studying relations between a few entries with tools from algebraic geometry and matroid
theory. The intrinsic locality of the approach allows for the treatment of single entries
in a closed theoretical and practical framework. More specifically, apart from introducing
an algebraic combinatorial theory of low-rank matrix completion, we present probability-
one algorithms to decide whether a particular entry of the matrix can be completed. We
also describe methods to complete that entry from a few others, and to estimate the error
which is incurred by any method completing that entry. Furthermore, we show how known
results on matrix completion and their sampling assumptions can be related to our new
perspective and interpreted in terms of a completability phase transition.1
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1. Introduction

Matrix completion is the task to reconstruct (to “complete”) matrices, given a subset of
entries at known positions. It occurs naturally in many practically relevant problems, such
as missing feature imputation, multi-task learning (Argyriou et al., 2008), transductive
learning (Goldberg et al., 2010), or collaborative filtering and link prediction (Srebro et al.,
2005; Acar et al., 2009; Menon and Elkan, 2011).

For example, in the “NetFlix problem”, the rows of the matrix correspond to users, the
columns correspond to movies, and the entries correspond to the rating of a movie by a user.
Predicting how one specific user will rate one specific movie then reduces to completing a
single unobserved entry from the observed ratings.

For arbitrarily chosen position (i, j), the primary questions are:

• Is it possible to reconstruct the entry (i, j)?

• How many possible completions are there for the entry (i, j)?

• What is the value of the entry (i, j)?

• How accurately can one estimate the entry (i, j)?

In this paper, we answer these questions algorithmically under the common low-rank as-
sumption - that is, under the model assumption (or approximation) that there is an under-
lying complete matrix of some low rank r from which the partial observations arise. Our
algorithms are the first in the low-rank regime that provide information about single entries.
They adapt to the combinatorial structure of the observations in that, if it is possible, the
reconstruction process can be carried out using much less than the full set of observations.
We validate our algorithms on real data. We also identify combinatorial features of the
low-rank completion problem. This then allows us to study low-rank matrix completion via
tools from, e.g., graph theory.

1.1 Results

Here is a preview of the results and themes of this paper, including the answers to the main
questions.

1.1.1 Is it possible to reconstruct the entry (i, j)?

We show that whether the entry (i, j) is completable depends, with probability one for any
continuous sampling regime, only on the positions of the observations and the position (i, j)
that we would like to reconstruct (Theorem 10). The proof is explicit and easily converted
into an exact (probability one) algorithm for computing the set of completable positions
(Algorithm 1).

1.1.2 How many possible completions are there for the entry (i, j)?

Whether the entry at position (i, j) is uniquely completable from the observations, or, more
generally, how many completions there are also depends, with probability one, only on
the positions of the observed entries and (i, j) (Theorem 17). We also give an efficient
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(randomized probability one) algorithm (Algorithm 1) that verifies a sufficient condition
for every unobserved entry to be uniquely completable.

1.1.3 What is the value of the entry (i, j)?

To reconstruct the missing entries, we introduce a general scheme based on finding polyno-
mial relations between the observations and one unobserved one at position (i, j) (Algorithm
5). For rank one matrices (Algorithm 6), and, in any rank, observation patterns with a spe-
cial structure (Algorithm 4) that allows “solving minor by minor”, we instantiate the scheme
completely and efficiently.

Since, for a specific (i, j), the polynomials needed can be very sparse, our approach has
the property that it adapts to the combinatorial structure of the observed positions. To our
knowledge, other algorithms for low-rank matrix completion do not have this property.

1.1.4 How accurately can one estimate entry (i, j)?

Our completion algorithms separate out finding the relevant polynomial relations from
solving them. When there is more than one relation, we can use them as different estimates
for the missing entry, allowing for estimation in the noisy setting (Algorithm 5). Because
the polynomials are independent of specific observations, the same techniques yield a priori
estimates of the variance of our estimators.

1.1.5 Combinatorics of matrix completion

Section 6 contains a detailed analysis of whether an entry (i, j) is completable in terms of a
bipartite graph encoding the combinatorics of the observed positions. We obtain necessary
(Theorem 38) and sufficient (Proposition 42) conditions for local completability, which are
sharp in the sense that our local algorithms apply when they are met. We then relate the
properties we find to standard graph-theoretic concepts such as edge-connectivity and cores.
As an application, we determine a binomial sampling density that is sufficient for solving
minor-by-minor nearly exactly via a random graph argument.

1.1.6 Experiments

Section 7 validates our algorithms on the Movie Lens data set and shows that the struc-
tural features identified by our theories predict completability and completability phase
transitions in practice.

1.2 Tools and themes

Underlying our results are a new view of low-rank matrix completion based on algebraic
geometry. Here are some of the key ideas.

1.2.1 Using the local-to-global principle

Our starting point is that the set of rank r, (m×n)-matrices carries the additional structure
of an irreducible algebraic variety (see Section 2.1). Additionally, the observation process is
a polynomial map. The key feature of this setup is that it gives us access to fundamental
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algebraic-geometric “local-to-global” results (see Appendix A) that assert the observation
process will exhibit a prototypical behavior : the answers to the main questions will be the
same for almost all low-rank matrices, so they are essentially properties of the rank and
observation map. This lets us study the main questions in terms of observed and unobserved
positions rather than specific partial matrices.

On the other hand, the same structural results show we can certify that properties
like completability hold via single examples. We exploit this to replace very complex basis
eliminations with fast algorithms based on numerical linear algebra.

1.2.2 Finding relations among entries using an ideal

Another fundamental aspect of algebraic sets are characterized exactly by the vanishing
ideal of polynomials that evaluate to zero on them. For matrix completion, the meaning is:
every polynomial relation between the observations and a specific position (i, j) is generated
by a finite set of polynomials we can in principle identify (See Section 5).

1.2.3 Connecting geometry to combinatorics using matroids

Our last major ingredient is the use of the Jacobian of the observation map, evaluated
at a “generic point”. The independence/dependence relation among its rows is invariant
(with matrix-sampling probability one) over the set of rank r matrices that characterizes
whether a position (i, j) is completable. Considering the subsets of independent rows as
simply subsets of a finite set, we obtain a linear matroid characterizing completability. This
perspective allows access to combinatorial tools of matroid theory, enabling the analysis in
Section 6.

1.3 Context and novelty

Low-rank matrix completion has received a great deal of attention from the community.
Broadly speaking, two main approaches have been developed: convex relaxations of the
rank constraints (e.g., Candès and Recht, 2009; Candès and Tao, 2010; Negahban and
Wainwright, 2011; Salakhutdinov and Srebro, 2010; Negahban and Wainwright, 2012; Foygel
and Srebro, 2011; Srebro and Shraibman, 2005); and spectral methods (e.g., Keshavan et al.,
2010; Meka et al., 2009). Both of these (see Candès and Tao, 2010; Keshavan et al., 2010)
yield, in the noiseless case, optimal sample complexity bounds (in terms of the number
of positions uniformly sampled) for exact reconstruction of an underlying matrix meeting
certain analytic assumptions. All the prior work of which we are aware concentrates on:
(A) sets of observed positions sampled from some known distribution; (B) completing all
the unobserved entries. The results here, by contrast, apply specifically to fixed sets of
observations and provide information about any unobserved position (i, j).

To point (A), there are three notable exceptions: Singer and Cucuringu (2010) discuss a
mathematical analogy to combinatorial rigidity, studying which fixed observation patterns
allow unique and stable completions; their work is to a large part conjectural but exposes
the connection to graph combinatorics and anticipates some of our theoretical results. Lee
and Shraibman (2013) study completion guarantees for fixed observation patterns with
tools inspired by and related to the nuclear norm. Bhojanapalli and Jain (2014) showed
a sufficient condition for exact recovery by nuclear norm minimization when the bipartite
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graph corresponding to the observed positions has a large spectral gap under a strong
incoherence assumption.

Regarding point (B) more specifically, all the prior work on low-rank matrix completion
from noisy observations concentrates on: (i) estimating every missing entry; (ii) denoising
every observed entry; and (iii) minimizing the MSE over the whole matrix. Our approach
allows, for the first time, to construct single-entry estimators that minimize the variance
of the entry under consideration; we have recently shown how to do this efficiently in rank
1 (Kiraly and Theran, 2013).

1.4 Organization

The sequel is structured as follows: Section 2 introduces the background material we need;
Sections 3 and 4 develop our algebraic-combinatorial theory and derive algorithms for deter-
mining when an entry is completable; Section 5 formulates the reconstruction process itself
algebraically; Section 6 contains a combinatorial analysis of the problem; finally Section 7
validates our approach on real data. The Appendix collects some technical results required
in the proofs of the main theorems.

2. Background and Setup

In this section, we introduce two essential objects, the set of low-rank matricesM(m×n, r)
and the set of observed positions E. We also define the concept of genericity.

2.1 The determinantal variety

First, we set up basic notation. A matrix is denoted by upper-case bold character like A.
We denote by [n] the set of integers {1, 2, . . . , n}. AI,J denotes the submatrix of an m× n
matrix A specified by the sets of indices I ⊆ [m] and J ⊆ [n]. The (i, j) element of a matrix
A is denoted by Aij . The cardinality of a set I is denoted by |I|.

Now we define the set of matrices of rank at most r.

Definition 1 The set of all complex (m× n)-matrices of rank r or less will be denoted by
M(m × n, r) = {A ∈ Cm×n : rank(A) ≤ r}. We will always assume that r ≤ m ≤ n; by
transposing the matrices, this is no loss of generality.

Some basic properties ofM(m× n, r) are summarized in the following proposition.

Proposition 2 (Properties of the determinantal variety) The following hold:

(i) M(m × n, r) is the image of the map Υ : (U,V) 7→ UV⊤, where U ∈ Cm×r and
V ∈ Cn×r, and is therefore irreducible.

(ii) M(m× n, r) has dimension

dr(m,n) := dimM(m× n, r) =

{
r(m+ n− r) if m ≥ r and n ≥ r

mn otherwise

1395
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(iii) Every (r + 1)× (r + 1) minor of a matrix inM(m× n, r) is zero, namely,

det(AI,J) = 0, ∀I ⊆ [m], J ⊆ [n],

where |I| = r + 1, |J | = r + 1, and A ∈M(m× n, r).

(iv) The vanishing ideal ofM(m× n, r) is generated by the vanishing of the minors from
part 3.

Proof (i) The existence of the singular-value decomposition imply thatM(m×n, r) is the
surjective image of Cr(m+n) under the algebraic map Υ.

(ii) This follows from (i) and the uniqueness of the singular value decomposition, or
Bruns and Vetter (1988, section 1.C, Proposition 1.1).

(iii) The rank of a matrix equals the order of the largest non-vanishing minor.
(iv) By Bruns and Vetter (1988, Theorem 2.10, Remark 2.12, and Corollary 5.17f), the

ideal generated by the r×r minors is prime. Since it vanishes on the irreducibleM(m×n, r),
it is the vanishing ideal.

The set of observed positions is denoted by E and can be viewed as a bipartite graph as
follows.

Definition 3 Let E := [m] × [n]. The set containing the positions of observed entries is
denoted by E ⊆ E. We define the bipartite graph G(E) = (V,W,E) with vertices V = [m]
corresponding to rows and vertices W = [n] corresponding to columns. We call the m × n
adjacency matrix M(E) of the bipartite graph G(E) a mask. The map

Ω : A 7→ (Aij)(i,j)∈E ,

where A ∈M(m× n, r), is called a masking (in rank r).

Note that the set of observed positions E, the adjacency matrix M, and the map Ω
can be used interchangeably. For example, we denote by M(Ω) the adjacency matrix
corresponding to the map Ω, and by E(M) the set of positions specified by M, and so on.
Figure 1 shows two bipartite graphs G1 and G2 corresponding to the following two masks:

M1 =



1 0 1
1 1 0
1 0 0


 , M2 =



1 0 1
0 1 0
1 0 1


 .

2.2 The Jacobian of the masking operator

Informally, the question we are going to address is:

Which entries of A are (uniquely) reconstructable, given the masking Ω(A)?

The answer will depend on the interaction between the algebraic structure ofM(m× n, r)
and the combinatorial structure of E. The main tool we use to study this is the Jacobian
of the map Υ, since at smooth points, we can obtain information about the dimension of
the pre-image Ω−1(A) from its rank.

1396



The Algebraic Combinatorial Approach for Low-Rank Matrix Completion

rows columns

G
1

rows columns

G
2

Figure 1: Two bipartite graphcs G1 and G2 corresponding to the masks M1 and M2, re-
spectively. Every non-edge corresponds to an unobserved entry.

Definition 4 We denote by J the Jacobian of the map Υ : U,V 7→ A = UV⊤. More
specifically, the Jacobian of the map from U and V to Aij can be written as follows:

(
∂Aij

∂u⊤
1

, . . . ,
∂Aij

∂u⊤
m

,
∂Aij

∂v⊤
1

, . . . ,
∂Aij

∂v⊤
n

)
=

(
0 · · · v⊤

j · · · 0 0 · · · u⊤
i · · · 0

)

↑ ↑
Derivative wrt ui Derivative wrt vj

(1)

where u⊤
i is the ith row vector of U and v⊤

j is the jth row vector of V. Stacking the above
row vectors for (i, j) ∈ [m]× [n], we can write the Jacobian J(U,V) as an mn× r(m+ n)
matrix as follows:

J(U,V) =




Im ⊗ v⊤
1

Im ⊗ v⊤
2

...
Im ⊗ v⊤

n

In ⊗U


 , (2)

where ⊗ denotes the Kronecker product. Here the rows of J correspond to the entries of A
in the column major order.

Lemma 5 Every matrix S ∈ Cm×n whose vectorization vec(S) lies in the left null space of
J(U,V) satisfies

U⊤S = 0, SV = 0,

and any S satisfying the above lies in the left null space of J(U,V). In addition, the
dimension of the null space is (m− r)(n− r) if U and V have full column rank r.

Proof Let P be the mn×mn permutation matrix defined by

P vec(X) = vec(X⊤).
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Note that P⊤P = Imn, and

P



Im ⊗ v⊤

1
...

Im ⊗ v⊤
n


 = Im ⊗V.

Thus we have

vec⊤(S)J =
(
vec⊤(S)P⊤ (Im ⊗V) , vec⊤(S) (In ⊗U)

)

=
(
vec⊤(V⊤S⊤), vec⊤(U⊤S)

)
,

which is what we wanted. To show the last part of the lemma, let U⊥ ∈ Cm×(m−r) and
V⊥ ∈ Cn×(n−r) be any basis of the orthogonal complement space of U and V, respectively.
Since the null space can be parametrized as S = U⊥S

′V⊤
⊥ by S′ ∈ C(m−r)×(n−r), and this

parametrization is one-to-one, we see that the dimension of the null space is (m−r)(n−r).

Now we define the Jacobian corresponding to the set of observed positions E.

Definition 6 For a position (k, ℓ), we define J(k,ℓ) to be the single row of J corresponding
to the position (k, ℓ). Similarly, we define JE to be the submatrix of J consisting of rows
corresponding to the set of observed positions E. Due to the chain rule, JE is the Jacobian
of the map Ω ◦Υ.

2.3 Genericity

The pattern of zero and non-zero entries in (1) hints at a connection to purely combinatorial
structure. To make the connection precise, we introduce genericity.

Definition 7 We say a boolean statement P (X) holds for a generic X in irreducible alge-
braic variety X , if for any Hausdorff continuous measure µ on S, P (X) holds with probability
1.

These kinds of statements are sometimes called “generic properties,” and they are properties
of X , rather than any specific µ. The prototypical example of a generic property is where
X = Cn, p 6= 0 is a polynomial, and the statement P is “p(X) 6= 0.”

Here, we are usually concerned with the case X = M(m × n, r). Proposition 2 tells
us that m, n and r define M(m × n, r) completely. Assertions of the form “For generic
X ∈ M(m × n, r), P (X) depends only on (t1, t2, . . .)” mean P (X) is a generic statement
for all M(m× n, r) with the parameters ti fixed.

Although showing whether some statement P holds generically might seem hard, we are
interested in P defined by polynomials. In this case, results in Appendix A imply that it is
enough to show that either P holds: (a) on an open subset of X in the metric topology; or
(b) almost surely, with respect to a Hausdorff continuous measure.

As a first step, and to illustrate the “generic philosophy” we show that the generic
behavior of the Jacobian JE(U,V) is a property of E. We first start by justifying the
definition via (U,V) (as opposed to A).
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Lemma 8 For all E ⊂ E and A ∈ M(m × n, r) generic, with A = Υ(U,V), and U and
V generic, the rank of JE is independent of A, U, and V.

Proof We first consider the composed map Ω◦Υ. This is a polynomial map in the entries of
U and V, so its critical points (at which the differential JE attains less than its maximum
rank) is an algebraic subset of Cr(m+n). The “Semialgebraic Sard Theorem” (Kurdyka
et al., 2000, Theorems 3.1, 4.1) then implies that the set of critical points is, in fact, a
proper algebraic subset of Cr(m+n).

So far, we have proved that the rank of JE is independent of U and V. However, U and
V are not uniquely determined by A. To reach the stronger conclusion, we first observe that
a generic A ∈M(m× n, r) is a regular value of Υ, again by Semialgebraic Sard. Thus, the
set of (U,V) such that Υ(U,V) and Ω◦Υ(U,V) are both regular values is the intersection
of two dense sets in Cr(m+n).

3. Finite Completability

This section is devoted to the question “Is it possible to reconstruct the entry (i, j)?”. We
will show that under mild assumptions, the answer depends only on the position (i, j), the
observed positions, and the rank, but not the observed entries. The main idea behind this
result is relating reconstructability to the rows of the Jacobian J, and their rank, which can
be shown to be independent of the actual entries for almost all low-rank matrices. Therefore,
we can later separate the question of reconstructability from the actual reconstruction
process.

3.1 Finite completability as a property of the positions

We show how to predict whether the entry at a specific position (k, ℓ) will be reconstructable
from a specific set of positions E ⊂ E . For the rest of this section, we fix the parameters r,
m and n, and denote by E a set of observed positions. The symbol K will denote either of
the real numbers R or the complex numbers C.

We start by precisely defining what it means for one set of entries to imply the im-
putability of another entry.

Definition 9 Let E ⊂ E be a set of observed positions and A be a rank r true matrix. The
entry Akℓ is finitely completable in rank r from the observed set of entries {Aij : (i, j) ∈ E}
if the entry Akℓ can take only finitely many values when fixing Ω(A).

There are two subtleties here: the first is that, even if there is an infinity of possible
completions for the whole matrix A, it is possible that some specific Akℓ takes on only
finitely many values; the question of whether the entry Akℓ at position (k, ℓ) is finitely
completable may have different answers for different A. The theoretical results in this
section take care of both issues.

Theorem 10 Let E ⊂ E be a set of positions, (k, ℓ) ∈ E \E be arbitrary, and let A ∈ Km×n

be a generic, (m× n)-matrix of rank r. Whether the entry Akℓ at position (k, ℓ) is finitely
completable depends only on the position (k, ℓ), the true rank r, and the observed positions
E (and not on A, m, n, or K).
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This lets us talk about the finite completability of positions instead of entries.

Definition 11 Let E ⊂ E be a set of observed positions, and (k, ℓ) ∈ E \ E. We say that
the position (k, ℓ) is finitely completable from E in rank r if, for generic A, the entry Akℓ

is finitely completable from Ω(A). The rank r finitely completable closure clr(E) is the set
of positions generically finitely completable from E.

The main tool we use to prove Theorem 10 is the Jacobian matrix JE . For it, we obtain

Theorem 12 Let E ⊂ E and let A be a generic, rank r matrix. Then

clr(E) = {(k, ℓ) ∈ E : J{(k,ℓ)} ∈ rowspanJE}.

One implication of Theorem 12 is that linear independence of subsets of rows of JE is also
a generic property. (In fact, the proof in Section 3.3 goes in the other direction.) The
combinatorial object that captures this independence is a matroid.

Definition 13 Let A be a generic rank r matrix. The rank r determinantal matroid is the
linear matroid (E , rankr), with rank function rankr(E) = rankJE.

Note that due to Lemma 8, rankJE is independent of A as long as we are concerned with
generic matrices and the rank function is well defined.

In the language of matroids, Theorem 12 says that, generically, the finitely completable
closure is equal to the matroid closure in the rank r determinantal matroid. This perspective
will prove profitable when we consider entry-by-entry algorithms for completion in Section
5 and combinatorial conditions related to finite completability in Section 6.

3.2 Computing the finite closure

We describe, in pseudo-code, Algorithm 1 which computes the finite closure of E. An
algorithm for testing whether a single entry (k, ℓ) is finitely completable is easily obtained
by only testing the entry (k, ℓ) in step 4. The correctness of Algorithm 1 follows from
Theorem 12 and the fact that, if we sample U and V from any continuous density, with
probability one, we obtain generic U and V2.

Remark 14 For clarity and practicality, we have presented Algorithm 1 as a numerical
routine based on SVD. To analyze it in the RAM model, instead of sampling U and V from
a continuous density, we sample the entries uniformly from a finite field Zp of prime order
p ≈ (n + m)2. With this modification Algorithm 1 becomes strongly polynomial time via,
e.g., Gaussian elimination. Using the main results of Schwartz (1980), one can show that
this finite field variant computes the generic rank with probability 1−O(1/(n+m)).

3.3 Proofs

3.3.1 Proof of Theorem 12

Let (i, j) ∈ E \ E. Factor the map Ω ◦Υ into

Cr(m+n) Υ
−→M(m× n, r)

f
−→ C|E|+1 g

−→ C|E|

2. If we discretize the continuous density, then “probability one” becomes “with high probability”.
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Algorithm 1 Completable closure.
Input: A set E ⊂ E of observed positions.
Output: The rank r completable closure clr(E).

1: Sample U ∈ Rm×r,V ∈ Rn×r from a continuous density.
2: Compute the Jacobian matrix JE(U,V).
3: Compute the singular value decomposition of JE(U,V). Let VE be the right singular

vectors corresponding to singular values greater than 10−12.
4: For each e ∈ E\E, compute the projection of J{e}(U,V) ∈ Rr(m+n) on the subspace

spanned by VE . Let the Euclidean norm of the residual of the projection be re; let
re = 0 for e ∈ E.

5: Return clr(E) := {(i, j) ∈ E ; re ≤ 10−8}.

so that f is the projection of Υ(U,V) onto the set of entries at positions E ∪ {(i, j)} and g
then projects out the coordinate corresponding to (i, j). Lemma 8 implies that, since (U,V)
is generic, all the intermediate image points are smooth. The constant rank theorem then
implies:

1. We can find open neighborhoods f(M(m×n, r)) ⊃M ∋ f(Υ(U,V)) and g◦f(M(m×
n, r)) ⊃ N ∋ g(f(Υ(U,V))) such that the restriction of g to M is smooth and
g−1(N) ⊂M .

2. We have
dim

(
g−1(N)

)
+ dimN = dimM.

Since by using smoothness again

dimN = dim (g(f(Υ(U,V)))) = rank (JE(U,V)) ,

and

dimM = dim (f(Υ(U,V))) = rank
(
JE∪{i,j}(U,V)

)
,

dim
(
g−1(N)

)
= 0, that is, the position (i, j) is finitely completable from E and Υ(U,V),

if and only if
rank (JE(U,V)) = rank

(
JE∪{i,j}(U,V)

)
. (3)

Equation (3) is just the assertion that J{(i,j)} ∈ rowspanJE .
By Lemma 8, Equation (3) is a generic statement, independent of A, U and V. Because

the rows of JE and J{(i,j}) have non-zero columns only at positions depending on E and
(i, j), whether (3) holds does not depend on m and n (which are, by hypothesis, large
enough).

Finally, statement that finite completability is the same for K = R and K = C follows
from Theorem 68 in the appendix.

3.3.2 Proof of Theorem 10

The theorem follows directly from Theorem 12 and the definition of closure.
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3.4 Discussion

The kernel of JE spans the space of infinitesimal deformations of (U,V) that preserve Ω ◦
Υ(U,V). Because generic points are smooth, Milnor (1968, Curve Selection Lemma) implies
that every infinitesimal deformation can be integrated to a finite deformation. Conversely
(this is the harder direction) every curve in (Ω◦Υ)−1(A) through (U,V) has, as its tangent
vector a non-zero infinitesimal deformation. At non-generic points, this equivalence does
not hold, so the arguments here require genericity and smoothness in an essential way.

The finite identifiability statements in this section are instances of a more general phe-
nomenon, which is explored in Király et al. (2013). The results there imply similar identifi-
ability results, such as Bamber (1985); Allman et al. (2009); Hsu et al. (2012); Mahdi et al.
(2014); Meshkat et al. (2014), that use criteria based on a Jacobian, and also show that our
use of the “Υ” parameterization ofM(m× n, r) is not essential.

Another connection is that, since permuting the rows and columns of a matrix preserves
its rank, we get:

Corollary 15 The rank function rankr(·) of the determinantal matroid depends only on
the graph isomorphism type of the graph associated with E.

In Section 6, we consider completability as a property of graphs. This relies on Corollary
15.

4. Unique Completability

In this section, we will address the question “How many possible completions are there for
the entry (i, j)?”. In Section 3.1, it was shown that whether the entry (i, j) is completable
depends (under mild assumptions) only on the position (i, j), the observed entries, and the
rank. In this section, we show an analogue result that the same holds for the number of
possible completions as well. Whether there is exactly one solution is of the most practical
relevance, and we give a sufficient condition for unique completability.

4.1 Unique completability as a property of the positions

We start by defining what it means for one entry to be uniquely completable:

Definition 16 Let E ⊂ E be a set of observed positions and A be a rank r true matrix.
The entry Akℓ at position (k, ℓ) ∈ E \ E is called uniquely completable from the entries
Aij , (i, j) ∈ E, if Akℓ is uniquely determined by the Aij , (i, j) ∈ E.

The main theoretical statement for unique completability is an analogue to the main
theorem for finite completability; again, whether an entry is uniquely completable, depends
only on the positions of the observations, assuming the true matrix is generic.

Theorem 17 Let A ∈ Cm×n be a generic (m×n)-matrix of rank r, and consider a masking
where the entries Aij with (i, j) ∈ E ⊆ [m] × [n] are observed. Let (k, ℓ) ∈ [m] × [n] be
arbitrary. Then, whether Akℓ is uniquely completable from the Aij , (i, j) ∈ E depends only
on the position (k, ℓ), the true rank r and the observed positions E (and not on A, m or
n).
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The proof of Theorem 17 is a bit more technical than its finite completability analogue,
Theorem 10. The main problem is that the constant rank theorem cannot be applied
since the latter is a local statement only and does not make say anything about the global
number of solutions. The proper tools to overcome that are found in algebraic geometry;
a complete proof is deferred to Section 4.4. The proof we give also shows that there is
an analog statement for the total number of possible completions, even if there is more
than one. Since the number of completions over the reals can potentially change even with
generic A, the result is stated only over the complex numbers.

Theorem 17 shows that it makes sense to talk about positions instead of entries that
are uniquely completable, in analogy to the finite case; moreover, it shows that there is a
biggest such set:

Definition 18 Let E ⊆ [m]× [n] be the set of observed positions, and let (k, ℓ) ∈ [m]× [n]
be a position. We will call (k, ℓ) uniquely completable if Akℓ is uniquely completable from
Aij , (i, j) ∈ E for a generic matrix A ∈ Km×n of rank r.

Furthermore, we will denote by uclr(E) the inclusion-wise maximal set of positions such
that every index (k, ℓ) ∈ uclr(E) is uniquely completable from E. We will call the uclr(E)
unique closure of E in rank r.

As for finite completability, we can check generic unique completability of a position
by testing a random A. However, we don’t have an analogue for the Jacobian JE that
exactly characterizes unique completability. One could, of course, use general Gröbner
basis methods, but these are computationally impractical. In the next section, we describe
an easy-to-check sufficient condition for unique completability in terms of the Jacobian.

4.2 Characterization by Jacobian stresses

As for the case of finite completability, the Jacobian of the masking can be used to provide
algorithmic criteria to determine whether an entry is uniquely completable. The char-
acterizing objects will be the so-called stresses, dual objects to the column space of the
Jacobian. Intuitively, they correspond to infinitesimal dual deformations. Singer and Cu-
curingu (2010, Equation 3.7) have defined a similar concept which is closely related to the
equilibrium stresses of Connelly (2005, Section 1.3).

Mathematically, stresses are left kernels of the Jacobian:

Definition 19 A rank-r stress of the matrix A = UV⊤ is a matrix S ∈ Cm×n whose
vectorization is in the left kernel of the Jacobian J(U,V); that is,

vecS · J(U,V) = 0.

Let E ⊆ [m]× [n] be a set of observed entries. A stress S such that Sij = 0 for all (ij) 6∈ E
is called E-stress of A.

The C-vector space of E-stresses of A will be denoted by ΨA(E), noting that it does not
depend on the choice of U,V.

Note that E-stresses are, after vectorization and removing zeroes, in the left kernel of
the partial Jacobian JE .
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The central property of the stress which allows to test for unique completability is its
rank (as a matrix in Cm×n):

Definition 20 Let E ⊆ [m] × [n] be as set of observed entries. We define the maximal
E-stress rank of A in rank r to be

ρA(E) = max
S∈ΨA(E)

rankS.

As for the rank of the Jacobian, the dependence on A can be removed for generic
matrices:

Proposition 21 Let A be a generic (m × n)-matrix of rank r. The maximal stress rank
ρA(E) depends only on E and r. In particular, ρA(E) does not depend on the entries of A.

Proof Let A = Υ(U,V). By Cramer’s rule, if S ∈ ΨA(E), the entries of S are rational
functions of the entries of U and V. After clearing denominators, the proof is similar to
that of Lemma 8.

We can therefore just talk about the generic E-stress rank, omitting again the depen-
dence on the entries A:

Definition 22 Let E ⊆ [m] × [n] be as set of observed entries. We define the generic
E-stress rank ρ(E) to be equal to ρA(E) for generic A or rank r.

Our main theorem states that if the generic E-stress rank is maximal for finitely com-
pletable E, then E is also uniquely completable:

Theorem 23 Let E ⊆ E. If the generic E-stress rank in rank r is ρ(E) ≥ min(m,n)− r,
then clr(E) = uclr(E).

We defer the somewhat technical proof to Section 4.4.

4.3 Computing the generic stress rank

Theorem 23 implies that the generic stress rank ρ(E) can be used to certify unique com-
pletability of an observation pattern E. We explicitly describe the necessary computational
steps in Algorithm 2.

As the algorithm for finite completion, it uses a randomized strategy which allows to
compute over the real numbers instead of a field of rational functions by substituting a
generic entry. Steps 1 and the beginning of step 2 are thus analogous as in Algorithm 1.
In step 2, the completion matrix JE is computed, evaluated at the matrices (U,V). In 3,
an evaluated stress S is obtained in the left kernel of JE . Its rank, which is computed in
step 5, will be the generic stress rank. Correctness (with probability one) is implied by
Proposition 21. Also, similar to Algorithm 1, Algorithm 2 is a randomized algorithm for
which considerations analogue to those in Remark 14 hold.
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Algorithm 2 Generic stress rank.
Input: Observed positions E ⊆ E . Output: The generic stress rank ρ(E) of E in rank r.

1: Randomly sample U ∈ Rm×r,V ∈ Rn×r.
2: Compute JE(U,V) with rows J(i,j) := (ei ⊗ v⊤

j , ej ⊗ u⊤
i ),

3: where ui is the i-th row of U, and vj the j-th row of V.
4: Compute a random vector S ∈ R|E| in the left kernel of JE . Reformat S as (m × n)

matrix, where entries with index not in E are zero, and the remaining indices correspond
to the row positions in JE .

5: Output ρ(E) = rank(S).

4.4 Proofs

4.4.1 Proof of Theorem 17

Proof Consider the algebraic map

g : (Akℓ;Aij , (i, j) ∈ E) 7→ (Aij , (i, j) ∈ E)

By Proposition 58 in the appendix, Ω is a surjective algebraic map of irreducible varieties.
Therefore, the generic fiber cardinality

∣∣g−1 ◦ g(x)
∣∣ for generic x ∈ X does not depend on

x by Corollary 62. In particular, whether 1 =
∣∣g−1 ◦ g(x)

∣∣ or not.

4.4.2 Proof of Theorem 23

This sections contains the proof for Theorem 23 and some related results.

Lemma 24 Let S ∈ Cm×n be a stress w.r.t. m,n, r,A = UV⊤. Then,

U⊤ · S = 0 and S ·V = 0

(where 0 denotes the zero matrix of the correct size).

Proof Since S is an stress, it holds by definition that vecS · J(U,V) = 0. The statement
then follows from Lemma 5.

Lemma 24 immediately implies a rank inequality:

Corollary 25 Let E ⊆ [m] × [n], assume the true matrix has full rank r. Then, it holds
that ρ(E) ≤ min(m,n)− r

Proof Keep the notations of Lemma 24. The statement Lemma 24 implies that for arbitrary
S, one has S ·V = 0. Since V is a matrix of full rank r, this implies that the null space
dimension of S is at least r, which is equivalent to the statement by the rank-nullity theorem.

In keeping with our development of finite completability in terms of JE , we have defined
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stresses in a way that might depend on the coordinates (U,V). In the proof of Theorem
23, we will check that this can be removed when necessary. An alternative but probably
less concise approach would be to express the matrix JE directly in terms of the entries A.

4.4.3 Proof of Theorem 23

We start with a general statement that stresses are invariant over the pre-image (Ω ◦
Υ)−1(Ω(A)), loosely inspired by the work of Connelly (2005).

Lemma 26 Let A be generic, with Υ(U,V) = A, E ⊂ E, and S an E-stress. Then S is
also an E-stress for any (U′,V′) with Ω ◦Υ(U′,V′) = Ω(A)

Proof Let (U′,V′) ∈ (Ω ◦ Υ)−1(Ω ◦ Υ(U,V)) be a point different from (U,V). Because
Ω(A) is a regular value of the composed map Ω◦Υ, the Inverse Function Theorem provides
diffeomorphic neighborhoods M ∋ (U,V) and N ∋ (U′,V′); let f : M → N be the
diffeomorphism.

By construction, df is non-singular. The chain rule then implies that (JE)(U′,V′) =
(JE)(U,V) · df

−1, so the left kernels of both Jacobians are the same. The definition of stress
as a vector in the left kernel then proves the lemma.

Proof [of Theorem 23] It is clear that clr(E) ⊇ uclr(E). Thus we show that clr(E) ⊆
uclr(E). By Lemma 26, S is a stress for any (U,V) that agrees with the observed entries
Ω(A) on the observed positions E. Then by Lemma 24, any such pair (U,V) must satisfy
U⊤ · S = 0 and S ·V. Since generically the stress has rank min(m,n)− r, these equations
determine the row and column spans of A. Once the row and column spans are fixed, any
row or column with at least r observed positions can be uniquely determined. On the other
hand, any row or column with fewer than r observed positions cannot be recovered (even if
the row or column span is known). Therefore we have clr(E) ⊆ uclr(E).

5. Local Completion

In this section, we connect our theoretical results to the process of reconstructing the missing
entries. In a nutshell, the idea is that a completable missing entry (i, j) ∈ E \ E is covered
by at least one so-called circuit in E∪{(i, j)}, to which we can associate circuit polynomials
which can be used to solve for Aij in terms of the observations, addressing the question
“What is the value of the entry (i, j)?”. Just as in theory where we could separate the
reconstructability from the reconstruction, we can obtain a quantitative version of this
separation by estimating the entry-wise reconstruction error without actually performing
the reconstruction, allowing to give an answer to “How accurately can one estimate the
entry (i, j)?”. We give general algorithms for arbitrary rank, and a closed-form solution for
rank one.

5.1 Circuits as rank certificates

We start with some concepts from matroid theory.
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Definition 27 A set of observed positions C ⊆ E is called a circuit of rank r if rankr(C) =
|C| − 1 and rankr(S) = |S| for all proper subsets S ( C. The graph G(C) is called circuit
graph of rank r.

A reformulation of Theorem 10, in terms of circuits is the following.

Theorem 28 The position (i, j) is finitely completable if and only if there is a circuit
C ⊂ E ∪ {(i, j)} with (i, j) ∈ C.

Proof See (Oxley, 2011, Lemma 1.4.3)

The connection to reconstructing missing entries is that every circuit comes with a unique
polynomial:

Theorem 29 Let C ⊆ E be a circuit in rank r, ΩC be the mask corresponding to C, and
A ∈ Cm×n. There is a unique, up to scalar multiplication, square-free polynomial θC such
that: θC(ΩC(A)) = 0 if and only if there is A′ ∈M(m× n, r) and ΩC(A) = ΩC(A

′).

Proof This follows indirectly from Theorem 1.1 in Dress and Lovász (1987), or from the
discussion in Section 5.2 of Király et al. (2013)

In other words, circuit polynomials minimally certify for the rank r condition being
fulfilled on the entries in C. The simplest example of a circuit is an (r + 1) × (r + 1)
rectangle in E . The associated polynomial is the determinant of an (r + 1)× (r + 1) minor
of A. Thus, Theorem 29 is a generalization of the linear algebra fact that a matrix is rank
r if and only if all (r + 1)-minors vanish.

Definition 30 We will call the polynomial θC from Theorem 29 a circuit polynomial asso-
ciated with the circuit C. Understanding that there are an infinity up to multiplication with
a scalar multiple, we will also talk about the circuit polynomial when that does not make a
difference.

Remark 31 The circuit polynomial can be interpreted algorithmically as follows: let C ⊆ E
be a circuit, assume all entries but one in C are observed, e.g., (k, ℓ) ∈ C is not observed
and E = C \ (k, ℓ) is observed. Then, θC(ΩC(A)) = θC(Akℓ,ΩE(A)) can be interpreted
as a polynomial in the one unknown Akℓ. That is, the circuit polynomial allows to solve
entry-wise for single missing entries.

Definition 32 Fix some set of observed entries E ⊆ E. A circuit C ⊆ E is called complet-
ing for the observations in E, or with respect to E, if |C ∩ E| ≥ |C| − 1.

5.2 Completion with circuit polynomials

The circuit properties inspire a general solution strategy. In general, Algorithm 3 is in-
effective, in the sense that Step 4 is unlikely to have a sub-exponential time algorithm in
the general case. However, there is a specific instance in which it is effective: when the
circuit C is always an (r+1)× (r+1) rectangle. In this case, the circuit polynomial is the
corresponding (r+1)× (r+1) minor. This means that enumerating all the circuits through
(i, j) is not necessary, because a minor is linear in the unknown entry Akℓ.
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Algorithm 3 Completion with circuits.
Input: A set E ⊂ E of observed positions.
Output: Estimates for the entries clr(E) \ E

1: repeat
2: Find an unobserved entry (k, ℓ) ∈ clr(E) \ E,
3: Find the set C = {C1, . . . , Ct} of all circuits (w.r.t. E) containing (k, ℓ).
4: Compute the circuit polynomials θCi

.
5: Substitute the entries {Aij : (i, j) ∈ E} into the θCi

to get a family of polynomials
in the variable Akℓ and find a solution Akℓ common to all of them.

6: E ← E ∪ (k, ℓ)
7: until E = clr(E).

A practical algorithm for computing the closure of a mask E and recovering the corre-
sponding entries based on (r+1)× (r+1) minors is given in Algorithm 4. In Step 5, N(j)
and N(i) denote the set of neighbors of vertices j ∈W and i ∈ V , respectively. In Step 10,
A+

I′,J ′ denotes the Moore-Penrose pseudoinverse of AI′,J ′ . Intuitively, the algorithm iterates
over missing edges and look if there is a (r + 1) × (r + 1) biclique in the union of current
set of edges Ek and (i, j). If such a biclique exists, then the edge (i, j) is added to Ek+1 so
that the edge is used in the next round. The iteration terminates when there is no more
edge to add.

Algorithm 4 MinorClosure((V,W,E), r)
Inputs: bipartite graph (V,W,E), rank r.
Outputs: completed matrix A and minor closure of E.

1: Let E0 ← E and k ← 0.
2: repeat
3: Ek+1 ← Ek

4: for each missing edge (i, j) in E\Ek do
5: Let I ← N(j) ⊆ V , J ← N(i) ⊆ W , where the neighbors are defined with

respect to graph (V,W,Ek).
6: E′

k ← I × J ∩ Ek.
7: (I ′, J ′)← FindAClique((I, J, E′

k), r, r).
8: if |I ′| > 0 and |J ′| > 0 then
9: Ek+1 ← Ek+1 ∪ (i, j).

10: Aij ← Ai,J ′A+
I′,J ′AI′,j .

11: end if
12: end for
13: k ← k + 1.
14: until Ek = Ek−1 or Ek = E
15: Return (A,Ek).

Note that Ek+1 is uniquely determined from Ek and the process is monotone and
bounded, i.e., Ek ⊆ Ek+1 ⊆ E . The first statement is true because the order of the it-
eration over missing edges in line 4 is irrelevant as we look if there is a (r + 1) × (r + 1)
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biclique in Ek ∪ (i, j) for each missing edge (i, j). Therefore, Algorithm 4 terminates with
either Ek = E or Ek ( E and the following definition is valid.

Definition 33 A set E ⊂ E is minor closable in rank r if Algorithm 4 reconstructs all
the entries in positions E \ E. Moreover, we say E is k-step minor closable in rank r, if
Algorithm 4 terminates with k steps, i.e., Ek = E in line 14.

Since each entry is uniquely determined when it is reconstructed, any minor closable set
is uniquely completable.

A crucial step in Algorithm 4 is FindAClique in line 7. The function should return
the indices of rows and columns, if an r × r biclique exists in subgraph (I, J, E′). This
can be achieved in various ways. Although the worst case complexity is O(|I|r|J |r), it can
be much more efficient in practice, because many vertices can be safely pruned due to the
fact that any r × r biclique may not contain vertices with degree less than r. An efficient
implementation that employs a row-wise recursion of this step, proposed by Takeaki Uno,
is presented in Appendix B.

We would like to note that Algorithm 3, as presented above, and all related algorithms
below, need the true matrix to be generic. Probabilities for this supposition to hold can be
backed out of from Remark 14.

5.3 Local completion

The circuit property can also be interpreted differently: instead of using multiple circuits
to complete many different entries, one can also think of concentrating on one single entry
and trying to reconstruct that as accurately as possible. Algorithm 5 describes a general
strategy on how to obtain estimates of single finitely or uniquely completable entries, from
noisy observations via local circuit completion.

Algorithm 5 Local completion/denoising of a single entry (k, ℓ).
Input: A set E ⊂ E of observed positions, the entry.
Output: Estimate for Akℓ

1: Find completing (w.r.t. E) circuits C1, . . . , CN containing (k, ℓ)
2: Compute the circuit polynomials θCi

, where the observed entries are substituted and
Akℓ is the only unknown

3: For all i, find all solutions a(i,j) of θCi
.

4: Return Akℓ = f(. . . , a(i,j), . . . ), where f is an appropriate averaging function

The idea in Algorithm 5 is to obtain many candidate solutions in step 3 and then trade
them off appropriately in step 4. If all circuit polynomials θCi

have degree one, there is only
one solution per polynomial, and f can be taken as the mean, or a weighted average that
minimizes some loss or a variance. If there are some circuit polynomial with higher degree,
then one can try to decide which solution is the right one - e.g., by clustering the a(i,j) and
rejecting all candidate solutions except the one which contains some a(i,j) for the highest
number of i, and then proceeding as in the degree one case. Also, one can imagine f being
adaptive, e.g. including Bayesian learning methods.
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For rank one, an closed explicit form is possible for the variance minimizing estimate, as
it was shown in Kiraly and Theran (2013). For arbitrary rank, a first-order approximation to
variance minimization can be employed to yield fast and competitive single-entry estimates;
see Blythe et al. (2014) for a derivation of variance minimization in higher rank, and Blythe
and Király (2015) for a practical adaptation of the algorithm to the context of athletic
performance prediction.

For illustration, we give a short overview of the crucial statements in the rank one case.
The proofs can be found in Kiraly and Theran (2013).

Theorem 34 The rank one circuit graphs are exactly the simple cycles (bipartite and thus
of even length). The corresponding circuit polynomials are all binomials of the form

θC =

L∏

ν=1

Aiνjν −
L∏

ν=1

Aiνjν+1
,

where L is an arbitrary number, i1, . . . , iL are arbitrary disjoint numbers, and j1, . . . , jL are
arbitrary disjoint numbers, with the convention that j1 = jL+1. The iν and jν do not need
to be disjoint from each other.

In particular, Theorem 34 implies that the circuit polynomials are all linear in every
occurring variable. Moreover, the specific structure of the problem allows a further simpli-
fication:

Remark 35 Keep the notations of Theorem 34. Write Bij := log |Aij |. Then, the equations

LC =
L∑

ν=1

Biνjν −
L∑

ν=1

Biνjν+1

vanish on all rank one matrices.

With the elementary computation in Remark 35, matrix completion becomes estimation
with linear boundary constraints. That is, the function f in step 4 of Algorithm 5 could be
taken as the least squares regressor of all Bkℓ obtained from completing circuits for (k, ℓ).
The algorithm in Kiraly and Theran (2013) gives a version which takes different observation
variances into account, and efficient graph theoretic observations making the computation
polynomial.

We paraphrase this as Algorithm 6; more details, e.g. on how to efficiently find a
basis for the set of completing circuits3 is efficiently found, or how the kernel matrix Σ is
constructed, can be found in Kiraly and Theran (2013).

5.4 Variance and error estimation

The locality of circuits also allows to obtain estimates for the reconstruction error of single
missing entries obtained by the strategy in Section 5.3, independent of the method which
does the actual reconstruction. The simplest estimate of this kind is obtained from a

3. This is equivalent to finding a basis for first Z-homology of the graph G, taken as a 1-complex.
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Algorithm 6 Local completion/denoising of a single entry (k, ℓ) in a rank 1 matrix.
Input: A set E ⊂ E of observed positions, observation variances σ, the position (k, ℓ).
Output: Estimate for Akℓ

1: Find a basis C1, . . . , CN for the set of completing circuits (w.r.t E) for (k, ℓ)
2: Find solutions ai for the corresponding circuit polynomials, write bi := log |ai|
3: Compute the (N × N)-path kernel matrix Σ = Σ(E, σ) corresponding to the Ci; set

α := Σ−1 · 1
4: Compute the weighted mean b :=

(∑N
i=1 αi · ai

)
/
(∑N

i=1 αi

)

5: As estimate, return Âkℓ = ± exp(b), where the sign is determined by the sign parity of
the circuits.

variational approach: say θC is a completing circuit (w.r.t E ⊆ E) for the missing entry
(k, ℓ). In the simplest case, where θC is linear in the missing entry Akℓ, we can obtain a
solving equation

Âkℓ = θC(Ae, e ∈ E),

by solving for Akℓ as an unknown. A first order approximation for the standard error can
be obtained by the variational approach

δÂkℓ =
∑

e∈E

∂θC
∂Ae

(Ae, e ∈ E) δAe.

The right hand side can be obtained from a suitable noise model and the observations Ae,
or, if the error should be estimated independently from the Ae, from a noise model plus a
sampling model for the Ae. A general strategy for entry-wise error estimation is analogous
to Algorithm 5 for local completion. For rank one, it has been shown in Kiraly and Theran
(2013) that the variance estimate depends only on the noise model and not on the actual
observation, and takes a closed logarithmic-linear form, as it is sketched in Algorithm 7.

Algorithm 7 Error prediction for a single entry (k, ℓ), rank one.
Input: A set E ⊂ E of observed positions, observation variances σ, the position (k, ℓ).
Output: Estimate for the (log-)variance error of the estimate Âkℓ

1: Calculate Σ and α, as in Algorithm 6.
2: As log-variance, return α⊤Σα.
3: If an estimate Âkℓ is available, as standard error, return Âkℓ ·

(
exp(α⊤Σα)− 1

)

Note that the log-variance error is independent of the actual estimate Âkℓ, therefore the
variance patterns can be estimated without actually reconstructing the entries.

6. Combinatorial Completability Conditions

Through Sections 3 and 4, we have shown that for a given E ⊆ E , both finitely completable
closure (Theorem 12) and uniquely completable closure (Theorem 17) are properties of the
(isomorphism type of) the associated bipartite graph G(E); see also Corollary 15.

In this Section, using tools from graph and matroid theories, we relate the structural
properties of the bipartite graph G(E) to finite completability.
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For a set of observed positions, E ⊆ E , let G(E) = (V,W,E) be a bipartite graph, where
the sets of vertices V and W correspond to row and column of the observed positions; we
call V and W row vertices and column vertices, respectively. We assume that G(E) has no
isolated vertices (those corresponding to rows or columns with no observed positions.)

As usual, we will take r, n, and m to be the rank and parameters of the ground set
E , respectively. However, since our convention for graphs is that they do not have isolated
vertices, we will take care to indicate the ambient ground set.

6.1 Sparsity and independence

Suppose we want to maximize the size of the completable closure clr(E), with the number
of positions to observe fixed. To do this, consider the process of constructing E one position
at a time. What we need is to pick each successive entry in a way that causes clr(E) to
grow. Theorem 12 implies that a position (k, l) is finitely completable from E, if and only if
J{(k,l)} lies in the span of JE . In particular, this tells us that adding such a (k, ℓ) to E will
not affect the finite completability of other unobserved positions; in matroid terminology,
we say (k, l) is dependent on E. We see, then, that it is wasteful to choose positions that
are dependent on the already chosen positions. Therefore intuitively we need to choose the
positions so that they are well spread out, which we call rank-r sparse; see Section 6.1.1.
Rank-r sparsity implies a more classical combinatorial property, namely r-connectivity; see
Section 6.1.2. Finally, in Section 6.1.3, we show by a counterexample that rank-r sparsity,
though necessary, is not a sufficient condition for finite completability.

We recall some basic terminologies from matroid theory. The rank function rankr(E) of
the rank r determinantal matroid is defined in Definition 13. Note that rankr(E) ≤ dr(m,n),
where dr(m,n) = r(m + n − r) if m ≥ r and n ≥ r, dr(m,n) = mn, otherwise. A set of
positions E ⊆ E is called independent if |E| = rankr(E). On the other hand, it is called
dependent if |E| > rankr(E). A basis B of E ⊆ E is a maximally independent subset of E.
In addition, a basis of E is called a basis of the rank r determinantal matroid. A basis B of
E consists of rankr(E) edges. In particular, a basis B of the rank r determinantal matroid
consists of rankr(E) = dr(m,n) edges. A basis of E is not unique unless E is independent.
A circuit C ⊆ E of of the rank r determinantal matroid is a minimally dependent set in the
sense that for any (i, j) ∈ C, C − {(i, j)} is an independent set; see also Definition 27.

We have the following two properties from matroid theory.

Proposition 36 1. Let E ⊆ E be a set of observed positions and B ⊆ E be any basis of
E. Then, clr(B) = clr(E).

2. Let E ⊆ E be an independent set in the rank r determinantal matroid. Then, any
E′ ⊆ E is independent.

In other words, (i) the finitely completable closures of E and any basis B of E are the same
(ii) and an independent graph G(E) cannot contain a dependent subgraph G(E′). Both
statements arise from the fact that the rank-r determinantal matroid is a linear matroid
defined by the linear independence of the rows of the Jacobian JE and that the matroid
closure coincides with the finitely completable closure.
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6.1.1 Rank-r-sparsity

Let G′ = (V ′,W ′, E′) be a subgraph of G = (V,W,E). Since E′ being independent implies
a bound on the cardinality |E′| ≤ dr(|V

′|, |W ′|), we consider the notion of rank-r-sparsity
defined as follows.

Definition 37 A graph G = (V,W,E) is rank-r-sparse if, for all subgraphs G′ = (V ′,W ′, E′)
of G, it holds that |E′| ≤ dr(|V

′| , |W ′|).

Theorem 38 Let E ⊆ E be an independent set in the rank r determinantal matroid on
[m]× [n]. Then G(E) is rank-r-sparse.

Proof Suppose that there is a subgraph G′ = (V ′,W ′, E′) with |E′| > dr(|V
′| , |W ′|) ≥

rankr(E
′), then this subgraph must be dependent, which contradicts Proposition 36, part

2.

6.1.2 Connectivity and vertex degrees

Rank r sparsity implies some other, more classical, graph theoretic properties in a straight-
forward way, since rank-r-sparsity is hereditary.

Corollary 39 Let m,n > r, and E ⊆ E be the set of observed positions. If G(E) contains
a rank-r sparse subgraph G(E′) with |E′| = dr(m,n) edges, then:

1. G(E) has minimum vertex degree at least r.

2. G(E) is r-edge-connected.

In particular, if E is finitely completable, it contains a basis E′ (Proposition 36, part 1)
with |E′| = dr(m,n) edges and G(E′) is rank-r sparse. Thus, E is r-edge connected.

The proof of the above corollary relies on the following lemma:

Lemma 40 Let E ⊆ E be rank-r sparse with |E| = dr(m,n) edges, and E = ∪Ni=1Ei be an
edge disjoint partition of E. For any set E′ ⊆ E of edges incident to m′ row and n′ column
vertices, we define dr(E

′) := dr(m
′, n′). Then we have

dr(m,n) ≤
N∑

i=1

dr(Ei).

Proof By the assumption,

dr(m,n) = |E| =
N∑

i=1

|Ei| ≤
N∑

i=1

dr(Ei),

where the first equality holds because E is independent and the last inequality follows from
Theorem 38.
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Proof [Proof of Corollary 39] Since Statement 2 implies statement 1, we prove Statement
2. First, we can assume without loss of generality that E is rank-r sparse and E′ = E
without loss of generality, because if E′ is r-edge-connected, so is E.

Consider any partition V = V1∪V2 andW = W1∪W2. V1 orW1 can be empty (but not at
the same time). This induces an edge disjoint partition E = E1∪E2∪(i,j)∈E−E1−E2

{(i, j)},
where E1 and E2 are sets of edges induced by (V1,W1) and (V2,W2), respectively. Treating
each edge in E − E1 − E2 as a subgraph, we have dr((i, j)) = 1. By applying Lemma 40,
we have

|E − E1 − E2| ≥ dr(m,n)− dr(E1)− dr(E2). (4)

Let m1 := |V1|, m2 := |V2|, n1 := |W1|, and n2 := |W2|. Due to symmetry, there are three
situations that we need to consider. First, if m1,m2, n1, n2 ≥ r, RHS of (4) = r2. Next, if
m1 ≤ r and n2 ≤ r, RHS of (4) = r(m+n−r)−m1n1−m2n2 ≥ r2, which is true considering
maximizing the inner product between (m1,m2) and (n1, n2) subject to m1 +m2 = m and
n1 + n2 = m. Finally, if m1, n1 ≤ r, RHS of (4) = r(m1 + n1)−m1n1 ≥ r. The minimum
is obtained for m1 = 1 and n1 = 0, or vice versa. Therefore E is r-edge connected.

6.1.3 Sparsity is not sufficient

On the other hand, rank r sparsity is not a sufficient condition for independence in de-
terminantal matroids. The bipartite graph defined by the following mask in rank 2 have
d2(5, 5) = 16 edges and rank-2 sparse but not independent:




1 1 1 0 0
1 1 1 0 0
1 1 0 1 1
0 0 1 1 1
0 0 1 1 1




This example amounts, graph theoretically, to gluing the graphs of two bases of the deter-
minantal matroid together along r vertices in a way that preserves rank-r-sparsity but not
independence. One can make the construction rigorous to show that, for any r ≥ 2, there
are infinitely many rank-r-sparse dependent sets in the determinantal matroid.

6.2 Circuit and stress supports

We have discussed stresses in Section 4 and circuits in Section 5. Here we show that for
each circuit C, there is a corresponding stress S that is supported on every position of C.
Here the support S ∈ E of stress S is defined as S = {(i, j) ∈ E : Sij 6= 0}. Moreover,
using the structure of the Jacobian matrix (see Definition 4), we show that every vertex of
circuit C has degree at least r+1. These results further imply that any finitely completable
position spans vertices in the r-core (see Section 6.2.1). Furthermore, combining the above
degree lower bound with the rank-r sparsity shown in the previous subsection, we show a
bound on the number of circuits in the rank r determinantal matroid in Section 6.2.2. The
proof of the key Theorem 41 is presented in Section 6.2.3.
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Theorem 41 For a generic A ∈ M(m × n, r), and a circuit C, the stress space ΨA(C)
is one dimensional; thus a stress S of a circuit C is unique up to scalar multiplication.
Moreover, the support of S is all of C.

The power of Theorem 41 can be seen in the following proposition, which lower bounds the
degree of a vertex in a circuit.

Proposition 42 Let C ⊆ E be a circuit in the rank r determinantal matroid. Then every
vertex in the graph G(C) has degree at least r + 1 edges.

Proof By Theorem 41, for generic (U,V), the rows of JC are dependent, with the associated
stress S supported on all the rows.

From (2), we see that any vertex j is associated with exactly r columns in JC . Let J
be the indices of these columns. The number of non-zero rows in JC [·, J ] is exactly the
degree d of j. If we suppose d ≤ r, the stress S cannot generically cancel these d columns.
Therefore, it holds that d ≥ r + 1.

6.2.1 Where are the completable positions?

The concept of k-core is useful for narrowing down where the completable positions can be
and where the circuits can lie.

We recall a concept from graph theory:

Definition 43 Let G be a graph, and let k ∈ N. The k-core of G, denoted corek(G), is the
maximal subgraph of G with minimum vertex degree k.

In rank r, the non-trivial aspects of matrix completion occur inside the r-core.

Theorem 44 Let E ⊆ E,

(i) If (i, j) ∈ E \ E and (i, j) ∈ clr(E), then the vertices i and j are in corer(G(E)).

(ii) Any circuit C ⊆ E is contained in corer+1(G(E)).

Proof (i) We have (i, j) ∈ clr(E) if and only if there is a circuit C ⊆ E ∪ {(i, j)} with
(i, j) ∈ C. Then (i) will follow from (ii) because for G(C) ⊆ corer+1(G(E)), we need
i ∈ corer(G(E)) and j ∈ corer(G(E)).
(ii) This follows from the fact that the (r + 1)-core is the union of all induced subgraphs
with minimum degree at least r + 1 and by Proposition 42, every C lies inside such an
induced subgraph.

Note here that uclr(E) ⊆ clr(E), so the same things are true for the uniquely completable
closure.
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6.2.2 Circuit size and counting

Combining the results in this section, we obtain bounds on the number of circuits in the
rank r determinantal matroid.

Theorem 45 Let C be a circuit in the rank r determinantal matroid with graph G(C) =
(V,W,C). Then |W | ≤ r(|V | − r) + 1

Proof Let m′ = |V | and n′ = |W |. Using Proposition 42 for the lower bound and Theorem
38 for the upper bound, we have n′(r+1) ≤ |C| ≤ r(m′ +n′− r) + 1. Subtracting n′r from
both sides, we get |W | = n′ ≤ r(m′ − r) + 1.

Corollary 46 The number of circuits in the rank r determinantal matroid on [m]× [n] is
at most 2mr(m−r)+m.

6.2.3 Proof of Theorem 41

First, by Definition 19, rankr(C) = rankJC = |C| − 1. Thus the left null space of JC is one
dimensional.

Next, we explicitly construct a stress S. By Theorem 29, there is a unique polynomial
θC for each circuit C. Then taking the derivative of θC , we have

∑

(i,j)∈C

∂θC
∂Aij

∣∣∣∣
ΩC(A)

dAij = 0,

for any tangent vector (dAij)(i,j)∈C ofM(m×n, r) atA. The vector (∂θC/∂Aij)(i,j)∈C |ΩC(A)

is, then, a stress for C. In addition, the coefficient of the stress is uniquely determined by the
entries ΩC(A). If any of the coefficients of (∂θC/∂Aij) were identically zero, we could remove
the associated row ij of JC and the left-kernel of JC\(i,j) would still be one-dimensional.
Since this is a contradiction to C being a circuit, we conclude that none of the coefficients
are identically zero. Since the coefficients are, in addition, rational functions in ΩC(A), each
of them is non-vanishing on a Zariski open subset ofM(m×n, r). The (finite) intersection
of these sets is again open, proving that the generic support of the stress is all of C.

6.3 Completability of random masks

Up to this point we have considered the completability of a fixed mask, which we have
shown to be equivalent to questions about the associated bipartite graph. We now turn to
the case where the masking is sampled at random, which, by Corollary 15, implies that,
generically, this is a question about random bipartite graphs.

6.3.1 Random graph models

A random graph is a graph valued random variable. We are specifically interested in two
such models for bipartite random graphs:

Definition 47 The Erdős-Rényi random bipartite graph G(m,n, p) is a bipartite graph on
m row and n column vertices vertices with each edge present with probability p, indepen-
dently.
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Definition 48 The (d, d′)-biregular random bipartite graph G(m,n, d, d′) is the uniform
distribution on graphs with m row vertices, n column ones, and each row vertex with degree
d and each column vertex with degree d′.

Clearly, we need md = nd′, and if m = n, the (d, d′)-regular random bipartite graph is, in
fact d-regular.

We will call a mask corresponding to a random graph a random mask. We now quote
some standard properties of random graphs we need.

Proposition 49 (i) Connectivity threshold. The threshold for G(m,n, p) to become con-
nected, w.h.p., is p = Θ((m+ n)−1 log n) (Bollobás, 2001, Theorem 7.1).

(Minimum degree threshold) The threshold for the minimum degree in G(n, n, p) to
reach d is p = Θ((m + n)−1(log n + d log log n + ω(1))). When p = cn, w.h.p., there
are isolated vertices (Bollobás, 2001, Exercise 3.2).

(ii) Connectivity threshold. With high probability, G(m,n, d, d′) is d-connected (Bollobás,
2001, Theorem 7.3.2). (Recall that we assume m ≤ n) .

(iii) Density principle. Suppose that the expected number of edges in either of our random
graph models is at most Cn, for constant C. Then for every ǫ > 0, there is a constant
c, depending on only C and ǫ such that, w.h.p., every subgraph of n′ vertices spanning
at least (1 + ǫ)n′ edges has n′ ≥ cn (Janson and Luczak, 2007, Lemma 5.1).

(iv) Emergence of the k-core. Define the k-core of a graph to be the maximal induced
subgraph with minimum k. For each k, there is a constant ck such that p = ck/n
is the first-order threshold for the k-core to emerge. When the k-core emerges, it
is giant and afterwards its size and number of edges spanned grows smoothly with p
(Pittel et al., 1996).

6.3.2 Sparser sampling and the completable closure

The lower bounds on sample size for completion of rank r incoherent matrices do not carry
over verbatim to the generic setting of this paper. This is because genericity and incoherence
are related, but incomparable concepts: there are generic matrices that are not incoherent
(consider a very small perturbation of the identity matrix); and, importantly, the block
diagonal examples showing the lower bound for incoherent completability are not generic,
since many of the entries are zero.

Thus, in the generic setting, we expect sparse sampling to be more powerful. This is
demonstrated experimentally in Section 7.2. In the rest of this section, we derive some
heuristics for the expected generic completability behavior of sparse random masks. We are
particularly interested in the question of: when are Ω(mn) of the entries completable from
a sparse random mask? We call this the completability transition. We will conjecture that
there is a sharp threshold for the completability transition, and that the threshold occurs
well below the threshold for G(n,m, p) to be completable.

Let c be a constant. We first consider the emergence of a circuit in G(n, n, c/n). The-
orem 44 implies that any circuit is a subgraph of the (r + 1)-core. By Theorem 12 and
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Proposition 36, having a circuit is a monotone property, which occurs with probability one
for graphs with more than 2rn edges, and thus the value

tr := sup{t : G(n, n, t/n) is r-independent, w.h.p.}

is a constant. If we define Cr as

Cr := sup{c : the (r + 1)-core of G(n, n, c/n) has average degree at most 2r, w.h.p.}

smoothness of the growth of the (r + 1)-core implies that we have

cr+1 ≤ tr ≤ Cr+1

where we recall that cr+1 is the threshold degree for the (r + 1)-core to emerge. Putting
things together we get:

Proposition 50 There is a constant tr such that, if c < tr then w.h.p., G(n, n, c/n) is
r-independent, and, if c > tr then w.h.p. G(n, n, c/n) contains a giant r-circuit inside the
(r + 1)-core. Moreover, tr is at most the threshold for the (r + 1)-core to reach average
degree 2r.

Proposition 50 gives us some structural information about where to look for rank r circuits
in G(n, n, c/n): they emerge suddenly inside of the (r+1)-core and are all giant when they
do. If rank r circuits were themselves completable, this would then yield a threshold for the
completability transition. Unfortunately, the discussion in Section 6.1.3 tell us that this is
not always true. Nonetheless, we conjecture:

Conjecture 51 The constant tr is the threshold for the completability transition
in G(n, n, c/n). Moreover, we conjecture that almost all of the (r + 1)-core is completable
above the threshold.

We want to stress that the conjecture includes a conjecture about the existence of the
threshold for the completabilty transition, which hasn’t been established here, unlike the
existence for the emergence of a circuit. The subtlety is that we haven’t ruled out exam-
ples of r-independent graphs with no rank-r-spanning subgraph for which, nonetheless, the
closure in the rank r completion matroid is giant. Conjecture 51 is explored experimentally
in Sections 7.1 and 7.2. The conjectured behavior is analogous to what has been proved for
distance matrices (also known as bar-joint frameworks) in dimension 2 in (Kasiviswanathan
et al., 2011).

Our second conjecture is about 2r-regular masks.

Conjecture 52 With high probability G(n, n, 2r, 2r) is completable. Moreover, we conjec-
ture that it remains so, w.h.p., after removing r2 edges uniformly at random.

We provide evidence in Section 7.2. This behavior is strikingly different than the incoherent
case, and consistent with proven results about 2-dimensional distance matrices (Jackson
et al., 2007, Theorem 4.1).
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6.3.3 Denser sampling and the r-closure

The conjectures above, even if true, provide only information about matrix completability
and not matrix completion. In fact, the convex relaxation of Candès and Recht (2009)
does not seem to do very well on 2r-regular masks in our experiments, and the density
principle for sparse random graphs implies that, w.h.p., a 2r-regular mask has no dense
enough subgraphs for our closability algorithm in Section B.1 to even get started. Thus it
seems possible that these instances are quite “hard” to complete even if they are known to
be completable.

If we consider denser random masks, then the closability algorithm becomes more practi-
cal. A particularly favorable case for it is when every missing entry is part of some K−

r+1,r+1.

In this case, the error propagation will be minimal and, heuristically, finding a K−
r+1,r+1 is

not too hard, even though the problem is NP-complete in general.
Define the 1-step r-closure of a bipartite graph G as the graph G′ obtained by adding

the missing edge to each K−
r+1,r+1 in G. If the 1-step closure of G is Kn,n, we define G to be

1-step r-closable. We conjecture an upper bound on the threshold for 1-step r-closability.

Conjecture 53 There is a constant C > 0 such that, if p = Cn−2/(r+2) log n then, w.h.p.,
G(n, n, p) is 1-step r-closable.

7. Experiments

In this section we will investigate the set of entries that are finitely completable from a set of
given entries. In Section 3 we have seen that the finitely completable closure clr(E) does not
depend on the values of the observed entries but only on their positions E. First, we check
the set of completable entries for synthetic random positions and empirically investigate
the completability phase transitions in terms of the number of known entries, as described
in Section 6.3. We also check the number of completable entries for MovieLens data set
in terms of the putative rank. Then, we present experiments on actual reconstruction and
algorithm-independent error estimation in the case of rank one matrices.

7.1 Randomized algorithms for completability

For a quantitative analysis, we perform experiments to investigate how the expected num-
ber of completable entries is influenced by the number of known entries. In particular,
Section 6.3 suggests that a phase transition between the state where only very few addi-
tional entries can be completed and the state where a large set of entries can be completed
should take place at some point. Figure 2 shows that this is indeed the case when slowly
increasing the number of known entries: first, the set of completable entries is roughly
equal to the set of known entries, but then, a sudden phase transition occurs and the set of
completable entries quickly reaches the set of all entries.

7.2 Phase transitions

Figure 3 shows phase transition curves of various conditions for 100× 100 matrices at rank
3. We consider uniform sampling model here. More specifically, we generated random
100 × 100 masks with various number of edges by first randomly sampling the order of

1419
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(a) Results for m = 15, n = 15, r = 2
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(b) Results for m = 20, n = 20, r = 5

Figure 2: Expected number of completable entries (in rank r) versus the number of known
entries where the positions of the known entries are uniformly randomly sampled
in an (m×n)-matrix. The expected number of completable entries was estimated
for each data points from repeated calculations of the completable closure (200
for r = 2, and 20 for r = 5). The blue solid line is the median, the blue dotted
lines are the 1st and 3rd quartiles. The black dotted line is the total number of
entries, m · n.

edges (using MATLAB randperm function) and adding 100 entries at a time from 100 to
6000 sequentially. In this way, we made sure to preserve the monotonicity of the properties
considered here. This experiment was repeated 100 times and averaged to obtain estimates
of success probabilities. The conditions plotted are (a) minimum degree at least r, (b)
r-connected, (c) completable at rank r, (d) minor closable in rank r (e) nuclear norm
successful, and (f) one-step minor closable. For nuclear norm minimization (e), we used the
implementation of the algorithm in (Tomioka et al., 2010) which solves the minimization
problem

X̂ = argmin
X

‖X‖∗ subject to Xij = Aij ∀(i, j) ∈ E,

where ‖X‖∗ =
∑r

j=1 σj(X) is the nuclear norm of X. The success of nuclear norm mini-

mization is defined as the relative error ‖X̂−A‖F /‖A‖F less than 0.01.
The success probabilities of the (a) minimum degree, (b) r-connected, and (c) com-

pletable are almost on top of each other, and exceeds chance (probability 0.5) around
|E| ≃ 1, 000. The success probability of the (d) minor closable curve passes through 0.5
around |E| ≃ 1, 300. Therefore the r-closure method is nearly optimal. On the other hand,
the nuclear norm minimization required about 2, 200 entries to succeed with probability
larger than 0.5.
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Figure 3: Phase transition curves of various conditions for 100× 100 matrices at rank 3.
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Figure 4: Phase transition curves of various conditions for 100× 100 matrices at rank 6.

Figure 4 shows the same plot as above for 100 × 100 matrices at rank 6. The success
probabilities of the (a) minimum degree, (b) r-connected, (c) completable are again almost
the same, and exceeds chance probability 0.5 around |E| ≃ 1, 400. On the other hand, the
number of entries required for minor closability is at least 3, 700. This is because the masks
that we need to handle around the optimal sampling density is so large and sparse that
we cannot hope to find a 6× 6 biclique required by the minor clusre algorithm to even get
started. The nuclear norm minimization required about 3, 100 samples.

Figure 5 shows the phase transition from a non-completable mask to a completable
mask for almost 2r-regular random masks. Here we first randomly sampled 2r-regular
(n × n)- masks using Steger & Wormald algorithm (Steger and Wormald, 1999). Next we
randomly permuted the edges included in the mask and the edges not included in the mask
independently and concatenated them into a single list of edges. In this way, we obtained
a length mn ordered list of edges that become 2r-regular exactly at the 2rnth edge. For
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Figure 5: Phase transition in an almost regular mask.

each ordered list sampled this way, we took the first 2rn+ i edges and checked whether the
mask corresponding to these edges was completable for i = −15,−14, . . . , 5. This procedure
was repeated 100 times and averaged to obtain a probability estimate. In order to make
sure that the phase transition is indeed caused by the regularity of the mask, we conducted
the same experiment with row-wise 2r-regular masks, i.e., each row of the mask contained
exactly 2r entries while the number of non-zero entries varied from a column to another.

In Figure 5, the phase transition curves for different n at rank 2 and 3 are shown. The
two plots in the top part show the results for the 2r-regular masks, and the two plots in the
bottom show the same results for the 2r-row-wise regular masks. For the 2r-regular masks,
the success probability of completability sharply rises when the number of edges exceeds
2rn − r2 (i = −4 for r = 2 and i = −9 for r = 3); the phase transition is already rather
sharp for n = 10 and for n ≥ 20 it becomes almost zero or one. On the other hand, the
success probabilities for the 2r-row-wise regular masks grow rather slowly and approach
zero for large n. This is natural, since it is likely for large n that there is some column with
non-zero entries less than r, which violates the necessary conditions in Corollary 39.

7.3 Completability of the MovieLens data set

This section is devoted to studying a well-known data set - the MovieLens data published
by GroupLens - with the methods developed in this paper. We demonstrated how the
algorithms given above can be used to make statements about the sets of entries which are
(a) completable, (b) uniquely completable, and (c) not completable with any algorithm.
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Figure 6: Size of the r-core of the MovieLens 100k data set for varying r. For each rank r,
the figure shows the number of rows (solid blue), the number of columns (dashed
green), and the number of entries (dash-dotted red) in the r-core of the mask
corresponding to the observed entries of the MovieLens 100k data set. The biggest
rank with non-empty r-core is r = 83.

The underlying data set for the following analyses is the MovieLens 100k data set. By
convention, columns will correspond to the 1682 movies, while the rows will correspond to
the 943 users in the data set.

For growing rank r, the r-core of the MovieLens data set was computed by the algorithm
which is standard in graph theory - by Theorem 44 only the missing entries in the r-core
can be completed, and any entry not contained in the r-core is not completable by any
algorithm. Figure 6 shows the size (columns, rows, entries) of the r-core of the MovieLens
data for growing r.

Under rank 18, the vast majority of the entries are in the r-core, and so is the majority
of the rows, while some columns with very few entries are removed with increasing r. At
rank r = 18, the number of columns in the r-core attains the number of rows in the r-core;
above rank 18, the number of rows and columns in the r-core diminish exponentially with
the same speed. Above rank 79, the r-core rapidly starts to shrink, with r = 83 being the
biggest rank with non-empty r-core.

For growing rank r, the finitely completable closure clr(E) in the MovieLens data set
was identified in the following way: First, it was checked with Algorithm 1 whether the
83-core was r-completable. If not, the completable entries in the 83-core were computed by
an implementation of Algorithm 1. Then, the minor closure of the completed 83-cores was
computed by Algorithm 4; by Theorem 44, it was sufficient to check for completable entries
in the r-core. Note that the positions of the completable entries were also computed in the
process.

Figure 7 shows the number of completable entries in the MovieLens data set for growing
r determined in this way.

An interesting thing to note is the inflection point at rank r = 18. It corresponds
to the phase transition in Figure 6 where the r-core starts to shrink exponentially and
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Figure 7: Number of completable entries in the MovieLens 100k data set for varying r; ob-
served entries are not counted as completable, only completable entries which are
not observed. For each rank r, the upper figure shows the number of completable
entries, as a fraction of all missing entries. The lower figure shows the number of
completable entries, as a fraction of the missing entries in the r-core. For r ≥ 84,
the r-core is empty, thus no missing entries can be completed, see Figure 6.

simultaneously in rows and columns. At rank r = 72 and above, no missing entry in the
83-core can be completed.

7.4 Entry-wise completion and error prediction

In the rest of the experiments, we recapitulate some results from Kiraly and Theran (2013)
on entry-wise reconstruction and error prediction for rank one matrices.

To test reconstruction, we generated 10 random masks of size 50× 50 with 200 entries
sampled uniformly and a random (50×50) matrix of rank one. The multiplicative noise was
chosen entry-wise independent, with variance σi = (i − 1)/10 for each entry. Figure 9(a)
compares the Mean Squared Error (MSE) for three algorithms: Nuclear Norm (using the
implementation Tomioka et al. (2010)), OptSpace (Keshavan et al., 2010), and Algorithm 6.
It can be seen that on these masks, Algorithm 6 is competitive with the other methods and
even outperforms them for low noise.

Figure 9(b) compares the error of each of the methods with the variance predicted
by Algorithm 7 each time the noise level changed. The figure shows that for any of the
algorithms, the mean of the actual error increases with the predicted error, showing that
the error estimate is useful for a-priori prediction of the actual error - independently of
the particular algorithm. Note that by construction of the data this statement holds in
particular for entry-wise predictions. Furthermore, in quantitative comparison Algorithm 7
also outperforms the other two in each of the bins. The qualitative reversal between the
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algorithms in Figures 9(b) (a) and (b) comes from the different error measure and the
conditioning on the bins.

7.5 Universal error estimates

For three different masks, we calculated the predicted minimum variance for each entry of
the mask. The mask sizes are all 140 × 140. The noise was assumed to be i.i.d. Gaussian
multiplicative with σe = 1 for each entry. Figure 8 shows the predicted a-priori minimum
variances for each of the masks. The structure of the mask affects the expected error.
Known entries generally have least variance, and it is less than the initial variance of 1,
which implies that the (independent) estimates coming from other paths can be used to
successfully denoise observed data. For unknown entries, the structure of the mask is
mirrored in the pattern of the predicted errors; a diffuse mask gives a similar error on each
missing entry, while the more structured masks have structured error which is determined
by combinatorial properties of the completion graph.
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Figure 8: The figure shows three pairs of masks and predicted variances. A pair consists
of two adjacent squares. The left half is the mask which is depicted by red/blue
heatmap with red entries known and blue unknown. The right half is a multi-
color heatmap with color scale, showing the predicted variance of the completion.
Variances were calculated by our implementation of Algorithm 7.

8. Discussion and Outlook

In this paper we have demonstrated the usefulness and practicability of the algebraic com-
binatorial approach for matrix completion, by deriving reconstructability statements, and
actual reconstruction algorithms for single missing entries. Our theory allows to treat the
positions of the observations separately from the entries themselves. As a prominent model
feature, we are able to separate the sampling scheme from algebraic and combinatorial con-
ditions for reconstruction and explain existing reconstruction bounds by the combinatorial
phase transition for the uniform random sampling scheme.

The discussed framework provides the foundation for a number of novel matrix com-
pletion strategies for the practitioner:

• The presented algorithms allow for entry-wise error estimates which are indepen-
dent of the method. More precisely, as it has been studied by Kiraly and Theran
(2013) for rank 1, the algorithm of actual reconstruction can be separated from the
question whether the entry is reconstructible, and with which error, allowing the com-
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Figure 9: For 10 randomly chosen masks and 50× 50 true matrix, matrix completions were
performed with Nuclear Norm (green), OptSpace (red), and Algorithm 6 (blue)
under multiplicative noise with variance increasing in increments of 0.1. For each
completed entry, minimum variances were predicted by Algorithm 7. 9(a) shows
the mean squared error of the three algorithms for each noise level, coded by
the algorithms’ respective colors. 9(b) shows a bin-plot of errors (y-axis) versus
predicted variances (x-axis) for each of the three algorithms: for each completed
entry, a pair (predicted error, true error) was calculated, predicted error being the
predicted variance, and the actual prediction error being the squared logarithmic
error (i.e., (log |atrue| − log |apredicted|)

2 for an entry a). Then, the points were
binned into 11 bins with equal numbers of points. The figure shows the mean
of the errors (second coordinate) of the value pairs with predicted variance (first
coordinate) in each of the bins, the color corresponds to the particular algorithm;
each group of bars is centered on the minimum value of the associated bin.

bination of any reconstruction algorithm with reconstruction bounds obtained from
our framework.

• The presented ideas allow completion/denoising of single entries in the practi-
cally relevant case where only one entry or a subset of all entries should be recon-
structed or denoised. A rank one method has been presented by Kiraly and Theran
(2013), the case of rank 2 and higher is studied by Blythe et al. (2014).

• The use of circuits for reconstruction pave the way for local completion/denoising,
that is, a good reconstruction can be obtained from a small combinatorial neighbor-
hood of entries which can be determined from the theory (and which is not necessarily
a submatrix), allowing to avoid processing of the whole matrix - which is especially
desirable if the matrix is huge.

In our new setting, we are also left with a number of major open questions:

• Characterize all circuits and circuit polynomials in rank 2 or higher.

• Give a sufficient and necessary combinatorial criterion for unique completability.
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• Give an efficient4 algorithm certifying for unique completability when given
the positions of the observed entries (or, more generally, one which computes the
number of solutions).

• Prove the phase transition bound for the completable core (the phase transition
bound for completability has been shown in Király and Theran, 2013).

• Explain the existing guarantees for whole matrix reconstruction MSE in
terms of single entry expected error, for the various sampling models in lit-
erature (an explanation for rank one can be inferred from Kiraly and Theran, 2013).

Finally, our presented results suggest a number of future directions:

• Problems such as matrix completion under further constraints such as for sym-
metric matrices, distance matrices or kernel matrices, are closely related to the
ones we consider here, and can be treated by similar techniques. Under a phase tran-
sition aspect, these models were studied by Király and Theran (2013); for general
matroids, the theory in (Király et al., 2013) yields a starting point.

• Completion of tensors is a natural generalization of matrix completion and acces-
sible to the techniques presented here or in (Király and Theran, 2013; Király et al.,
2013).

• We have essentially shown matrix completion to be an algebraic manifold learning
problem. This makes it accessible to the kernel/ideal learning techniques presented
in (Király et al., 2014).

• The algebraic theory used to infer genericity and identifiability is largely independent
of the matrix completion setting and can be applied in a very general context of
compressed sensing, identifiability and inverse problems that are algebraic.
For a more detailed discussion and some related problems, see Section 3.4.

Summarizing, we argue that recognizing and exploiting algebra and combinatorics in
machine learning problems is beneficial from the practical and theoretical perspectives.
When it is present, methods using underlying algebraic and combinatorial structures yield
sounder statements and more practical algorithms than can be obtained when ignoring
it, conversely algebra and combinatorics can profit from the various interesting structure
surfacing in machine learning problems. Therefore all involved fields can only profit from a
more widespread interdisciplinary collaboration with and between each other.
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Appendix A. Algebraic Geometry Fundamentals

This section collects some algebraic geometric tools used in the main corpus.

A.1 Algebraic Genericity

We will briefly review the concept of genericity for our purposes. Intuitively, algebraic
genericity describes that some statements holds for almost all objects, with the exceptions
having an algebraic structure. The following results will be stated for algebraic varieties
over the real or complex numbers, that is, over the field K, where K = R or K = C.

Definition 54 Let Y ⊆ Kn be an algebraic variety. Let P be some property of points y ∈ Y.
Write P (Y) = {y ∈ Y : y has property P}, and ¬P (Y) = Y \ P (Y).

(i) We call P an open condition if P (Y) is a Zariski open subset of Y.

(ii) We call P a Zariski-generic condition if there is an open dense subset U ⊆ Y such that
U ⊆ P (Y).

(iii) We call P a Hausdorff-generic condition if ¬P (Y) is a Y-Hausdorff zero set.

The different types of conditions above can be put in relation to each other:

Proposition 55 Keep the notation of Definition 54.

(i) If P is a Zariski-generic condition, then P is a Hausdorff-generic condition as well.

(ii) Assume Y is irreducible, and P (Y) is non-empty. If P is an open condition, then it is
a Zariski-generic condition.

(iii) Assume Y is irreducible, and P (Y) is constructible in the Zariski topology, i.e., can be
written as finite union and intersection of open and closed sets. If P is a Hausdorff-
generic condition, then it is a Zariski-generic condition as well.

Proof (i) follows from the fact that Zariski closed sets of smaller Krull dimension are Haus-
dorff zero sets.
(ii) follows from the fact that non-empty Zariski open sets are dense in an irreducible alge-
braic set.
(iii) as P (Y) is Zariski-constructible, it will have positive Hausdorff measure if and only if
it contains a non-empty (relatively Zariski) open set. The statement then follows from (ii).

Furthermore, Hausdorff-genericity is essentially states that the condition holds, univer-
sally with probability one:
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Proposition 56 Keep the notation of Definition 54. The following are equivalent:

(i) P is a Hausdorff-generic condition.

(ii) For all Hausdorff-continuous random variables X taking values in Y, the statement
P (X) holds with probability one.

Proof (i)⇔ (ii) follows from taking Radon-Nikodym derivatives.

All relevant properties and conditions which are referenced from the main corpus de-
scribe (a) irreducible varieties - in this case, the determinantal variety, and (b) are Zariski-
constructible. Therefore, by Proposition 55, all three definitions agree for the purpose of this
paper. The terminology used in the paper can be given as follows in the above definitions:

Definition 57 Let Y ⊆ Kn be an algebraic variety. Let P be some property of points y ∈ Y.
We say “a generic y ∈ Y has property P” if P is a Hausdorff-generic condition for points
in Y.

A.2 Open Conditions and Generic Properties of Morphisms

In this section, we will summarize some algebraic geometry results used in the main corpus.
The following results will always be stated for algebraic varieties over C.

Proposition 58 Let f : X → Y be a morphism of algebraic varieties (over any field).
Then, if X is irreducible, so is f(X ). In particular, if f is surjective, and X is irreducible,
then Y also is.

Proof This is classical and follows directly from the fact that morphisms of algebraic vari-
eties are continuous in the Zariski topology.

Theorem 59 Let f : X → Y be a morphism of algebraic varieties. The function

Y → N, y 7→ dim f−1(y)

is upper semicontinuous in the Zariski topology.

Proof This follows from (Grothendieck and Dieudonné, 1966, Théorème 13.1.3).

Proposition 60 Let f : X → Y be a morphism of algebraic varieties, with Y be irreducible.
Then, there is an open dense subset V ⊆ Y such that f : U → V , where U = f−1(V ), is a
flat morphism.

Proof This follows from (Grothendieck and Dieudonné, 1965, Théorème 6.9.1).
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Theorem 61 Let f : X → Y be a morphism of algebraic varieties. Let d, ν ∈ N. Then, the
following are open conditions for y ∈ Y:

(i) dim f−1(y) ≤ d.

(ii) f is unramified over y.

(iii) f is unramified over y, and the number of irreducible components of f−1(y) equals ν.

In particular, if f is surjective, then the following is an open property as well:

(iv) f is unramified over y, and
∣∣f−1(y)

∣∣ = ν, for some ν ∈ N.

Proof (i) follows from (Grothendieck and Dieudonné, 1965, Corollaire 6.1.2).
(ii) follows from (Grothendieck and Dieudonné, 1966, Théorème 12.2.4(v)).
(iii) follows from (Grothendieck and Dieudonné, 1966, Théorème 12.2.4(vi)).
(iv) follows from (i), applied in the case dim f−1(y) ≤ 0 which is equivalent to dim f−1(y) =
0 due to surjectivity of f , and (iii).

Corollary 62 Let f : X → Y be a generically unramified and surjective morphism of
algebraic varieties, with Y be irreducible. Then, there are unique d, ν ∈ N such that the
following sets are Zariski closed, proper subsets of Y (and therefore Hausdorff zero sets):

(i) {y : dim f−1(y) 6= d}

(ii) {y : f is ramified at y}

(iii) {y : f is ramified at y} ∪ {y :
∣∣f−1(y)

∣∣ 6= ν}

Proof This is implied by Theorem 61 (i), (ii) and (iii), using that a non-zero open subset
of the irreducible variety Y must be open dense, therefore its complement in Y a closed and
a proper subset of Y.

Proposition 63 Let f : X → Y be a morphism of algebraic varieties, with Y irreducible.
Then, the following are equivalent:

(i) f is unramified over y and
∣∣f−1(y)

∣∣ = ν.

(ii) There is a Borel open neighborhood U ⊆ Y of y ∈ U , such that f is unramified over U
and

∣∣f−1(z)
∣∣ = ν for all z ∈ U .

(iii) There is a Zariski open neighborhood U ⊆ Y of y ∈ U , dense in Y, such that f is
unramified over U and

∣∣f−1(z)
∣∣ = ν for all z ∈ U .

Proof The equivalence is implied by Corollary 62 and the fact that Y is irreducible. Note
that either condition implies that f is generically unramified due to Theorem 61 (ii) and
irreducibility of Y.
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A.3 Real versus Complex Genericity

We derive some elementary results how generic properties over the complex and real numbers
relate. While some could be taken for known results, they appear not to be folklore - except
maybe Lemma 65. In any case, they seem not to be written up properly in literature known
to the authors. A first version of the statements below has also appeared as part of Király
and Ehler (2014).

Definition 64 Let X ⊆ Cn be a variety. We define the real part of X to be XR := X ∩Rn.

Lemma 65 Let X ⊆ Cn be a variety. Then, dimXR ≤ dimX , where dimXR denotes the
Krull dimension of XR, regarded as a (real) subvariety of Rn, and dimX the Krull dimension
of X , regarded as subvariety of Cn.

Proof Let k = n − dimX . By (Mumford, 1999, Section 1.1), X is contained in some
complete intersection variety X ′ = V(f1, . . . , fk). That is (f1, . . . , fk) is a complete inter-
section, with fi ∈ C[X1, . . . , Xn] and dimX ′ = dimX , such that fi is a non-zero divisor
modulo f1, . . . , fi−1. Define gi := fi · f

∗
i , one checks that gi ∈ R[X1, . . . , Xn], and define

Y := V(g1, . . . , gk) and YR := Y ∩ Rn. The fact that fi is a non-zero divisor modulo
f1, . . . , fi−1 implies that gi is a non-zero divisor modulo g1, . . . , gi−1; since gi ·h ∼= 0 modulo
g1, . . . , gi−1 implies fi · (h · f

∗
i )
∼= 0 modulo f1, . . . , fi−1. Therefore, dimYR ≤ dimX ; by

construction, X ′ ⊆ Y, and X ⊆ X ′, therefore XR ⊆ YR, and thus dimXR ≤ dimYR. Com-
bining it with the above inequality yields the claim.

Definition 66 Let X ⊆ Cn be a variety. If dimX = dimXR, we call X observable over
the reals. If X equals the (complex) Zariski-closure of XR, we call X defined over the reals.

Proposition 67 Let X ⊆ Cn be a variety.

(i) If X is defined over the reals, then X is also observable over the reals.

(ii) The converse of (i) is false.

(iii) If X irreducible and observable over the reals, then X is defined over the reals.

Proof (i) Let k = n − dimXR. By (Mumford, 1999, Section 1.1), XR is contained in
some complete intersection variety X ′ = V(f1, . . . , fk), with fi ∈ R[X1, . . . , Xn] a com-
plete intersection. By an argument, analogous to the proof of Lemma 65, one sees that
the fi are a complete intersection in C[X1, . . . , Xn] as well. Since the Zariski-closure of
XR and X are equal, it holds that fi ∈ I(X ). Therefore, X ⊆ V(f1, . . . , fk), which imples
dimX ≤ n−k, and by definition of k, as well dimX ≤ dimXR. With Lemma 65, we obtain
dimXR = dimX , which was the statement to prove.
(ii) It suffices to give a counterexample: X = {1, i} ⊆ C. Alternatively (in a context where
∅ is not a variety) X = {(1, x) : x ∈ C} ∪ {(i, x) : x ∈ C} ⊆ C2.
(iii) By definition of dimension, Zariski-closure preserves dimension. Therefore, the closure
XR is a sub-variety of X , with dimXR = dimX . Since X is irreducible, equality XR = X
must hold.
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Theorem 68 Let X ⊆ Cn be an irreducible variety which is observable over the reals, let
XR be its real part. Let P be an algebraic property. Assume that a generic x ∈ X is P .
Then, a generic x ∈ XR has property P as well.

Proof Since P is an algebraic property, the P points of X are contained in a proper
sub-variety Z ⊆ X , with dimZ � dimX . Since X is observable over the reals, it holds
dimX = dimXR. By Lemma 65, dimZR ≤ dimZ. Putting all (in-)equalities together,
one obtains dimZR � dimXR. Therefore, the ZR is a proper sub-variety of XR; and the P
points of XR are contained in it - this proves the statement.

A.4 Algebraic Properties of the Masking

We conclude with checking the conditions previously discussed in the specific case of the
masking:

Proposition 69 For E ⊆ E, consider the determinantal variety M(m × n, r) (over C),
and the masking

Ω :M(m× n, r)→ C|E|, A 7→ {Ae, e ∈ E}.

(i) The determinantal varietyM(m× n, r) is irreducible.

(ii) The determinantal varietyM(m× n, r) is observable over the reals.

(iii) The determinantal varietyM(m× n, r) is defined over the reals.

(iv) The variety Ω(M(m× n, r)) is irreducible.

(v) The map Ω is generically unramified.

Proof (i) follows from Proposition 58, applied to the surjective map

Υ : Cm×r × Cn×r →M(m× n, r), (U, V ) 7→ UV ⊤,

and irreducibility of affine space Cm×r × Cn×r.
(ii) follows from considering the map Υ over the reals, observing that the rank its Jacobian
is not affected by this.
(iii) follows from (i), (ii) and Proposition 67 (iii).
(iv) follows from (i) and Proposition 58, applied to Ω.
(v) follows from the fact that Ω is a coordinate projection, therefore linear.

Appendix B. Advanced Algorithm for Minor Closure

Takeaki Uno
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B.1 Closability and the r-Closure

A crucial step in minor closure algorithm 4 is to find a r×r biclique in a (sub)graph(V,W,E).
Algorithm 8 can find an d1 × d2 biclique efficiently based on two ideas: (i) iterate

over row vertices and (ii) work only on the (d2, d1)-core; here (d2, d1)-core is the maximal
subgraph of (V,W,E) that the degrees of the row and column vertices are at least d2 and
d1, respectively.

A naive approach for finding an r × r biclique might be to iterate over edges in E and
for each edge (v, w) ∈ E whose nodes have at least r − 1 neighbors, check whether the
subgraph induced by (N(w), N(v)) contains an r−1×r−1 biclique. Instead our algorithm
iterates over nodes in V and for each node v ∈ V , check whether the subgraph induced by
(V ′, N(v)) contains an r − 1 × r biclique, where V ′ is defined by removing all previously
attempted nodes and the current v from V . Iterating over row vertices results in smaller
number of iterations because |V | ≤ |E|, and allows us to avoid double checking, because
previously attempted nodes can be removed from V ′. Concentrating on the (d2, d1)-core is
natural, because no d1× d2 biclique contains row or column vertex with degree less than d2
or d1, respectively. We present the pruning step for finding the (d2, d1)-core in Algorithm 9.

Algorithm 8 FindAClique((V,W,E), d1, d2)

1: Inputs: bipartite graph (V,W,E), size of the bipartite clique to be found d1 × d2.
2: Output: vertex sets of a clique (I, J).
3: (V,W,E)← FindCore((V,W,E), d2, d1).
4: if |V | < d1 or |W | < d2 then
5: Return (∅, ∅).
6: end if
7: V ′ ← V .
8: for each v ∈ V do
9: if d1 = 1 and |N(v)| ≥ d2 then

10: Return ({v}, N(v)).
11: end if
12: V ′ ← V ′\{v}, W ′ ← N(v), E′ ← (V ′ ×W ′) ∩ E.
13: (I ′, J ′)← FindAClique((V ′,W ′, E′), d1 − 1, d2).
14: if |I ′| > 0 and |J ′| > 0 then
15: Return (I ′ ∪ {v}, J ′).
16: end if
17: end for
18: Return (∅, ∅).
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Franz J. Király, Zvi Rosen, and Louis Theran. Algebraic matroids with graph symmetry. arXiv
e-prints, 2013. arXiv:1312.3777.

Krysztof Kurdyka, Patrice Orro, and S. Simon. Semialgebraic Sard theorem for generalized critical
values. Journal of Differential Geometry, 56(1):67–92, 2000.

Troy Lee and Adi Shraibman. Matrix completion from any given set of observations. In Advances
in Neural Information Processing Systems (NIPS) 26, pages 1781–1787, 2013.

1435

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
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