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AJ1STRACT

In this paper we apply Galois theoretic algebraic methods to cer­

tain fundamental geometric optimization problems whose recognition

versions are not even known to be in the class NP. In particular we

show that the classic Weber problem, the Line -restricted' Weber probe

lem and the 3-Dimension version of this problem are in general not

solvable by radicals over the field of rationals. One: direct consequence

of these results is that for these geometric optimization problems there

exists no exact algorithm under models of computation where the root

of an algebraic equation is obtained using arithmetic opf;rations and

the extraction of eh roots. This leaves only numeric or symbolic

approximations to the SOlutions, where the complexity of the approxi­

mations is shown to be primarily a function of the algebraic degree of

the optimum solution point.
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1. Introduction

Geometric optimization problems are inherently not pure combinatorial prob­

Lems since the optimal solution often belongs to an infinite feasible set, the entire

real (Euclidean) plane. Such problems frequently arise in computer application areas

such as robotics and cad/cam. It has thus become increasingly important to devise

appropriate methods to analyze the complexity of problems where combinatorial

analysis methods seem to fail. Here we take a step in this direction by applying

Galois theoretic algebraic methods to certain fundamental geomelric op,imiza,ion

problems. These problems are non-combinatorial and have no known polynomial

time solutions. Neither have these problems shown to be intractable (NP -hard, etc.,).

In fact the recognition versions of these optimization probLems are not even known

to be in the class NP [Gr84].

The use of algebraic methods for analyzing the complexity of geometric prolr

lems has been popular since the time of Descartes, Gauss, Abel and Galois. The com­

plexity of straight-edge and compass constructions has been shown to be equivalent

to the geometric solution being expressible in terms of (+,-,./ ,v> over Q, the field of

rationals [CR41],[vdW53]. In this paper we show how necessary and sufficient condi­

tions for the existence of minima in cenain geometric optimization problems are tied

to the question of solvability of an algebraic equation over Q. We illustrate a

metbod of generating the minimal polynomial, whose root over the field of rational

numbers is the solution of the geometric optimization problem on the real

(Euclidean) plane. Having shown the derived polynomial to be minimal by proving it

irreducible over Q we use Galois theory to answer questions about the impossibility

of straight-edge and compass constructions and furthermore the non-solvability (or

non-expressibility) of the optimizing solution by radicals t .

t A leal number a. is explessible in terms of radicals if there is a sequence of expressions
131' •.•• 13/1' where 131E.Q, and each 13, is eithel a rational or the sum, difference, product,
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For the geometric optimization problems whose minimal algebraic poiynomiiils

we show to be not solvable by radicals, there are a number of immediate conse­

quences. First, for these problems there exists no ezact algorithm under models of

computation where the root of an algebraic equation is obtained using arithmetic

operations and the extraction of k th roots. Second, this leaves only numeric O~ sym­

bolic approximations to the optimum solution. In order to usc numeric or symbolic

approximation techniques one first needs to compute a sequence of disjoint intervals

with rational endpoints, each containing exactly one real root of the minimal polyno­

mial and together containing all the real roots, (root isolation). Given an isolating

interval with rational endpoints one can use symbolic bisection and sign calculation

methods (CL82] or Newton's iterations [Li76] to rapidly approximate the solution to

any desired degree of accuracy. The complexity of the algorithms which isolate the

roots of a polynomial P of degree d with integer coefficients is bounded below by a

power of log (ljsep (P)) where sep(P) is the minimum distance between distinct real

roots of P. A lower bound for sep (P) given by (Ru79] satisfies

sep(P) > 1j(2d d /2(IP 1+1)'). Hence from the minimal polynomial of the non­

solvable geometric optimization problem we in effect derive a complexity bound for

approximations which primarily depends on the algebraic degree of the optimum

solution point, (the degree of the minimal polynomial).

A similar complexity bound may also be derived for the order of convergence of

a sequence of nl,lmerical approximations of the optimum solution point. (Ku75]

relates the order of convergence of approximations of an algebraic number with the

algebraic degree of the number, provided the approximation sequence is of bounded

order of convergence.

The main geometric optimization problem we consider is one of fundamental

importance and has an equally long and interesting history in mathematical literature

(Ku67]. Simply stated one wishes to obtain the optimum solution of a single source

point in the plane, so that the sum of tbe Euclidean distances to n fixed destination

points is a minimum.

Given n fixed destination points in the plane with integer coordinates (aj ,hi J. deter­

mine·the optimum location (~ ;y) of a single source poinlr thal is

quotient or the k,h root of preceding j)·s and the last j)1J is a.
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Weber [We37], was probably the first who formulated riris problGw. ili Ught of ti.i.e

location of a plant, with the objective of minimizing the sum oi transportation C;::'S·'S

from the plant to sources of raw materials and to market centers. Hence this problem

for n points has also come to be known as the Generalized Weber problem. In the

recognition version of this problem we ask if there exists (x;y) such that for given

integer L, if IiC=l•.n V(x aj)2+(y bj)'l S L? This problem is not even known to be

in NP. Since on guessing a solution one then attempts to verify if .kJ "1..'1 VC; S I. ?,

in time polynomial in the number of bits needed to express certain rational numbers

Ct•... c~ and L. However no such polynomial time algorithm is known

[GGJ761,[Gr84]. [Ba75] also explains some of the difficulty involved wIth the approxi­

mations to sums of square roots.

The solution to the Generalized Weber problem is simple to obtain for the spe­

cial cases when the n points lie on a straight line or form. a regular n·gon. However

in general. straight edge and compass constructions are only known for the cases of

n =3 and n =4. We show that for the case of n =5 points the solution is the root of

an irreducible pol~omial of high degree. Further we prove that the Galois group

associated with the irreducible polynomial is the 1iYIDmetric permutation group.

Hence We are able to show that th,e Generalized Weber problem, is not soivable by

radicals over Q for n>5. For .. the Line-restricted V/eber problem, where the

optimum solution is constrained to lie ·00. a certain given line. a much stronger result

holds. We show that the Line-restricted Weber problem. in general, is not solvable

by radicals over Q. for n;::: 3. A similar result is also shown to apply to the 3-Dimen­

sion version of this problem, for n;:: 4. A proof of the impossibility of straight-edge

and compass constructions for the Generalized Weber problem (but not the Line­

restricted .-case) appears in [Me73]. however nothing was known about the non.

expressibility of the solution by radicals.

2. The Weber Problem

The Weber problem has a long and interesting history. The problem for the

case of n =3 was first formulated and thrown out as a challenge by Fermat as early as

in the 1600's [Ku67]. Cavalieri in 1647 considered the problem for this case, in part!c­

ular, when the three points form the vertices of a ti'iangIe and showed that each side

of the triangle must make an angle of 120· with the given minimum point. Heinen in

1834 noted that in a triangle which has an angle of ;;;: 120·, the vertex of this angle

itself is the minimum point (Fig. 1).



I
I

I
I

, ,,
~ ,

·4·

..

"
(a) Triangle with angles < 1200

Fig. 1

(b) Triangle with an angle;;;: 1200

Fagnano in 1775 showed that for the case n =4 when the .four client points form

a convex quadrilateral the minimum solution point is the intersection of the diago­

nals of the quadrilateral. For a non-convex quadrilateral the fourth point which is

inside the triangle formed by the three other points, is itself the minimum point (Fig.

2).

Cl.
~ --/ - --/ d./.. /

b , /, /, /,
/

C

(c) Convex quadrilateral

a.
, , , , .,
$

, ,
c Ii..-

Cd) Non-convex quadrilateral

Fig. 2

Tedenat in 1810 found that for the case of n points the necessary condition for

the minimum solution point is that the sum of cosines of the angles between any

arbitrary line in the plane and the set of lines connecting the n given points with the

minimum point must be zero. Later, Steiner in 1837 proved that the necessary and

sufficient conditions for the minimum solution are that the sum of the cosines and



·5·

sines of the above mentioned angles must be zero.

The constructions for the solution points for tce case of 3 points is also wartly

of note. The solution is variously obtained by the Steiner construction or the SimP"'

son construction (Fig. 3).

(i) Steiner point (ti) Simpson point

Fig. 3

3. Algebraic Reduction

The function f ex ,y) specified in (1) of Section 1, can be .shown to be '.itrictly

convex. A sufficient set of conditions for the function f (.z,y) to be convex is

(i) p=(d 2f /dx2)x~x. >0 (Ii) q=(d 2f /dy\~. >0

(iii) pq -r2 > a

and (xo.Yo) is the solution of the equations df /dx =0 and df /dy =0. The above con­

ditions are quite easily met for the function f (x,y) of (1). Hence there exists a

unique minimum solution for which the necessary and sufficient conditions are

df /dx = 0 and df !dy = O. The corresponding rational equations are

df /dx ~'i,'~l.,(x -a, )/Y(x -a,l'+(Y -b,)'=O (2)

df /dy~'i,'~l.,(y-b,)/Y(x-a,l'+(y-b,>'-O (3)

We make a wig. (without loss of generality). assumption that the solution does

not coincide with any of the destination points and obtain the corresponding polyno­

mial equations f ,(x ;y) ~ 0 and f 2(X ,y) = 0 from (2) and (3) respectively. This is

done by rationalizing and by the elimination of square-roots. By a process of
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repeated squaring one can eliminate all the square-roots from the expressions (2) aild

(3) above. Starting with say a sum of n different square-roots, sqrt(i), i=l..n.

equated to a constant. the tecbnique is to take aU terms of sqrt(i). for a certain i. to

one side of the equation and the remaining terms on the other side, squaring both

sides and thereby eliminating sqrt(i). Repeating this process by again isolating one of

the remaining square-roots and squaring. one is able to eliminate all square-roots

from the original equation in a maximum of n steps. Note that by this step we do

not change the root of our original problem since repeated squaring preserves the

root of the polynomial.

At this point we have a choice of two ways to proceed. The system of two poly­

nomial equations f l(x.;y) = a and f 2(% ,y) = 0 can be solved by elimination tech­

niques (using resultants), [vdW53], leading to a single polynomial equation p (y )=0 in

a single variable. Alternatively the resulting polynomial equation for the optimiza.

tion problem can be taken to be p (x.y) = f l(x.;y 'f + f z(x ;y 'f = O. since it simul­

taneously satisfies both of the above equations f l(x ,y) = 0 and f 2(.X ,)') = O.

Having obtained, say. the polynomial p (x.;y) for the problem the first step is to

prove it irreducible, over Q. We show this by substituting constants for x. x =a and

showing that p (a .;y) is irreducible. If p (x ;y) is reducible then the corresponding

p (a..Y) is also reducible. Hence if p (a ,y) is irreducible for some constant x =a it

implies that p (x ;y) is irreducible. However the fact that that the minimal polynomial

p (a ;y) is irreducible is important to us only if the line determined by x =a passes

through the solution point of our optimization problem. Using a clever trick. we

choose symmetric configurations of the points, symmetric about a line x =a , for then

we know that the solution lies somewhere on x =a. Then for a set of,! points distri­

buted equaLly and symmetrically about the chosen axis x =a, (when n is odd, 1 point

lies on this axis), we obtain tbe polynomial p (y) of a single variable, for tbe problem.

Proving it to be irreducible over Q gives us the minimal polynomial for the optimiza­

tion problem.

For the problem in hand we now restrict ourselves to tbe case of n =5 points.

Let (aj ,bj). i = 1.5 be the given points with integer coordinates. We choose the

configuration of 5 points to be symmetric about the line x =0. One of the points p

lies on the line and has coordinates (O,c) on the x =0 axis. The value of c changes

the configuration of points in that for c=5.1 and 4. J:his gives the three possible sym­

metric configurations of 5 points, (Fig. 4).
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Fig. 4 Symmetric configurations of 5 points

Let (a"b,)=(3,0), (a"b,)=(l,3), (a,,b,)=(o,c), (a4,b4)~(·1,3) and (a,,b,)=(-3,0).

We need to find the soLution (0,)') satisfying tbe condition for minimality. df /dy =0,

giving us the following.

minimize, f (y)~ Iy -c 1 + 2Y(y -3)'+1 + 2Yy'+9

df jdy=l + 2(y-3);Y(y-3)'+1 + 2yJVY2+9 =0 (y?c)

Eliminating square-roots we obtain the polynomial, p()'), (Table 1). We note that"

this polynomial p (y) is the polynomial for each of the 3 configurations above, since

as long as y '* ct. the equation df jdy =0 is the same regardless of c =5,1 or 4.

t The C:lSe y =c occurs when the point p =(O,c), coincides with the intersection of the lines
between (al,b~.(a4,b4) and (o2.bV,(a s,b s), which is also the solution Cor the CllSC of those
four poiots. (Oi,hl)' i =1,2,4 and 5.
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Table 1

Q : p (y )~15y8-18lr/7+1030yO-4128y'+11907y'

-158761'-17928y2+75816y -54756

Disc (p (y)) : 2''3255813'17'13063

Mod 19: p(y)~ (y+7)(y2_9y-4)(y'+9y'+8y'+7y2_4y-1)

Mod 31: p(y)= (y8-12y7_14y'+10y'-6y'+8y'-lly'-lly-ll)

Mod 37: p(y)~ (Y+5)(y7-17y'+18y'-1Oy'+15y'-16y 2+17y+4)

Factorizations obtcined with use of

MACSYMA, (actually Vaxima on Unix).

We now use Galois theoretic methods to prove the properties of interest. For L!.

definition of the terms used here see [He75],[Ga71].

. Lemma 1: Th~ polynomial p (Y), [Table 1J, is irreducible over Q.

Proof: Since p (y) is irreducible mod 31 and the prime 31 is not a divisor of :s
the leading coefficient of the polynomial, it follows th:::~ p(y) is irreducible over Q

and is our minimal polynomial. 0

The degree testing algorithm, see [K.n811. is a much more efficient me3l!S of

proving irreducibility than merely searching for Co prime p for which p (y) is irrecic.:i­

ble mod p. By performing the factorization of the poly:ilomial p (y) modulo sevetci

primes, and considering the possible degrees of the factors, one can obtain importa::z

information about the degree of the true factors. For good primes p relative to

p (Y), {primes p that are not divisors of disc(p (y»} J one computes the degree S";L:

dp =set of degrees of all factors: of p (y) mod p. The degree set of p (y) must be c':).:.~

tained in dp,n ... n dp_, where Pl,···,pm are the primes tried. If p(y) is irred~:"·

ble over Q. often dp1n dp'1 n ... =(O,n) after only a few primes have been tried.

As our next step we show the impossibility of cOilstruetions with straight-e:d;;"L

and compass, but before that we need a few definitions. (Henceforth wilen we re'~.;r
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to constructions we mean constructions with straight-edge and compass.) A fieid F is

said to be an extension of Q if F contains Q and a simple e::tension if F =Q (a) for

some ae.F. Every finite extension of Q is a simple extension. Using the notation of

[He75], we denote [F:Q ]=degree of F over Q. (the dimension of F as a vector space

over Q).

Consider aU the points (x.y) in the real Euclidean plane, both of whose coordi·

nates x. y are in Q . This set of points is called the plane of Q. A point is constructi­

ble from Q iff we can find a finite number of real numbers 0.1•...• a n such that (i)

[Q (",}:Q ]=1 or 2 and (ii) [Q (",•...• '" }:Q (",•...• "'-1)]= 1 or 2. and such that our

point lies in the plane of Q(al•... •a n). It follows that if a. is constructible then a

lies in some extension of Q , of degree a power of 2. We know that a real number a

is algebraic over Q iff Q (a.) is a finite extension of Q. Further a. is said to be alge­

braic of degree n over Q if it satisfies a non-zero polynomial of degree n but no

non-zero polynomial of lower degree. Also if a. is algebraic of degree n over Q, then

[Q (o.):Q J =n. This together with our discussion of constructibility above gives the

following important criterion for non-constructibility.

Lemma 2 : [He75J If the real number a. satisfies an irreducible polynomial over Q

of degree n and if If is not a power of 2, then a is not constructible.

If p (y )eQ (y J, a finite extension E of Q is said to be a splitting field over Q for

p (y) if over E but not over any proper subfield of E, P (y) can be factored as 2. pro­

duct of linear factors. Alternatively. E is a splirting field of p (y) over Q if E is a

minimal extension of Q in which p (y) has n roots, where n =degree of p U·). Given a

polynomial p (y) in Q [y J, the polynomial ring in y over Q, we shall associate with

p(y) a group, Gal (p (Y», the Galois group of PU'). The Galois group turns out to be

a cenain permutation group of the roots of the polynomial. It is actually defined as a

certain group of automorphisms of the splitting field of p (y) over Q. From the

duality, expressed in the fundamental theorem of Galois Theory, between the suO­

groups of the Galois group and the subfields of the splitting field one can derive a

condition for the solvability by means of radicals of the roots of a polynomial in

terms of the algebraic structure of its Galois group. As a special case one can give a

criterion for non-constructibility by straight-edge and compass constructions similar

to the above Lemma 2.

Lem.m.a 3: If E is the splitting field over Q of an irreducible polynomial p (y),

and if the order of its Galois group, 0 [Gal (p (y )}] = [E :Q], is not a power of 2,

then the roots of p (y) are not constructible.
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We now state a few additional theorems f..-om Galois theory of use to us here. The

following are well known and proofs may be found in [He75],[Ga71].

Lemm-;; 4: [Ga71] For a fini'e field F, Ii r=pn and p (y )eF (y1fac,ors over F in,o

k differen' irreducible factors, p (y )=q,(y ).. .q. (Y), wbere degree q, (y )=n" then

Gal (p (y» is cyclic and is generated by a permutation containing" cycles with

orders n1••••• RJ: •

The sJuzpe of a permutation of degree Q is the partition of n induced by the lengths

of the disjoint cycles of the perm.utation. The factorization of a polynomial modulo

any prime p also induces a partition, namely the partition of the degree of p (y)

formed by the degree of the factors. The above Lemma 4 states that the degree parti~

tion of the factors of p(y) modulo p is the shape of the generating permutation of

the group. Gal (p (y», which is furthermore cyclic.

Lemma 5: [Ga7l] Let p(y)<Z(y] have roots a,•... ,an and Ie' p"(y)eZp(y], be

the polynomial p(y) mod p. If the roots of p.(y) are a.;..... 0.:, then the

Gal (p. (y )), {as a permutation group of its roots} is isomorphic to a subgroup of

Gal (p (y)).

Theorem 6 : The solution of the Generalized -Weber problem, in general, is not

constructible by straight~edge and compass for n;=: 5.

Proof : Restating the assertion, we have to show that the roots of the polyno­

mial p(y) of Table 1 are not constructible by straight-edge and compass. We know

that p (y) is irreducible over Q from Lemma 1. Consider p. (y) as the polynomial p (y)

mod p for a good t prime p =37 relative to p (y). From Table 1 the irreducible factors

of p.(y) have degrees 1 and 7. On application of Lemma 4 we know that for the

finite field Z37' the a (Ga/(p(y)] =7 and from Lemma 5, it is a divisor of

o (Ga/(p(Y))], which clearly is not a power of 2 and hence Lemma 3 proves our asser~

tion. 0

To prove the non -expressibiliry of the roots of p (y) over Q by radicals we use

the Ceboralev -Van der Waerden sampling method to determine the Galois group of

p(y), (Mc79],(Za71]. From the density theorem of Ceboratev one obtains,

Lemma 7: As $ - a:J , the proportion of occurrences of a partition 11' as the degree

partition of the factorization of p (y )mod Pi> (i =1..$), tends to the proportion of

t A good prime for a polynomial p (y) is one which does not divide the discriminant of the
polynomial disc (p (y».
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permutations in Gal(p(y» W'hose shape is 'IT. (The shape of a per.nutatioil of

degree n is the partition of n induced by the lengths of the disjoint cycles of

the permutation).

In order to then apply this method of obtaining the group of the polynomial over Q

one needs a table of permutation groups of the desired degree, along with a distribu~

tion of its permutations, .[5t73]. The degree of concern for the polynomial p (y) of

Table 1 is 8. From [Mi99] we know that there are exactly 200 permutation groups of

degree 8. However all is not lost. We also' know that polynomialp(y)EQ is irreduci­

ble iff the Galois group, Gal (p (y)) is transitive;, [vdW53], and there are only 50 llan­

sirive groups of degree 8.

li the Galois group of the polynomial is the symmetric group. Sn' (the group of

all permutations of [l.JJD, the Ceboratev-Van der Waerden method realizes the fact

quickly. Indeed,

Lemma 8: [Za71]lf • 5 O(mod 2) and • > 2 rhen after sampling abour (. +1) good

primes we run across an (12 -I)-cycle and an n-cycle and a permutation of the

rype 2+(.-3) and rhat will be enough to establish tbat Gal (p(y)) over Q is the

symmetric group S". If 12 == l(modZ) then one will run across an (12 -1) cycle

and a permutation of the type Z+(n -Z) in· about the same time and that will be

enough.

Proof: We prove why, if we run across cycle permutations of the above kind, it

is enough for the Galois group to be the symmetric permutation group. Since

for 12 == O(mod 2), 12 -3 is odd, the permutation type 2+(12 -3) when raised to a

power (n-3) yields a 2·cycle. This together with the n -1 cycle and the 12 cycle

generate the symmetric group SrI as follows. Let (U ..on -1) be the- 12 -1 cycle. By

virtue of transitivity, the 2-cycle (ij) can be transformed into (kn), where k is

one of the digits between 1 and (12 -1). The transformation of (kn) by (lZ.. .n -1)

and its powers yield aU cycles (In )(2n )...(12 -In) and these cycles together gen­

erate the symmetric group, SrI [vdW53J.

For n !!9.1(mod 2), again as 12 -2 is odd. the permutation type 2+(12 -Z) when

raised to a power (12 -2) yields a 2-cycle, which together with the n -1 cycle gen-

erates the symmetric group as above. a

:I: A permutation group on L.n is called transitive if for any k I Is k s n. it contains a per­
mutation 1T which sends 1 to k.
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Usually the decision that Gal(p(y»=Sll is reached even after much less ~hau n+1 tri­

als as a consequence of the evolving pattern of permutations occurring in Gal (p (y»
and the applicatio"o of known theorems of permutation groups.

We are now ready to prove our main theorem, but first let us indulge in some

definitions. A. polynomial p (y )eQ [y] is called solvable over Q if there is a finite

sequence of fields Q=F o<F 1< ... <FJ:, (where F, - 1<Fi implies that F, - 1 is a

subfield of F i ) and a finite sequence of integers 1J'O•••• ,nk-l such that F j +1=F j (aJ with

at'eFI and if all the roots of p (y) lie in Fl:;. that is • E ~Fk. where E is the splitting

field of p (y). Fk is called a radical extension of Q. Furthermore, we know from

Galois theory that

Lemma 9 .. [He75] p (y )eQ [y] is soivable by radicals over Q ilf the Galois group

over Q of p (Y), Gal (p (y)) is a solvable group.

Lemma 10 : [He75] The symmetric group Sn is not solvable for n ~ 5.

Theorem 11: The Generalized -Weber problem. in general, is not solvable by rad­

icals over Q for n;;;: 5.

Proof: Restating the assertion, we need -to show that the polynomial p (y) of

Table 1 is not solvable by radicals over Q. We note from Table 1 that for the 'good'

primes p =19,31 and 37, the degrees of the irreducible factors of p(y) mod p gives us

a 2 + 5 permutation. an 8 cycle and a 7 cycle, _which is enough to establish, from

Lemma 8 for n =8, that Gal (p (y ))=8 8' the symmetric group of degree 8. Lemma 10

tells us that this is not a solvable group and hence our assertion follows from

Lemma 9. 0

4. The Line-restricted Weber problem

Given n fixed destination points as before in the plane with coordinates (ai ,bi ),

we need to determine the location (x,y) of a single source point, restricted to

lie on certain given line, such that the sum of the Euclidean distances from this

source to each of the destinations is minimized.

We consider two different positions (and orientations) of this line, since the alge­

braic degree of the solution point varies with the relative positions of the line and

the fixed destination points.

For the non-trivial case of 3 destination points consider the solution restricted

to a line passing through one of the points and either not intersecting the convex-hull
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(of the destination points), Fig. 5 (i) or pas:;ing through the CG:i:rv~x·huIl. Fig-.S (il).

x:::o
x::.o

(i) (ti)

Fig. 5

Table 2

minimize, f (y)'ry-c + V(Y-3)'+1 + V1'+9

df /d)'~l + 6'-3)tY(Y-3)'+1 +)';v;::+9 =0

Q : p 6' )~3)'8_36),7+202)"-780)""'2277)"-4212)"+340i)"-,;;~0

disc (p (y» : 2''3''5'13'19687

Mod 7: p(y)~ (y8+2)'7+2)"-)"+3)"+3)"+1)~0

Mod 11: p 6')~ (y -5)(y7+4)"+3)"-3)"-4)"-5)"-2)' +l)~O

Mod 29 : p(y)~ (y +13)(y'+5)' -11)6"-)"+12)"+11)"+2)' +1)~O

Lemma 12: For the above cases of Fig5 (i) acd (li), the mi.J.i.maI polynomial p (y)

(Table 2) of degree 8 is irreducible over Q. Furthermore, this polynomial is not solv·

able by radicals over Q .
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Proof: Since p (y) is irreducible mod 7, for a 'good' prime 7J it follows th::>.t p (y)

is irreducible over Q. To show non-solvability by radicals we apply Lemma 8 for n =8

and note from Table 2 that for the 'good' primes p=7,l1 and 29 the degrees of the

irreducible factors of p (y) mod p gives us an 8 cycle, a 7 cycle and a 2 + 5 permuta­

tion which is enough to establish that Ga{(p(y»=Ss_ Again, Lemma 10 tells us that

this is not a solvable group and hence OUf assertion follows from Lemma 9. 0

As before, for the case of n =3 destination points consider the solution res­

tricted to a line however, not passing through any of the 3 points and either not

intersecting the convex-hull (of the destination points). Fig. 6 (iii), or passing through

the convexahull, Fig. 6 (iv).

(ill)

Fig. 6

(iv)

Lemma 13: For the above cases of Fig. 6 (iii) and (iv), the minimal pglynomial p(y)

(table 3) of degree 12 is irreducible over Q . Furthermore, this polynomial is not solv­

able by radicals over Q.

Proof : Since p (y) is irreducible mod 7, for a 'good' prime 7, it follows that p (y)

is irreducible over Q. One notes that the impossibility of straight-edge and compass

constructions follows immediately from Lemma 2, since the degree of p 6') is 12

which is not a power of 2. To show the non-solvability by radicals, we again apply

Lemma 8 for n =8 and note from table 2 that for the 'good' primes p =7,19 and 61 the

degrees of the irreducible factors of p (y) mod p gives us a 12 cycle, a 11 cycle and a

2 + 9 permutation which is enough to establish that Gal(p(y»=S12' the symmetric

group of degree 12. Lemma 10 teUs us that this is not a solvable group and hence our

assertion follows from Lemma 9. 0
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Table 3

minimize, f (y)=V(Y-3)'+4 + V(Y-3)'+1 + Vy'+1

df /dy=(Y-3)f'/(y-3)'+4 + (Y-3)f'/(Y-3)'+1 + yfVY2+i =0

Q : p (y )=3,12_72y"+780y"-4992)"+20772y'-5850o,'+113610,'

-155448y'+156912,'-11904o,'+51876y '+972, -729=0

disc (p (y» :

Mod-? : p(y)= (y12_3yll+)'lO+2/~+y8+2)'1_2)·5+3)'3+2y2+2y+2)=O

Mod 19: p(y)= (Y-6)(Y"+,"+8y'-y'+7y'+7y'+,'+3y'-9y'+5,-7)=0

Mod 61: p(y)= (y +13)(Y'-3y +10)

(y' +27y'+19y'+19y'-7,'+y'-Io,'-25,'-21y +23)=0

Theorem 14: The Line -restricted Weber problem, in general, is not solvable by radi­

cals over Q for n 2: 3.

Proof: Follows from Lemmas 12 and 13. 0

For the case of tbe line passing through 2 of the 3 given destination points, the soiu­

tion to the Line -restricted Weber problem coincides with projection of the 3rd point

onto that line and so is constructible. Funhermore. the case of n =5 for the sym­

metric Generalized-Weber problem is equivalent to the (weighted) case, n =3, of the

Line-restricted Weber problem. where tbe line is the axis of symmetry, which passes

through one of the destination points. (and hence the algebraic degree of the solu­

tions are the same). On the other hand the above case of n =3 of the Line-restricted

Weber problem where the line does not pass through any of the destination points is

equivalent to the case of n =6 for the symmetric Generalized-Weber problem. (the

line becoming the axis of symmetry as before). The solutions of these cases are as

expected. of higher algebraic degree.
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S. Euclidean 3-Dimension Space

The Weber problems that we have considered can also be generalized to ~:a~

case of noncoplanar points in Euclidean 3-Dimension space. The simplest case here

corresponds to 4 noncoplanar points forming a tetrahedron. The solution point

which minimizes the sum of the Euclidean distances from these 4 points clearly lies

inside the tetrahedron, however for no point within the tetrahedron does there exist

a regular configuration analogous to the corresponding planar Weber problem of Fig.

1. (viz., pairs of lines subtending equal angles at the solution point). The problem in

3~Dimensions thus appears more difficult and as we suspect, in general, not solvbale

by radicals over Q. We show this to be true for the case of 4 noncoplanar points

with the solution restricted to a line passing through one of the given points. as illug.

trated by Fig 7.

( ',lO\ l';,3,D)
VJ' I-~''<,c--,,'

(1) (2)

Fig. 7

Theorem 15: The 3-DiTTumnon version of the LiTle -restricted Weber problem, in gen­

eral, is not solvable by radicals over Q for n ;a: 4.

Proof : This case of 4 noncoplanar points corresponds to a case of 4 planar

points of the planar Line-restricted Weber problem with two of the points being

symmetrical about the given line. Our proof thus follows from Theorem 14. Alterna­

tively, and more directly. we derive the corresponding polynomial via the algebraic

reduction, and prove our result similar to the proof of Theorem 11. The polynomials

PIC>') and P2(Y) of Table 4 correspond respectively to the point configurations (1) and

(2) of Fig. 7. For p](y) of degree 6, we note from Table 4 that for the 'good' primes

P =17,19 and 29, the degrees of the irreducible factors of p](y) mod p gives us as
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Table 4

Q : Pl(Y )~56y'-768y'+4257y4-15228y'+42768y2-75816y7+54756=0

Mod 17: a 5 cycle

Mod 19: a 6 cycle

Mod 29: a 2 + 3 cycle

Q : P2(y)=8y'O-I12y'+507y'+492y7-14448y'

+64932y' -143326y4+160772y'-71112y2-324y +243~O

Mod 19: a 10 cycle

Mod 31 : a 9 cycle

Mod 37: a 2 + 7 cycle

cycle, a 6 cycle and a 2 + 3 permutation. which is enougb to establish our assertion,

(from Lemmas 8 , ~ and 10). Similarly, for P2(Y) of degree la, we note from Table 4

that for the 'good' primes p=19,31 and 37, the degrees of the irreducible factors of

P2(Y) mod p gives us a 10 cycle, a 9 cycle and a 2 + 7 permutation, which is again

enough to establish our assertion. Cl

6. Discussion & Further Research

We have outlined above a method of obtaining the minimal polynomial, whose

root over the field of rational numbers is the solution of the geometric optimization

problem on tbe real (Euclidean) plane. This may be applied to a number of other

optimization problems as well. Other methods of computing minimal polynomials

could also be used (pR85]. Having obtained the minimal polynomial one can apply

Galois theoretic methods to check for solvability as sketched above. Alternatively

one can use the computational procedure of [LM83]. From the minimal polynomial

of the non-solvable optimization problems one can derive a complexity bound for

approximations which primarily depends on the algebraic degree of the optimum
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solution point, (the degree of the minimal polynomial). For the case when the poly­

nomial is solvable computational lower bounds for obtaining the solution based Oil

the order of the solvable Galois group. may be derived using methods of logic,

[En76]. It seems that the domain of relations between the algebraic degree, the

order of the Galois group of the minimal polynomials and the complexity of obtain­

ing the solution point of optimization problems is an exciting area to explole.

Acknowledgements : Sincere thanks to John Hopcroft for his inspirations and

suggestions in the use of algebraic methods and to Walter Schnyder for his

explanations on methods of logic.
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