
Open Journal of Fluid Dynamics, 2020, 10, 239-269 

https://www.scirp.org/journal/ojfd 

ISSN Online: 2165-3860 

ISSN Print: 2165-3852 

 

DOI: 10.4236/ojfd.2020.103015  Aug. 19, 2020 239 Open Journal of Fluid Dynamics 

 

 

 

 

The Algebraic Immersed Interface and 
Boundary Method for Elliptic Equations with 
Jump Conditions 

Arthur Sarthou1*, Stéphane Vincent2, Philippe Angot3, Jean-Paul Caltagirone4 

1Buf Compagnie, Paris, France  
2Laboratoire MSME, Université Gustave Eiffel, Champs-sur-Marne, France 
3Institut de Mathématiques de Marseille, Centrale Marseille, Marseille, France 
4Institut Polytechnique de Bordeaux, Université de Bordeaux, Talence, France 

 
 

 

Abstract 

A new simple fictitious domain method, the algebraic immersed interface and 

boundary (AIIB) method, is presented for elliptic equations with immersed 

interface conditions. This method allows jump conditions on immersed in-

terfaces to be discretized with a good accuracy on a compact stencil. Auxiliary 

unknowns are created at existing grid locations to increase the degrees of 

freedom of the initial problem. These auxiliary unknowns allow imposing 

various constraints to the system on interfaces of complex shapes. For in-

stance, the method is able to deal with immersed interfaces for elliptic equa-

tions with jump conditions on the solution or discontinuous coefficients with 

a second order of spatial accuracy. As the AIIB method acts on an algebraic 

level and only changes the problem matrix, no particular attention to the ini-

tial discretization is required. The method can be easily implemented in any 

structured grid code and can deal with immersed boundary problems too. 

Several validation problems are presented to demonstrate the interest and 

accuracy of the method. 
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1. Introduction and General Motivations 

Simulating flows and heat transfer interacting with complex objects on Cartesian 
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structured grids requires an efficient coupling between such grids and the cor-

responding numerical methods and complex shape interfaces. Such a coupling is 

often performed thanks to fictitious domain methods, where the computational 

domain does not match the physical domain. The advantages of this approach 

are numerous. A second-order accurate discretization of the spatial operators is 

simple to obtain; grid generation is trivial, and furthermore there is no need to 

remesh the discretization grid in the case of moving or deformable boundaries. 

Concerning this last point, fictitious domain methods can be useful even on un-

structured grids: Eulerian fixed unstructured grids can fit immobile obstacles, 

(e.g. a stator of an aircraft motor) while mobile objects (a rotor) are treated with 

fictitious domain methods. Two particular classes of problems can be drawn: the 

immersed boundary problems and the immersed interface problems. The first 

deals with complex boundaries, such as flow past objects, where no attention has 

to be paid to the solution inside the obstacles. The immersed interface problems 

consider subdomains delimited by interfaces, and the solution is required in 

both sides of the interface. As particular conditions, such as jump conditions, 

can be required on the interface, this second class of problems is often more dif-

ficult to treat. 

Let us consider a domain of interest 0Ω , typically a fluid domain, which is 

embedded inside a computational domain of simple shape dΩ ⊂  , d being the 

spatial dimension of the problem. The auxiliary domain 1Ω , typically a solid 

particle or an obstacle, is such that as shown in Figure 1: 0 1Ω = Ω Σ Ω∪ ∪  

where Σ  is an immersed interface, and n  is the unit outward normal vector 

to 0Ω  on Σ . Let us consider the following model scalar immersed boundary 

problem in 0Ω  with a Dirichlet boundary condition (BC) on the interface Σ :  

( ) 0

|

in

on
b

D

a u f

u uΣ

−∇ ⋅ ∇ = Ω
 = Σ

  

A boundary condition is also required on the other part of the boundary 

0∂Ω  so that the whole problem is well-posed. 

A first approach dealing with immersed boundaries is the distributed La-

grange Multiplier method proposed by Glowinski et al. [1]. Lagrange multipliers 

are introduced into the weak formulation of the initial elliptic equation to ensure 

the immersed boundary condition. 

 

 

Figure 1. Definition of the subdomains and the interface. 
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Cartesian grid [2] [3] and Cut-cell [4] methods use a structured grid in the 

whole domain except near obstacles where unstructured cells are created from 

structured cells. These methods are hard to implement due to the numerous dif-

ferent space configurations of the intersections between cells and objects. Fur-

thermore, the existence of small cells can induce solver troubles. 

The immersed boundary method (IBM) was initially presented by Peskin [5] 

[6]. Fictitious boundaries are taken into account through a singular source term 

defined only near the boundaries. As the source term is weighted with a discrete 

Dirac function smoothed on a non-zero support, the interface influence is 

spread over some grid cells. This method is first-order in space and explicit. 

Another class of IBM, the direct-forcing (DF) method, was initially proposed by 

Mohd-Yusof [7]. The idea here is to impose a no-slip condition directly on the 

boundary using a mirrored flow over the boundary. In [8] [9], the correct boun-

dary velocity is obtained by interpolating the solution on the boundary and far 

from the boundary on grid points in the near vicinity of the interface. In [10], 

Tseng et al. use the same principle but extrapolate the solution in ghost cells 

outside the domain. This approach can be seen as a generalization of the mirror 

boundary conditions used in Cartesian staggered grids to impose a velocity Di-

richlet condition on pressure nodes. As discussed in [11], this kind of approach 

seems to be more accurate than [8] [9]. 

The penalty methods for fictitious domains consist in adding specific terms in 

the conservation equations to play with the order of magnitude of existing phys-

ical contributions so as to obtain at the same time and with the same set of equa-

tions two different physical properties. The volume penalty method (VPM) [12]  

requires the addition of a penalty term ( )Du u
χ
ε

−  in the conservation equa-

tions, such that:  

( ) ( )

0 1| |

in

with 0, 1, for 0 1

Da u u u f
χ
ε

χ χ εΩ Ω

−∇ ⋅ ∇ + − = Ω

 = = < ≪

                 (1) 

where ε  denotes the penalty parameter which tends to 0. Hence, in 1Ω  the 

original equation becomes negligible and Du u=  is imposed. In [13] [14]  

authors add a Darcy term 
K

µ
u  to the Navier-Stokes (NS) equations where µ   

is the dynamic viscosity and K the permeability. In the fluid medium, K →∞  

so the Darcy term is then negligible and the original set of NS equations is re-

trieved. In the solid medium, 0K →  and consequently the NS equations tend 

to 0=u . Classical discretizations of the penalty terms are of first order only 

since they consider the projected shape of the interface on the Eulerian grid to 

define the penalty parameters [15]. In [16] [17], Sarthou et al. have discretized 

the volume penalty term with a second order using implicit interpolations as in 

[10]. This method is called the sub-mesh penalty (SMP) method and has been 

applied to both elliptic and NS equations. 
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Applied to problem b , the ghost cell immersed boundary method [10] and 

SMP method [16] used the cells in 1Ω  in the vicinity of the interface to en-

hance the accuracy of the solution in 0Ω . 

Another approach which considers the extension of the solution is considered 

in [18] [19] by Gibou and Fedkiw. Ghost nodes and simple interpolations are 

considered, but contrary to the SMP and the IBM-DF methods, only 1D inter-

polations are used and the operators are rediscretized “by-hand”. 

Let us now consider a model immersed interface problem with jump interface 

conditions:  

( )
( )

� �
( )

in

on

on

i

a u f

u

a u

ϕ
ψ

Σ

Σ

−∇ ⋅ ∇ = Ω


= Σ
 ⋅∇ ⋅ = Σ n� �
� �

  

A first class of method is the immersed interface methods (IIM) initially intro-

duced by LeVeque and Li [20] and widely described in [21]. This group of me-

thods uses Taylor series expansion of the solution at discretization points in the 

vicinity of Σ  to modify the discrete operators at these points. Much work has 

been devoted to the immersed interface method and its numerous applications, 

such as moving interfaces [22] or Navier-Stokes equations [23]. In [24], Li uses 

an augmented variables approach. Additional variables and interface equations 

are added to the initial linear system. The new variables are the values of jumps 

at some interface points. This method has been extended to the incompressible 

Stokes [25] and Navier-Stokes [26]. 

The Ghost Fluid Method, originally developed by Fedkiw et al. [27] [28], in-

troduces ghost nodes where the solution is extended from one side of the inter-

face to the other side. As for IIM, the operator discretization must be modified 

“by-hand”. Zhou et al. overcome this drawback with the matched interface and 

boundary (MIB) method [29] [30] [31] by using interface conditions to express 

the solution at ghost nodes with respect to the solution on physical nodes. Hence, 

the discretization is automatically performed whatever the discretization scheme. 

Contrary to [24], the additional equations for these two last methods are not 

written at “random” points of the interface but at the intersections between the 

Eulerian grid and the immersed interface. Furthermore, simple Lagrange poly-

nomials are used whereas a more complicated weighted least squares approach is 

used in [24] to discretize additional equations. In [32], Cisternino and Weynans 

propose a quite simple method with additional unknowns located at the inter-

face. Interfaces conditions are discretized at these points and are added to the 

final linear system. 

The method presented in this work solves elliptic problems using an aug-

mented method coupled with an auxiliary unknown approach. Its main contri-

bution is its simplicity that eases its implementation, and its generality that al-

lows the method to be applied to various boundary and interface conditions. 

Contrary to ghost nodes, auxiliary unknowns are present in the linear system 

and the discretization of the interface conditions is independant from the discre-

https://doi.org/10.4236/ojfd.2020.103015


A. Sarthou et al. 

 

 

DOI: 10.4236/ojfd.2020.103015 243 Open Journal of Fluid Dynamics 

 

tization of the initial equation. 

Compact interpolations are used to discretize the additional interface con-

straints. The method is simple to implement even for interfaces of complex 

shapes, i.e. not described by analytical equations. Except for the discretization of 

interface conditions, all operations are automatically performed with algebraic 

modification or directly by the “black-box” matrix solver. This new method is 

called the algebraic immersed interface and boundary (AIIB) method. In Section 

2, the method is presented for immersed boundary problems. Then, the method 

is extended to immersed interface problems with known solution on the inter-

face. Finally, the method is applied to immersed interfaces with transmission 

and jump conditions. A special attention is paid to the management of the dis-

cretized interface, especially the way to project it onto the Eulerian grid using a 

fast ray-casting method. In Section 3, validation tests and convergence studies 

are presented. Conclusions and perspectives are finally drawn in Section 4.  

2. The Algebraic Immersed Interface and Boundary Method 

The AIIB method is now presented. The method is first formulated for im-

mersed boundary problems when a Dirichlet or a Neumann boundary condition 

is required. The method is then extended to simple immersed interface problems 

where the solution is a priori known on the interface. Finally, an extension to 

jump and transmission conditions is described.  

2.1. Definitions and Notations 

Our objective is to numerically impose the adequate conditions on the interface 

Σ  for problems similar to b  and i . These conditions will be discretized in 

space on an Eulerian structured mesh covering Ω . As the discretization of the 

interface or boundary conditions requires interpolations, the following interpo-

lations in 2D: ( )2

1 1 2 3,x y p p x p y= + +  and ( )2

1 1 2 3 4,x y p p x p y p xy= + + +  

are used. In 3D, we use ( )3

1 1 2 3 4, ,x y z p p x p y p z= + + +  and  

( )3

1 1 2 3 4 5 6 7 8, ,x y z p p x p y p z p xy p yz p zx p xyz= + + + + + + + . An additional 

interpolation, ( )1

1 1 2x p p x= + , is also possible to be chosen for 2D and 3D 

problems. The superscript is the dimension of the interpolation while the sub-

script is the order of spatial accuracy. 

The computational domain Ω  is approximated with a curvilinear mesh hT  

composed of N M×  ( L×  in 3D) cell-centered finite volumes ( I ) for I ∈ , 

  being the set of indexes of the Eulerian orthogonal curvilinear structured 

mesh. Let Ix  be the vector coordinates of the center of each volume I . In 2D, 

the horizontal and vertical mesh steps are respectively xh  and yh . This grid is 

used to discretize the conservation equations. A dual grid is introduced for the 

management of the AIIB method. The grid lines of this dual cell-vertex mesh are 

defined by the network of the cell centers Ix . The volumes of the dual mesh are 

denoted by ( I
′ ). The Eulerian unknowns are noted Iu  which are the ap-

proximated values of ( )Iu x , i.e. the solution at the cell centers Ix . 
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The discrete interface hΣ , hereafter called the Lagrangian mesh, is given by a 

discretization of the original interface Σ . It is described by a piecewise linear 

approximation of Σ : { }1,d

h l flσ −Σ = ⊂ ∈  , f  being the set of indexes of 

the Lagrangian mesh and K being the cardinal of f . Typically, lσ  are seg-

ments in 2D and triangles in 3D. The vertices of each face lσ  are denoted by 

,l ix  for 1, ,i d= ⋯  and the set of all vertices is { },l vx l∈ , v  being the set 

of indexes of the vertices. The intersection points between the grid lines of the 

Eulerian dual mesh and the faces lσ  of the Lagrangian mesh are denoted by 

{ },ix i∈   (see Figure 2). Our objective is to discretize Dirichlet, Neumann, 

transmission and jump conditions at these interface points to build a general fic-

titious domain approach. This method is expected to reach a global second-order 

spatial accuracy.  

We shall use the following Eulerian volume functions in order to implicitly 

locate hΣ :  

• The Heaviside function χ , defined as:  

 ( ) 11 if

0 otherwise

x
xχ

∈Ω
= 


                       (2) 

This function is built with a point in solid method presented below. The func-

tion χ  will be used to perform fictitious domain algorithms and to build a lev-

el-set function.  

• The level-set function φ , with:  

 ( ) ( )
( )

1dist if

dist otherwise

x x
x

x
φ Σ

Σ

− ∈Ω= 


                   (3) 

and ( )dist infxp x pΣ ∈Σ= − . The unsigned distance is computed geometrically. 

The sign is directly obtained with the discrete Heaviside function χ .  

• The colour phase functions C, which is the ratio of a given phase in a control 

volume. We denote ( )IC x  the phase ratio in the control volume centered in 

Ix . This function is approximated from the φ  function by using the for-

mula proposed by Sussman and Fatemi [33]:  

 

 

Figure 2. Definition of the discretization kernels for the AIIB method. 
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( )

( )
( )
( ) ( )( )

1 if

0 if

1 1
1 sin otherwise

2

x h

x h
C x

x
x h

h

φ
φ

φ
φ

>
 < −≈ 
 +

 
π 

π
+

 

         (4) 

New sets of Eulerian points Ix  are defined near the interface so that each one 

has a neighbor Jx  verifying J Iχ χ≠  (with ( )I Ixχ χ=  and ( )J Jxχ χ= ), 

i.e. the segment [ ];I Jx x  is cut by hΣ . These Eulerian “interface” points are al-

so sorted according to their location inside 0Ω  or 1Ω . Two sets { }0,Ix I ∈  

and { }1,Ix I ∈  are thus obtained, where  

( ){ }0 0 1, , , ,I I J I J JI x x Neighb x xχ χ= ∈Ω ∈ ≠ ∈Ω  and  

( ){ }1 1 0, , , ,I J I I J JI x x Neighb x xχ χ= ∈Ω ∈ ≠ ∈Ω . 

For each Ix , 0I ∈  or 1I ∈ , we associate two unknowns: the physical 

one denoted as Iu  and the auxiliary one *

Iu . 

2.2. Projection of the Lagrangian Shape on the Eulerian Grid 

The generation of the Lagrangian mesh of the interface is achieved using a 

computer graphics software. Specific algorithms have been developed to project 

this Lagrangian grid onto the Eulerian physical grid. In order to obtain the dis-

crete Heaviside function χ , one has to determine which Eulerian points are in-

side the domain 1Ω  defined by a Lagrangian surface. Such a surface must be 

closed and not self-intersecting. In [11] [14], the authors used a global metho-

dology partly based on [34] where χ  is obtained thanks to a PDE. This me-

thod suffers from a lack of accuracy and robustness. A Ray-casting method 

based on the Jordan curve theorem is more adapted and is used in the present 

work. The principle is to cast a ray from each Eulerian point to infinity and to 

test the number of intersections between the ray and the Lagrangian mesh. If the 

number of intersections is odd, the Eulerian point is inside the object, and out-

side otherwise. The Ray-casting method can be enhanced by classifying elements 

of the Lagrangian mesh with an octree sub-structure which recursively subdi-

vides the space in boxes. If a ray does not intersect a box, it does not intersect the 

triangles inside the box. A fast and simple optimization is to test if a given point 

is in the box bounding the Lagrangian mesh. An improvement of the Ray-casting 

algorithm, the Thread Ray-casting, can be found in [35] [36]. Instead of casting 

rays in any direction, rays are all aligned on a principal direction of the grid such 

as each ray passes through a line of points Ix . Hence, only one ray is cast for 

each line of points allowing the complexity of the algorithm to be reduced by 

one order. 

The Lagrangian points lx  of hΣ , l∈   are required to couple the Lagran-

gian surface and the Eulerian grid used to solve the conservation equations. 

These points can be obtained with two methods. A geometrical computation of 

the intersections gives the most accurate result. If not optimized the computa-

tional cost of this method is not always negligible for some cases. 

Using the Level-set function is a faster but less accurate way to obtain the in-
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tersection points. Let us consider two Eulerian points 0Ix ∈Ω  and 1Jx ∈Ω . 

We denote by ( ),I I hd d x= Σ  and ( ),J J hd d x= Σ  the unsigned distances be-

tween Eulerian points and the interface hΣ . Then, ( ) ( )l I J J I I Jx x d x d d d= + + . 

Algorithmic problems can be encountered if the Lagrangian mesh is too com-

plex compared to the Eulerian mesh. In some cases, more than one segment of 

the Lagrangian mesh can intersect a same grid segment [ ];I Jx x , and more than 

one intersecting points can then be found between Ix  and Jx  with the geo-

metric method. In this case, only one intersecting point is considered. 

Concerning the use of the Level-set, this function is a projection of the shape 

on a discrete grid. The local curvature of the projected shape is thus limited by 

the accuracy of the Eulerian grid. Consequently, no more than one intersecting 

point can be found between Ix  and Jx  with the Level-set. 

2.3. The AIIB for Dirichlet and Neumann Conditions 

2.3.1. General Principle 

Once the shape informations are available on the Eulerian grid, the problem dis-

cretization has to be modified to take into account the fictitious domain deli-

mited by an immersed boundary or an immersed interface. The sub-mesh pe-

nalty (SMP) method [11] [16] was originally designed to treat immersed boun-

dary problems. It could be extended to treat immersed interface problems by 

symmetrization of the algorithm with introduction of auxiliary unknowns as in 

the AIIB method. This new method is an enhancement of the SMP method 

which is also able to solve immersed interface problems. The main idea of the 

AIIB method is to embed an interface into a given domain by modifying the fi-

nal matrix only. As no modification of the discretization of the operators is re-

quired (contrary to [18] [19] and the immersed interface methods [20]), the 

AIIB method is thus simple to implement. 

Let   be a model problem discretized in the whole domain Ω  as Au b=  

where A is a square matrix of order m, u the solution vector and b a source term. 

The basic idea of the AIIB method is to add new unknowns and equations to the 

initial linear system so as to take into account additional interface constraints. 

The new unknowns, so-called the auxiliary or fictitious unknowns and labeled 

with *, are defined as being the extrapolation of the solution from one side of the 

interface to the other, and are used to discretize the interface conditions. Hence, 

the original problem Au b=  becomes A u b′ ′ ′= , with A′  a square matrix of 

order m n+ , with n the number of auxiliary constraints related to the interface 

conditions. The solution u′  is decomposed such as ( )T
*,u u u′ =  and the 

source term as ( )T
*,b b b′ = . The interface constraints are discretized with a 

( ),n m n+  block matrix C and the source term *b . The discretizations of the 

constraints for various interface and boundary conditions are given in Sections 

2.3.2 and 2.4. 

According to the interface conditions, the regularity of the solution on the in-

terface is often lower than in the rest of the domain. Hence, the discretization of 

operators with a stencil cutting the interface can induce a great loss of accuracy. 
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The first idea is to consider unknowns *

1,Iu I ∈  (resp. *

0,Iu I ∈ ) as the ex-

tension of the solution in 0Ω  (resp. 1Ω ). The initial algebraic link between 

unknowns from both sides of the interface is cut, and the new link over the in-

terface is obtained thanks to auxiliary unknowns. Practically, matrix coefficients 

must be modified to take into account the new connectivities. Let ,I Jα  be a 

coefficient of A at row I, column J and ,I Jα ′  the new coefficient in A′ . If 

0I ∈  and 1J ∈ , , 0I Jα ′ = . 

Hence, there is no more direct link between the initial unknowns in 0Ω  and 

1Ω . However, the initial value of ,I Jα  is reused to express the new relation be-

tween the original unknown Iu  and its new neighbor *

Ju . Consequently, 

* ,, I JI J
α α′ = , where *J  is the index corresponding to *

Ju . 

This is exactly the way how we proceed for the practical algorithm. However, 

this modification can be expressed algebraically with permutation and mask 

matrices as follows. 

We define the two following mask matrices 1I  of dimensions ( ),m m n+  

and 2I  of size ( ),n m n+ :  

 1

1 0 0 0

0

0

0 0 1 0 0

I

 
 
 =
 
 

… 

⋯ ⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋮

⋯

                   (5) 

2

0 0 1 0 0

0 0

0

0 0 0 0 1

I

 
 
 =
 
 

… 

⋯ ⋯

⋱ ⋱ ⋮

⋮ ⋱ ⋮ ⋱

⋯

                   (6) 

The matrices 0A  and 1A  are defined such as 0 1A A A+ = ,  

( ) ( )0 , ,A I J A I J=  if 0I ∈ , else ( )0 , 0A I J = . Similarly ( ) ( )1 , ,A I J A I J=  

if 1I ∈  else ( )1 , 0A I J = . Finally, the connectivities are changed using the 

permutation matrices 0P  and 1P : 0P  is defined to switch row I with row J if 

0I ∈ , 1J ∈  and 1P  to switch row I with row J if 1I ∈ , 0J ∈ . Hence, 

the new problem matrix is now defined by:  

 ( ) ( )( )T T

1 0 0 1 1 1 1 2A I P A I P A I I C′ = + +                  (7) 

The new problem is A u b′ ′ ′=  with A′  written with 4 blocks of various sizes: 

( ),A m mɶ , ( ),B m n , ( )1 ,C n m , ( )2 ,C n n . The matrix Aɶ  is thus the modifica-

tion of the initial matrix A by setting to zero the coefficient ,I Jα  if 
 

( ) ( )I Jx xχ χ≠ , and 1C  and 2C  are the two sub-matrices of the matrix C. 

The problem can be written as:  

 
* *

1 2

u bA B

u bC C

    
=    

    

ɶ
                      (8) 

The entire problem can then be solved to obtain ( )T
*,u u u′ = . However, *u  

being the auxiliary solution is not required to be computed explicitly. Hence, the 

Schur complement method can be used to calculate the solution for the physical 
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unknowns only. The final problem is now:  

 ( )1 1 *

2 1 2A BC C u b BC b− −− = −ɶ                    (9) 

The opportunity of such a reduction will be discussed later. 

2.3.2. AIIB Algorithm for a Scalar Equation with Dirichlet Boundary  
Conditions 

For the sake of clarity, let us first describe in 2D the AIIB method for the model 

scalar problem b  with a Dirichlet boundary condition on the interface Σ . 

For this version of the AIIB algorithm, 0Ω  is the domain of interest and aux-

iliary unknowns are created in 1Ω  only. Let us consider a point 1,Ix I ∈ . At 

location Ix , two unknowns coexist: a physical one Iu  and an auxiliary one 
*

Iu . We first describe the case when Ix  has only one neighbor Jx  in 0Ω . The 

Lagrangian point lx  is the intersection between [ ];I Jx x  and hΣ  (Figure 3 

right). Then, the solution ( )l D lu u x=  at the interface is approximated by the 
1

1  interpolation between the Eulerian unknowns *

Iu  and Ju :  

 * with 0 , 1 and 1l I I J J I J I Ju u uα α α α α α= + < < + =         (10) 

To our knowledge, it has been verified that for schemes close to the one pre-

sented here (including ghost-like schemes [19] and IBM-Direct Forcing schemes 

[10]) only a linear interpolation is required to reach a second order of accuracy 

as a Dirichlet BC is imposed here. It has been theoretically demonstrated in [37] 

that under the assumption of pointwise stability of the scheme the discretization 

at the boundary can be two orders less accurate than in the rest of the domain 

without reducing the global convergence order. It is important to notice this 

does not apply for immersed interface conditions [32]. 

If now Ix  has a second neighbor Kx  in 0Ω , the intersection mx  between 

[ ];I Kx x  and hΣ  is considered with ( )m D mu u x= . We choose px , a new point 

of hΣ  between lx  and mx  (see Figure 3 left). The solution ( )p D pu u x=  is 

then imposed using a 2

1 -interpolation of the values *

Iu , Ju  and Ku :  

 * , 0 , , 1, 1p I I J J K K I J K I J Ku u u uα α α α α α α α α= + + < < + + =      (11) 

A 2

1  interpolation of Iu , Ju , Ku  and Lu  can be also used by extending 

the interpolation stencil with the point Lx  which is the fourth point of the cell 

of the dual mesh defined by Ix , Jx  and Kx  (see Figure 3 left). As a third  

 

 
(a)                                 (b) 

Figure 3. Example of selection of points for Dirichlet (a) and Neumann (b) constraints. 
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choice, two independent 2

1  linear 1D interpolations can be used (one for each 

direction) for an almost equivalent result. It produces:  

 

*

*

with 0 , 1 and 1

with 0 , 1 and 1

l I I J J I J I J

m I I K K I K I J

u u u

u u u

α α α α α α

α α α α α α

 = + < < + =


′′ ′ ′= + < < + =
       (12) 

In this case, two auxiliary unknowns are created. 

A simple choice for px  is the barycenter between lx  and mx  where  

( ) 2p l mu u u= + . A summation of the two constraints from (12) gives:  

 * *

I I J J I I K K l mu u u u u uα α α α′+ + + = +                 (13) 

which is equivalent to build a constraint imposing pu  at px  with a 2

1  in-

terpolation:  

 

( ) *

,
2

with 0 , , 1, 1
2 2 2 2 2 2

I I I J J K K

p

J JI I K I I K

u u u
u

α α α α

α αα α α α α α′ ′

′+ + +
=

+ +
< < + + =

     (14) 

Hence, an easy general implementation consists in summing the constraints 

corresponding to each direction, no matter the number of neighbors of Ix . If 

the elements lσ  of hΣ  used to define lx  and mx  are not the same, the ba-

rycenter px  of these two points is not necessarily on hΣ , especially for inter-

faces of strong curvature. However, the distance ( ),p hd x Σ  between px  and 

hΣ  varies like ( )2h  and so this additional error does not spoil the second- 

order precision of our discretization. The convergence of this additional error is 

numerically tested in Section (3.3.1). If the curvature of hΣ  is small enough 

relatively to the Eulerian mesh, i.e. if the Eulerian mesh is sufficiently fine, Ix  

almost never has a third or a fourth neighbor in 0Ω . However, if this case ap-

pears, a simple constraint *

I Bu u=  is used with Bu  being an average of Du  at 

the neighbor intersection points. In any case, by decreasing the Eulerian mesh 

step h, the number of points Ix  having more than two neighbors in 0Ω  also 

decreases. 

Concerning the C submatrix, it is filled with the coefficients α . One line 

corresponds to the discretization of the boundary constraint related to one aux-

iliary node. Each value of the second member b′  is the boundary value lu  re-

lated on auxiliary point. 

Hence, the present method is suitable to impose a Dirichlet boundary condi-

tion on Σ  for 0Ω , when the solution in 1Ω  is of no interest. The solution 
*

Iu  for 1I ∈  is an extrapolation of the solution in 0Ω  in order to satisfy the 

boundary condition on Σ  and thus is non-physical. Hence, the solution at the 

nodes of 1Ω  far from the interface does not impact on the solution in 0Ω  as 

the unknowns Iu  for 1I ∈  have no more algebraic relations with the nodes 

Iu  for 0I ∈ . Nevertheless, if nothing specific is performed, a solution with 

no interest is computed by default in 1Ω . A prescribed solution inside 1Ω  can 

be obtained easily with a volume penalty method such as VPM [13] where initial 

equations are penalized to impose a desired analytical solution. However, a de-
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sired solution in 1Ω  can also be obtained by modifying the solution obtained 

by solver. Then, the computational cost of the approach can be reduced by 

switching the solving of 1,I Iu x ∈Ω  off, or by totally removing these nodes in 

the solving matrix.  

2.3.3. Symmetric Version for Dirichlet Interface Conditions 

The next step is to allow for multiple Dirichlet boundary conditions on both 

sides of the immersed interface. Thin objects could be treated with this approach. 

The problem is now:  

 

( )
|

|

in

on

on

D

G

a u f

u u

u u

−
Σ
+
Σ

−∇ ⋅ ∇ = Ω
 = Σ
 = Σ

                     (15) 

The problem (15) requires for each point Ix  a physical unknown Iu  as well 

as an auxiliary unknown *

Iu  on both sides of the interface. 

Practically, the algebraic modification part of the AIIB algorithm for a Dirich-

let BC is applied a first time with 0Ω  as domain of interest, and auxiliary un-

knowns are created near hΣ  in 1Ω . As a second step, the Heaviside function is 

modified as : 1χ χ= −  and the algorithm is applied a second time. Now, 1Ω  is 

the domain of interest and auxiliary unknowns are created near Σ  in 0Ω . 

Then, both problems are solved at the same time with the resolution of the li-

near system. 

2.3.4. AIIB Algorithm for a Scalar Equation with Neumann Boundary  

Conditions 

Let us now consider the following model scalar problem with a Neumann BC on 

the interface Σ :  

 
( )

( )
0in

onN

a u f

a u g

−∇ ⋅ ∇ = Ω
 ∇ ⋅ = Σ n

                    (16) 

The principle is about the same as for Dirichlet BC, and the same interpola-

tions, once derived, can be used to approximate the quantity ( )a u∇ ⋅n . Hence, 

at any point ,lx l∈   on hΣ  we use  

 ( ) ( )( ).l la u a p x∇ ⋅ ≈ ∇ ⋅n n                    (17) 

For 2

1p∈ , we get ( ) ( ) ( )3 2 3 1, x yp x y p y p n p x p n∇ ⋅ = + + +n  whereas for 
2

1p∈ , ( ) 2 1, x yp x y p n p n∇ ⋅ = +n  is obtained which means that the normal 

gradient is approximated by a constant over the whole support. 

For example, in the configuration of Figure 3(a), with 2

1p∈ , we have:  

 ( )
* *

*,
y yI J x xK I

x y I J K

x y x y x y

n nu u n nu u
p x y n n u u u

h h h h h h

 − −
∇ ⋅ = + = − + +  

 
n    (18) 

The diagonal coefficient of the row related to *

Iu  in 2C  is 
yx

x y

nn

h h

 
−  

 
. The 

case where 
yx

x y

nn

h h
≈  leads to numerical instabilities. However, it can happens  
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for this configuration case only if xn  and yn  have the same sign, which will 

not happen if the interface is sufficiently smooth. For a smooth enough interface, 

0xn >  and 0yn < . A smoothed interface can be simply obtained using the 

normal vector of the segment [ ],l mx x  implies that the signs of xn  and yn  

are always different so the diagonal coefficient is always dominant. The same 

property occurs for the other stencil configurations. 

When Ix  has only one neighbor Jx  in 0Ω , the 2

1  and 2

1  interpola-

tions degenerate to 1

1  interpolations which suit for Dirichlet BC. For Neu-

mann BC, this loss of dimension no longer allows the interface orientation to be 

accurately taken into account, as one of the components of the normal unit vec-

tor disappears from the interfacial constraint. Hence, a third point Kx  in 0Ω  

is caught to build 2

1  interpolations (see Figure 3 right). This point is a neigh-

bor of Jx  and is taken as [ ] [ ], ,I J J Kx x x x⊥ . In 2D, two choices generally ap-

pear, and the point being so that the angle ( ), K Jx x−n  is in [ ]2; 2−π π  is 

taken. 

2.3.5. Algebraic Elimination Using the Schur Complement 

The Schur complement method allows an algebraic reduction to be performed. 

For a Dirichlet or Neumann BC, each constraint is written in such a way that 

only one auxiliary unknown is needed:  

 *

I J J S
J

u u uα
∈

= +∑


                      (19) 

where Su  is the source term. In this case, the matrix 2C  in (8) is diagonal and 

thus the Schur complement ( )1

2 1A BC C−−ɶ  is easy to calculate. Practically, when 

the algebraic reduction is made, Aɶ  is built directly by the suitable modification 

of A without considering the extended matrix A′ . The part 1

2 1BC C−−  is then 

added to Aɶ  whereas 1 *

2BC b−−  is added to b. As it will be subsequently dem-

onstrated, the algebraic reduction decreases the computational cost of the solver 

by 10% - 20%. 

If only 1

1  interpolations are used with the algebraic elimination, the matrix 

obtained with this method is similar to the one obtained in [18] for a Dirichlet 

problem. However, in this last paper, the auxiliary unknowns are taken into ac-

count before the discretization of the operator which requires additional calcula-

tions for each discretization scheme. 

If 2

1  interpolations are used, the computed solution in 0Ω  are very similar 

(within machine error if the solver perfectly converges) to those that can be ob-

tained with the SMP [16] method (when the penalty parameter is sufficiently 

small) and the DF-IB method [10]. These methods discretize equivalent boun-

dary constraints, but the way the constraint is applied to the initial discretization 

of the equation for the nodes 1,Ix I ∈  differs. The SMP method uses a pe-

nalty term and the DF-IB method uses terms of opposite signs to erase some part 

of the initial equation. The discretization matrix obtained with both methods is 

not equivalent to the one obtained with the AIIB method, with or without al-

gebraic reduction. With algebraic reduction, the discretization for the nodes 
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0,Ix I ∈  is modified, and without algebraic reduction, both auxiliary and 

physical unknowns coexist at 1,Ix I ∈ . The accuracy of these methods will be 

discussed in the next section. 

The present algorithm seems simpler, as the standard discretization of the op-

erators is automatically modified in an algebraic manner. So, various discretiza-

tion schemes of the spatial operators can be used. However, the discretization of 

an operator at 0Ix ∈Ω  can only use in 1Ω  the fictitious unknowns and not 

the physical ones. Hence, the only limitation concerns the stencil of these oper-

ators which have to be limited, if centered, to three points by direction. 

2.4. The AIIB for Immersed Interface Problems with Jump  

Conditions 

With the symmetric method described in (2.3.3), the problem can be solved on 

both sides of the interface when explicit Dirichlet BC are imposed. For many 

problems, the solution is not a priori known on the interface and some jump 

transmission conditions on the interface Σ  are required. Let us now consider 

the problem:  

( ) ( ) in

Interface conditions on
i

a u f−∇ ⋅ ∇ = Ω

+ Σ

  

where the interface conditions are:  

 � � onu ϕΣ = Σ                        (20) 

 ( ) ona u ψ
Σ

∇ ⋅ = Σn� �
� �                     (21) 

The notation � �Σ  denotes the jump of a quantity over the interface Σ . In the 

symmetric version of the AIIB method, a given intersection point ,lx l∈  , is 

associated with two auxiliary unknowns, one on each side of the interface. Hence, 

the interface constraints (20) and (21) of ( )i  can be imposed at each intersec-

tion point lx  by using the two auxiliary unknowns. For example, the row I of 

the matrix A′  with *

0,Iu I ∈ , can be used to impose the constraint (20) and 

the line J of the matrix with *

1,Ju J ∈ , is then used to impose the constraint 

(21). 

2.4.1. The Solution Constraint 

The symmetrized AIIB methods for Dirichlet BC reads:  

 

*

1 2

*

1 2

I J

I J

u u u

u u u

α α

α α

+
Σ

−
Σ

 = +


= +
                        (22) 

when 1

1  interpolations are used. With u u u ϕ+ −
Σ Σ Σ= − = , we obtain:  

 * *

1 2 1 2I J I Ju u u uα α α α ϕ+ − − =                    (23) 

which is the first constraint to be imposed.  

2.4.2. The Flux Constraint 

Following the same idea and using 2

1  interpolations,  
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( )

( )

* *

* *

I J K I
x y

x y

I J K I
x y

x y

u u u u
a u a n n

h h

u u u u
a u a n n

h h

+ +
Σ

− −
Σ

  − −
⋅∇ ⋅ = +     


 − −

⋅∇ ⋅ = +   
 

n

n

             (24) 

for the case presented in Figure 3 left. The normal is pointing from the + to the 

− sides. Using (21), we obtain:  

 
* ** *

I J I JK I K I
x y x y

x y x y

u u u uu u u u
a n n a n n

h h h h
ψ+ −

   − −− −
+ − − =      

   
     (25) 

which is the second constraint to be imposed. With such an interpolation, the 

solution gradient is constant over the whole stencil. As demonstrated later, the 

second-order accuracy can be reached on Cartesian grids when 0ψ = . 

Three auxiliary unknowns are thus involved in the discretizations (23) and 

(25). The auxiliary unknown *

Ku  is also involved in the discretization of (20) 

and (21) at another intersection point on hΣ . Hence, the whole system 

A u b′ ′ ′=  is closed. 

One can notice that in [32], the same kind of augmented system is considered. 

Contrary to the AIIB method, no auxiliary nodes are used and the spatial discre-

tization at the grid points at the vicinity of the interface has to be modified 

“by-hand”.  

2.4.3. Algebraic Reduction 

Since we need more than one auxiliary unknown to discretize each constraint, 

the matrix 2C  is not diagonal and a solver has to be used to compute 1

2C
− . This 

matrix is not diagonally dominant. For instance, if the discretized solution con-

straint (23) is inserted in 2C  for the row related to *

Iu , column *I  has a coef-

ficient 1α  while the coefficient of the column *J  has a coefficient 2α . In 

many situations, 2α  is greater that 1α , and the situation can be critical if 

2 1α α≫ . The equivalent behaviour can happen with the discretized flux con-

straint (25). This point is discussed later in Section 3.4.  

For the matched interface and boundary (MIB) method, Zhou et al. [29] use a 

different discretization of the interface conditions which allows an easy algebraic 

reduction which is directly performed row by row. 

The algebraic reduction for the immersed interface problems has not been yet 

implemented. However, the standard discretization of the AIIB method requires 

a more compact stencil than for the MIB method and then the need for a reduc-

tion seems to be less critical. More generally, as auxiliary points are in the vicin-

ity of a surface immersed in a volume, their count is one order below the total 

count of grid points. It suggests that the number of unknowns added to the ini-

tial matrix is low compared to the total number of unknowns.  

3. Numerical Results for Scalar Problems 

Elliptic equations are discretized using the standard second-order centered Lap-
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lacian. For all problems, similar results have been obtained with a PARDISO direct 

solver [38], and an iterative BiCGSTAB solver [39], preconditioned under a ILUK 

method [40]. Unless otherwise mentioned, a numerical domain [ ] [ ]1;1 1;1− × −  

is used for every simulation. Two discrete errors are used. 

The discrete relative 2L  error in a domain Ω  is defined as:  

 ( )
( )

( )

2

2

2
rel

L

L

L

u u
u

u

Ω

Ω
Ω

−
=

ɶ

ɶ
                       (26) 

 

( ) ( )

( ) ( )

1
2 2

2

I

I

I I I
x

I I
x

meas u u x

meas u x

∈Ω

∈Ω

 −
 

=  
  
 

∑

∑

ɶ

ɶ




                   (27) 

with uɶ  the analytical solution. 

The discrete L∞  error is defined as:  

 ( ) ( )max
Ix I IL

u u u x∞ ∈ΩΩ
= − ɶ                   (28) 

without AIIB method, the present code only reach a first-order spatial error 

convergence rate for cases with irregular interfaces. With the AIIB method, the 

code is expected to reach a second-order convergence rate as linear interpola-

tions are used to approximate the solution at the vicinity of the interface. 

Only 0Ω  is taken into account for the immersed boundary problems. For all 

cases, Σ  is the boundary of 1Ω  as illustrated in Figure 1. If not explicitly 

written, ϕ  and ψ  have a default value of 0. For all cases, the analytical solu-

tion is imposed for the cells at the boundary of the numerical domain.  

3.1. Immersed Boundary Problems 

3.1.1. Problem 1 

The homogenous 2D Laplace equation is solved. The interface Σ  is a centered 

circle of radius 1 0.5R =  with a Dirichlet condition of 1 10U = . An analytical 

solution accounts for the presence of a second circle with a radius 2 2R =  and 

2 0U =  is imposed on the boundary conditions. The analytical solution is: 

( ) ( ) ( )
( ) ( ) ( )1

2 1 1

2 1

1 ln
ln

ln ln

R
u r U U r U

R R

−
= − +

−
            (29) 

Accuracy tests are performed with 1

1 , 2

1  and 2

1  interpolations. Figure 

4 shows the solution and the error map for a 32 × 32 mesh with 2

1  interpola-

tions. The same results are always obtained with and without algebraic reduction. 

Figure 5 shows the convergence of the error for the 2L  and L∞  norms. For all 

interpolations, the convergence slopes are approximately 2 for the relative 2L  

error. For the L∞  error, the slopes are about 1.8. The 2

1  interpolation is the 

more accurate, followed by the 1

1  interpolation although it uses more auxiliary 

points (but a smaller stencil). However, the differences of accuracy between the 

different interpolations remain small. The performances of the ILUK-BiCG-Stab  
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Figure 4. Solution and error map for problem 1 on a 32 × 32 grid. 

 

 

Figure 5. Curves of errors for Section 3.1.1.  

 

solver are now benchmarked for the three interpolations with and without alge-

braic reduction and for the SMP method. Table 1 shows the computational 

times of the matrix inversions (average time in seconds for 25 matrix inversions) 

and Table 2 shows the time ratio between the standard and the reduced matrix. 

Except for the 2

1  interpolation on the 1024 × 1024 mesh, the differences be-

tween the two methods seem to decrease with the size of the matrix. In fact, as 

interfaces are 1d −  manifolds, the number of intersection points does not in-

crease as fast as the Eulerian points. Hence, the ratio between the size of a re-

duced and a complete matrix tends to 1. The computational time for the SMP 

method is quite similar to the one obtained with the AIIB method and algebraic 

reduction. Figure 6 shows the convergence of the ILUK-BiCG-Stab solver for  
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Table 1. Computational times in seconds for problem 1. Tests are performed with three 

different interpolations with (red) and without (std) algebraic reduction, and compared 

to the SMP method. 

Mesh 
1

1
  std 1

1
  red 2

1
  std 2

1
  red 2

1
  std 2

1
  red 2

1
  SMP 

128 0.215 0.189 0.216 0.182 0.208 0.181 0.181 

256 2.18 1.89 2.14 1.83 2.14 1.88 1.88 

512 19.7 17.6 19.5 17.1 20.3 18.4 16.9 

1024 168 159 171 156 173 141 168 

 

 

Figure 6. Residual against iterations of ILUK solver for problem 1 with a 256 × 256 mesh.  

 

the seven interpolations with a 256 × 256 mesh. The same behavior has been ob-

served for other grid resolutions. The type of interpolation does not significantly 

impact on solver performances. As expected, the number of solver iterations has 

to be increased to reach a given residual when the number of computational 

nodes is also increased. 

As a conclusion on the interpolation type, 1

1  interpolation seems to be the 

most desirable as it is generally slightly easier to implement, and requires less 

memory than a 1

1  interpolation. To explain that, one can suppose that the 

boundary constraint forces the points of the stencil to follow a polynomial solu-

tion. As the real solution is not polynomial, adding points to the stencil increases 

the zone where the analytical solution is more difficult to match. For the next 

problems, 1

1  will be used for constraints on the solution.  

3.1.2. Problem 2 

The 3D equation 6T∆ =  is solved. The solution is ( ) 2T r r= . The solution is 

imposed on an immersed centered sphere of radius 0.2. Results of the numerical 

accuracy test with the spherical inner boundary are presented in Figure 7. The 

average slope for the 2L  norm is 2.33 and increases for the denser meshes. Even 

if the method has a convergence order similar to the order of the polynomial solu-

tion, computer error accuracy cannot be expected because the immersed boun-

dary hΣ  is an approximation of the initial interface Σ . The analytical solution  
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Table 2. Ratio of computational times for reduced and standard matrices for Section 

3.1.1. 

Mesh 
1

1
  2

1
  2

1
  std 

128 88.3% 84.5% 87.3% 

256 86.9% 85.5% 88.2% 

512 89.4% 87.5% 90.9% 

1024 94.6% 91.2% 81.5% 

 

 

Figure 7. Curves of errors for problem 2.  

 

(the value at the boundary) is imposed on the boundary, but the boundary loca-

tion is approximated so an error which has the order of the discretization error 

of the interface is introduced.  

3.1.3. Problem 3 

The 3D equation 212T r∆ =  is solved. The solution is ( ) 4 4 4T r x y z= + + . 

Results with and without an immersed interface (a circle of radius 1r = ) with 

the analytical solution imposed on it. The results are presented in Figure 8. For 

the L∞  norm, the second order is regularly obtained. For the 2L  norm, the 

convergence order tends to a second order with the size of the mesh. As can be 

noticed by comparing results with and without the AIIB method, this last one 

does not spoil the convergence order of the code, and the presence of the im-

mersed interface with an analytical solution imposed on hΣ  improves the 

accuracy. For both cases, the numerical solution tends to a second order in 

space.  

3.1.4. Problem 4 

The 2D equation 4T∆ =  is solved. The analytical solution is imposed on the 

boundaries of the domain and a Neuman BC is imposed on a centered circle of 

radius 0.5R = . As can be seen in Figure 9, the global convergence has an aver-

age slope of 1.10 and can be explained by the simplicity of the discretization of 

the Neumann BC.  
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Figure 8. Curves of errors for problem 3.  

 

 

Figure 9. Curves of errors for problem 4. 

3.2. Immersed Interface Problems 

3.2.1. Problem 5 

The 2D problem i  with 4f = −  and 1a =  is solved. As the equation re-

mains the same in both domains, this problem can be solved without immersed 

interface method. The analytical solution is 2u r= . As can be expected with our 

second-order code, computer error is reached for all meshes with or without 

AIIB method. The difference with problem 2, where the solution is a second-order 

polynomial too, is that instead of imposing the solution on an approximated 

shape, we impose a solution jump. If the numerical nodes stay in the correct side 

of the interface (where they should be if the interface were not approximated), 

the location of the jump does not influence the numerical solution. 

In Figure 10 the same result is obtained with a solution jump 1ϕ = −  on a 

circular interface such as 2u r=  for 0.5r >  ( 1Ω ) and 2 1u r= +  otherwise 

( 0Ω ). 

An equivalent quality of result is obtained (see Figure 11) with Σ  such as:  
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Figure 10. The solution and the error for problem 5 with a 32 × 32 mesh. 

 

 

Figure 11. The solution and the error for problem 5 with a 64 × 64 mesh. 

 

 
( ) ( )( ) ( )
( ) ( )( ) ( )

0.5 0.2sin 5 cos

0.5 0.2sin 5 sin

x

y

α α α

α α α

 = +


= +
                  (30) 
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with [ ]0,2α ∈ π . The small stencil of the method allows interfaces with rela-

tively strong curvatures to be used. 

3.2.2. Problem 6 

For this case, ( )i  is now considered with a discontinuous coefficient a such as 

10a =  in 0Ω  and 1a =  in 1Ω , involving the following analytical solution:  

 ( )
2

0

2

1

in

0.9
in

10 4

r

u r r

 Ω
= 

+ Ω


                    (31) 

Accuracy tests are first performed with the interface almost passing by some grid 

points (the mesh is referred as centered). The interface does not strictly lies on 

these points, as the shape is shifted by a value of 10−10. This configuration is dif-

ficult as the interpolations degenerates. Accuracy tests are then performed with a 

numerical domain of size 1.0001 (called shifted mesh as the center of Σ  does 

not match the center of the numerical domain). In this configuration, the inter-

face never passes by a grid point. The numerical errors on the solution are pre-

sented in Figure 12. For the centered mesh, the slope is 1.86 for the 2L  and 

L∞  errors. For the even series, where no geometrical singularity is present, the 

slope for both errors is 2.04. 

Figure 13 shows the solution and the 2L  relative error for a 32 × 32 mesh. 

As the analytical solution is imposed on the numerical boundary, the error is 

principally located in the interior subdomain. 

3.2.3. Problem 7 

The homogenous 2D Laplace equation is considered with the following analyti-

cal solution:  

 ( )
( )

0

1

0 in
,

e cos inx
u x y

y

Ω= 
Ω

                   (32) 

 

 

Figure 12. Curves of errors for the centered and shifted meshes for problem 6.  
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Figure 13. The solution and the error for problem 6 with a 33 × 33 mesh. 

 

where 0Ω  and 1Ω  are delimited by Σ  a centered circle of radius 0.5. The jumps 

coefficients are ( )e cosx yϕ = − , ( ) ( )e cos e sinx x

x yy n y nψ = −  and 1a = . 

Figure 14 shows that the convergence for both 2L  and L∞  error are of first 

order only. Figure 15 shows the numerical solution (which is not so different 

from the analytical solution) and the error map for a 32 × 32 mesh. 

Hence, the drawback of the compacity of the discretization is a first-order 

convergence in space only for cases with flux jump. As for the Neumann BC, the 

simplicity of the discretization of the flux condition seems to be the cause of this 

low order. Contrary to the discretization of the solution jump, the precise posi-

tion of the interface is not present which induces a first order of convergence. 

Generally, other approaches [20] [29] [32] use the precise position of the inter-

face (at the expanse of a larger stencil) and can reach higher orders with all flux 

conditions.  

3.3. Shape Management 

3.3.1. Convergence 

We measure the sensibility of the method with the accuracy of the discretization 

of the immersed interface. Problem 1 is solved on 32 × 32 and 128 × 128 meshes. 

Figure 16 shows the accuracy of the solution with respect to the number of 

points used to discretize the interface which is here a circle. The reference solu-

tions (Figure 5) have been computed with an analytical circle. As can be seen, a 

second order in space is globally obtained. The numerical solutions of reference 

for the 32 × 32 and 128 × 128 meshes are different but the sensitivity of the error 

to the number of points in the Lagrangian mesh is almost the same.  

3.3.2. The Stanford Bunny 

This last case demonstrates how a method with a second-order convergence rate  
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Figure 14. Convergence of the 2L  relative error and the L∞  error for problem 7. 

 

 

Figure 15. The solution and the 2L  relative error for problem 7 with a 32 × 32 mesh. 

 

on spatial accuracy enhances the representation of the boundary condition 

compared to a first-order method such as the VPM which imposes a prescribed 

solution at the center of the control volume as shown in Equation (1). 

The homogenous Laplace problem with a Dirichlet BC 10TΣ =  is solved on a 

60 60 50× ×  mesh bounding an obstacle of complex shape (the Stanford bunny). 

The extension of the solution in 1Ω  is used for the post treatment. Thus, all 

1,Ju J ∈ , are replaced by *

Ju . Then, the iso-surface T TΣ=  gives an idea of 

the approximation of the boundary condition. Figure 17 shows the iso-surface 

for a first order method. As can be seen, the shape of the obstacle endures a  
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Figure 16. Convergence of the error with respect to the number of elements forming the 

Lagrangian shape for problem 1. 

 

 

Figure 17. Iso-surface 10T =  for the Stanford bunny with a first order method. 

 

rasterization effect as the solution is imposed in the entire control volumes. Fig-

ure 18 shows the iso-surface for the second order AIIB method. The improve-

ment brought by this approach is straightforward. The graphic processing has 

been applied to both methods. Figure 19 shows a slice of the solution passing 

through the bunny. As can be seen, overshoots are present inside the shape 

which corresponds to the auxiliary values allowing the correct solution at the 

Lagrangian interface points to be obtained.  

3.4. Some Remarks about the Solvers 

The kind of interpolation function used and the position of the interface have an 

impact on the final discretization matrix A′ , especially on its conditioning. Let 

us consider an intersection lx  of hΣ  between two points 0,Jx J ∈  and
 

1,Ix I ∈ . A Dirichlet BC lu  is imposed on it. The constraint constructed with  

a 1

1  interpolation is ( ) *1 J Iu uα α− + , with l J

I J

x x

x x
α

−
=

−
. Hence, 

1

α
α−

 tends  

to 0 when lx  tends to Jx . As the matrix loses its diagonal dominance, solver  
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Figure 18. Iso-surface 10T =  for the Stanford bunny with a second order method. 

 

 

Figure 19. Iso-surface 10T =  and a slice of the solution. 

 

problems can be encountered. Tseng et al. [10] proposed changing the interpola-

tion by using a new node which is the image of Ix  through the interface. In [18] 

[19], authors pointed out this problem and suggest to slightly move the interface 

to a neighboring point (in our case Jx ) if Ix  is too close to hΣ . 

In our approach, a simple solution is to shift the interface such as the interface 

matches Ix . The loss of accuracy depends on the threshold of distance between 

Ix  and hΣ  under which the solver is unstable. In our case, test 3.2.2 suggests 

that a threshold below the error of the discretization of Σ  into the piecewise 

linear interface hΣ  can be taken. 

In the case of interface shift, for the Dirichlet BC, an unknown *

Ju  is created, 

and the equation at Jx  is simply *

J lu u= . For the Neumann BC, the standard 

interpolation is written at Jx  with *

Ju  and its neighbor unknowns in 0Ω . 

For the transmission conditions (20)-(21), if 0φ =  and 0ψ = , no auxiliary 

unknown is created and the standard finite-volume centered discretization is 

used. However, for this case, or for 0φ ≠  and 0ψ ≠ , our implementation us-

ing ILUK preconditioner or a PARDISO direct solver does not necessarily require  

such methods, even if 1010
1

α
α

−≈
−

. Correct solutions are always obtained.  

4. Discussion and Conclusions 

A new immersed interface method, the algebraic immersed interface and boun-
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dary (AIIB) method, which uses algebraic manipulations and compact stencil 

discretizations, has been presented. This method is able to treat elliptic equations 

with discontinuous coefficients and solution jumps over complex interfaces.  

For the immersed boundary problems with a Dirichlet BC, the method has 

shown a second order of convergence in space for various kinds of interpola-

tions. An algebraic reduction has been applied to accelerate the convergence of 

the solver. For the Neumann BC, a first order has been obtained. For the im-

mersed interfaces, a second order of convergence in space is obtained when the 

jump of the normal flux is zero, even if the equation has discontinuous coeffi-

cients. For a non-zero flux jump, the method reaches a first order.  

The main advantage of the method is its simplicity and its ease of implemen-

tation. First, the method does not require to modify the original discretization of 

the equation and works only at the level of the discretization matrix. Second, the 

method has a compact stencil and interfaces with high curvature can be treated 

with no particular attention.  

Future work could be devoted to increase the accuracy of the method when 

the jump of the normal flux is not zero. It is the main drawback of the method 

compared to the IIM, MIB method or [32]. A challenge will be to keep a com-

pact stencil. A study of the matrix conditioning would be important too as a 

strong solver is required for the present method. Another interesting point 

would be to couple the method with alternative interface conditions such as the 

Jump Embedded Boundary Conditions proposed in [41] which are:  

 ( ) | onu u hα ΣΣ
⋅∇ ⋅ = − Σa n� �

� �                  (33) 

 ( ) onu u gβ
Σ

⋅∇ ⋅ = − Σa n                   (34) 

where ( ) 2u u u+ −
Σ = +  denotes the arithmetic mean of the traces of a quantity 

on both sides of the interface; α , β , h and g are scalar values which can be 

chosen in order to obtain Dirichlet, Neumann, Fourier transmission conditions 

on the interface. 

As the method acts on an algebraic level, it can be extended to other implicit 

approaches where the solution is obtained through the resolution of a linear sys-

tem. It would be interesting to apply this method to finite element approaches. 

The interface conditions currently written for finite volumes could be discretized 

in a finite element manner. 

At last, a long-term goal is to extend the method to the Navier-Stokes equa-

tions with immersed interfaces. To perform fluid/structure coupling, the implicit 

tensorial penalty method [42] [43] can be considered. With this approach, the 

solid medium is treated as a fluid with a high viscosity. At the fluid/solid inter-

face, average physical quantities are imposed. Such strategy is generally less ac-

curate than methods using polynomial interpolations so a coupling with the 

AIIB method is desirable. 
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Definition of the Parameters 

Name Definition 

Ω  Computational domain 

0
Ω  Subdomain of Ω  

1
Ω  Subdomain of Ω  

Σ  Immersed boundary of the interface with 
0 1

Ω = Ω Σ Ω∪ ∪  

n  Normal unit outward vector to 
0

Ω  on Σ  

b
  Model immersed boundary problem 

i
  Model immersed interface problem 

ε  Penalty parameter 

χ  Indicator function of 
1

Ω  

ϕ  Value of the solution jump on Σ  

ψ  Value of the flux jump on Σ  

0 1
,   Set of index of the Eulerian interface points 

I
  Set of cell-centered finite volume 

I
′  Set of dual finite volume 

  Set of index of the intersection points between 
e

σ  and the faces 
l

σ  

f
  Set of index of the elements of the Lagrangian mesh 

v
  Set of index of the vertices of the Lagrangian mesh 

e
σ  Faces of the Eulerian dual mesh 

l
σ  Faces of the Lagrangian mesh 

,l i
x  Vertices of face 

l
σ  for 1,i d=  

h
Σ  Piecewise linear approximation of Σ  such as { }1

1
,d

h l f
lσ −Σ = ∈ ∈   

( )IC x  Phase ratio in the control volume centered in 
I
x  

I
d  Unsigned distances between Eulerian points 

I
x  and the interface 

h
Σ  
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