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Abstract. One of the most important and successful tools for assess-
ing hardness assumptions in cryptography is the Generic Group Model
(GGM). Over the past two decades, numerous assumptions and proto-
cols have been analyzed within this model. While a proof in the GGM
can certainly provide some measure of confidence in an assumption, its
scope is rather limited since it does not capture group-specific algorithms
that make use of the representation of the group.

To overcome this limitation, we propose the Algebraic Group Model
(AGM), a model that lies in between the Standard Model and the GGM.
It is the first restricted model of computation covering group-specific
algorithms yet allowing to derive simple and meaningful security state-
ments. To prove its usefulness, we show that several important assump-
tions, among them the Computational Diffie-Hellman, the Strong Diffie-
Hellman, and the interactive LRSW assumptions, are equivalent to the
Discrete Logarithm (DLog) assumption in the AGM. On the more prac-
tical side, we prove tight security reductions for two important schemes
in the AGM to DLog or a variant thereof: the BLS signature scheme
and Groth’s zero-knowledge SNARK (EUROCRYPT 2016), which is the
most efficient SNARK for which only a proof in the GGM was known.
Our proofs are quite simple and therefore less prone to subtle errors than
those in the GGM.

Moreover, in combination with known lower bounds on the Discrete
Logarithm assumption in the GGM, our results can be used to derive
lower bounds for all the above-mentioned results in the GGM.
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Security reductions · Cryptographic assumptions

1 Introduction

Starting with Nechaev [Nec94] and Shoup [Sho97], much work has been devoted
to studying the computational complexity of problems with respect to generic
group algorithms over cyclic groups [BL96,MW98,Mau05]. At the highest level,
generic group algorithms are algorithms that do not exploit any special structure
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of the representation of the group elements and can thus be applied in any
cyclic group. More concretely, a generic algorithm may use only the abstract
group operation and test whether two group elements are equal. This property
makes it possible to prove information-theoretic lower bounds on the running
time for generic algorithms. Such lower bounds are of great interest since for
many important groups, in particular for elliptic curves, no helpful exploitation
of the representation is currently known.

The class of generic algorithms encompasses many important algorithms such
as the baby-step giant-step algorithm and its generalization for composite-order
groups (also known as Pohlig-Hellman algorithm [HP78]) as well as Pollard’s rho
algorithm [Pol78]. However, part of the common criticism against the generic
group model is that many algorithms of practical interest are in fact not generic.
Perhaps most notably, index-calculus and some factoring attacks fall outside the
family of generic algorithms, as they are applicable only over groups in which
the elements are represented as integers.

Another example is the “trivial” discrete logarithm algorithm over the addi-
tive group Zp, which is the identity function.

With this motivation in mind, a number of previous works considered
extensions of the generic group model [Riv04,LR06,AM09,JR10]. Jager and
Rupp [JR10] considered assumptions over groups equipped with a bilinear map
e : G1 × G2 −→ G3, where G1 and G2 are modeled as generic groups, and G3 is
modeled in the Standard Model. (This is motivated by the fact that in all prac-
tical bilinear groups, G1 and G2 are elliptic curves whereas G3 is a sub-group
of a finite field). However, none of these models so far capture algorithms that
can freely exploit the representation of the group. In this work, we propose a
restricted model of computation which does exactly this.

1.1 Algebraic Algorithms

Let G be a cyclic group of prime order p. Informally, we call an algorithm Aalg

algebraic if it fulfills the following requirement: whenever Aalg outputs a group
element Z ∈ G, it also outputs a “representation” �z = (z1, . . . , zt) ∈ Z

t
p such

that Z =
∏

i L
zi

i , where �L = (L1, . . . ,Lt) is the list of all group elements that
were given to Aalg during its execution so far.

Such algebraic algorithms were first considered by Boneh and Venkatesan
[BV98] in the context of straight-line programs computing polynomials over the
ring of integers Zn, where n = pq. Later, Paillier and Vergnaud [PV05] gave a
more formal and general definition of algebraic algorithms using the notion of
an extractor algorithm which efficiently computes the representation �z.

In our formalization of algebraic algorithms, we distinguish group elements
from all other parameters at a syntactical level, that is, other parameters must
not depend on any group elements. This is to rule out pathological exploits of
the model, see below.
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While this class of algebraic algorithms certainly captures a much broader
class of algorithms than the class of generic algorithms (e.g., index-calculus algo-
rithms), it was first noted in [PV05] that the class of algebraic algorithms actually
includes the class of generic algorithms.

Algebraic algorithms have mostly been studied so far in the context of prov-
ing impossibility results [BV98,Cor02,PV05,BMV08,GBL08,AGO11,KMP16],
i.e., to disprove the existence of an algebraic security reduction between two
cryptographic primitives (with certain good parameters). Only quite recently,
a small number of works have considered the idea of proving statements with
respect to algebraic adversaries [ABM15,BFW16].

1.2 Algebraic Group Model

We propose the algebraic group model (AGM) — a computational model in which
all adversaries are modeled as algebraic. In contrast to the GGM, the AGM does
not allow for proving information-theoretic lower bounds on the complexity of
an algebraic adversary. Similar to the Standard Model, in the AGM one proves
security implications via reductions. Specifically, H ⇒alg G for two primitives H
and G means that every algebraic adversary Aalg against G can be transformed
into an algebraic adversary Balg against H with (polynomially) related running
times and success probabilities. It follows that if H is secure against algebraic
adversaries, so is G. While algebraic adversaries have been considered before (see
above), to the best of our knowledge, our work is the first to provide a clean and
formal framework for security proofs with respect to algebraic adversaries. We
elaborate further on our model below.

Concrete Security Implications in the AGM. Indeed, one can exploit
the algebraic nature of an adversary in the AGM to obtain stronger security
implications than in the Standard Model. The first trivial observation is that
the classical knowledge of exponent assumption1 [Dam92] holds by definition in
the AGM.

We are able to show that several important computational assumptions are
in fact equivalent to the Discrete Logarithm assumption over prime-order groups
in the AGM, including the following:

– Diffie-Hellman assumption [DH76]
– (Interactive) strong Diffie-Hellman assumption [ABR01]
– (Interactive) LRSW assumption [LRSW99,CL04].

The significance of the Strong Diffie-Hellman Assumption comes from its equiv-
alence to the IND-CCA security of Hashed ElGamal encryption (also known
as Diffie-Hellman Integrated Encryption Standard) in the random oracle model
[ABR01]. The LSRW assumption (named its authors [LRSW99]) is of impor-
tance since it is equivalent to the (UF-CMA) security of Camenisch-Lysyanskaya

1 The knowledge of exponent assumption states that for every algorithm A that, given
g and X = gx, outputs (A,B) with B = Ax, there exists an extractor algorithms
that, given the same input, outputs a satisfying (A,B) = (ga,Xa).
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(CL) signatures [CL04]. CL signatures are a central building block for anony-
mous credentials [CL04,BCL04,BCS05], group signatures [CL04,ACHdM05], e-
cash [CHL05], unclonable functions [CHK+06], batch verification [CHP07], and
RFID encryption [ACdM05]. Via our results, the security of all these schemes is
implied by the discrete logarithm assumption in the AGM.

Our result can be interpreted as follows. Every algorithm attacking one of the
above-mentioned problems and schemes must solve the standard discrete loga-
rithm problem directly, unless the algorithm relies on inherently non-algebraic
operations. In particular, powerful techniques such as the index-calculus algo-
rithms do not help in solving these problems any better then they do for solving
the discrete logarithm problem directly.

Moreover, we show the tight equivalence of the security of the following
schemes to the underlying hardness assumptions in the AGM:

– IND-CCA1 (aka lunchtime) security of the standard ElGamal Encryption to a
parametrized variant of Decisional Diffie-Hellman assumption where in addi-
tion to gx, gy the adversary receives gx2

, . . . , gxq

, where q is the maximal
number of decryption queries.

– The UF-CMA security of the BLS signature scheme [BLS04] to the discrete
logarithm problem in the random oracle model. Previous reductions non-
tightly reduced from the CDH problem, with a tightness loss linear in the
number of signing queries. This loss is known to be inherent [Cor02,KK12],
even in the random oracle model.

– The security of the so far most efficient zero-knowledge SNARK scheme by
Groth [Gro16] to a parametrized variant of the discrete logarithm problem,

where in addition to gx the adversary receives gx2

, . . . , gx2n−1

, where n is the
degree of the quadratic arithmetic programs. The only previous proof of the
security of this scheme is in the generic group model.

Relation to the Generic Group Model. The AGM is stronger (in the
sense that it puts more restrictions on the attackers) than the Standard Model,
but weaker than the GGMl. In spite of this, all of our reductions are purely
generic algorithms. As mentioned above, any generic algorithm can be modeled
within the AGM. In particular, combining arbitrary generic operations with alge-
braic ones will yield an algebraic algorithm. This suggests the following idea. Let
H and G be two computational problems and let Aalg be an algebraic algorithm
that solves problem G. If we can convert Aalg by means of a generic reduction
algorithm Rgen into an algorithm Balg for problem H, then clearly, Balg is also
an algebraic algorithm. However, we obtain an even stronger statement for free:
Namely, if Agen is a generic algorithm solving G, then Bgen is a generic algorithm
solving H. This means that results in the AGM directly carry over to the GGM.

For this reason, we believe that our model offers an alternative, perhaps
simpler method of proving the hardness of computational problems within the
GGM. This applies in particular to interactive assumptions, which can be rather
difficult to analyze in the GGM. For example, we prove that the discrete log-
arithm assumption implies the LRSW assumption in the AGM. As the dis-
crete logarithm assumption holds in the GGM, we instantly obtain that the
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LRSW assumption holds in the GGM. The first (rigorous) proof of the LRSW
assumption within the GGM was presented in the work of [BFF+14] (the original
work [LRSW99] provided only a proof sketch), but was derived from a more gen-
eral theorem and proven using an automated proof verification tool. We hope
that our proof can offer some additional insight over the proof of [BFF+14].
Another example is our tight equivalence of the IND-CCA1 security of ElGamal
and our parametrized variant of the Decisional Diffie-Hellman (DDH) assump-
tion in the algebraic group model. Together with the known generic

√

p/q attack
on ElGamal [BG04] for certain primes p (see also [Che06]), our result proves the
tight generic bound Θ̃(

√

p/q) on the complexity of breaking IND-CCA1 security
of ElGamal in the GGM.

We also remark that proofs in the AGM have an inherently different inter-
pretation than proofs in the GGM. To analyze the hardness of an assumption
in the GGM, one must explicitly augment the model by any functionality that
is offered by the structure of the group. As a simple example, let us consider a
group G which is equipped with a symmetric bilinear map e : G × G −→ GT .
The bilinear map can be modeled in the GGM via an oracle. However, it is
not clear whether e can be used to gather even further information about the
elements of G. Though it is widely believed that this is not the case, a proof in
the GGM provides no answer to this question, because the GGM itself is based
on the conjecture that e does not offer any functionality beyond a bilinear map.
In contrast, the AGM captures any such exploit without the need of having to
model it explicitly and considers the relation between two problems instead of
their individual hardness. This means that if one can reduce H to G in the AGM
and H is conjectured to remain hard with respect to algebraic algorithms, even
when given e, then also G remains hard. No similar statement can be inferred
in the GGM. Thus, the AGM allows for a more fine grained assessment of the
hardness of computational problems than the GGM.

The gap between the two models becomes even more apparent if one considers
structural properties of G which cannot be meaningfully modeled as an oracle
in the GGM. As an example, consider the Jacobi symbol, which was shown to
be generically hard to compute in [JS09]. Indeed, it was left as an open problem
in [AM09] to re-examine the equivalence of factoring and breaking the RSA
assumption if an additional oracle for the Jacobi symbol were given. Though
their results are stated in the generic ring model rather than the GGM, it seems
they are similarly confronted with the issue of explicitly modeling such an oracle.

Limitations of the AGM. As already noted, one of the main benefits of
our model over the GGM is the ability to reason about algorithms that arbi-
trarily exploit the structure of the group. So which algorithms are not covered
in this manner? Obviously, outputting an obliviously sampled group element
(with unknown representation) is forbidden. This coincides with the GGM of
Maurer [Mau05] and which also excludes the possibility of obliviously sampling
a random group element. For this reason, our model is strictly weaker than the
one from [Mau05] in the sense that any security reduction derived in Maurer’s
GGM also holds in the AGM. In contrast, the GGM defined by Shoup [Sho97]
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does allow for such a sampling process. Similar to Maurer’s GGM, we can allow
obliviously sampling a random group element X through an additional oracle
O() that can be called during the execution of Aalg. By definition, the outputs of

O() are added to the list �L. We have thus argued that both versions of the GGM
(i.e., the ones by Maurer and Shoup) are strictly stronger than the AGM. Also
note that simulating O() to Aalg as part of a reduction is straight-forward and
always possible; the reduction simply samples r and returns gr to the adversary.
As the reduction knows r, adding O() to an experiment does not change it and
is completely without loss of generality. From a practical point of view, it seems
that generating and outputting a random group element without knowing a rep-
resentation is generally not of much help. We therefore believe that the AGM
captures most algorithms of practical interest.

1.3 Related Work and Open Questions

We have already mentioned the semi generic group model (SGGM) [JR10] as
related work, but we discuss here some key differences of their model to ours in
more detail. First, the SGGM is a very restrictive model in the sense that the
class of problems it captures is limited. The main theorem of [JR10] (Theorem 3)
holds only for pairing-based computational problems in which the output consists
of a single element in either one of the base groups. In contrast, the AGM does
not require a pairing group setting and thus applies to a much broader class
of computational problems. Second, by extending the AGM to pairing groups,
we are able to model all three groups as algebraic and reason again about a
broader class of problems, in which the output can also consist of elements
in the target group. To extend the AGM to the pairing setting, we allow the
algebraic adversary to compute any element in the target group by applying the
pairing to elements in the respective base groups.

Dent [Den02] shows that the generic group model as proposed Shoup [Sho97]
inherits the known weaknesses in the random oracle model [CGH98]. Thus, there
exist schemes which can be proven secure in Shoup’s GGM, but are pathologi-
cally insecure when viewed in the standard model. An interesting open question is
whether the AGM bears similar weaknesses. A promising line of research related
to this question has recently been initiated by Bitansky et al. [BCPR16]. Namely,
they show that indistinguishability obfuscation (iO) implies the existence of non-
extractable one-way functions. If these non-extractable one-way functions were
furthermore algebraic (such as the knowledge of exponent assumption [Dam92]),
then this would invalidate the AGM (under the assumption that iO exists).

Another promising direction for future research is to prove further reductions
between common computational assumptions in the AGM. In particular, it would
be interesting to classify different such assumptions within the AGM, for example
along the lines of work [SS01,Kil01,Boy08,JR15,CM14,MRV16,GG17].

We leave it as an open problem to come up with a meaningful formalization of
the AGM for decisional assumptions. At a technical level, the main difficulty in
this task arises from the fact that an algorithm, i.e., distinguisher, in a decisional
problem is asked to output a bit rather than a group element. Therefore, such an
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algorithm is trivially considered algebraic in our framework. It would therefore
be interesting to develop a model which captures the algebraic properties of such
algorithms in more detail.

A further potential for follow-up work would be to investigate whether it is
possible to automate proofs in the AGM. Indeed, for the case of the GGM this
has been considered in [BFF+14,ABS16] and it would be interesting to see if
similar automated tools can be derived for the AGM.

Finally, we remark that all of our results require prime-order groups and do
not yet extend to the setting of pairing groups. When generalizing our results to
composite-order groups, we expect to encounter the following technical difficulty:
Given, e.g., an equation of the form ax ≡n b, where n is composite, there might
be (exponentially) many solutions for the unknown x in case gcd(a, n) > 1. This
interferes with the proof strategies presented in this work and requires a more
involved analysis. In fact, proving a reduction from the discrete logarithm prob-
lem to the CDH problem in the AGM for group orders containing multiple prime
factors (e.g., n = p2) is excluded by [MW98]. Hardness bounds in the GGM
for composite-order groups have been considered in [Sho97,MW98,Mau05].
Generalizing the GGM to pairing groups has been the subject, e.g., of the works
of [Boy08,KSW08,RLB+08]. Extending the AGM to either one of these regimes
is an interesting line of research for future work.

2 Algebraic Algorithms

Algorithms. We denote by s $← S the uniform sampling of the variable s from
the (finite) set S. All our algorithms are probabilistic (unless stated otherwise)
and written in uppercase letters A,B. To indicate that algorithm A runs on
some inputs (x1, . . . , xn) and returns y, we write y $← A(x1, . . . , xn). If A has
access to an algorithm B (via oracle access) during its execution, we write y $←
AB(x1, . . . , xn).

Security games. We use a variant of (code-based) security games [BR04,
Sho04]. In game Gpar (defined relative to a set of parameters par), an adversary
A interacts with a challenger that answers oracle queries issued by A. It has
a main procedure and (possibly zero) oracle procedures which describe how
oracle queries are answered. We denote the output of a game Gpar between a
challenger and an adversary A via GA

par. A is said to win if GA
par = 1. We define

the advantage of A in Gpar as AdvG
par,A := Pr

[

GA
par = 1

]

and the running time

of GA
par as TimeG

par,A.
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Fig. 1. Left: Algebraic game cdh relative to group description G = (G, g, p) and
adversary A. All group elements are written in bold, uppercase letters. Right: Algebraic
game cdh relative to group description G = (G, g, p) and algebraic adversary Aalg. The
algebraic adversary Aalg additionally returns a representation �z = (a, b, c) of Z such
that Z = gaXbYc.

Security Reductions. Let G,H be security games. We write Hpar
(Δε,Δt)
=⇒ Gpar

if there exists an algorithm R (called (Δε,Δt)-reduction) such that for all algo-
rithms A, algorithm B defined as B := RA satisfies

AdvH
par,B ≥

1

Δε
· AdvG

par,A, TimeH
par,B ≤ Δt · TimeG

par,A.

2.1 Algebraic Security Games and Algorithms

We consider algebraic security games GG for which we set par to a fixed group
description G = (G, g, p), where G is a cyclic group of prime order p generated
by g. In algebraic security games, we syntactically distinguish between elements
of group G (written in bold, uppercase letters, e.g., A) and all other elements,
which must not depend on any group elements. As an example of an algebraic
security game, consider the Computational Diffie-Hellman game cdhA

G , depicted
in Fig. 1 (left).

We now define algebraic algorithms. Intuitively, the only way for an algebraic
algorithm to output a new group element Z is to derive it via group multiplica-
tions from known group elements.

Definition 1. (Algebraic algorithm) An algorithm Aalg executed in an algebraic
game GG is called algebraic if for all group elements Z that Aalg outputs (i.e.,
the elements in bold uppercase letters), it additionally provides the representation

of Z relative to all previously received group elements. That is, if �L is the list of
group elements L0, . . . ,Lm ∈ G that Aalg has received so far (w.l.o.g. L0 = g),
then Aalg must also provide a vector �z such that Z =

∏

i L
zi

i . We denote such an
output as [Z]�z.

Remarks on Our Model. Algebraic algorithms were first considered in
[BV98,PV05], where they are defined using an additional extractor algorithm

which computes for an output group element a representation in basis �L. We
believe that our definition gives a simpler and cleaner definition of algebraic
algorithms. If one assumes that the extractor algorithm has constant running
time, then our definition is easily seen to be equivalent to theirs. Indeed, this
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view makes sense for algorithms in the GGM since the representation �z trivially
follows from the description of the algorithm. However, if running the extractor
algorithm imposes some additional cost, then this will clearly affect the running
times of our reductions. If the cost of the extractor is similar to that of the solver
adversary, then reductions in our model that neither call an algebraic solver mul-
tiple times nor receive from it a non-constant amount of group elements (along
with their representations) will remain largely the same in both models.

For the inputs to algebraic adversaries we syntactically distinguish group ele-
ments from other inputs and require that the latter not depend on any group
elements. This is necessary to rule out pathological cases in which an algorithm
receives “disguised” group elements and is forced to output an algebraic repre-
sentation of them (which it might not know). To illustrate the issue, consider an
efficient algorithm A, which on input X ′ := X‖⊥ returns X, where X is a group
element, but X ′ is not. If A is algebraic then it must return a representation of
X in g (the only group element previously seen), which would be the discrete
logarithm of X.

Allowing inputs of form X ′ while requiring algorithms to be algebraic leads
to contradictions. (E.g., one could use Aalg to compute discrete logarithms: given
a challenge X = gx, run [X]x

$← Aalg(X‖⊥) and return x.) We therefore demand
that non-group-element inputs must not depend on group elements. (Note that
if Aalg’s input contains X explicitly then it can output [X](0,1) with a valid

representation of X relative to �L = (g,X).)
Finally, we slightly abuse notation and let an algebraic algorithm also rep-

resent output group elements as combinations of previous outputs. This makes
some of our proofs easier and is justified since all previous outputs must them-
selves have been given along with an according representation. Therefore, one
can always recompute a representation that depends only on the initial inputs
to the algebraic algorithm.

Integrating with Random Oracles in the AGM. As mentioned above,
an algorithm A that samples (and outputs) a group element X obliviously, i.e.,
without knowing its representation, is not algebraic. This appears to be problem-
atic if one wishes to combine the AGM with the Random Oracle Model [BR93].
However, group elements output by the random oracle are included by definition
in the list �L. This means that for any such element, a representation is trivially
available to Aalg.

2.2 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of group G.
Informally, an algorithm is generic if it works regardless of what group it is run in.
This is usually modeled by giving an algorithm indirect access to group elements
via abstract handles. It is straight-forward to translate all of our algebraic games
into games that are syntactically compatible with generic algorithms accessing
group elements only via abstract handles.
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We say that winning algebraic game GG is (ε, t)-hard in the generic group
model if for every generic algorithm Agen it holds that

TimeG
G,Agen

≤ t =⇒ AdvG
G,Agen

≤ ε.

We remark that usually in the generic group model one considers group oper-
ations (i.e., oracle calls) instead of the running time. In our context it is more
convenient to measure the running time instead, assuming every oracle call takes
one unit time.

As an important example, consider the algebraic Discrete Logarithm Game
dlogG in Fig. 2 which is

(

t2/p, t
)

-hard in the generic group model [Sho97,Mau05].
We assume that a generic algorithm Agen additionally provides the repre-

sentation of Z relative to all previously received group elements, for all group
elements Z that it outputs. This assumption is w.l.o.g. since a generic algorithm
can only obtain new group elements by multiplying two known group elements;
hence it always knows a valid representation. This way, every generic algorithm
is also an algebraic algorithm.

Furthermore, if Bgen is a generic algorithm and Aalg is an algebraic algorithm,

then Balg := B
Aalg
gen is also is an algebraic algorithm. We refer to [Mau05] for more

on generic algorithms.

2.3 Generic Reductions Between Algebraic Security Games

Let GG and HG be two algebraic security games. We write HG
(Δε,Δt)
=⇒alg

GG if there

exists a generic algorithm Rgen (called generic (Δε,Δt)-reduction) such that for

every algebraic algorithm Aalg, algorithm Balg defined as Balg := R
Aalg
gen satisfies

AdvH
G,Balg

≥
1

Δε
· AdvG

G,Aalg
, TimeH

G,Balg
≤ Δt · TimeG

G,Aalg
.

Note that we deliberately require reduction Rgen to be generic. Hence, if Aalg

is algebraic, then Balg := R
Aalg
gen is algebraic; if Aalg is generic, then Balg := R

Aalg
gen

is generic. If one is only interested in algebraic adversaries, then it suffices to
require reduction Rgen to be algebraic. But in that case one can no longer infer

that Balg := R
Aalg
gen is generic in case Aalg is generic.

Composing information-theoretic lower bounds with reductions in

the AGM. The following lemma explains how statements in the AGM carry
over to the GGM.

Lemma 1. Let GG and HG be algebraic security games such that HG
(Δε,Δt)
=⇒alg

GG

and winning HG is (ε, t)-hard in the GGM. Then, GG is (ε · Δε, t/Δt)-hard in
the GGM.

Proof. Let Agen be a generic algorithm playing in game GG . Then by our premise

there exists a generic algorithm Balg = R
Aalg
gen such that

AdvH
G,Balg

≥ 1
Δε

· AdvG
G,Aalg

, TimeH
G,Balg

≤ Δt · TimeG
G,Aalg

.
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Fig. 2. Discrete Logarithm Game dlog, Square Diffie-Hellman Game sq-dh, and Lin-
ear Combination Diffie-Hellman Game lc-dh relative to group G and adversary A.

Assume TimeG
G,Aalg

≤ t/Δt; then TimeH
G,Balg

≤ Δt ·TimeG
G,Aalg

≤ t. Since winning

HG is (ε, t)-hard in the GGM, it follows that

ε ≥ AdvH
G,Balg

≥ 1
Δε

· AdvG
G,Aalg

and thus ε · Δε ≥ AdvG
G,Aalg

, which proves that GG is (εΔε, t/Δt)-hard in the
GGM. ⊓⊔

3 The Diffie-Hellman Assumption and Variants

In this section we consider some variants of the standard Diffie-Hellman assump-
tion [DH76] and prove them to be equivalent to the discrete logarithm assump-
tion (defined via algebraic game dlogG of Fig. 2) in the Algebraic Group Model.

3.1 Computational Diffie-Hellman

Consider the Square Diffie-Hellman Assumption [MW99] described in algebraic
game sq-dhG and the Linear Combination Diffie-Hellman Assumption described
in algebraic game lc-dhG (both in Fig. 2), which will be convenient for the proof
of Theorem 2.

As a warm-up we now prove that the Discrete Logarithm assumption is
tightly equivalent to the Diffie-Hellman, the Square Diffie-Hellman, and the Lin-
ear Combination Diffie-Hellman Assumption in the Algebraic Group Model. The
equivalence of the Square Diffie-Hellman and Diffie-Hellman problems was pre-
viously proven in [MW99,BDZ03].

Theorem 1. dlogG

(1,1)
=⇒alg

{

cdhG , sq-dh
G

}

and dlogG

(3,1)
=⇒alg lc-dhG .

Proof. Let Aalg be an algebraic adversary executed in game sq-dhG ; cf. Fig. 3.
As Aalg is an algebraic adversary, it returns a solution Z together with a

representation (a, b) ∈ Z
2
p such that

Z = gx2

= ga(gx)b. (1)



44 G. Fuchsbauer et al.

Fig. 3. Algebraic adversary Aalg playing in sq-dhG .

We now show how to construct a generic reduction Rgen that calls Aalg exactly

once such that for Balg := R
Aalg
gen we have

Advdlog
G,Balg

= Advsq-dh
G,Aalg

.

Rgen works as follows. On input a discrete logarithm instance X, it runs Aalg on X.
Suppose Aalg is successful. Equation (1) is equivalent to the quadratic equation
x2 − bx − a ≡p 0 with at most two solutions in x. (In general such equations are
not guaranteed to have a solution but since the representation is valid and Aalg

is assumed to be correct, there exists at least one solution for x.) Rgen can test
which one (out of the two) is the correct solution x by testing against X = gx.
Moreover, it is easy to see that Rgen only performs generic group operations and

is therefore generic. Hence, Balg := R
Aalg
gen is algebraic, which proves

dlogG

(1,1)
=⇒alg sq-dhG .

The statement dlogG

(1,1)
=⇒alg cdhG follows, since given an adversary against

cdhG (see Fig. 1), we can easily construct an adversary against sq-dhG that runs
in the same time and has the same probability of success (given X = gx, sample

r $← Zp, run the cdh adversary on (X,Xr), obtain Z and return Z
1

r ).

It remains to show that sq-dhG

(3,1)
=⇒alg lc-dhG . Given an algebraic solver Calg

executed in game lc-dhG , we construct an adversary Aalg against sq-dhG as fol-
lows: On input X = gx, Aalg samples r $← Zp and computes either (X, gr),
(gr,X), or (X,Xr) each with probability 1/3. Note that this instance is cor-
rectly distributed. It then runs Calg on the resulting tuple (X1,X2) and receives
(Z, u, v, w) together with (a, b, c) s.t. Z = gaXb

1X
c
2. If u = 0, then the choice

X1 = X, X2 = gr yields Z = gux2+vxr+wr2

, from which gx2

can be computed
as gx2

= (ZX−vrg−wr2

)
1

u . Clearly, Aalg is able to compute an algebraic repre-

sentation of gx2

from the values (a, b, c) and thus is algebraic itself. The cases
v = 0, w = 0 follow in a similar fashion. ⊓⊔

Corollary 1. cdhG and sq-dhG are
(

t2/p, t
)

-hard in the generic group model

and lc-dhG is
(

3t2/p, t
)

-hard in the generic group model.

For the subsequent sections and proofs, we will not make explicit the reduc-
tion algorithm Rgen every time (as done above).
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3.2 Strong Diffie-Hellman

Consider the Strong Diffie-Hellman Assumption [ABR01] described via game
sdhG in Fig. 4. We now prove that the Discrete Logarithm Assumption (non-
tightly) implies the Strong Diffie-Hellman Assumption in the Algebraic Group
Model. We briefly present the main ideas of the proof. The full proof of The-
orem 2 can be found in the full version of our paper [FKL17]. Let Aalg be an
algebraic adversary playing in sdhG and let Z = gz denote the Discrete Loga-
rithm challenge. We show an adversary Balg against dlogG that simulates sdhG

to Aalg. Balg appropriately answers Aalg’s queries to the oracle O(·, ·) by using the
algebraic representation of the queried elements provided by Aalg. Namely, when

(Y′,Z′) is asked to the oracle, Balg obtains vectors�b,�c such that Y′ = gb1Xb2Yb3

and Z′ = gc1Xc2Yc3 . As long as b2 = b3 = 0, Balg can answer all of Aalg’s queries
by checking whether Xb1 = Z′. On the other hand, if b2 = 0 or b3 = 0, then
Balg simply returns 0. Informally, the simulation will be perfect unless Aalg man-
ages to compute a valid solution to lc-dhG . All of these games can be efficiently
simulated by Balg, as we have shown in the previous section.

Fig. 4. Strong Diffie-Hellman Game sdh relative to G and adversary A.

Theorem 2. dlogG

(4q,1)
=⇒alg sdhG , where q is the maximum number of queries

to oracle O(·, ·) in sdhG.

Corollary 2. sdhG is
(

t2

4pq , t
)

-hard in the generic group model.

4 The LRSW Assumption

The interactive LRSW assumption [LRSW99,CL04] is defined via the algebraic
security game lrsw in Fig. 5.

We prove that the LRSW assumption is (non-tightly) implied by the Discrete
Logarithm Assumption in the Algebraic Group Model. We give a high-level
sketch of the main ideas here; the full proof of Theorem 3 can be found in
the full version of our paper [FKL17]. Let Aalg be an algebraic adversary playing
in lrswG and let Z = gz denote the Discrete Logarithm challenge. We construct
an adversary Balg against dlogG , which simulate lrswG to Aalg by embedding the
value of z in one of three possible ways. Namely, it either sets X := Z or Y := Z,
or it chooses a random the query by Aalg to the oracle O(·) in lrswG to embed the
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Fig. 5. Game lrsw relative to G and adversary A.

value of z. These behaviours correspond in our proof to the adversaries Calg,Dalg,
and Ealg, respectively. After obtaining a solution (m∗, [A∗]�a, [B∗]�b, [C

∗]�c) on a
fresh value m∗ = 0 from Aalg, the adversaries use the algebraic representations

�a,�b,�c obtained from Aalg to suitably rewrite the values of A∗,C∗. They then
make use of the relation (A∗)(xm∗y+x) = C∗ to obtain an equation mod p,
which in turn gives z.

Theorem 3. dlogG

(6q,1)
=⇒alg lrswG , where q ≥ 6 is the maximum number of

queries to O(·) in lrswG .

Corollary 3. lrswG is
(

t, t2

6pq

)

-hard in the generic group model.

5 ElGamal Encryption

In this section we prove that the IND-CCA1 (aka. lunchtime security) of the
ElGamal encryption scheme (in its abstraction as a KEM) is implied by a
parametrized (“q-type”) variant of the Decision Diffie-Hellman Assumption in
the Algebraic Group Model.

Advantage for decisional algebraic security games. We parameterize
a decisional algebraic game G (such as the game in Fig. 7) with a parameter bit
b. We define the advantage of adversary A in G as

AdvG
par,A :=

∣

∣ Pr
[

GA
par,0 = 1

]

− Pr
[

GA
par,1 = 1

]∣

∣.

We define TimeG
par,Aalg

independently of the parameter bit b, i.e., we consider
only adversaries that have the same running time in both games Gpar,0,Gpar,1.
In order to cover games that define the security of schemes (rather than
assumptions), instead of par = G, we only require that G be included in
par. Let Gpar,Hpar be decisional algebraic security games. As before, we

write Hpar
(Δε,Δt)
=⇒ alg

Gpar if there exists a generic algorithm Rgen (called generic

(Δε,Δt)-reduction) such that for algebraic algorithm Balg defined as Balg := R
Aalg
gen ,

we have

AdvH
par,Balg

≥
1

Δε
· AdvG

par,Aalg
, TimeH

par,Balg
≤ Δt · TimeG

par,Aalg
.
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Fig. 6. IND-CCA1 Game ind-cca1 relative to KEM KEM = (Gen, Enc, Dec), parame-
ters par, and adversary A.

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM for
short) KEM = (Gen,Enc,Dec) is a triple of algorithms together with a symmetric-
key space K. The randomized key generation algorithm Gen takes as input a set of
parameters, par, and outputs a public/secret key pair (pk, sk). The encapsulation
algorithm Enc takes as input a public key pk and outputs a key/ciphertext pair
(K,C) such that K $← K. The deterministic decapsulation algorithm Dec takes
as input a secret key sk and a ciphertext C and outputs a key K ∈ K or a special
symbol ⊥ if C is invalid. We require that KEM be correct : For all possible pairs
(K,C) output by Enc(pk), we have Dec(sk, C) = K. We formalize IND-CCA1
security of a KEM via the games (for b = 0, 1) depicted in Fig. 6.

In the following, we consider the ElGamal KEM EG defined in Fig. 8. We also
consider a stronger variant of the well-known Decisional Diffie-Hellman (DDH)
assumption that is parametrized by an integer q. In the q-DDH game, defined
in Fig. 7, the adversary receives, in addition to (gx, gy), the values gx2

, . . . , gxq

.

Lemma 2. [Che06] For q < p1/3, q-ddhG is
(

t2q
p log p , t

)

-hard in the generic group
model.

The proof of the following theorem can be found in the full version of our
paper [FKL17]. In the proof, we condisder the algebraic games depicted in Fig. 9.

Theorem 4. ind-cca1EG,G
(1,1)
⇐⇒alg q-ddhG , where q − 1 is the maximal number

of queries to Dec(·) in ind-cca1EG,G .

Corollary 4. For q < p1/3, ind-cca1EG,G is ( t2q
p log p , t)-hard in the generic group

model, where q − 1 is the maximal number of queries to Dec(·) in ind-cca1EG,G .

6 Tight Reduction for the BLS Scheme

For this section, we introduce the notion of groups G equipped with a symmetric,
(non-degenerate) bilinear map e : G × G → GT , where GT denotes the so-called
target group. We now set G = (p, G, GT , g, e) (Fig. 9).

Signature Schemes. A signature scheme SIG = (SIGGen,SIGSig,SIGVer) is a
triple of algorithms. The randomized key generation algorithm SIGGen takes as
input a set of parameters, par, and outputs a public/secret key pair (pk, sk). The
randomized signing algorithm SIGSig takes as input a secret key sk and a message
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Fig. 7. q-Decisional Diffie-Hellman Game q-ddh relative to G and adversary A.

Fig. 8. ElGamal KEM EG = (Gen, Enc, Dec)

Fig. 9. Games ind-cca1A
EG,G,0 and ind-cca1A

EG,G,1 with algebraic adversary Aalg. The

boxed statement is only executed in ind-cca1A
EG,G,1.

m in the message space M and outputs a signature σ in the signature space S.
The deterministic signature verification algorithm SIGVer takes as input a public
key pk, a message m, and a signature σ and outputs b ∈ {0, 1}. We require that
SIG be correct : For all possible pairs (pk, sk) output by SIGGen, and all mes-
sages m ∈ M, we have Pr[SIGVer(pk,m,SIGSig(m, sk)) = 1] = 1. We formalize
unforgeability under chosen message attacks for SIG via game uf -cmaSIG,par

depicted in Fig. 10.
In the following, we show how in the AGM with a random oracle, the secu-

rity of the BLS signature scheme [BLS04], depicted in Fig. 11, can be tightly
reduced to the discrete logarithm problem. Boneh, Lynn and Shacham [BLS04]
only prove a loose reduction to the CDH problem. In the AGM we manage to
improve the quality of the reduction, leveraging the fact that a forgery comes
with a representation in the basis of all previously answered random oracle and
signature queries. We embed a discrete logarithm challenge in either the secret
key or inside the random oracle queries–a choice that remains hidden from the
adversary. Depending on the adversary’s behavior we always solve the discrete
logarithm challenge in one of the cases.
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Fig. 10. Game uf -cma defining (existential) unforgeability under chosen-message
attacks for signature scheme SIG, parameters par and adversary A.

Fig. 11. Boneh, Lynn and Shacham’s signature scheme BLSG . Here, H is a hash func-
tion that is modeled as a random oracle.

Theorem 5. dlogG

(4,1)
=⇒alg uf -cmaBLS,G in the random oracle model.

Proof. Let Aalg be an algebraic adversary playing in G := uf -cma
Aalg

BLS,G , depicted
in Fig. 12.

As Aalg is an algebraic adversary, at the end of G, it returns a forgery Σ∗ on a
message m∗ ∈ Q together with a representation �a = (â, a′, ā1, ..., āq

, ã1, ..., ãq) s.t.

Σ∗ = H(m∗)x = gâXa′
q

∏

i=1

Hāi

i

q
∏

i=1

Σãi

i . (2)

Here, the representation is split (from left to right) into powers of the generator
g, the public key X, all of the answers to hash queries Hi, i ∈ [q], and the
signatures Σi, i ∈ [q], returned by the signing oracle. In the following, we denote
the discrete logarithm of H(m∗) w.r.t. basis g as r∗ and for all i ∈ [q], we denote

Fig. 12. Game G = uf -cma
Aalg

BLS,G relative to adversary Aalg.
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the discrete logarithm of H(mi) as ri. Equation (2) is thus equivalent to

xr∗ ≡p x(a′ + Σiriãi) + (â + Σiriāi). (3)

In the full version of our paper we show how to efficiently compute x from
Eq. (3). Again, the main idea is to perform a case distinction over the cases
where the coefficient of x is zero, or non-zero, respectively. ⊓⊔

Corollary 5. uf -cmaBLS,G is
(

t, t2

4p

)

-hard in the generic group model with a
random oracle.

7 Groth’s Near-Optimal zk-SNARK

In order to cover notions such as knowledge soundness, which are defined via
games for two algorithms, we generalize the notion of algebraic games and reduc-
tions between them. We write GA,X

par to denote that A and X play in Gpar

and define the advantage AdvG
par,A,X := Pr[GA,X

par = 1] and the running time

TimeG
par,A,X as before. To capture definitions that require that for every A there

exists some X (which has black-box access to A) such that AdvG
par,A,X is small,

we define algebraic reductions for games Gpar of this type as follows.

We write Hpar
(Δε,Δt)
=⇒ alg

Gpar if there exist generic algorithms Rgen and Sgen

such that for all algebraic algorithms Aalg we have

AdvH
par,Balg

≥
1

Δε
· AdvG

par,Aalg,Xalg
, TimeH

par,Balg
≤ Δt · TimeG

par,Aalg,Xalg
.

with Balg defined as Balg := R
Aalg
gen and Xalg defined as Xalg := S

Aalg
gen .

The q-discrete logarithm assumption. We define a parametrized (“q-
type”) variant of the DLog assumption via the algebraic security game q-dlog
in Fig. 13. We will show that Groth’s [Gro16] scheme, which is the most efficient
SNARK system to date, is secure under q-DLog in the algebraic group model.

Fig. 13. q-Discrete Logarithm Game q-dlog relative to G and adversary A.

Non-interactive zero-knowledge arguments of knowledge. Groth
[Gro16] considers proof systems for satisfiability of arithmetic circuits, which
consist of addition and multiplication gates over a finite field F. As a tool,
Gennaro et al. [GGPR13] show how to efficiently convert any arithmetic cir-
cuit into a quadratic arithmetic program (QAP) R, which is described by F,
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integers ℓ ≤ m and polynomials ui, vi, wi ∈ F[X], for 0 ≤ i ≤ m, and t ∈ F[X],
where the degrees of ui, vi, wi are less than the degree n of t. (The relation R
can also contain additional information aux.)

A QAP R defines the following binary relation of statements φ and wit-
nesses w, where we set a0 := 1:

R =

{

(φ, w)

∣

∣

∣

∣

φ = (a1, . . . , aℓ) ∈ F
ℓ, w = (aℓ+1, . . . , am) ∈ F

m−ℓ

(
∑m

i=0
aiui(X)

)

·
(
∑m

i=0
aivi(X)

)

≡
∑m

i=0
aiwi(X) (mod t(X))

}

A non-interactive argument system for a class of relations R is a 3-tuple
SNK = (Setup,Prv,Vfy) of algorithms. Setup on input a relation R ∈ R out-
puts a common reference string crs; prover algorithm Prv on input crs and a
statement/witness pair (φ,w) ∈ R returns an argument π; Verification Vfy on
input crs, φ and π returns either 0 (reject) or 1 (accept). We require SNK to
be complete, i.e., for all crs output by Setup, all arguments for true statements
produced by Prv are accepted by Vfy.

Knowledge soundness requires that for every adversary A there exists an
extractor XA that extracts a witness from any valid argument output by A. We
write (y; z) $← (A ‖XA)(x) when A on input x outputs y and XA on the same
input (including A’s coins) returns z. Knowledge soundness is defined via game

knw-snd A,XA

SNK,R in Fig. 14.

Fig. 14. Left: Knowledge soundness game knw-snd relative to SNK = (Setup,

Prv, Vfy), adversary A and extractor XA. Right: Knowledge soundness game k-snd-aff

relative to NILP = (LinSetup, PrfMtrx, Test), extractor X and affine adversary A (right).

Zero-knowledge for SNK requires that arguments do not leak any information
besides the truth of the statement. It is formalized by demanding the existence of
a simulator which on input a trapdoor (which is an additional output of Setup)
and a true statement φ returns an argument which is indistinguishable from an
argument for φ output by Prv (see [Gro16] for a formal definition).

A (preprocessing) succinct argument of knowledge (SNARK) is a knowledge-
sound non-interactive argument system whose arguments are of size polynomial
in the security parameter and can be verified in polynomial time in the security
parameter and the length of the statement.
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Non-interactive linear proofs of degree 2. NILPs (in Groth’s [Gro16]
terminology) are an abstraction of many SNARK constructions introduced by
Bitansky et al. [BCI+13]. We only consider NILPs of degree 2 here. Such a
system NILP is defined by three algorithms as follows. On input a quadratic
arithmetic program R, LinSetup returns �σ ∈ F

μ for some μ. On input R, φ and
w, algorithm PrfMtrx generates a matrix P ∈ F

κ×μ (where κ is the proof length).
And on input R and φ, Test returns matrices T1, . . . , Tη ∈ F

μ+κ. The last two
algorithms implicitly define a prover and a verification algorithm as follows:

◦ �π $← LinPrv(R,�σ, φ, w): run P $← PrfMtrx(R,φ,w); return �π := P�σ.
◦ b $← LinVfy(R,�σ, φ, �π): (T1, . . , Tη) $←Test(R,φ); return 1 iff for all 1 ≤ k ≤ η:

(�σ⊤ |�π⊤)Tk (�σ⊤ |�π⊤)⊤ = 0. (4)

Let Tk =: (tk,i,j)1≤i,j,≤μ+κ; w.l.o.g. we assume that tk,i,j = 0 for all k and
i ∈ {μ + 1, . . . , μ + κ} and j ∈ {1, . . . , μ}.

We require a NILP to satisfy statistical knowledge soundness against affine
prover strategies, which requires the existence of an (efficient) extractor X that
works for all (unbounded) adversaries A. Whenever A returns a proof matrix P
which leads to a valid proof P�σ for a freshly sampled �σ, X can extract a witness
from P . The notion is defined via game k-snd-aff X,A

NILP,R in Fig. 14.

Non-interactive arguments from NILPs. From a NILP for a quadratic
arithmetic program over a finite field F = Zp for some prime p, one can construct
an argument system over a bilinear group G = (p, G, g, e). We thus consider QAP
relations R of the form

R =
(

G, F = Zp, ℓ,
{

ui(X), vi(X), wi(X)
}m

i=0
, t(X)

)

, (5)

and define the degree of R as the degree of n of t(X).

Fig. 15. Argument system (Setup, Prv, Vfy) from a NILP (LinSetup, PrfMtrx, Test).
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The construction of SNK = (Setup,Prv,Vfy) from NILP = (LinSetup,PrfMtrx,
Test) is given in Fig. 15, where we write 〈�x〉 for (gx1 , . . . , gx|�x|). Setup first samples
a random group generator g and then embeds the NILP CRS “in the exponent”.
Using group operations, Prv computes LinPrv in the exponent, and using the
pairing, Vfy verifies LinVfy in the exponent.

Groth’s near-optimal SNARK for QAPs. Groth [Gro16] obtains his
SNARK system by constructing a NILP for QAPs and then applying the con-
version in Fig. 15. Recall that R, as in (5), defines a language of statements
φ = (a1, . . . , aℓ) ∈ F

ℓ with witnesses of the form w = (aℓ+1, . . . , am) ∈ F
m−ℓ

such that (with a0 := 1):
(
∑m

i=0 aiui(X)
)

·
(
∑m

i=0 aivi(X)
)

=
∑m

i=0 aiwi(X) + h(X)t(X) (6)

for some h(X) ∈ F[X] of degree at most n − 2. Groth’s NILP is given in Fig. 16.

Theorem 6 ([Gro16, Theorem 1]). The construction in Fig. 16 in a NILP
with perfect completeness, perfect zero-knowledge and statistical knowledge
soundness against affine prover strategies.

Groth embeds his NILP in asymmetric bilinear groups, which yields a more
efficient SNARK. He then shows that the scheme is knowledge-sound in the
generic group model for symmetric bilinear groups (which yields a stronger
result, as the adversary is more powerful than in asymmetric groups). Since
we aim at strengthening the security statement, we also consider the symmetric-
group variant (which is obtained by applying the transformation in Fig. 15). We
now show how from an algebraic adversary breaking knowledge soundness one
can construct an adversary against the q-DLog assumption.

Fig. 16. Groth’s NILP (LinSetup, PrfMtrx, Test).
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Theorem 7. Let SNK denote Groth’s [Gro16] SNARK for degree-n QAPs
defined over (symmetric) bilinear group G with n2 ≤ (p − 1)/8. Then we have

q-dlog
(3,1)
=⇒alg knw-sndSNK with q := 2n − 1.

Let us start with a proof overview. Consider an algebraic adversary Aalg against

knowledge soundness that returns (φ, [�Π]P ) on input (R, 〈�σ〉). Since Aalg is alge-

braic and its group-element inputs are 〈�σ〉, we have �Π = 〈P�σ〉 with P ∈ F
3×μ.

By the definition of Vfy, the proof �Π is valid iff P�σ satisfies LinVfy. By Groth’s
theorem (Theorem 6) there exists an extractor X, which on input P such that
P�σ satisfies LinVfy extracts a witness (see game k-snd-aff NILP,R in Fig. 14).

So it seems this extractor X should also work for Aalg (which returns P as
required). However, X is only guaranteed to succeed if P�σ verifies for a randomly
sampled �σ, whereas for Aalg in knw-snd SNK,R it suffices to return P so that P�σ
verifies for the specific �σ for which it received 〈�σ〉. To prove knowledge soundness,
it now suffices to show that an adversary can only output P which works for all
choices of �σ (from which X will then extract a witness).

In the generic group model this follows rather straight-forwardly, since the
adversary has no information about the concrete �σ. In the AGM however, A is
given 〈�σ〉. Examining the structure of a NILP CRS �σ (Fig. 16), we see that its
components are defined as multivariate (Laurent) polynomials evaluated at a
random point �x = (α, β, γ, δ, τ).

Now what does it mean for Aalg to output a valid P? By the definition of
LinVfy via Test (cf. Eq. (4) with �π := P�σ), it means that Aalg found P such that

(�σ⊤ | (P�σ))⊤)T (�σ⊤ | (P�σ)⊤)⊤ = 0. (7)

If we interpret the components of �σ as polynomials over X1, . . . , X5 (correspond-
ing to �x = (α, β, γ, δ, τ)) then the left-hand side of (7) defines a polynomial

QP ( �X).
On the other hand, what does it mean that P�σ verifies only for the specific �σ

from Aalg’s input? It means that QP ≡ 0, that is, QP is not the zero polynomial,
since otherwise (7) would hold for any choice of �x, that is P�σ′ would verify for
any �σ′.

We now bound the probability that Aalg behaves “badly”, that is, it returns
a proof that only holds with respect to its specific CRS. To do so, we bound the
probability that given 〈�σ〉, Aalg returns a nonzero polynomial QP which vanishes
at �x, that is, the point that defines �σ. By factoring QP , we can then extract
information about �x, which was only given as group elements 〈�σ〉. In particular,
we embed a q-DLog instance into the CRS 〈�σ〉, for which we need q to be at
least the maximum of the total degrees of the polynomials defining σ, which for
Groth’s NILP is 2n−1. We then factor the polynomial to obtain its roots, which
yields the challenge discrete logarithm.
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Proof (of Theorem 7). Let R be a QAP of degree n (cf. (5)). Let NILP =
(LinSetup,PrfMtrx,Test) denote Groth’s NILP (Fig. 16). By Theorem 6 there
exists an extractor X, which on input R, statement φ ∈ LR, and P ∈ F

μ×κ

such that LinVfy(R,�σ, φ, P�σ) = 1 for �σ $← LinSetup(R) returns a witness w with
probability Advk-snd-aff

NILP,R,X,F for any affine F.
Let SNK denote Groth’s SNARK obtained from NILP via the transformation

in Fig. 15 and let Aalg be an algebraic adversary in the game knw-snd SNK,R.
From X we construct an extractor XA for Aalg in Fig. 17. Note that since Aalg is

algebraic, we have �Π = 〈P�σ〉. We thus have

Vfy(R, �Σ, φ, �Π) = Vfy(R, �Σ, φ, 〈P�σ〉) = LinVfy(R,�σ, φ, P�σ), (8)

where the last equality follows from the definition of Vfy (Fig. 15). Game

knw-snd
Aalg,XA

SNK,R is written out in Fig. 17 and our goal is to upperbound

Advknw-snd
SNK,R,Aalg,XA

.

Consider the affine prover A′ in Fig. 18 and k-snd-aff X,A′

NILP, with the code of
A′ written out, also in Fig. 18.

Fig. 17. Extractor XA defined from X and Aalg (left) and knowledge soundness game
knw-snd for a SNARK built from NILP = (LinSetup, PrfMtrx, Test), algebraic adver-
sary Aalg and XA (right).

Fig. 18. Affine prover A′ defined from Aalg (left) and game k-snd-aff for NILP, extrac-
tor X and A′ (right).
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Comparing the right-hand sides of Figs. 17 and 18, we see that knw-snd
returns 1 whereas k-snd-aff returns 0 if LinVfy returns 0 for P�ρ w.r.t. �ρ, but it
returns 1 for P�σ w.r.t. �σ. Let bad denote the event when this happens; formally
defined as a flag in game k-snd-aff in Fig. 18. By definition, we have

Advknw-snd
SNK,R,Aalg,XA

≤ Advk-snd-aff
NILP,R,X,A′ + Pr

[

bad = 1
]

. (9)

In order to simplify our analysis, we first make a syntactical change to NILP

by multiplying out all denominators, that is, we let LinSetup (cf. Fig. 16) return

�σ :=
(

δγ, αδγ, βδγ, δγ2, δ2γ, {δγτ i}n−1
i=0 ,

{

δ
(

βui(τ) + αvi(τ) + wi(τ)
)}ℓ

i=0
,

{

γ
(

βui(τ) + αvi(τ) + wi(τ)
)}m

i=ℓ+1
,
{

γτ it(τ)
}n−2

i=0

)

. (10)

Note that this does not affect the distribution of the SNARK CRS as running
the modified LinSetup amounts to the same as choosing g′ $← G and running the
original setup with g := (g′)δγ , which again is a uniformly random generator.

Observe that the components of LinSetup defined in (10) can be described
via multivariate polynomials Si(�x) of total degree at most 2n − 1 with �x :=
(α, β, γ, δ, τ), and LinSetup can be defined as picking a random point �x $← (F∗)5

and returning the evaluations σi := Si(�x) of these polynomials.
Let T be as defined by Test in Fig. 16. By (4) we have

LinVfy(R,�σ, φ, P�σ) = 1 ⇐⇒ �σ⊤
(

(Id |P⊤) · T · (Id |P⊤)⊤
)

�σ = 0.

Let �S be the vector of polynomials defined by LinSetup. For a matrix P define
the following multivariate polynomial

QP ( �X) := (�S( �X))⊤
(

(Id |P⊤) · T · (Id |P⊤)⊤
)

�S( �X) (11)

of degree at most (2n − 1)2. Then for any �x ∈ (F∗)5 and �σ := �S(�x) we have

LinVfy
(

R,�σ, φ, P�σ)
)

= 1 ⇐⇒ QP (�x) = 0. (12)

Groth [Gro16] proves Theorem 6 by arguing that an affine prover without
knowledge of �σ can only succeed in the game k-snd-aff NILP,R by making LinVfy

return 1 on every �σ, or stated differently using (12), by returning P with QP ≡ 0.
He then shows that from such P one can efficiently extract a witness.

The adversary’s probability of succeeding despite QP ≡ 0 is bounded via
the Schwartz-Zippel lemma: the total degree of QP is at most d = (2n − 1)2

(using the modified �σ from (10)). The probability that QP (�x) = 0 for a random
�x $← (F ∗)5 is thus bounded by d

p−1 . This yields

Advk-snd-aff
NILP,R,X,A′ ≤ (2n−1)2

p−1 . (13)
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In order to bound Advknw-snd
SNK,R,Aalg,XA

in (9) we will construct an adversary Balg

such that

Pr
[

bad = 1
]

≤
(

1 − (2n−1)2

p−1

)

· Advq-dlog
G,Balg

with q = 2n − 1. (14)

For bad to be set to 1, Aalg’s output P must be such that QP ≡ 0: otherwise,
LinVfy returns 1 for any �x and in particular LinVfy(R, �ρ, φ, P �ρ) = 1.

bad = 1 implies thus that Aalg on input 〈�σ〉 = 〈�S(�x)〉 returns P such that

QP ≡ 0 and QP (�x) = 0. (15)

We now use such Aalg to construct an adversary Balg against q-DLog with q :=
2n − 1.

Adversary Balg(〈z〉, 〈z2〉, ..., 〈zq〉): On input a q-DLog instance, Balg simulates

k-snd-aff X,A′

NILP,R for Aalg. It first picks a random value �y ← (F∗)5, (implicitly)
sets xi := yiz, that is,

α := y1z β := y2z γ := y3z δ := y4z τ := y5z

and generates a CRS 〈�σ〉 := 〈�S(�x)〉 = 〈�S(α, β, γ, δ, τ)〉 as defined in (10).
Since the total degree of the polynomials Si defining �σ is bounded by 2n − 1
(the degree of the last component of �σ), Balg can compute �σ from its q-DLog
instance.
Next, Balg runs (φ, [�Π]P ) $← Aalg(R, 〈�σ〉) and from P computes the multivari-

ate polynomial QP ( �X) as defined in (11). If QP ≡ 0 or QP (�x) = 0 (by (8)

and (12) the latter is equivalent to Vfy(R, �Σ, φ, �Π) = 0), then Balg aborts. (∗)
Otherwise Balg defines the univariate polynomial

Q′
P (X) := QP (y1X, . . . , y5X).

If Q′
P ≡ 0 then Balg aborts. (∗∗)

Otherwise Balg factors Q′
P to obtain its roots (of which by (11) there are at

most (2n−1)2), checks them against its DLog instance to determine whether
z is among them, and if so, returns z.

First note that Balg perfectly simulates k-snd-aff X,A′

NILP,R for Aalg. Let us analyze
the probability that Balg finds the target z provided that bad = 1. In this case
Balg will not abort at (∗).

Since Q′
P (z) = QP (y1z, . . . , y5z) = QP (�x), by (15) we have Q′

P (z) = 0. Thus
if Q′

P ≡ 0 then Balg finds z by factoring Q′
P . It remains to argue that Q′

P ≡ 0.
By (15) we have QP ≡ 0. By the Schwartz-Zippel lemma, the probability that
for a random �y $← (F∗)5, we have QP (�y) = 0 is bounded by d

p−1 where d is

the total degree of QP , which is bounded by (2n − 1)2. Since QP (�y) = Q′
P (1),

we have Q′
P ≡ 0 with probability at least 1 − (2n−1)2

p−1 . Since the choice of �y is
perfectly hidden from the adversary’s view this shows

Advq-dlog
G,Balg

≥
(

1 − (2n−1)2

p−1

)

· Pr
[

bad = 1
]

≥ 1
2 · Pr

[

bad = 1
]

,
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where the last inequality comes from n2 ≤ (p − 1)/8. Putting this together
with (13), we have shown that

Advknw-snd
SNK,R,Aalg,XA

≤ q2

p−1 + 2 · Advq-dlog
G,Balg

.

Following the generic bound for Boneh and Boyen’s SDH assumption [BB08],

we may assume that Advq-dlog
G,Balg

≥ q2

p−1 . The above equation thus implies

Advknw-snd
SNK,R,Aalg,XA

≤ 3 · Advq-dlog
G,Balg

,

which concludes the proof. ⊓⊔

Corollary 6. It is
(

3t2q+3q3

p , t
)

-hard to break knowledge soundness of Groth’s

SNARK [Gro16] in the generic group model.

The corollary follows from the generic
(

t2q+q3

p , t
)

-hardness of q-dlog , which
is derived analogously to the bound for Boneh and Boyen’s SDH assumption
[BB08].

We remark that the above result is not specific to Groth’s SNARK; it applies
to any SNARK built from a NILP whose setup evaluates multivariate polyno-
mials on a random position. The maximal total degree of these polynomials
determines the parameter q in the q-DLog instance.
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