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Introduction 
An algebraic theory of surgery on chain complexes with an abstract 
Poincare duality should be a 'simple and satisfactory algebraic version 
of the whole setup' to quote § 17G of the book of Wall [25] on the surgery 
of compact manifolds. The theory of Mishchenko [10] describes the 
symmetric part of the surgery obstruction, and so determines it modulo 
8-torsion. The theory presented here obtains the quadratic structure as 
well, capturing all of the surgery obstruction. Our theory of surgery is 

homotopy invariant in geometry and chain homotopy invariant in 

algebra. 
An n-dimensional algebraic Poincare complex over a ring A with an 

involution -: A -+ A; a r+ a is an A-module chain complex G with an 
n-dimensional Poincare duality H*(G) = Hn_*(G). 

We shall use n-dimensional algebraic Poincare complexes to define 
two sequences of covariant functors 

Ln {Ln}: (rings with involution) -+ (abelian groups) (n E Z) 

. such that LO(A) {respectively Lo(A)} is the Witt group of non-singular 
symmetric {quadratic} forms over A. The quadratic L-groups Ln(A) will 
turn out to be the surgery obstruction groups of Wall [25], with a 
4-periodicity 

Ln(A) = Ln+4(A) (n E Z). 

The higher symmetric L-groups Ln(A) (n ~ 0) were introduced by 
Mishchenko [10], and are not 4-periodic in general (contrary to the claim 
made there). The lower symmetric L-groups are defined to be such that 

There are defined symmetrization maps 

which are isomorphisms modulo 8-torsion for general A, and actually 
isomorphisms if 2 is invertible in A. 
Proe. London Ma'h. Soc. (3) 40 (1980) 87-192 
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The symmetric {quadratic} L-groups Ln(A) {Ln(A)} (n E Z), are to 
the symmetric {quadratic} Witt group LO(A) {Lo(A)} what the algebraic 
X-groups Kn{A) (n E Z) are to the projective class group Ko(A). 

Part 1 of the paper covers only those algebraic aspects of the theory 
which are needed for the applications to topology considered in Part II 
(Ranicki [17]), namely the construction of the L-groups by means of an 
algebraic Poincare cobordism relation, algebraic surgery, the identification 
of the quadratic L-groups L.(Z[17]) with the surgery obstruction groups 
L.(17), and the products 

Part 11 uses algebraic Poincare complexes to give a chain homotopy 
invariant account of geometric surgery theory, including formulae for the 
surgery obstructions of products and composites of normal maps of 
geometric Poincare complexes. Later parts will be devoted to the following 
topics: 

a change of rings exact sequence for amorphism f: A -+ B of rings 
with involution 

~ ... , 

involving relative L-groups L*(f) {L.(f)}; 
a localization exact sequence, identifying the relative L-groups of a 

localization map A ~ 8-1 A inverting a multiplicative subset 8 of A 
with the L-groups of algebraic Poincare complexes over A which 
become contractible over 8-1 A ; 

Mayer-Vietoris exact sequences for cartesian and localization-comple
tion squares of rings with involution 

A ) B 

1 1 
G ') D 
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of the type 

89 

{ 

... ~ Ln+1(D) ~ Ln(A) ~ Ln(B)~Ln(G) ~ Ln(D) ~ Ln-l(A) ~ ... , 

... ~ Ln+l(D) ~ Ln(A) ~ Ln(B)r£>Ln(G) ~ Ln(D) ~ Ln-1(A) ~ ... ; 

splitting theorems for the L-groups L*(D) {ll* (D)} of a free product 
with amalgamation D = B *.d 0, of the type 

A )B 

L" 1 1 = Cappell's Unil", L,,(D) = L .. (A -->- B (8 C) (8 Unil,., 

0---+ 

and similarly for generalized Laurent extensions; 
simplicial spectra L*(A) {L*(A)} such that 

( 

7Tn(L*(A» = Ln(A) 
(n E Z); 

'7Tn(L*(A)) = Ln(.A) 

the application of algebraic L-theory to the classification of topological 
bundle structures on spherical fibrations, and of topological manifold 
structures on geometric Poincare complexes; 

codimension-2 surgery (for example, knot theory) and the Cappell
Shaneson r-groups, involving the algebraic cobordism groups of 
quadratic complexes over A which become Poincare complexes over 
B, for some morphism of rings with involution A ~ B. 

The reader is referred to Ranicki [18, 19] for a preliminary account of 
some of these topics, and to Ranicki [20] for an application of the theory 
to the surgery obstruction of a disjoint union. 

A 'surgery' on an n-dimensional manifold M is the process of obtaining 
a new manifold M', by first cutting out from M an embedded Sr x Dn-r 
(0 ~ r < n), and then glueing in Dr+1 x Sn-r-l 

M' = M\sr x Dn-rUsrXS"_r_lDr+l x Sn-r-l. 

If M is compact, oriented, smooth and closed then so is M', and the 
(n + 1 )-dimensional manifold 

N = M x [0, 1] UsrXJYI-rXIDr+1 X Dn-r 

is an oriented cobordism from M to M', that is 

aN = Mu-M'. 

The surgery technique was initiated by MiInor [9] (where the i~ea of 
surgery is credited to Thorn); it was proved there that every oriented 
cobordism is obtained by stringing together such elementary cobordisms. 
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Surgery has turned out to be instrumental in. the classification of compact 
manifolds, particularly in dimensions greater than 4, starting with the 
classification of homotopy spheres due to Kervaire and Milnor. In 
the applications it is necessary to keep track of the behaviour of the stable 
normal bundle VM of M under the surgeries, in order to produce further 
embeddings Sr <-+ M with trivial normal bundle (that is, with an exten
sion Sr x Dn-r 4 M) on which to perform surgery. The situation was 
formalized by Browder [2], who irltroduced the concept of a 'normal 
map'. This is a d~gree 1 map from a manifold M to a geometric Poincare 
complex X 

f:M~X 

together with a covering map of stable bundles 

b: VM ~ Vx' 

Surgery obstruction theory has to determine whether a normal map 
(f, b): M ~ X extends to a normal bordism 

((g; f,f'), (c; b,b')): (N; M,M') ~ (X x [0, 1]; X x O,X xl) 

such that f': lJJ' ~ X is a homotopy equivalence. For example, a geo
metric Poincare complex X is homotopy equivalent to a smooth manifold 
if and only if there exists a stable vector bundle Vx in the Spivak normal 
class for which the resulting normal map (I, b): (M, vM) ~ (X, vx) obtained 

-by the Browder-Novikov transversality construction is normal bordant 
to a homotopy equivalence. The surgery obstruction theory of Wall [25] 
associates to an n-dimensional normal map (f, b): M ~ X (n ;;?; 5) an 
element of an abelian group 

8(f,b) E Ln(TTl(X)) 

such that 8(/, b) = 0 if and only if (/, b) is normal bordant to a homotopy 
equivalence. The surgery obstructions take their values in the algebraic 
L-groups Ln(7T) defined for n (mod 4) by 

L 2i(7T) = the Witt group of non-singular (- )iquadratic forms over Z[TT], 

L2'Hl(TT) = the commutator quotient of a stable (- )iunitary group over 

Z[TT]. 

The construction of 8(/, b) makes use of the geometric intersection 
properties of the kernel Z[7T1(X)]-modules 

K*(M) = ker(!.: H.(M) -+ H.CX)) 

remaining after surgery below the middle dimension. The present paper 
views the L-groups Ln(TT) as being defined for n ;;?; ° by the cobordism 
groups of n-dimensional Z[1T]-module chain complexes 0 with a quadratic 
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Poincare duality ifJ: Hn-*{O) ~ H*{O), and makes use of homotopy 
theory to express the surgery obstruction (without preliminary surgeries) as 

8{1, b) = (O, ifJ) E Ln(7Tl(X)) 

for some Z[7Tl{X)]-module chain complex 0 such that 

H*(O) = K.(M). 

An 'algebraic Poincare complex' in the sense of Mishchenko [10] is a 
chain complex of finitely generated projective A-modules 

d d d d 
O:On~On-l~ ... ~Ol~OO 

together with a collection of A-module morphisms 

rps: On-r+8 -+ Or (8 ~ 0) 
such that 

drps + ( - yrpsd* + ( - )n+s-l(rpS_l +( - )STrpS_l) = 0: On-r+S-l -+ Or 

(rp-l = 0), 
and such that the chain map 

rpo: On-* -+ 0 

is a chain equivalence, inducing abstract Poincare duality isomorphisms 

rpo: Hn-r(o) -+ H,.(O). 

Here, On-. is the chain complex of dual A-modules 

Or = 0: = HomA{Or,A) 
with 

(on-*)r = On-r, dO"-. = ( - )rd*: On-r -+ on-rH, 

and T is the duality involution 

T: HomA{OP, Oq) -+ HomA{Oq, Op); rp ~ { - )pqrp* (O;* = Op). 

The definition was inspired by the symmetry properties of the chain 
equivalence 

rpo = [M]n - : O{M)n-* -+ O{M) ([M] = 1 E Hn{M) = Z) 

inducing the Poincare duality isomorphisms 

rpo = [M] n - : Hn-r{M) -+ Hr{M) 

of a compact oriented n-dimensional manifold M, with rpl a chain homotopy 
between rpo and Trpo, rp2 a higher chain homotopy between rpl and Trpl' and 
so on. The 'algebraic Poincare bordism' groups nn(A) of Mishchenko [10] 
(which we denote by Ln{A)) are the abelian groups of I3quivalence classes 
of such n-dimensional symmetric Poincare complexes over A (O, rp) {as 
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we shall call them) under a cobordism relation given by abstract Poincare
Lefschetz duality, with addition by 

(G, q;) + (G',q/) = (G@G', q;@q/) E Ln(A). 

An n-dimensional geometric Poincare complex X determines in a 
natural way an n-dimensional symmetric Poincare complex over Z[1T1(X)], 

a*(X) = (O(X), rpj), 

with X the universal covering space of X. The 'higher signature' of 
Mishchenko [10] is the symmetric Poincare cobordism class 

a*(X) E Ln(Z[1Tl(X)]), 

The symmetric signature (as we shall call it) is a geometric Poincare 
bordism invariant which is a 1T1(X)-equivariant generalization of the 
signature. 

Given a degree 1 map of n-dimensional geometric Poincare complexes 

f: M-+X 

there is defined a kernel n-dimensional symmetric Poincare complex over 
Z[1T1(X)], 

a*(f) = (0(1'), rp/), 

such that up to a chain equivalence preserving the symmetric structure 

a*(M) = a*(f) EB a*(X), 

where O(fl) is the algebraic .mapping cone of the Umkehr chain map 

j1: O(X) ([X] n - )~1 O(X)n-* !*) O(M)n-* ([M] n - ~ O(M). 

Here, N is the covering space of M induced by f from the universal cover 
X of X, and a*(M) is constructed using M rather than the universal cover 
of M. The Z[1Tl(X)]-module chain complex O(/,) has homology modules 

H.(G(P)) = K*(M) = ker(!*: H*CM) -+ H.CX)). 

A normal map of geometric Poincare complexes 

(f: M -+ X, b: Vb! ~ vx) 

is a degree I map f together with a covering map b of Spivak normal 
fibrations. The 'quadratic construction' of § 1 of Part II of this paper 
refines the symmetric structure rp, in the kernel a*(f) = (0(/,), rp,) of a 
normal map (f, b) to a quadratic structure «fob depending only on the fibre 
homotopy class of b. The surgery obstruction of (f, b) is the equivalence 
class 
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of the quadratic kernel 
u*(/, b) = (0(1'), .pb) 

in the abstract cobordism group of such n-dimensional quadratic Poincare 
complexes over Z[7Tl(X)]. 

In the first version of the present theory of quadratic structures an 
n-dimensional quadratic Poincare complex was defined to be a chain 
complex of finitely generated projective A-modules, 

d d d d 
0: On~ On-l~ ... ~ 01~ 0 0, 

together with a collection of A-module morphisms, 

.ps: On-r-s -+ Or (8 ~ 0), 
such that 

d.ps+ (- )r.psd* + (- )n-s-l("'8+1 + (- )s+lT"'s+l) = 0: On-r-s-l -+ Or 

and such that the -chain map 
(1 + T)",o: 011,-* -+ 0 

is a chain equivalence, inducing abstract Poincare duality isomorphisms 

(1 + T)",o: Hn-*(O) -+ 11*(0). 

The cobordism groups Ln(A) of n-dimensional quadratic Poincare 
complexes over A (0, "') turned out to be 4-periodic, 

Ln(A) = Ln+4(A) (n ~ 0), 

agreeing with the surgery obstruction groups of Wall [25] f?r a group ring 
.A = Z[7T], 

Ln(Z[7T]) = Ln(7T) (n(mod 4)). 

There remained the problem of exhibiting such a quadratic structure", on 
the chain complex kernel 0(1') of a normal map (/, b): M -+ X, without 
the use of preliminary surgeries below the middle dimension. Graeme 
Segal pointed out that for the chain complex 0 = O(X) of a topological 
space X and.A = Z such collections", = {"'si 8 ~ O} are cycles of homology 
classes in the 'quadratic construction' 

'" E Hn((8OO x X x X)/Z2) = Hn( W ®Z[Z2)(0(X) ®z O(X))) 

with the generator T E Z2 acting by the antipodal map on 8 00 and by the 
transposition T: (xv x2) ~ (X2' Xl) on X xX, and 

I-T I+T I-T 
W = 0(800

): ••• ~ Z[Z2] ~ Z[Z2] ~ Z[Z2] ~ Z[Z2]. 

This led to the present formulation of the quadratic theory, in which a 
quadratic structure on an A-module chain complex 0 is defined to be a 
class.p E Qn(O) in the Z2-hyperhomology group 

Qn(O) = Hn(Z2,0®AO) = Hn(W®Z[Zs](O®,AO)) 
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with T E Z2 acting on O®,A 0 by 

T: 0P®,A Oq ~ Oq®,A Op; x®y ~ (- )pqy®x, 

which corresponds to the duality involution Ton HOID,.4(O*, 0) under the 
natural identification 0®,.40 = HomA.(O*,O) for finitely generated 
projective O. In turn, this led to the present formulation of the 
symmetric theory, in which the symmetric structure {SOsls ~ O} of 
Mishchenko [10] is considered as a cycle of a class SO E Qn(o) in the Z2-
hypercohomology group 

Qn(O) = Hn(Z2,0®,.40) = Hn(Homz[~)(W,0®,.40)). 

Transfer defines a map from quadratic structures to symmetric structures 

(1 + T): Qn(O) ~ Qn(O); .p ~ (1 + T).p, 

{
(I + T).po if 8 = 0, 

«1 + T)~)8 = 0 
if8~1. 

The problem was reduced to finding a natural lifting of the Z2-hyper
cohomology class SOl E Qn(O(jI)) appearing in the symmetric kernel 
cr*(/) = (O(P), 'PI) of a normal map (/: M ~ X, b: VM ~ vx) to a Z2-
hyperhomology class ~b E Qn(O(jI)) such that 

(1 + T)~b = 'PI E Qn(o(f')). 

Ib Madsen suggested using a more refined version of the construction of 
the Arfinvariant used by Browder in [2, §III.4] which involved the S-dual 
of the induced map of Thom spaces T(b): T(vM) ~ T(vx), a stable map 
F: ~ooX+ ~ ~<X)M+ inducing the Umkehr jI: O(X) ~ O(M) on the chain 
level. (Specifically, note that there is a natural map 

11 E};k x:E",( n M) ~ QCO};COM+ (M+ = Mu {Pt.}) 
k~O k 

which is a group completion in homology, with the symmetric group ~k 
on k letters acting by permutation on the k-fold cartesian product TIkM, 
and E~k a contractible space with a free ~k-action. The image of the 
fundamental class [X] E Hn(X) under the composite 

(adjoint F) 
~: Hn(X) = Dn(X+) : Dn(nOO~ooM+) 

= (£ Hn(E~k xI:",( IT M))) ®ZlN)Z[Z] 
k-l k 

e% 
---~~ Qn(O(jI)) 
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,(where e = inclusion: O(M) ~ 0(1'), N = {I, 2,3, ... }) is a Z2-hyper
homology class if1b = if1[X] E Qn(O(f')) such that (1 +T)if1b = rpf E Qn(o(f')), 
and which agrees with the class if1b constructed in § 4 of Part 11 by a direct 
chain level operation.) This led to the observation that an abstract 
Z2-hypercohomology class rp E Qn(O) lies in im((1 + T): Qn(O) ~ Q?t(O)) if 
and only if 

where SO is the suspension of the chain complex 0 (SOr = Or-I) and 

S: Qn(O) ~ Qn+l(SO); rp Ho Srp, 

(

rpS-l if 8 ~ 1, 
(Srp)s =, 0 if 8 = 0 

(Proposition 1.3). If there exists a 7TI(X)-equivariant map 

F: ~pX+ ~ ~PM+ (p ~ 0) 

inducing the Umkehr fl: C(X) ~ C(M) on the chain level then the Z2-
hypercohomology class rpf E 'Qn( 0(1')) is of this type, and the stable 
7T1(X)-equivariant homotopy class of F determines a Z2-hyperhomology 
class if1F E Qn(O(f')) such that 

(1 + T)if1F = rpj E Qn(O(jI)) 

(Proposition 11.2.3). A normal map of n-dimensional geometric Poincare 
complexes (/: M ~ X, b: VM ~ vx) gives rise to a 7Tl(X)-equivariant 
geometric Umkehr map F: ~ooX+ ~ ~ooM+ via an equivariant S-duality 
theory (Proposition 11.4.2), and if1b = if1F E Qn(O(f')) defines the kernel 
n-dimensional quadratic Poincare complex over Z[7T1(X)], 

(7*(/, b) = (O(jI), if1b)' 

The quadratic Poincare cobordism class 

(7.(/, b) E L n (Z[7T1(X)]) 

is the surgery obstruction of Wall [25] (Proposition II. 7.1). 

The theory presented here was developed over a period of some five 
years, and 1 should like to express my gratitude to the following 
institutions for their support in the years indicated: 

Trinity College, Cambridge (1972-1973, 1974-1977); 
Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (1973-1974); 
Princeton University (1977-1978). 

1 should also like to thank W. Browder, I. Madsen, J. Morgan, W. Richter, 
G. Segal, L. Taylor, C. T. C. Wall, and B. Williams. 
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The sections of Part I are as follows: 
§ I. Algebraic Poincare complexes; 
§ 2. Forms and formations; 
§ 3. Algebraic Poincare cobordism; 
§ 4. Algebraic surgery; 
§ 5. Witt groups; 
§ 6. Lower L-theory; 
§ 7. Dedekind rings; 
§ 8. Products; 
§ 9. Change of K -theory; 
§ 10. Laurent extensions. 

1. Algebraic Poincare complexes 
Given a ring with involution A, an element e E A such that € = e-1 EA, 

and an A-module chain complex 0, we define the Z2-hypercohomology 
{respectively Z2-hyperhomology, Tate Z2-hypercohomology} group Qn(O, e) 
{respectively Qn(O, e), Qn(o, en of n-dimensio~al e-symmetric {respectively 
e-quadratic, e-hyperquadratic} structures on 0, depending only on the 
chain homotopy type of O. The Q-groups are related to each other by an 
exact sequence 

H I+1!r J 
... ~ Qn+l(O,e) ~ Qn(O,e) ~ Qn(O,e) ~ Qn(o,e) 

H 
~ Qn-l(O, e) ~ ... , 

and there is defined a forgetful map 

Qn(O,e) -+ Hn(O®AO); rp ~ rpo. 

An n-dimensional e-symmetric {e-quadratic} Poincare complex over A is 
an n-dimensional finitely generated projective A-module chain complex 0 
together with a class rp E Qn(O, e) {t/J E Qn(O, en such that slant product 
with rtJo® Hn(O®A 0) {(I + T,Jifio E Hn(O®A On defines Poincare duality 
isomorphisms 

rpo: Hn-*(O) -+ H*(O) HI + ~)t/Jo: Hn-*(O) -+ H*(O)}. 

In § 2 below we shall express the theory of n-dimensional e-symmetric 
{e-quadratic} complexes over A (O,rp E Qn(C,e)) {(C,t/J E Qn(C, e))} for n = 0 
(respectively I) in terms of e-symmetric re-quadratic} forms (respectively 
formations) over A. In § 2 {§ 4, § 9} of Part 11 we shall show that an 
n-dimensional geometric Poincare complex X {a normal map of geometric 
Poincare complexes (/: M -+ X, b: VM -+ vx), a stable spherical fib ration 
p: X -+ BG over an n-dimensional OW complex X} determines in a 
natural way an n-dimensionall-symmetricPoincare{I-quadraticPoincare, 
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1-hyperquadratic} complex over Z[1T1(X)] O'*(X) {O'*(f, b), &*(p)} such that 

(1 + T}O'*(f, b) ~ O'*(X} = O'*(M}, 

J O'*(X) = &*(vx). 

A ring with involution A is an associative ring with 1, together with a 
function 

such that 
(a+b) = a+o, 

(ab) = (o){a), 

Il = a, 

I = 1 (a, b EA). 

Given a left A-module M let M' denote the right A-module defined by 
the additive group of M, with A acting by 

M'xA ~ M'; (x,a) ~ ax. 

We shall be mainly concerned with left A-modules, so that 'an A-module' 
is to be taken to mean 'a left A-module' unless a right A-action is 
specified. 

The dual of an A-module M is the A-module 

M* = HomA(M, A), 
with A acting by 

A x M* ~ M*; (a,f) ~ (x ~ f(x).a}. 

The dual of an A-module morphism f E HomA(M, N) is the A-module 
morphism 

f*: N* ~ M*; g ~ (x ~ g(f(x»}. 

The dual of a finitely generated (f.g.) projective A ·module M is a f.g. 
projective A-module '}l*, and there is defined a natural A-module 
isomorphism 

M ~ M**; x ~ (f~ f(x» 

which we shall use as an identification. 
The homology {cohomology} A-modules H*(O} {H*(O)} of an A-module 

chain complex 0, 

d d 
0: ... ~ Or+l ~ Or ~ 0r-l ~ ... (r E Z, d2 = 0), 

are defined by 

( 
Hr(O) = ker(d: Or ~ Or_l}/im(d: Or+l ~ Or} 

(r E Z, Or = O:). 
Hr(O} = ker(d*: Or ~ Or+l}/im(d*: Or-l ~ Or) 

5388.3.40 G 
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A chain map {homotopy} of A-module chain complexes {maps} 

( 
I: O~D 
g:/~/':O~D 

is a collection of A-module morphisms {/ E Hom,A(Or, Dr) IrE Z} 
{{g E Hom,A(Or' Dr+1) IrE Z}} such that 

( 
dDI=/do: Or ~ Dr- 1 

I' -1= dng+gdo: Or ~ Dr 
(r E Z). 

A chain equivalence is a chain map which admits a chain homotopy 
inverse. 

An A -module chain complex 0 is n-dimensional if it is chain equivalent 
to a f.g. projective A-module chain complex of the type 

d d 
0: ... ~ 0 ~ On --+ 011.-1 ~ ... ~ 01 ~ 00 ~ 0 

~ ... 
for some integer n ~ O. We recall that a chain map f: 0 ~ D of finite
dimensional A-module chain complexes is a chain equivalence if and only 
if it induces A-module isomorphisms!*: H.(O) ~ H.(D) in homology (or, 
equivalently, if it induces A-module isomorphisms f*: H·(D) ~ H*(O) in 
cohomology). A finite f.g. projective A-module chain complex 0 is n
dimensional if and only if Hr( 0) = 0 for r < 0 and Hr( 0) =" 0 for r > n. 
We shall be mainly concerned with finite-dimensional chain complexes. 

Given A-module chain complexes 0, D, let O'®,AD, Hom,A(O, D) be the 
abelian group chain complexes defined by 

(O'®,AD)n = L O~®,ADq, dC'®An(x®y) = x®dn(y) + (-)qdc(x)®y, 
p+q=n 

The slant chain map 

\: O'®,AD ~ Hom,A(O-*,D); x®y ~ (f~ f(x).y) 

is a chain equivalence (respectively isomorphism) if 0 is finite-dimensional 
(respectively f.g. projective), where 0-* is the A-module chain complex 
defined by 

Let £ E A be a central unit such that 

€ = £-1 EA, 

for example, £ = ± 1. Given an A-module chain complex 0 let the generator 
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T E Z2 act on C' ® A C by the e-transposition involution 

Te: G~®A Gq ~ G~®A Gp; x®y f-+ (- )pqy®ex, 

and define the Q-groups 

( 
Qn,jj(G, e) = Hn(Homz[Z2J(W[i,j], C'®A C)) 

( - 00 ~ i ~ j ~ 00, n E Z) 
Q~,jl(C, e) = Hn(W[i,j] ®Z[Zzj(C'®A C)) 

with W[i,j] the Z[Z2}module chain complex given by 

.. (Z[Z2] if i ~ r ~ j, 
W[~,J]r = 

. 0 otherwise, 

dWliJl = 1 + ( - )rp: W[i,j]r ~ W[i,j]r-l (i < r ~ j). 

An element fP E Qn,j](O, e) {tP E Q~,jl(O, e)} is represented by a collection 
of chains 

such that 

( 
'P = {'P. E (o:® ... O)n+s I ~ .; 8 .;~} 

tP = {tPs E (0 ®AO)n-sl ~ ~ s ~J} 

dCI®.&dfPs) + (- )n+s-l(fPs_l + (- )S~fPs_l) = 0 E (CI®A C)n+s-l 

(i ~ s ~ j, fPi-l = 0), 

dCI®.&c(tPs) + (- )n-S-l(tPS+l + (- )S+l~tPS+l) = 0 E (C'®A C)n-s-l 

(i ~ s ~ j, tPi+l = 0). 

The notation is somewhat redundant, allowing identifications 

Qn,jj(C, e) = Q~~~,j_k](G, (- )ke) = Qr.:+t,k-il(C, (- )k+1e) (k E Z). 

For i =j we have 

Q~,il(C, e) = Hn+i(Gt®A C), Q~,ij(C, e) = Hn_i(Ct®A G). 

The isomorphism type of the Q-groups Q~,jl(O, e) {Q~,jl(G, e)} depends 
only on the chain homotopy type of 0, despite the quadratic nature of 
the construction. 

PROPOSITION 1.1. (i) An A-module chain map I: G ~ D {homotopy 
g: I ~ I': C ~ D} induces a Z-module chain map {homotopy} 

( I~ 0 0 : HomZ[Zz)(W[i,j], O'®.A C) ~ HomZ[Zz)(W[i,j], D'®.A D ), 
g'lo:I'Io~/''Io 

( 1% : W[i,j]®Z[Zz](O'®.A C) ~ W[i,j]®z[zs](D'®.A D ). 
g%:/% ~/~ 
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(ii) If 0 is an m-dimentJional A-module chain complex then 

{ 
Q~,i](C,e) = 0 i {n+i > 2m or n+j < 0, 

Q~,i](O, e) = 0 1 n-j> 2m or n-i < O. 

(iii) For - 00 ~ i ~ j ~ k ~ 00 there is defined a long exact sequence of 
Q-groups 

Proof. (i) Given rp E HomZ[Z2](W[i,j], ot®.A C)n set 

f%(rp)s = (/'®.Af)({)s E (D'®.AD)n+s, 

g%(rp)s = (f'®.Ag+ (- )qg'®.Af')rps+ (- )q+S-l(g'®.Ag)~rpS_l 

00 

E (D'®.AD)n+s+l = L D~-q+S+1®.ADq (i ~ s ~j, rpi-l = 0). 
q=--oo 

The other case is similar. 
(ii) By the chain homotopy invariance (verified in (i)) it may be assumed 

that Or = 0 for r < 0 or r > m. 
(iii) Given intervals [i,j], [i',f] such that i ~ i' ~ j ~ f define a 

Z[Z2]-module chain map W[i,j] ~ W[i',j'] by 

1: W[i,j], = Z[Z2] ~ W[i',j']r = Z[Z2] (i' ~ r ~ j). 

There are induced contravariantly {covariantly} abelian group morphisms 

{ 
Qn"i'](C, e) ~ Qn,j](C, e) 

(n E Z). 
Q~,j](C, e) ~ Q~',f](C, e) 

For - 00 ~ i ~ j < k ~ 00 there is defined a split short exact sequence of 
Z[Z2]-module chain complexes 

o ~ W[i,j] -+ W[i, k] -+ W[j + 1, k] -+ O. 

Apply HomZ[ZIl]( -, O'®.A C) {-®Z[ZIl](C'®.A O)} to this sequence, and 
consider the associated long exact sequence in homology. 

(The chain homotopy invariance of the Q-groups is fundamental to the 
methods of this paper-it is further clarified by the following discussion. 
Define the Z2-isovariant category, with objects Z[Z2]-module chain com
plexes and morphisms f: 0 -+ D Z2-hypercohomology classes, 

f E HO(Z2; Homz(O,D)) = Ho(HomZ[zlI)(W,Homz(O,D))) 

(W = W[O,oo]), 
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with T E Z2 acting on Homz(O, D) by 

T: Homz(O, D) ~ Homz(O, D); g ~ TDgTo. 

A Z2-isovariant morphism I: a ~ D is thus an equivalence class of 
collections {Is E Hom~(Or' Dr+s) IrE Z, 8 ~ O} such that 

dDIs+ (- ) s-118d 0 + (- )S-I(18_1 + (- )STDI8_1TO) == 0: Or ~ Dr+S-1 

(/-1 = 0), 

corresponding to a Z-module chain map 1o: 0 ~ D together with a Z
module chain homotopy 11: 10 ~ TDloTo: 0 ~ D and higher chain 
homotopies 12,13' .... The diagonal Z[Z2]-module chain map 

s-" 
~: W[i,j] ~ W®z W[i,j]; Is ~ ~ 1r®(Ts_r)r (i ~ 8 ~j) 

r-O 

can be ~sed to define products 

HO(Z2; Homz(O,D»®zQn,j](O,B) ~ Qn,j](D,B);I®rp 1-+ (f®rp)~, 

so that a Z2-isovariant morphism I: a ~ D induces abelian group 
morphisms 

f%: Qn,j)(O, B) ~ Q~.j)(D, B) 

in a natural way. An A-module chain map I: a ~ D of A-module chain 
complexes induces a Z[Z2]-module chain map I'®A/: O'®A a ~ [)l®A D 
of Z[Z2]-module chain complexes, but an A-module chain homotopy 
g: 1 ~ I': 0 ~ D does not in general induce a Z[Z2]-module chain 
homotopy It®AI~I"®AI': O'®AO ~ D'®AD. However, f'®AI and 
f" ® AI' represent the same Z2-isovariant morphism A' ® A a ~ D' ® AD, 
so that 

/% = /'%: Qn,j)(O, B) ~ Qn,jJ(D, B) 

(as was explicitly verified in the proof of Proposition 1.1(i». Note that 
for the singular chain complex O(X) of a topological space X the Eilenberg
Zilber theorem gives a natural Z2-isovariant equivalence 

O(X x X) ~ O(X) ®:i O(X), 

as used in the construction of the Steenrod squares in singular 
cohomology (cf. § 1 of Part 11).) 

Given an A-module chain complex a define the Z2-hypercohomology 
{Z2-hyperhomology, Tate Z2-hypercohomology} groups of the Z2-action on 
O'®A 0 by the B-transposition involution ~ 

( 

Qn(O,B) = Q~,oo)(O,B) = Hn(Homz[~)(W,Ot®AO)) 

Qn(O,B) = Q~·CX»)(O,B) = Hn(W®z[~](O'®AO)) (n E Z), 

Qn(O, B) = Qr~.ool(O, B) == Hn(Homz[Zz](Jt, 0' ®A 0)) 
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with W = W[O, 00] a free Z[Z2]-resolution of Z and W = W[ - 00, 00] a 
complete resolution for Z2 (cf. Cartan and Eilenberg [4, Chapters XII and 
XVII]). If ° is n-dimensional 

by Proposition 1.1. 

( 

Qn(o, e) = Q~,n+l1(0, e) 

Qn(O, e) = Q~,n+l1(0, e) 

Qn(o, e) .= Qr-n-l,n+ll(O, e) 

PROPOSITION 1.2. Given an A-module chain complex ° there is defined a 
long exact sequence of abelian groups 

H 1+~ J H 
••. ~ Qn+l(O,e) ~ Qn(O,e) ----+ Qn(O,e) ~ Q"·(O,e) ~ 

Qn-l(O, e) ~... (n E Z) 
with 

H: Qn+I(O, e) ~ Qn(O, e); fJ ~ {(HfJ)s = fJ-s-II s ~ O}, 

{ {
(I + ~)"'o 

1 + T,: Qn(O, e) -+ Qn(O, e); '" ~ «1 + ~)"')s = 0 

( {rp.s if 8 ~ 0 } 
J: Qn(O, e) -+ 0"(0, e); rp ~ l(Jrp)s = . 

o if s ~ -I 

if s = 0J 
if s ~ 1 ' 

Proof. This is just the special case of the exact sequence of Proposition 
1.1(iii) for Q., with i = - 00, j = -1, k = 00. 

(The exact sequence of Proposition 1.2 is related to the EHP sequence 
in homotopy theory, cf. Proposition 5.1 of Part 11.) 

An n-dimensional e-8ymmetric {e-quadratic, e-hyperquadratic} complex 
over A (0, rp) {(O, "'), (0, fJn is an n-dimensional A-module chain complex ° together with an element rp E Qn(o, e) {'" E Qn(O, e), fJ E Qn(o, en. The 
e-hyperquadratization {e-8ymmetrization, e-quadratization} of an n-dimen
sional e-symmetric {e-quadratic, e-hyperquadratic} complex over .A 
(O,rp) ((O,,,,), (O,fJ) such that Hn(O) = O} is the n- {n-, (n-l)-} 
dimensional e-hyperquadratic {e-symmetric, e-quadratic} complex over A 

( 

J(O, rp) = (0, Jq; E 0"(0, e)), 

(1 + Ta)(O, "') = (0, (1 + Ta)'" E Q"(O, e)), 

H(O, fJ) = (0, HfJ E Qn-l(O, e)). 

If there exists a central element a E A such that a + a = 1 (for 
example, a = i) the e-symmetrization map (1 +~): Qn(O, e) ~ Qn(O, e) 
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is an isomorphism (the inverse being given by Qn(c, e) -+ Qn(C, e); 
~ ~ t/1 = {t/1s = (I®a)(I+Te)(I®a)~o if 8 = 0, t/1s = 0 if 8 ~ I}) and 
an(O, e) = 0 so that there is no difference between n-dimensional 
e-symmetric {e-hyperquadratic} complexes over A and n-dimensional 
e-quadratic {chain} complexes over A. The groups ~n(o, e) are of 
exponent 2 (for any A). 

An n-dimensional e-symmetric fe-quadratic} complex over A 
(C, rp E Qn(c, e)) {(O, t/J E Qn(O, e))} is a Poincare complex if the evaluation 
of the slant products 

\: H"(O)®zHn(Ol®AO) -+ Hn_r(O);j®(x®y) ~j(x).y 

on rpo E Hn(O'®A 0) {(I + Te)t/Jo E Hn(OI®A O)} defines A-module iso
morphisms 

( 

fPo: H"(O) -+ IIn_,,(O) . 

(1 + Te}t/JO: H"(O) -+ Hn-r(O) 
(0 ~ r ~ n). 

The e-symmetrization of an n-dimensional e-quadratic Poincare complex 
(0, t/J) is evidently an n-dimensional e-synlmetricPoincare complex 
(1 + T:)(C, t/J). 

A map (respectively homotopy equivalence) of n-dimensional e-symmetric 
fe-quadratic, e-hyperquadratic} complexes over A 

( 

j: (0, rp) -+ (C', rp') 

f: (C, t/J) -+ (0', t/J') 

j: (0,8) -+ (C', 8') 

is an A-module chain map (respectively chain equivalence) 

such that 
f: 0 -+ C' 

( 

j%(rp) = rp' E Qn(O', e), 

~%(t/J) = t/J' E ~n(C" e), 

fO~'(8) = e' E QlI(O', E). 

Homotopy equivalence is an equivalence relation. 
In § 2 below we shall identify the homotopy equivalence classes of 

n-dimensional e-symmetric fe-quadratic} complexes over A for n = 0 
(respectively 1) with the (stable) isomorphism classes of e-symmetric 
{e-quadratic} forms (respectively formations) over A. 
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For e = 1 E A we shall contract the terminology by writing 

( 

Qn(c, I) = Qn(c), 

Qn(C, 1) = Qn(C), 

Qn(c, I) = Qn(c), 

calling I-symmetric {I-quadratic, I-hyperquadratic} complexes symmetric 
{quadratic, hyperquadratic}. 

Our notion of a symmetric Poincare complex is a chain homotopy 
invariant version of an 'algebraic Poincare complex' due to Mishchenko 
[10]. 

For f.g. projective A-module chain complexes C the slant map iso
morphism Ql®..4. C -7 Hom..4.(C*, C) allows us to represent elements 
rp E Qn(c, e) {tP E Qn(C, e), () E Qn(C, en by collections of A-module 
morphisms 

such that 

( 

{rps E Hom..4.(Cn-r+s, Cr) IrE Z, 8 ~ O} 

{tPs E Hom..4.(Cn-r-S, Cr) IrE Z, 8 ~ O} 

{Os E HOm..4.(Cn-r+8, Or) IrE Z, 8 E Z} 

dcrps + (- )'rpsdt + (- )n+s-l(rpS_1 + (- )S~rpS_I) = 0: On-r+s-l -7 Or 

(8 ~ 0, rp-I = 0), 

dctPs + ( - YtPsdt + (- )n-s-l(tPs+l + (- )S+I~tPS+I) = 0: Cn-r-s-l -7 Or 

(8 ~ 0), 

d () + ( - )T() d* + ( - )n+s-l(() + ( - )ST () ) = O· Cn-r+s-l -7 0 C s s C s-1 8 s-I' r 

(8 E Z), 

where ~ is the e-duality involution 

T:: Hom..4.(CP, Cq) -+ Hom..4.(Cq, Cp); 8 ~ (- )pQe.8*. 

An n-dimensional e-symmetric {e-quadratic} complex (C, rp E Qn(C, e)) 
{(C, ~ E Qn(C, e))} with C f.g. projective is a Poincare complex if and only 
if the chain map 

{ 

rpo: Cn-* -+ C 

(1 + ~)tPo: Cn-* -+ C 

is a chain equivalence, with 
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The suspension of an A-module chain complex 0 is the A-module chain 
complex SO obtained by dimension shift - 1 

(SO)r = Or-I' dse = de· 

We shall denote the inverse operation by 00 ((OO)r = Or+lJ doe = dd, 
and can identify 

( 

Hr(SO) = Hr_1(0), Hr(OO) = Hr+l(O), 
SOO = OSO = 0, 

Hr(SO) = Hr-l(O), Hr(oo) = Hr+l(O), 

( 

Qn,;l(O, e) = Q~tl.i+l](SO, e) = Qn;i(SO, - e), 

Q~.;l(O, e) = Q~+l,;-I](SO, e) = Q~1}2(SO, - e). 

In particular, 
Qn(O, e) = Qn+l(SO, e). 

The skew-suspension of an n-dimensional e-symmetric {e-quadratic} 
(Poincare) complex over A (0, r; E Qn(o, e)) {(O,.p E Qn(O, e)} is the 
(n + 2)-dimensional (- e)-symmetric {( - e)-quadratic} (Poincare) complex 
over A 

{ 

8(0, r;) = (SO,8r; E Qn+2(SO, - e)), 

8(0,!fo) = (SO, s.p E Qn+2(SO, - e)), 

with 8: Qn(O, e) -7 Qn+2(SO, - e) {8: Qn(O, e) -7 Qn+2(SO, - e)} the abelian 
group isomorphism induced by the isomorphism of Z[Z2]-module chain 
complexes 

8: Ol®A. 0 -7 02(SOl®A.SO); x®y r-+ (- )Px®y (x E Op, Y E Oq). 

Here T E Z2 acts by T, on Ol®A.O and by T_e on SOI®A.SO. An (n+2)
dimensional ( - e)-symmetric {( - e)-quadratic} complex over A 
(D,r; E Qn+2(D, -e)) {(D,.p E Qn+2(D, -e))} is the skew-suspension of an 
n-dimensional e-symmetric {e-quadratic} complex over A 

(OD,8-1(r;) E Qn(OD, e)) ((OD,8-1(!fo) E Qn(OD, e))} 

if and only if OD is an n-dimensional A-module chain complex, that is if 

Thus the study of n-dimensional e-symmetric {e-quadratic} Poincare 
complexes (0, r;) {(O,!fo)} such that Hr(O) = 0, Hr(o) = 0 for r < i reduces 
to the study of (n - 2i)-dimensional (- )ie-symmetric {( - )ie-quadratic} 
Poincare complexes (OiO,8-i (r;)) {(OiO, S-i(.p))} for n ~ 2i. 
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Given an A-module chain complex 0 define the suspension chain map 

S: HomZ[Zal( W, 0' ®,A 0) ~ HomZ[Zi]( W[ - 1,00],0' ®,A 0) 

= OHomZ[Zil(W,SO'®,ASO); rp ~ {(Srp)s = rps-lls ~ O} (rp-l = 0) 

S: W ®Z[Zil( 0' ® ,A 0) ~ W[ I, 00] ®Z[Zzl( 0' ®,A 0) 

= O(W®Z[Zz](SO'®,ASO)); I/J ~ {(SI/J)s = I/Js+11"s ~ O} 

using the natural chain map 

W[ -1,00] ~ W[O, 00] = W {W = W[O, 00] ~ W[I,oo]}, 

so that there are induced suspension maps in Z2-hypercohomology 
{Z2-hyperhomology}, 

( 
S: Qn(o, e) ~ Qn+1(SO, e), 

S: Qn(O, e) ~ Qn+l(SO, e). 

Now W[ -00,00] = Limp W[ -p,oo] so that the Tate Z2-hypercohomology 
~ 

groups are the direct limits 

(jn(o, e) = LimQn+P(SPO, e) 
~ 

p 

of the directed systems of suspension maps 

S S S 
Qn(o, e) ---+ Qn+1(SO, e) ~ Qn+2(S20, e) ---+ ... 

with J: Qn(o, e) ~ (jn(o, e) the natura!" map. Thus the relation 
kerJ = im(1 + T,) in the exact sequence of Proposition 1.2 can be 
interpreted as saying that an n-dimensional e-symmetric complex 
(0, rp E Qn(O, e)) is the e-symmetrization (I + ~)(O, I/J) of an n-dimensional 
e-quadratic complex (O,.p E Qn(O, e)) if and only if BP,? = 0 E Qn+'P(BPO, e) 

for some p ~ O. This is the mechanism by which we shall obtain quadratic 
structures in the topological context, in the 'quadratic construction' of 
§ 1 of Part lI. 

The exact sequence of Proposition 1.2 admits a generalization: 

PROPOSITION 1.3. Given an A-rrwdule chain complex 0 there is defined in 
a natural way a chain equivalence of Z-rrwdule chain complexes 

O(SP) ~ S(W[O,p-I]®Z[zz](O'®,A 0)) 

for each p ~ 0, with O(SP) the algebraic mapping cone of the p-fold suspension 
chain map 

SP: HOIDZIZal( W, 0' ®,A 0) ~ OP HOIDZIZa)( W, SpO' ® od SpO), 
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and there is also defined a commutative braid of exact sequences of Z-modules 

If 0 is n-dimensional then for p ~ n + 1 

Qn+p(SPC, e) = 0, Q~'p](O, e) = Qn(C, e), Qn+p(SpC, e) = Qn(C, e), 

and the braid collapses to the exact sequence 

H 1+~ J 
... ~ Qn+l(O,e) ~ Qn(C,e) ~ Qn(C,e) ~ Qn(O,e) 

H 
~ Qn-l(C, e) ~ .... 

Proof. Applying Homz[ZIl]( - , C' ® A C) to the chain equivalence of 
Z[Z2]-module chain complexes 

SW[ -p, -1] -? C(W[ -p,oo] -? W[O,oo]) 

arising from the split short exa~t sequence 

° ~ W[ -p, -1] ~ W[ -p,oo] -? W[O, 00] ~ ° 
we have a chain equivalence ofZ-module chain complexes 

O(SP) = C(HomZ[z21( W[O, 00],0' ® A C) ~ HomZ[Z2]( W[ - p, 00], C' ® A C)) 

~ HomZ[Z21(SW[ -p, -1], OI®A C) = S(W[O,p-l]®Z[ZIll(Ct®A 0)). 

To obtain the braid apply -®Z[Z21(Ot®A C) to the commutative diagram 
of split short exact sequences of Z[Z2]-module chain complexes 

~~ 
o W[O,p-l] 0 

/~/~/~ 
o W[ - oo,p -I] W[O,oo] 0 

/ ~ / ~ / ~ / ~ 
o W[-oo,-I] W[-oo,oo] W[p,oo] 0 

~~~/~ 
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and consider the associated long exact sequences of homology groups 
(which are all special cases of those of Proposition 1.1 (iii)). 

Given A-module chain complexes 0,0' there are defined direct sum 
operations 

{ 
(f): Qn,il(O,e)ffiQn,il(O',e) -+ Qn,il(OffiO',e); (q;,q>') 1-+ q;(f)rp', 

ffi: Q~,il( 0, e) ffi Q~,il( 0', e) -+ Q~,il( 0 (f) 0', e); (.p, .p') 1-+ .p (f) .p'. 

The direct sum of n-dimensional e-symmetric {e-quadratic} (Poincare) 
complexes over A (0, rp E Qn(O, e)), (0', rp' E Qn(O', e)) {(o,.p E Qn(O, e)), 
(O',.p' E Qn(O', e))}isan n-dimensional e-symmetric {B-quadratic} (Poincare) 
complex over A 

{ 
(0, rp) (f) (O',q;') = (O(f) 0', rpffirp' EQn(OffiO',e)), 

(O,.p)ffi(O',.p') = (OffiO',.pffi.p' EQn(OffiO',e)). 

The Z2-hypercohomology {Z2-hyperhomology, Tate Z2-hypercohomology} 
groups behave as follows under the direct sum operation. 

PROPOSITION 1.4. (i) Given A-module chain complexes O,D there are 
natural direct sum decompositions of abelian groups 

( 

Qn(O (f) D, e) = Qn(O, e) ffiQn(D, e) ffi Hn(O'®A D), 

Qn(O (f) D, e) = Qn(O, e) (f)Qn(D, e) ffi Hn(O'®A D), 

Qn(o (f) D, e) = Qn(o, e) (f) Qn(D, e). 

The e-symmetrization (l+~):Qn(O®D,e)-+Qn(O®D,e) is an isomor
phism on Hn(O'®AD). 

(ii) Given A -module chain maps I, g: 0 -+ D there are defined factorizations 

/'®Ag 
(f+g)%-f%-g%: Qn(O,e) ---+) Hn(O'®A O) ) Hn(DI®AD) 

---+) Qn(D, e) 
/'®Ag 

(/+g)%-I%-g%: Qn(O,e) ---+) Hn(O'®AO) ----+ Hn(D'®A D ) 

with 

Qn(O, e) -+ Hn(O'®A 0); q; 1-+ rpo, 

{ {
(I+Te)8 

Hn(D'®A D ) -+ Qn(D, e); 81-+ rps = 0 

----+ Qn(D, e) 

il s = O} 
if s ~ 1 ' 
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Proof. (i) Applying Hn(Homz[Zs](W[i,j], -)) to the direct sum de
composition of Z[Z2]-module chain complexes 

(C$D)t®.tJ. (C$D) = (CI®.tJ. C)$ (Dt®.tJ. D ) $ ((OI®.tJ. D ) $ (D'®.tJ. C)) 

we have a direct sum decomposition of abelian groups 

Q~,jl(C $ D, e) = Q~,j](O, e) ®Q~,j](D, e) 

$ Hn(HomZ[Zt)(W[i,j], (OI®.tJ. D ) $ (D'®.tJ. C))) 

with T E Z2 acting on (OI®.tJ. D ) $ (D'®.tJ.O) by 

~: O~®.tJ.Dq$D~®.tJ. Os ~ O~®.tJ.Dr$D~®.tJ. Op; 

(u®v,x®y) 1-+ (( - YSy®ex, (- )pqv®eu). 
By direct computation 

In 

( 

Hn(Homz[Zs](W[O, 00], (01®.tJ. D) (f) (D'®.tJ. 0))) = Hn(O'®.tJ. D), 

Hn(Homz [Z2](W[ -00, -1], (O'®.tJ.D)Ef; (D'®.tJ. 0))) = Hn(O'®.tJ. D ), 

Hn(HomZ[ZIl](W[ - 00, 00], (01®.tJ. D) EfJ (D'®.tJ. 0))) = O. 

(ii) Substitute the decomposition 

Qn(O$ 0, e) = Qn(O, e) EfJQn(O, e)$ Hn(O'®.tJ. 0) 

(1)% 
1 (/ g)% 

(f+g)%: Qn(O,e) ~ Qn(O$O,e) ~ Qn(D,e) 

and similarly for Qn, Qn. 

An A-module chain complex 0 is strictly n-dimensional if each Or is a 
f.g. projective A-module, and Or = 0 for r < 0 and r > n, 

d d d d 
0: ... ~ o~ On~ On-1~ On-2~ ... ~ 01 

d 
~Oo~O~ .... 

The chain equivalence classes of n-dimensional A-module chain 
complexes are in a natural one-one correspondence with the stable 
isomorphism classes of strictly n-dimensional A-module chain complexes, 
the stability being with respect to the chain contractible complexes. We 
shall now obtain an analogous result for algebraic Poincare complexes. 

An n-dimensional e-symmetric {e-quadratic, e-hyperquadratic} complex 
over A (0, S'I) {(O, t/J), (O,O)} is strictly n-dimensional (respectively 
contractible) if the underlying A-module chain complex 0 is strictly 
n-dimensional (respectively chain contractible). Note that the Q-groups 
of a chain contractible complex 0 are 0, by Proposition 1.1 (i). 
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A stable isomorphism of strictly n-dimensional e-symmetric {e-quadratic, 
e-hyperquadratic} complexes over A 

( 

[f]: (o,~) -7 (0', q/) 

[f]: (o,,p) -7 (0', ifi) 

[f]: (0,8) -7 (o',8') 
is an isomorphism 

( 

f: (o,~)EB(D,O) -7 (0', ~')EB(D',O) 

f: (o,,p) EB (D, 0) -7 (0', ,p') EB (D', 0) 

f: (0,8) EB (D, 0) -7 (0',8') EB (D', 0) 

for some chain contractible strictly n-dimensional A-module chain 
complexes D,D'. 

PROPOSITION 1.5. The homotopy equivalence classes of n-dimensional 
e-symmetric {E-quadratic, E-hyperquadratic} complexes over A are in a natural 
one-one correspondence with the stable isomorphism classes of strictly 
n-dimensional e-symmetric {e-quadratic, e-hyperquadratic} complexes over A. 

Proof. We need only consider the e-symmetric case, the e-quadratic 
and e-hyperquadratic cases being entirely similar. 

Given a stable isomorphism of strictly n-dimensional e-symmetric 
complexes 

[f]: (o,~) -7 (o',~') 

there is defined a homotopy equivalence, namely the composite 

g: (0, '1') @, (0, 'I')@ (D, 0) .-L. (0', 'I")@ (D', 0) ~ (0', '1"). 

Given an n-dimensional A -module chain complex 0 there exist a strictly 
n-dimensional A-module chain complex 0' and a chain equivalence 

g: 0 -70' 

(by definition). It follows that for any n-dimensional e-symmetric 
complex over A (0, ~ E Qn(C, e)) there exist a strictly n-dimensional 
e-symmetric complex over A (C', ~') and a homotopy equivalence 

g: (o,~) -7 (0', ~'), 
defining 

~' = g%(~) E Qn(c', e). 

Given a homotopy equivalence of strictly n-dimensional e-symmetric 
complexes 

g: (o,~) -7 (o',~') 

there is defined a stable isomorphism 

[f]: (C,~) -7 (C',~'), 



THE ALGEBRAIC THEORY OF SURGERY. I III 

as follows. The algebraic mapping cone O(g), as defined by 

(
d' ( - )r-lg) 

docq) = 0 d : O(g)r = 0; (f) 0r-l -+ O(g)r-l = 0;_1 (f) 0r-2' 

is chain contractible. Choose a chain contraction 

r = C: :): O(g), = O;(j) OH -->- O(g)'+1 = 0;+1 (j) Or> 

such that 
docq)r + rdOCq ) = 1: O(g)r -+ O(g)r' 

and define chain contractible strictly n-dimensional A-module chain 
complexes D,D' by 

[: (- ~Ig]: Dn = COker( « -t): On -->- O~ (j) On-I) 

-+ Dn- 1 = O~_l (f) 0n-2' 

(
dO' ( - Y-1g) 

d : Dr = 0; ® 0r-l -+ Dr- 1 = 0;_1 ® 0r-2 

(O~r~n-l), 

dD' = 

(0 ~ r ~ n-l). 

The isomorphism of A-module chain complexes 

j: 0 (f) D -+ 0' (f) D' , 
given by 

j= 

(
go [1 + (- )n-lgg' ( - )n-lgh]) : 

-dg' I-dh 

(

g 1 + ( ~ )r-lgg' ( _ )r_lgh) 

1 ( - )r-lg' ( - Y-1h : 

001 

Or (f) D r = Or (f) 0; (f) 0r-l -+ 0; (f) D; == 0; ® Or ® 0r-l 

(O~r~n-l), 
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defines a stable isomorphism of strictly n-dimensional e-symmetric 
complexes over A 

[I]: (0, SO) ~ (0', SO'). 

The sequence of homology A-modules H*(O) is the fundamental chain 
homotopy invariant of an A-module chain complex O. We shall now 
associate to an algebraic Poincare complex over A (0, SO) a sequence of 
functions 

v(SO): H*(O) ~ (sub quotient group of A), 

which is a fundamental chain homotopy invariant of (0, SO). The functions 
will be called 'Wu classes', because they are closely related to the Wu 
classes of algebraic topology-the connection between the geometry and 
the algebra will be made precise in § 9 of Part II. The Wu class v(SO)(x) 
is the obstruction to performing an alg~braic surgery on (0, SO) to . kill a 
cohomology class x E H*(O), in the terminology to be developed in § 4 

below. 
Let T E Z2 act on A by 

~: A ~ A; a ~ ea, 
and define the Z2-cohomology {Z2-homology, Tate Z2-cohomology} groups 

(
ker(I-~: A ~ A) ifr = 0, 

Hr(Z2; A, e) = fJ r(Z2; A, e) ~f r ~ I, 

o . If r < 0, 

Hr(Z2; A, e) = fJr+1(Z2; A, e) if r ~ 1, (
COker(I-~: A ~ A) if r = 0, 

o if r < 0, 

fJ r(Z2; A, e) = ker(l- (- y~: A ~ A)jim(l + (- )r~: A ~ A) (r E Z). 

The function 

A XfJ r(Z2; A,e) ~ fJ r(Z2; A,e); (a,x) ~ axa 

defines an A-module structure on fJ r(Z2; A, e) (which is of exponent 2, 
and vanishes if tEA). The functions 

(
A x HO(Z2; A, e) -+ HO(Z2; A, e); (a, x) ~ axa 

A x HO(Z2; A,e) -+ HO(Z2; A,e); (a,x) ~ am 

are not linear in A, and so do not define A-module structures. Neverthe
less, we shall write HomA (M,HO(Z2; A,e)) {HomA(M, HO(Z2; A,'e))} for 
the abelian group of functions f: M -+ HO(Z2; A, e) {f: M ~ HO(Z2; A, e)} 
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defined on an A-module M such that 

calling such functions 'A-module morphisms'. For e = 1 E A we write 

( 

Hr(Z2; A,l) = Hr(Z2; A), 

Hr(Z2; A, 1) = Hr(Z2; A), 

/lr(Z2; A, 1) = /lr{Z2; A). 

The cohomology classes f E Hm(c) of an A-module chain complex C 
may be regarded as the chain homotopy classes of A-module chain maps 

f: O~SmA, 

where SmA is the A-module chain complex defined by 

{
A if r = m, 

(SmA) = 
r 0 otherwise. 

The induced abelian group morphisms 

{
f%: Q~,j)(O,e) ~ Q~,j)(smA,e); rp ~ (!'®Af)rp2m-n (rp2m-n E C~®A Cm) 

f%: Q~,j)(C,e) ~ Q~,j)(smA,e);,p ~ (!'®Af),pn-2m (,pn-2m E C~®A Cm) 

depend only on f E Hm(C), on account of the chain homotopy invariance 
of Proposition 1.1 (i). Using the Z[Z2]-module isomorphism 

A ~ A'®AA; a I--+- 1 ®a 

as an identification we have that these morphisms take values in 

H2m-n-i(Z2; A, (- )m-ie) if 2m-n < j =1= i, 

HO(Z2; A, (- )n-m+1e) if 2m-n = j =1= i, 
Q~,j)(smA, e) = 

A if 2m - n = j = i, 

o 
Hn- 2m- i(Z2; A, (- )m-ie) 

HO(Z2; A, ( - )n-11"·+1e) 
Q~,j)(smA, e) = 

A 

o 

otherwise, 

if n - 2m < j =1= i, 

if n - 2m = j =1= i, 

if n - 2m = j = i, 

otherwise. 

Define the rth e-symmetric {e-quadratic, e-hyperquadratic} Wu class of an 
element rp E Qn(O, e) {,p E Qn(O, e), (J E 011.(0, en for some A-module chain 
5388.3.40 H 
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complex 0 to be the A-module morphism 

Vr = vr(tp): Hn-r(o) ~ Qn(Sn-r A, e) = Hn-2r(Z2; A, (- )n-re); 

I ~ (/'®,A l)tpn-2r, 

vr = vr(!fJ): Hn-r(o) ~ Qn(Sn-r A, e) = H2r- n(Z2; A, (- )n-re); 

f ~ (I' ®,A I )!fJ2r-n, 

.or = .or(8): Hn-r(O) ~ Qn(sn-r A, e) = fjr(Z2; A, e); I ~ (I' ®,A 1)8n- 2r 

Note that Vr = 0 for 2r > n {vr = 0 for 2r < n}, and that the Wu classes 
satisfy the addition formulae (cf. Proposition 1.4(ii)) 

vr(tp)(1 + g) - vr(tp)(/) - vr(tp)(g) 

= ((I + T(_)re)(!'®,Ag)tpo E HO(Zz; A, (- ye) if n =.2r, 

o E fjO(Z2; A, (- )re) if n > 2r, 

vr(ifo)(f + g) - vr(ifo)(f) - vr(ifo)(g) 

= ((/'®,Ag)(1 + ~)!fJo E Ho(Zz; A, (- ye) if n = 2r, 

o E 1l0(Z2; A, ( - )r+1e) if n < 2r, 

.or(8)(f+g)-.or(8)(/)-.or(8)(g) = 0 E 1l0(Zz; A, (- )re) (r E Z). 

The Wu classes are compatible with all the maps appearing in the braid of 
Proposition 1.3. In particular, the Wu classes commute with the suspen
sion maps: 

vr 

Qn(G, e) ---+) Hom,A(Hn-r(G), H2r- n(Z2; A, (- )n-re)) 

s1 1s ( = id. if n < 2.) 

vr 

Qn+l(SO, e) ---+) Hom,A(Hn-r+l(SG,) H2r- n+l(Z2; A, (- )n-r+le)) 
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and also with the skew-suspension isomorphisms: 

The composite 

1 + 1!r v, 
Qn(O, e) ) Qn(O, e) ) HomA(Hn-,(O), Hn-2'(Z2; A, ( - )n-'e)) 

is 0 for n :f.: 2r. For n = 2r there is defined a commutative diagram 

1 + 1!r 
Q2,(0, e} ----+~ Q2,(0, e} 

v-I lv-
1 + T(-)-a 

HomA(H'(O), HO(Z2; A, (- )'e)) ) HomA(H'(O), HO(Z2; A, (- )'e)) 

There is also defined a commutative diagram 

V,+l t7 
) HomA(Hn-'(0),~'+1(Z2; A,e)) 

IH (= id. if2r> n) 

Qn(O, e} ---+) HomA(Hn-,(O}, H2,_n(Za; A, (- }n-'e)) 
v' 

In § 2 below, and elsewhere, we shall need the following notions. 
The reduced Oth W u ClQ,88 of an n-dimensional e-symmetric complex 

over A (0, rp E Qn(o, e)) is the composite 

vo(rp) 
vo(rp): Hn(o) ----+ Hn(Za; A, ( - )ne) 

J 
--+ {In(Z2; .A, (- )n8) = bO(Za; A, e}. 
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An n-dimensional e-symmetric complex over A (0, r; E Qn(O, e)) is even if 

vo(r;) = 0: Hn(O) ~ 1l0(Z2; A,e). 

For example, skew-suspensions of e-symmetric complexes and e-sym
metrizations of e-quadratic complexes are even. 

Finally, we investigate the behaviour of our constructions under a 
change of rings. 

Given a morphism of rings with 1 

J:A~B 

(such that 1(l . .4J = 1 B) regard B as a (B, A)-bimodule by 

B x B x A ~ B; (b, x, a) 1-+ b.x./(a), 

so that an A-module M induces aB-module B®,AM, with B®,AA = B. 
If 1 is a morphism of rings with involution, with 

I(a) = 1(0,) E B (a EA), 

then for any f.g. projective A-module M there is defined a natural iso
morphism of f.g. projective B-modules 

B®,AM* ~ (B®,AM)*; b®g 1-+ (c®m 1-+ c.jg(m).5). 

For any A -module chain complex 0 there are defined natural Z-module 
chain maps 

o ~ B®,AO; x 1-+ l®x, 

0* ~ (B®,A 0)*; g 1-+ (b®x 1-+ b.fg(x)), 

inducing the change 01 rings maps in homology {cohomology} 

( 
f: H*(O) ~ H*(B®,A 0), 

f: H*(O) ~ H*(B®,A 0). 

If e E A is a central unit such that i = e-1 E A and such that 'Y} = f(e) E B 
is central (necessarily such that ij = 'Y}-1 E B) then there are also induced 
change of rings maps 

{ 
f: Qn,i](O,e) ~ Qn,ij(B®,A O,'Y}), 

f: Q~.i](O, e) ~ Q~,i)(B ®,A 0, 'Y}). 

An n-dimensional e-symmetric {e-quadratic} (Poincare) complex over A 
(0, SO) {(O, t/J)} induces an n-dimensional 'Y}-symmetric {'Y}-quadratic} 
(Poincare) complex over B, 

B®,A(O,r;) = (B®,AO,l®SO) {B®,A(O,t/J) = (B®AO,l®t/J)}. 

The Wu classes remain invariant under change of rings, in the sense that 
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the following diagram commutes 

f Hn-r(O) ---+) Hn-r(B®~O) 

V'(9')1 IV'(} 09') 

f Hn-2r(Z2; A, (- )n-re) --~) Hn-2r(Z2; B, (- )n-r1J) 

(rp E Qn(O, e)) 

and similarly for Q n' Qn. 

2. Forms and formations 
We shall now identify the homotopy theory of n-dimensional e

symmetric {e-quadratic} complexes over A for n = 0 (respectively n = I) 
with the isomorphism (respectively stable isomorphism) theory of 
e-symmetric {e-quadratic} forms (respectively formations) over A. 

Given a f.g. projective A -module M define the e-duality involution 

~: Hom.tf.(M, M*) -+ Hom.tf.(M, M*); rp 1-+ (erp*: x 1-+ (y 1-+ e.rp(y)(x))), 

and define the abelian groups 

Qe(M) = ker(I-~: Hom.tf.(M,M*) -+ Hom.tf.(.Jf,M*)), 

Q(vo)e(M) = im(l + ~: Hom.tf.(M, M*) -+ Hom.tf.(M, M*)) ~ Qe(M), 

Qe(M) = coker(I-~: Hom.tf.(M,M*) -+ Hom.tf.(M,M*)). 

An e-symmetric {e-quadratic} form over A (M, rp) {(M, ifs)} is a f.g. pro
jective A-module M together with an element rp E Qe(M) {ifs E Qe(M)}, and 
it is non-singular if rp E Hom.tf.(M, M*) {(I + ~)ifs E Hom.tf.(M, M*)} is an 
isomorphism. A morphism (respectively isomorphism) of e-symmetric 
{e-quadratic} forms over A 

( 
f: (M, rp) -+ (M', q/) 

f: (M, ifs) -+ (M', ifs') 

is an A-module morphism (respectively isomorphism) f E Hom.tf.(M, M') 
such that 

( 

f*rp' f = rp E Qe(M), 

f*ifs' f = ifs E Qe(M). 

The Wu class of an e-symmetric {e-quadratic} form over A (M, rp) {(.ill, ifs)} 
is the quadratic function 

( 
vo(rp): M -+ HO(Z2; A, e); x 1-+ <p(x)(x), 

vO(ifs): M -+ HO(Z2; A, e); x 1-+ t/J(x)(x). 
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An e-symmetric form (M, rp) is even if 

rp E ker(vo: Qe(M) -+ Hom..4(M, l1o(Z2; A, e))) 

= Q(vo)e(M) 

= im((1 + ~): Qe(M) -+ QS(M)) £ Qs(M), 

that is if it is the e-symmetrization (M, (I + ~)ifJ) of an e-quadratic form 
(M, ifJ). 

An e-symmetric form over A (M, rp E Qe(M)) is the same as a sesquilinear 
e-symmetric pairing on a f.g. projective A-module M 

such that 
A: M x M -+ A; (x, y) ~ A(X, y) = rp(x)(y) 

A(X,y+y') = A(X,y)+A(X,y'), 

A(X, ay) = aA(x, y), 

A(X, y) = eA(y, x) (x, y E M, a EA). 

The above definition of an e-quadratic form (M, ifJ E Qs(M)) over an 
arbitrary ring with involution A is a generalization due to Wall [26] of the 
definition due to Tits [23] for division rings A, which itself goes back to 
the work of Klingenberg and Witt [6] on the invariant of Arf [1] for A = Z2. 
(In fact, the Arf invariant had been previously obtained by Dickson in 
[5, § 199]-1 am indebted to William Pardon for this reference.) As shown 
by Wall in [26] this definition is equivalent to that given by Wall in 
[25, § 5], as a triple 

(M,A: MxM -+ A,/-,: M -+ HO(Z2; A,e)) 

such that (M, A) is an e-symmetric pairing and JL satisfies 

A(X,X) = p.(x)+ep.{x) E HO{Z2; A,e), 

.\(x,y) = p.(x+y)-p.(x)-p.(y) E HO(Z2; A,e), 

JL(ax) = ap.(x)ii, E HO(Z2; A, e) (x, yE M, a EA). 

The transformation (M, ifJ) ~ (M, A, /-,) is given by 

A(X, y) = ifJ(x)(y) + eifJ(y)(x) E A, 

p.(x) = VO(ifJ)(x) = ifJ(x)(x) E HO(Z2; A, e). 

This definition of e-quadratic form is also equivalent to that of Ranicki [13]. 

PROPOSITION 2.1. The homotopy equivalence classes of O-dimensional 
(even) e-symmetric {e-quadratic} complexes over A are in a 'natural one-one 
correspondence with the isomorphism classes of (even) e-symmetric {e
quadratic} forms over A. Poincare complexes correspond to non-singular 
forms. 
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Proof. For any f.g. projective A -module M we can identify the e-duality 
involution 

~: Hom.A(M,M*) -+ Hom.A(M,M*); rp 1-+ erp* 

with the e-transposition involution 

~: M*I®.A M* -+ M*I®.A M ; f®g 1-+ g®ef, 

using the slant map isomorphism 

\: M*I®.AM* -+ Hom.A(M,M*); f®g 1-+ (x 1-+ (y 1-+ g(y).f(x))). 

Thus for any O-dimensionaIA-module chain complex G we can identify 

( 

QO(G, e) = QS(H~(G)), 

Qo(G, e) = Qs(HO(G)). 

Given a O-dimensional e-symmetric {e-quadratic} complex over A 
(0, 'P E QO(O, e» {(O,.p E Qo(O, e»)} there is defined an e-symmetric {e
quadratic} form over A (HO(G), rp E Qs(HO(G))) ((HO(G), ifJ E Qs(HO(G)))}, 
such that the Oth e-symmetric {e-quadratic} Wu class 

vo(rp): HO(G) -+ HO(Z2; A, e) {VO(.p): HO(G) -+ HO(Z2; A, e)} 

of the complex (G, SO) {(G, ifJ)} is just the Wu class of the form (HO(G), rp) 
((HO(G), ifJ)}. In particular, we have that (G, rp) is an even e-symmetric 
complex if and only if (HO(C), SO) is an even e-symmetric form. 

Conversely, an e-symmetric {e-quadratic} form over A (M, rp) ({M,.p)} 
can be considered as a fixed point {an orbit space} of the e-duality involu
tion T.s on Hom.A(M, M*), corresponding to a Z2-cohomology {Z2-homo
logy} class rp E HO(Z2; Hom.A(M, M*)) {ifJ E HO(Z2; Hom.A(M, M*))}, and 
there is defined a strictly O-dimensional e-symmetric {e-quadratic} complex 
over A (G,rp E QO(G,e)) {C,ifJ E Qo(G,e))} with Go = M*. Now apply 
Proposition 1.5. 

Given an e-symmetric {e-quadratic} form over A (M, rp E QS(M)) 
{(M, ifJ E Qa(M))} and a submodule L of M define the annihilator of L to be 
the submodule 

(
V- = ker(j*rp: M -+ L*) 

V- = ker(j*(.p + eifJ*): M -+ L*) 

of M, with j E Hom.A(L, M) the inclusion. A sublagrangian of (M, rp) 
{(M,.p)} is a direct summand L of M such that j*rpj = 0 E Qa(M) 
{j*t/d = 0 E Qs(M)} and j*rp E Hom.A(M, L*) {j*(.p + e.p*) E Hom.A(M, L*)} 
is onto, so that the annihilator V- is a direct summand of M containing L, 

L£Ir. 
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.A. lagrangian is a sublagrangian"L such that 

L = V, 

that is, such that there is defined an exact sequence 

( 

00 ~ L j ) M j*rp ) L* ----+~ 0, 

j j*(t/J + et/J*) 
----+) L M ) L* ----+) O. 

An e-symmetric {e-quadratic} form is hyperbolic if it admits a lagrangian, 
in which case it is non-singular. (Hyperbolic symmetric forms were 
termed 'metabolic' by Knebusch [7], but a uniform terminology for the 
e-symmetric and e-quadratic cases seems preferable here.) 

Given an e-symmetric form over .A. (M, rp E QB(M)) {a f.g. projective 
A-module L} define the standard hyperbolic e-symmetric {even e-sym
metric, e-quadratic} form over A 

H'(M,,,,) = (M*E!) M, e ~) E Q'(M* E!) M»), 

H'(L) = (LE!) L*, e ~) E Q<Vo)'(LE!)L*»), 

H.(L) = (LelL*, (: ~) E Q.(LE!)L*»). 

The various standard hyperbolic forms are related to each other by 

(1 + P,)HB(L) = HB(L) = HB(L*, 0). 

Every hyperbolic form is isomorphic to a standard hyperbolic form, by 
the following generalization of a theorem of Witt [29]. 

PROPOSITION 2.2. The inclusion of a sublagrangian L in an e-symmetric 
{even e-symrnetric, e-quadratic} form over A is a morphism of forms 

( 

j: (L,O) ~ (M,rp) 

~: (L, 0) ~ (M, t/J + et/J*) 

j: (L, 0) ~ (M, t/J) 

which extends to an isomorphism 

( 

f: HB(L*, 8) Ef> (VjL, rpLjrp) ~ (M, rp), 

f: HB(L) $ (V/L,~/t/J+e(~/t/J)*) ~ (M,.p+e.p*), 

f: HB(L) $ (V/L, ~/.p) ~ (M, .p). 
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Proof. A morphism of e-symmetric {e-quadratic} forms 

{ 
g: (N, v) ~ (N', v') 

g: (N'X}~(N',X') 

with (N, v) {(N, X)} non-singular extends to an isomorphism 

{ 

(g gl.): (N,v)$(Nl.,v.l.) -+ (N',v') 

(g gl.): (N, X) $ (Nl., r) ~ (N', v') 

with g.1. E HomA,(N.1.,N') the inclusion of 

{ 
Nl. = ker(g*v': N' -+ N*) 

NJ. = ker(g*(X' + ex'*): N' ~ N*) 

and v.l. = (gJ.)*v'gl. E QS(N') {xL = (gl.)*X'gl. E Qs(N')}, since the exact 
sequence 

( : ) Nl. 
gl. 

) N' 
g*v' 

) N* ) 0 

g~ *( , +e '*) 
) NJ. N' g X X) N* ) 0 

is split by gv-1 E Hom,A(N*,N') {g(X+eX*)-l E Hom,A(N*,N')}. 
The inclusion of a sublagrangian L in an e-symmetric {even e-symmetric, 

e-quadratic} form over A, (M,rp E QS(M)) {(M,t/J+et/J* E Q(vo)s(M)), 
(M, t/J E Qs(M))} extends to a morphism of forms 

g = (j k): HS(L*,k*rpk) = (LE9L*,(O 1)) ~ (M,rp) 
e k*rpk 

g = (j (k-ijk*.pk)): B'(L) = (LEllL*,e :)) ..... (M,.p+e.p*) 

g = (j (k-ijk*.pk)): B,(L) = (LE!lL.'(~ :)) ..... (M,.p) 

with k E Hom,A(L*,M) any A-module morphism such that 

( 

j*rpk = 1 E HomA,(L*,L*) 

j*(t/J+et/J*)k = 1 E Hom,A(L*,L*), 

. j*(ifJ+eifJ*)k = 1 E Hom,A(L*,L*). 

Now HS(L*, k*rpk) {HS(L), H.(L)} is non-singular, so that g extends to an 
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isomGI'phism of forms 

( 

f = (g h): HB(L*, k*rpk) ffi (V/ L, (r-jrp) ~ (M, rp), 

f = (g h): HB(L)ffi (V/L,tjr-/ifJ+e(tjr-/ifJ)*) ~ (M,ifJ+eifJ*), 

f = (g h): HB(L) ffi (V/L, tjr-/ifJ) ~ (M, ifJ)· 

An (even) e-symmetric {e-q?tadratic} formation over A (M, rp; F, G) 
{(M, ifJ; F, G)) is a non-singular (even) e-symmetric {e-quadratic} form 
over A (M, rp) {(M, ifJ)) together with a lagrangian F and a sublagrangian G. 
The formation is non-singular if G is a lagrangian. An isomorphism of 
(even) e-symmetric {e-quadratic} formations 

{ 
f: (M, rp; F, G) ~ (M', rp'; F', G'? 

f: (M,ifJ; F,G) ~ (M',ifJ'; F',G') 

is an isomorphism of forms 

such that 

{ 
f: (M, rp) ~ (M', rp') 

f: (M, ifJ) ~ (M', ifJ') 

I(F) = F', I(G) = G'. 

A stable isomorphi8m of (even) e-symmetric {e-quadratic} formations 

{ 
[I]: (M,q;; F,G) ~ (M',q;'; F',G') 

[f]: (M, ifJ; F, G) ~ (M', ifJ'; F', G') 

is an isomorphism of the type 

{
I: (M,rp; F,G)ffi(Ha(p); P,P*) ~ (M',rp'; F',G')ffi(Ha(p'); P',P'*) 

I: (M,ifJ; F,G)((fJ(He(P); P,P*) ~ (M',ifJ'; F',G')ffi(He(P'); P',P'*) 

for some f.g. projective A-modules P,P'. 
Formations first appeared (as 'pairs of subkernels') in the work of Wall 

[24] on the classification of quadratic forms on finite abelian groups (with 
A = Z). The obstruction to surgery on odd-dimensional compact mani
folds was obtained by Wall in [25, § 6] as an equivalence class of the 
matrix of an automorphism of a hyperbolic ± quadratic form 
0:: H ± (L) ~ H ± (L) with L a based f.g. free A-module. The work of 
Novikov [12] made apparent that only the structure of the non-singular 
± quadratic formation (H ± (L); L, cx{L)) was relevant. Moreover, the 
obstruction to proper surgery on odd-dimensional paracompact ma.nifolds 
(Maumary [8]) is an equivalence class of non-singular ± quadratic 
formations (H ± (F); F, G) with f.g. projective lagrangians F, G for which 
there may be no automorphism 0:: H ± (F) ~ H ± (F) such that cx(F) = G. 
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(See also Pedersen and Ranicki [30].) Thus formations cater for a wider 
range of surgery obstructions than automorphisms of hyperbolic forms. 
The algebraic properties of ± quadratic formations were studied by 
Ranicki in [13]. 

We shall now relate formations to I-dimensional algebraic Poincare 
complexes. It is convenient to treat the e-symmetric and e-quadratic 
cases separately. 

The Wu clQ,8s of an e-symmetric formation over A (M,~; F, G) is the 
quadratic function 

vo(M,~; F,G) = [vo(~)]: Mj(F+G) -+ 11°(Z2; A,e); 

[x] 1-+ ~(x)(x) (x EM). 

Note that (M,~; F,G) is even if and only ifvo(M,~; F,G) = o. 
A I-dimensional e-symmetric {e-quadratic} complex over A 

(0, 'P E Ql(O, e» {CO, I/J E Ql(O, e»} 

is connected if Ho(rpo: 01-* -+ C) = 0 {Ho((l + ~)«Po: 0 1-* -+ C) = O}. In 
particular, Poincare complexes are connected. 

PROPOSITION 2.3. The homotopy equivalence clQ,8Se8 of connected 1-

dimensional (even) e-symmetric complexes over A are in a natural one-one 
. correspondence with the stable isomorphism clQ,8ses. of (even) e-symmetric 
formations over A. Poincare complexes correspond to non-singular forma
tions. 

Proof. By Proposition 1.5 it suffices to show that the stable isomorphism 
classes of connected strictly I-dimensional (even) e-symmetric complexes 
over A are in a natural one-one correspondence with the stable iso
morphism classes of (even) e-symmetric formations over A. 

Let (0, ~ E Q1(0, e)) be a strictly I-dimensional e-symmetric complex 
over A. The Z2-hypercohomology class ~ E Ql(O, e) is represented by a 
cycle ~ E Homz,~j(W, Hom..4(O*, 0))1' as defined by A-module morphisms 

such that 
~o: Co -+ 01, f;o: 0 1 -+ Co, ~1: 0 1 -+ Cl' 

~o+fPod* = 0: 0 0 -+ 0 1, 

d~l-fPO+e~t = 0: 0 1 -+ 00 , 

~l-e~t = 0: 0 1 -+ 01• 

The algebraic mapping cone O(~o: 0 1-* -+ 0) is given by 

(:0) (ed sOo) = (89': d) e ;) 
O(~o): 0 ---+ 0 0 ---+ 0 1 e 0 1 . 1~ 0 0 ---+ O. 



124 ANDREW RANICKI 

If (0, rp) is connected then (erp: d): OltfJ 01 -)- 00 is onto, and the dual 

(
BrpO) : 0 0 -)- 0 tfJ 01 
d* 1 

is a split monomorphism,_ so that there is defined an e-symmetric forma
tion over A 

The exact sequence of A-modules 

rpo rpo o ~ HO(O) ~ Hl(O) ~ H1(rpo) ~ Hl(O) ~ Ho(O) ~ 0 

can be identified with the exact sequence 

o -)- F n G -)- F n (}J- -)- (}J-jG -)- Mj(F + G) -)- Mj(F + G.l.) -)- 0, 

and the Oth e-symmetric Wu class of (0, rp) is the Wu class of (M, (}; F, G), 

vo(~) = vo(M, (}; F, G): Hl(O) = Mj(F + G) -* j)O(Z2; A, e). 

It follows that the complex (0, rp) is a Poincare (respectively even) complex 
if and only if the formation (M, (}; F, G) is non-singular (respectively 
even). Moreover (0, rp) is contractible ~f and only if (M, (}; F, G) is iso
morphic to (HB(F); F,F*). 

Let (0, rp), (0', rp') be isomorphic connected strictly I-dimensional 
e-symmetric complexes over A. Given an isomorphism of e-symmetric 
complexes 

f: (0, rp) -)- (0', rp') 

we have an isomorphism of chain complexes 

d 
0: ... ---+) 0 ---+ ) 01 ) 00 

11 11 
d' r 

0': ... ---+) 0 --~ ) o~ ) 0' 0 

Choosing representative cycles 

---+) 0 ---+) ... 

--~) o--~) ... 

rp E Homz[Zs](W, Hom.A(O*, O)h, rp' E HomZ[ZII](W, Hom.A(O'*, O')h 

we have that 
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for some chain X E HomZlZ2J(W, Hom.A(O'*, 0'))2' which is represented by 
an A-module morphism Xo E Hom.A(O'l, O~) such that 

Irpo! * - rp~ = - Xod'*: 0'0 -+ O~, 

!fPo/*-rp~ = d'Xo: 0'1 -+ O~, 

!'PI! * ....:. 'P~ = XO + ex~: (J1' -+ O~. 

The A-module isomorphism 

h = : 0 E9 0 1 -+ 0' E9 0'1 (
I Exo(/*)-l) 
o (/*)-1 1 1 

defines an isomorphism of the associated e-symmetric formations 

h: (H'(Gl, 9'1); G1'im( (:0): GO -+ q Ell 0')) 
-+ (H '(0'1, 9'~); G~, im ( (:~!): G'O -+ G~ Ell G") ) . 

Every e-symmetric formation is isomorphic to one of the type 
(HB(F*,A); F,G) (by Proposition 2.2) and so determines a connected 
strictly I-dimensional e-symmetric complex (0, rp E Q1(0, e)), as follows. 
Write the inclusion of G in F E9 F* as 

and let 
d = p. *: 01 = F -+ 00 = G*, 

rpo = ey Hom.A(G, F), 

fPo = y*+P.*A E Hom.A(F*,G*), 

rpl = A E Hom.A(F*, F). 

Given an isomorphism of e-symmetric formations 

h: (HB(F*, A); F, G) -+ (HB(F'*, A'); F', G') 

write the restrictions of h to the (sub )lagrangians as 

a=hl:F-+F', f3=hl:G-+G', 

and define an isomorphism of the associated A-module chain complexes 

I: 0 ~ 0' 
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by 

0: ... ---+) 0 )F fL* 
); G* ---+); 0 ---+); ... 

11 
0': ... 

ttl 
,* r*-' 

); F' fL ); 0'· ---+); 0---+ ---+); 0 --+) ... 

Then 
f: (O,tp) -+ (O',tp') 

is an isomorphism of the associated strictly I-dimensional e-symmetric 
complexes. 

Given a I-dimensional e-quadratic complex over A (0, tP E Ql(O, e)) with 
o a f.g. projective A-module chain complex 

d 
0: ... ----+ 0 ~ 01 ----+ 00 ----+ 0 ----+ ... 

we have that the Z2-hyperhomology class tP E Ql(O, e) is represented by 
A -module morphisms 

tPo: 0 0 -+ 01, ~o: 0 1 -+ 00, tPl: 0 0 -+ 00 
such that 

dtPo + ~od· + tPl - etPi = 0: 00 -+ 00, 

The algebraic mapping cone 0((1 + T,,)tPo: 0 1-* -+ 0) can be expressed as 

(ed (.po + ..p:» = «''''0+''':)· d) e :) 
--------------~) 00 ) O. 

Thus if (0, tP) is connected there is defined an e-quadratic formation 

(ll,(C,); Cl' CO) = (c, aJ Cl, (: :); Cl' im( ('""'Od:.p:): CO ~ C, (j) ()l)), 
which is non-singular if and only if (0, tP) is a Poincare complex. The 
formation (H (01 ); 01,00 ) does not involve tPl' In Proposition 2.4 below 

• 8 

we shall show that homotopy equivalence classes of connected I-dimen-
sional e-quadratic complexes correspond to the stable isomorphism 
classes of e-quadratic formations together with the extra structure 
afforded by .pI' the 'split e-quadratic formations'. 
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Given a f.g. projective A-module M and a direct summand L define the 
abelian group 

Q
8
(M,L) 

_ {(l/J,O) E HomA(M, M*)EfJ HomA(L,L*) I j*l/Jj = O-eO*} 
- {(X-Ex*,j*xi+v+ev*)1 (x, v) E HomA(M, M*)Et> HomA(L,L*)}' 

so that there is defined an exact sequence 

withj E HomA(L, M) the inclusion and 

0: Qe(M,L) -+ Q8(M); (.p,8) ~.p, j%: QlJf) -+ Qe(L);.p ~ j*.pj. 

A hessian for a sublagrangian L of an e-quadratic form (M,.p E Q
8
(M)) 

is a choice of lift of.p E Q8(M} to an element (.p,8) E Q8(M,L} such that 
o(.p, 8) = .p E Q8(M). Every sublagrangian admits hessians, since 

j*.pj = 0 E Q8(L), 

but they are not unique. A connected I-dimensional e-quadratic complex 
(C,.p E Ql(C, e)) (as above) determines an e-quadratic formation 

(88 (C1); Cl' CO) 
together with a hessian 

( (: :), - (.pI + d.f10») E Q.< 01 Ell at, 00) for 00 in H,( 01), 

A split .-quadratic formation over A (F, G) = (F, ( t), 0 )G) is an 

.-quadratic formation over A (H.(F); F, im( t) : G ..... FEll F* )) (with 

(~): G -+ F E9 F* the inClusion) together with a (- e)-quadratic form 

8 E Q-
8
(G) such that 

'1*,." = 8-e8* E HomA(G,G*). 

This determines a hessian ((~ ~), 8) E Qe(F E9 F*, G) for G in H8(F), 

since '1*,." E HomA(G, G*) is the composite 

'1*,.,,: G 
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An isomorphism of split e-quadratic formations over A 

(a,fJ,tP): (F,G) -+ (F',G') 
is a triple 

(isomorphism a E HomA(F, F'), isomorphism fJ E HomA(G,O'), 

(- e)-quadratic form over A (F*, tP E Q-a(F*))) 
such that 

(i) ay + a(tP - etP*)*f' = y'fJ E HomA(G, F'), 
(ii) a*-If' = f"fJ E HomA(G, F'*), 

(iii) O+JL*tPf' = fJ*O'fJ E Q-a(G). 
A stable isomorphism of split e-quadratic formations over A 

[a,fJ,tP]: (F,G) -+ (F',G') 

is an isomorphism of the type 

(a,fJ,tP): (F,G)$(P,P*) -+ (F',G')$(P',P'*), 

for some f.g. projective A-modules P,P' with (P,P*) = (p,((~),O)P*). 

The choice of hessian ((~ ~) , 8) E Q.(F (fJ F* ,G) is the only difference 

between a split e-quadratic formation (F, G) and an arbitrary e-quadratic 
formation (M, t/J; F, G) up to isomorphism, since every £-quadratic 
formation (M, t/J; F, G) is isomorphic to one of the type (Ha(F); F, G) (by 
Proposition 2.2) and the following result holds: 

PROPOSITION 2.4. A (stable) isomorphism of split e-quadratic formations 

[a,fJ,tP]: (F,G) -+ (F',G') 

determines a (stable) ·isomorphism of the underlying e-quadratic formations 

[f]: (Ha(F); F, G) .-~ (Ha(F'); F',O'). 

Conversely, every (stable) isomorphism of e-quadratic formations [f] can be 
lifted to a (stable) isomorphism of split e-quadratic formations [a,,8, tP]. 

Proof. Given an isomorphism of split e-quadratic formations over A 

(a,,8,tP): (F,O) -+ (F',G') 

define an A-module isomorphism 

(
a a(tP - etP*)*) 

f = : F$F* -+ F' $F'*. 
o a*-l 
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This fits into a commutative diagram 

f3 ) G' 

so that there is defined an isomorphism of e-quadratic formations over A 

f: (H.(F); F, G) -+ (H.(F'); F', G'). 

Stable isomorphisms can be dealt with similarly. 
Conversely, suppose given a stable isomorphism of e-quadratic forma

tions over A 
[f]: (He(F); F,G) -+ (HII(F'); F',G'), 

as defined by an isomorphism 

f: (H.(F); F, G) EB (H.(P); P, P*) -+ (H.(F'); F', G') EB (H.(P'); P', P'*) 

for some f.g. projective A-modules P,P'. The restrictions of fare A
module isomorphisms 

ex = : F EB P -+ F' EB pi, fJ = : G EB p* -+ G' EB P'*. (
a aj (b bj 
~ a ~ b 

The isomorphism f can be expressed as 

for some A-module morphism 

.p = (8 81\: F*EBP* -+ FEBP, 
82 8J 

and there is defined a commutative diagram 

5388.3.40 

G EB p* ____ fJ ___ -+) 0' Et) P'* 

(F EEl P) EEl (F* $ P*) 

(~ ~) 
(~ :) 

f ) (F' EB P') Et) (F'* Ef; P'*) 
I 
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It follows that 

0
0) + (""0* 0) (S - es* SI - eS;) ("" 0) 

I S2 - est sa - es: 0 I 

(
b* b*)(Y'*P,' O)(b bj = * : 1 : G (37 P* -7 G* (37 P, 
bl ba 0 0 b2 b 

and in particular 
Sa - es: = bty'*",,'b1 : P* -7 P. 

Choose a hessian ( (: :), 0) E Q,(F' Eil F'·, G') for G' in H,(F'), and define 

() = b*()'b - ""*s",, E Q-e(G). 

The isomorphism of split e-quadratic formations 

defines a stable isomorphism of split e-quadratic formations 

[ex,,8, «PJ: (F, G) -7 (F', G') 

covering the stable isomorphism of e-quadratic formations [fJ. 

An e-quadratic {split e-quadratic} homotopy equivalence of I-dimensional 
e-quadratic complexes over A 

is a chain equivalence 

such that 

f: (0, t/J) -7 (0', t/J') 

f: 0 -70' 

{ 
f%(t/J) - t/J' = H(()) E Ql(O', e) 

f%(t/J) - t/J' = 0 E Ql(O', e) 

for some Tate Z2-hypercohomology class () E Q2(O', e) such that 

v1(()) = 0: Hl(O') -7111(Z2; A,e). 

(A split e-quadratic homotopy equivalence is the same as a homotopy 
equivalence. ) 

PROPOSITION 2.5. The (split) e-quadratic homotopy equivalence classes of 
connected I-dimensional e-quadratic complexes over A are in a nat'l'lfal one
one correspondence with the stable isomo'rphism classes of (spl1:t) e-quadratic 
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formations over A. Poincare complexes correspond to non-singular forma
tions. 

Proof. Given a connected I-dimensional e-quadratic complex 

(G, t/J E Ql(G, e)) 

with G a f.g. projective complex of the type 

d 
0: ... ~0~01~00~0~ ... 

choose a cycle representative 1/1 E (W ®Z[Z2) Hom.A(O*, O)h for 1/1 E Ql(O, e), 
and define a split e-quadratic formation 

(The e-quadratic Wu class VI of (G, 1/1) is then given by 

vl(t/J): HO(G) = F n G = ker(JL: G ~ F*) ~ fJO(Z2; A, e}; x ~ 8(x)(x}.} 

If 1/1' = I/1+H(8) E Ql(O, e) for some 8 E Q2(0, e) choose a cycle representa
tive 8 E Homz[zs)(W' Hom.A(O*, 0))2' as given by A-module morphisms 

80: 0 1 ~ 01 , 8_1: 0 0 ~ 01, 8_1: 01 ~ Go, 8_2: 0 0 ~ 00 

such that 

Thus 

80+e8t = 0, d80-8_I -e8!1 = 0, 80d*+8_1+e8!1 = 0, 

d8_1 + 8_1d* + (J-2 - e8!2 = o. 

1/1~ = 1/10 + (J-1: 0 0 ~ 01, 

~~ = ~0+8-1: 0 1 ~ Go, 

1/1~ = 1/11 + (J-2: 0 0 ~ 00• 

If .01(8) = 0 then (01, (JO E Q-B(Ol)} is an even (- e}-symmetric form over A, 
and there is defined an isomorphism of the e-quadratic formations 
associated to the e-quadratic homotopy equivalent complexes (0,1/1), (0,1/1') 
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Conversely, given a sp~t .-quadratic formation (F, ( (;) , 8)0) define a 

connected I-dimensional e-quadratic complex (0, I/J E Ql(O, e)) by 

01 = F, 00 = G*, d = ,.,,* E HOm.A(Ol' 00)' Or = 0 (r =F 0,1), 

I/Jo = BY E Hom.A(OO, 01)' 

.po = 0 E Hom.A(Ol, 00)' 

I/Jl = - 8 E Hom.A(OO, 00)' 

for any representative 8 E Hom.A(G, G*) of 8 E Q-e(G). Every e-quadratic 
formation is isomorphic to one of the type (He(F); F, G) (by Proposition 

2.2), and choosing a hessian ( (~ ~), 8) E Q,(F (f) F*, 0) for 0 in H.(F) we 

obtain a split e-quadratic formation (F, G) such that the e-quadratic 
homotopy equivalence class of the associated complex (0, I/J) depends only 
on the stable isomorphism class of (He(F); F, G). 

The detailed verification that the (split) e-quadratic homotopy equi
valence classes of connected I-dimensional e-quadratic complexes corre
spond to the stable isomorphism classes of (split) e-quadratic formations 
is omitted, as it is so similar to the e-symmetric case (Proposition 2.3). 

The hessian 8 E Q_e(G) in a non-singular split e-quadratic formation 

( F, ( (;), 8 )0) does not affect the cobordism class (surgery obstruction) 

of the 'associated I-dimensional e-quadratic Poincare complex defined 
in §3 below. 

3. Algebraic Poincare cobordism 

We define now an equivalence relation on algebraic Poincare complexes 
which is analogous to the cobordism of manifolds, and which we shall 
also call cobordism. In § 4 we shall analyse algebraic cobordism by a 
method analogous to surgery on manifolds, and which we shall also call 
surgery. The cobordism classes ofn-dimensional e-symmetric {e-quadratic} 
Poincare complexes over A define an abelian group Ln{A, e) {Ln(A, en, for 
n ~ 0, with respect to the direct sum E9. The symmetric L-groups 
Ln(A) = Ln{A, 1) are the 'algebraic Poincare bordism' groups of Mish
chenko [10]. In §§ 4 and 5 we shall show that the e-quadratic L-groups 
are 4-periodic, Ln(A, e) = L n+4(A, e), and that the quadratic L-groups 
Ln(A) = Ln(A, 1) are the surgery obstruction groups of Wall [25]. In § 10 
we shall construct an example to show that the e-symmetric L-groups are 
not 4-periodic in general, Ln(A, e) =F LnH(A, e). In Part 11 we shall relate 
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geometric cobordism and surgery to their algebraic analogues-in par
ticular, the surgery obstruction of an n-dimensional normal map 
(I: M -+ X, b: VM -+ vx) will be identified with the quadratic Poincare 
cobordism class u*(/, b) E L n (Z[7T1(X)]) of an n-dimensional quadratic 
Poincare complex over Z[7T1(X)] naturally associated to (I, b). We shall 
also define the cobordism groups of n-dimensional even e-symmetric 
Poincare complexes over A L(vo)n(A, e) (n ~ 0), which we shall use in § 6 
to define lower e-symmetric L-groups Ln(A, e) (n ~ -1). 

Given an A-module chain map 

I: C -+ D 

define the relative Q-groups 

( 

Q~~f(/, e)'= Hn+l(HomZ[Zlll(W[i, j], C(/'®A I))) 

(- 00 ~ i ~ j ~ 00, n E Z) 

Q~tH/,e) = Hn+l(W[i,j]®Z[ZzIC(/'®A/)) 

with O(/'®A I) the algebraic mapping cone of the Z[Z2]-module chain 
map It®A I: Ct®A C -+ Dt®AD, taking T E Z2 ·to act by the e-trans
position TB' An element (8)p,)p) E QfijH/, e) {(8ifJ, ifJ) E Q~~H/, en is repre
sented by a collection of chains 

{ 
{(8)p,SO)s = (8)Ps,SOs) E (D'®AD)n+s+l@(O'®AO)n+sl i ~ s ~j} 

{(8ifJ,ifJ)s = (8ifJs,ifJs) E (D'®AD)n_s+l@(C'®AC)n_sl i ~ s ~j} 

such that 

d(8)p,)p)s 

== (dDt®~D(8)ps) + ( - )n+S(8)pS_l + ( - )S~8)ps_l) + ( - )n(f' ® A f )()Ps), 

dot®Ao()PS) + (- )n+s-l()PS_l + (- )STB)Ps-l)) 

= 0 E (D'®AD)n+s@ (CI®A C)n+s-l (i ~ s ~ j, 8)Pi-l = 0, )Pi-l = 0), 

d(8ifJ, ifJ)s 

== (dDt®~D(8ifJs) + (- )n-s(8ifJS+l + (- )S+1~8ifJs+l) + (- )n(f' ®A l)(ifJs)' 

dot®~o(ifJs) + (- )n-S-l(ifJS+l + (- )S+l~ifJS+l)) 

= 0 E (D'®AD)n-sEB (CI®A C)n-s-l (i ~ s ~ j, 8ifJ;+1 = 0, ifJi+l = 0). 

For e = 1 E A we shall write 

( 
Q~:'iH/, 1) = Q~~Hf), 

Q[i,;J (/ 1) - Q[i,iJ (/) n+l' - 71.+1 • 
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PROPOSITION 3.1. For any A-module chain map J: 0 --+ D there is 
defined a long exact sequence oJ Q-groups 

with 

... ~ Q~~t(J, e) ~ Qn,ij(C, e) 

J% 
~ Qn,ij{D,e) ~ Qn,ij{J,e) ~ ... , 

... ~ Q~~l(J,e) ~ Q~,i](C,e) 

A Q~,i](D,e) ~ Q~,i](J,e) ~ ... , 

Qn:'1f(f, e) --+ Qn,i](O, 8); (S~, 1J) 1--+ 1J, 

Qn,i](D,8) --+ Qn,i](J, 8); S1J 1--+ (S~, 0), 

Q~~Hf, 8) --+ Q~,i](O, 8); (Stft, tft) 1--+ tft, 

Q~li)(D, e) --+ Q~,j)(f, e); Stft 1--+ (Sap, 0). 

An (n + 1)~dimensional 8-symmetric {8-quadratic} pair over A 

(f: 0 --+ D, (S1J, 1J)) Hf: 0 --+ D, (Stft, tft))}, 

for n ~ 0, is a chain map J: C --+ D from an n-dimensional A-module 
chain complex 0 to an (n+ I)-dimensional A-module chain complex D, 
together with a relative Z2-hypercohomology {Z2-hyperhomology} class 

( 

(S~,~) E Qn+1(f, 8) = Q[t;;;J)(J, 8), 

(Sap, tft) E Qn+l(f, 8) = Q~fi?(f, 8), 

and it is a Poincare pair if the relative homology class 

(S1Jo,1Jo) E Hn+1(j'®Af) {((I+~)Stfto,(l+~)tfto) E Hn+1(f'®Af)} 

induces A -module isomorphisms 

H'(D, C) == H'(J) --+ Hn+1_,(D) (0 ~ r ~ n+ 1) 

(Poincare-Lefschetz duality) via the slant product 

\: H'(f) ®z Hn+l(j'®A f) --+ Hn+1-,(D); 

(g,h)®(u®v, x®y) 1--+ g(u)v+h(x)f(y) 

((g, h) E D'fB 0,-1, u® v E (D'®AD)n+l' x®y E (O'®A O)n). 

The boundary of an (n + 1 )-dimensional 8-symmetric {8-quadratic} 
Poincare pair over A 

(f: 0 --+ D, (S~,~) E Qn+1(f, 8)) {(f: 0 --+ D, (Stft, tft) E Qn+l(f, 8))} 

is the n-dimensional 8-symmetric {8-quadratic} Poincare complex over A 
(0, q; E Qn(o, 8)) {(O,.p E Qn(O, e))}. A cobordism of n-dimensional e-sym
metric {8-quadratic} Poincare complexes (0, q;), (0', q;') {(O, .p), (0', .p')} is 
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an (n + I)-dimensional e-symmetric {e-quadratic} Poincare pair with 
boundary (C, SO) EB (C', -q/) {(C,,p)EB(C', -,p')}, say 

( 
((I I'): 0 EB 0' ~ D, (8rp, rp EB - SO') E Qn+1((1 I'}, e)), 

((I I'): 0 EB 0' ~ D, (8,p,,pEB - ,p') E Qn+l((1 f'), e)). 

In Proposition 3.2 below we shall prove that cobordism is an equi
valence relation on algebraic Poincare complexes, such that the cobordism 
classes define abelian groups under the direct sum EB. The verification of 
the transitivity of cobordism requires the following algebraic glueing 
operation. 

In § 6 of Part 11 we shall show that geometric cobordisms give rise to 
algebraic Poincare cobordisms. 

Define the union of adjoining e-symmetric {e-quadratic} cobordisms 

( 

c = ((10 10'): CEBC' ~ D, (Srp,rpEB-rp') E Qn+1((lo lo·),e)), 

c = ((10 10): C EB C' ~ D, (8,p,,p (f; - ,p') E Qn+l((/o 10')' e)), 

( 

c' = ((1'0, 1'0·): C' EB CIf ~ D', (8rp', rp' (f; - SO") E Qn+1((I'o, f'o.), e)), 

c' = ((f'o, l'o~): C' EB CIf ~ D', (8,p',,p' EB - ,p") E Qn+l((/'o, f'o.), e}), 

to be the e-symmetric {e-quadratic} cobordism 

(
cue' = ((le le"): CEBO" ~D",(8rp",rp(f;-rp") EQn+1((/'O 1'O·),e)) 

cue' = ((le f'O,.): C EB CIf -+ D", (S,p",,p(f; - ,p") E Qn+l((f'O f'O.), e)) 

given by 
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Srp; = ( (- )n::~f~ (- )n-r+~+lT,\I'~l :) : 

( - )S f~,q;; srp; 
D"n-r+s+1 = Dn-r+s+1 ffi O'n-r+s ffi D'n-r+s+1 

~ D; = Drffi 0;_1 ~D; (S ~ 0), 

D"n-r-s+1 = Dn-r-s+1 ~ O'n-r-s ffi D'n-r-s+1 

~ D; = DrffiO;_1~D; (S ~ 0). 

We shall normally write 

D" = Duo,D', { 
Srp" = Srp Utp' Srp', 

SfjI" = SfjI U~, SfjI' . 

PROPOSITION 3.2. Oobordism is an equivalence relation on n-dimensional 
e-symmetric re-quadratic} Poincare complexes over A, such that homotopy 
equivalent complexes are cobordant. The cobordism classes define an abelian 
group, the n-dimensional e-symmetric {e-quadratic} L-group of A Ln(A, e) 
{Ln(A, en, for n ~ 0, with addition and inverse8 by 

{ 
(O,rp) + (O',rp') = (Offi a', rpffirp'), -(O,rp) = (a, -rp) E Ln(A,e), 

(0,,,,)+(0',,,,') = (O(f) 0', "'(f)""), -(0,,,,) = (0, -"') E Ln(A,e). 

Proof. Given a homotopy equivalence of n-dimensional e-symmetric 
{e-quadratic} Poincare complexes over A 

{ 
f: (0, rp) ~ (0', rp'), 

f: (a, fjI) ~ (a', .p'), 

let rp E HomzrZtl( W, 0' ®..4. 0)11. {fjI E (W ®Z(Zs'1 (a' ® A a) )n} be a cycle repre
senting rp E Qn(O. e) {fjI E Qn(O, eH, so that 

(
rp' = f"lo{rp) E HomZlZt](W, 0"®..4. 0')11. 

fjI' =f%(fjI) E (W®Z!Zt] (0"®..4. O'»n 

is a cycle representing rp' E Qn(o',e) {fjI' E Qn{O',e)}. There is then defined 
a cobordism 

(

{{I 1): O~O' ~ 0', (O,rpEe-rp') E Qn+l{(1 1),e» 

((I 1): O~O' ~ O',(O,fjI~-y/) E Qn+l{(f 1),e» 
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from (O,~) to (0', ~') {(O,I/I) to (O',I/I'n. This verifies that homotopy 
equivalent algebraic Poincare complexes are cobordant, and in particular 
that cobordism is reflexive. 

If 

( 

((f f'): O~O' -+ D, (8~,~~-~') E Qn+l((f f'),e)) 

((I I'): O(d?)O' -+D,(St/J,t/J(d?)--v/) EQn+l((1 I'),e)) 

is a co bordism, then so is 

( 

((f' f): 0' ~ 0 -+ D, (- 8~,~' ~ -~) E Qn+1((f' I), e)), 

((I' I): O'~O -+ D,(-81/1,I/I'~-I/I) EQn+l((/' I),e)), 

thus verifying the symmetry of cobordism. 
The union operation ensures that cobordism is transitive. 

The correspondence between low dimensional (n = 0,1) algebraic 
Poincare complexes and forms and formations of § 2 will be extended to 
the L-groups in § 5 below, and LO(A, e) (respectively Ll(A, e)) {Lo(A, e) 
(respectively L1(A, e))} will be identified with the Witt group of non
singular e-symmetric {e-quadratic} forms (respectively formations) over A. 

We shall denote the symmetric {quadratic} L-groups by 

Ln(A, 1) = Ln(A) {Ln(A, 1) = Ln(A)}. 

The symmetric L-groups Ln(A) are the 'algebraic Poincare bordism' 
groups 0n(A) of Mishchenko [10], except that On(A) was defined using 
only f.g. free (rather than f.g: projective) A-module chain complexes
the difference this makes will be studied in § 9 below. 

In § 4 we shall establish that 

Ln(A, e) = Ln+2(A, - e) = Ln+4(A, e) (n ~ 0). 

The quadratic L-groups Ln(A) are thus the analogues of the surgery 
obstruction groups of Wall [25], defined using f.g. projective (rather than 
based f.g. free) A-modules-the difference this makes will also be studied 
in §9 below. 

The e-symmetrization of an (n + 1 )-dimensional e-quadratic (Poincare) 
pair over A (f: 0 -+ D, (8t/J, t/J) E Qn+l(f, e)) is the (n + I)-dimensional 
e-symmetric (Poincare) pair 

(1 + ~)(f: 0 -+ D, (81/1,1/1)) = (f: 0 -+ D, (1 + ~)(81/1, 1/1) E Qn+l(/, e)), 

where 

( 

((1 + ~)St/Jo, (1 + ~)t/Jo) E (DI®AD)n+l (d?) (OI®A ~)n 

(1 + ~)(81/1, 1/1)8 = If s = 0, 

(0,0) E (D'®.,.(D)'H8+1 E9 (O'®,dO)n+8 ifs ~ 1. 
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The e-symmetrization of a nuIl-cobordant e-quadratic Poincare complex is 
thus a null-cobordant e-symmetric Poincare complex, and there are 
defined e-symmetrization maps in the L-groups 

(1 + ~): Ln(A, e) ~ Ln(A, e); (0, 1jI) ~ (0, (1 + T,)IjI). 

We shall prove that these are isomorphisms modulo 8-torsion in § 8 below. 
The skew-suspension of an (n + 1 )-dimensional e-symmetric {e-quadratic} 

(Poincare) pair over A 

(f: 0 -+ D, (8SO, SO) E Qn+1(f, e)) {(f: 0 ~ D, (81j1, 1jI) E Qn+l(f, e))} 

is the (n + 3)-dimensional (- e)-symmetric {( - e)-quadratic} (Poincare) 
pair over A 

{ 
8(f: 0 -+ D, (8SO, SO) = (Sf: so -+ SD, 8(8SO, SO) E Qn+3(Sf, - e)), 

8(f: 0 ~ D, (81j1, 1jI)) = (Sf: so ~ SD, 8(81j1, 1jI) E Qn+3(Sf, - e)), 

with 8: Qn+1(f,e) ~ Qn+3{Sj, -e) {8: Qn+l(j,e) ~ Qn+3(Sj, -en the rela
tive version of the isomorphism defined in the absolute case in § 1. Thus 
the skew-suspension of a null-cobordant n-dimensional e-symmetric 
re-quadratic} Poincare complex is a null-cobordant (n + 2)-dimensional 
{ - e)-symmetric {{ - e)-quadratic} Poincare complex, and there are 
defined skew-suspension maps in the L-groups 

{ 
8: Ln(A, e) ~ Ln+2(A, - e); (0, SO) ~ (SO,8so) 

(n ~ 0). 
8: Ln(A, e) -+ Ln+2(A, - e); (0, 1jI) ~ (SO,81j1) 

In § 4 below we shall prove that 8: Ln(A, e) ~ Ln+2(A, - e) is an 
isomorphism for all A, e, n ~ 0 (Proposition 4.3). It will also be proved 
that 8: Ln(A, e) ~ Ln+2(A, - e) is an isomorphism if A is noetherian of 
finite global dimension m and n + 2 ~ 2m (Proposition 4.5). 

Define the Oth Wu class of an (n+ I)-dimensional e-symmetric pair over 
A (f: 0 ~ D, (8SO, SO) E Qn+1(f, e» to be the function 

vo(8SO, SO): Hn+1(f) ~ i10(Z2; A, e); 

(y, x) ~ (8SOn+1(Y® y) + (- )nSOn(x®x)) 

(x E On, y E Dn+1, n ~ 0). 

It is possible to define higher Wu classes for e-symmetric pairs, as well as 
Wu classes for e-quadratic pairs, generalizing the absolute Wu classes 
of § 1. However, we shall only need the relative vo' 

An (n + I)-dimensional e-symmetric pair over A 

(f: 0 -+ D, (8SO, SO) E Qn+1(j, e» 
is even if 
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Then (0, 'P E Qn(O, e)) is an n-dimensional even e-symmetric complex 
over A, since 

The n-dimensional even e-symmetric L-group of A L<vo>n(A, e) (n ~ 0) is 
the abelian group with respect to the direct sum E9 of the cobordism 
classes of n-dimensional even e-symmetric Poincare complexes over A 

(0, 'P E Q<vo>n(O, e) = ker(vo: Qn(O, e) ~ Hom,A(Hn(0),bo(Z2; A, e))), 

where the cobordisms are required to be (n + 1 )-dimensional even e
symmetric Poincare pairs. 

The e-symmetrization of an e-quadratic complex (respectively pair) is an 
even e-symmetric complex (respectively pair), so that the e-symmetriza
tion map factors through the even e-symmetric L-groups 

l+~ 
I + ~: Ln.{A, e) ) L(vo>n(A, e) ) Ln(A, e) (n ~ 0). 

The skew-suspension of an n-dimensional e-symmetric complex (res
pectively pair) is an (n+2)-dimensional even (-e)-symmetric complex 
(respectively pair), so that the skew-suspension map in the e-sYmmetric 
L-groups factors through the even e-symmetric L-groups 

_ S 
s: Ln(A, e) ~ L<vo>n+2(A, -e) ~ LfH2(A, -e) (n ~ 0). 

In Proposition 4.4 below it will be shown that the skew-suspension maps 
S: Ln(A, e) ~ L(vo>n+2(A, - e) (n ~ 0) are isomorphisms. Thus we shall 
be mainly concerned with L(vo>n(A, e) for n = 0,1. 

If 2 is invertible in A the various types of L-groups coincide 

Ln(A, e) = L(vo>n(A, e) = Ln(A, e) (n ~ 0). 

More generally: 

PROPOSITION 3.3. If A is such that b*(Z2; A,e) = o then the natural maps 

1 + ~: Ln(A, e) ~ L(vo>n(A, e), L(vo>n(A, e) ~ Ln(A, e) (n ~ 0) 

are isomorphisms. In particular, this is the case if there exists a central 
element a E A such that a+ii = J E A (for example, a = tEA). 

Proof. If b*(Z2; A, e) = 0 then Q*(G, e) = 0 for any finite-dimensional 
A-module chain complex G (by Proposition 1.4{i», so that the e-sym
metrization map in the Q-groups (1 +~): Q*(G, e) ~ Q*(G, e) is an iso
morphism (Proposition 1.2), and there are natural identific~tions 

(e-quadratic complexes ovel' A) = (even e-symmetric complexes over A) 

= (e-symmetric complexes over A). 

Similarly for the relative Q-groups, and hence for the L-groups. 
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We shall now define the notion of homotopy equivalence appropriate 
to algebraic Poincare pairs. It turns out that the homotopy equivalence 
classes of e-symmetric {e-quadratic} Poincare pairs are in a natural one-one 
correspondence with the homotopy equivalence classes of certain 
e-symmetric {e-quadratic} complexes (Proposition 3.4). This allows for 
considerable conceptual simplification, giving the e-symmetric {e-quad
ratic} L-groups an expression entirely in terms of e-symmetric {e-quadratic} 
complexes. In § 4 we shall use this expression to establish the 4-periodicity 
in the e-quadratic L-groups, Ln(.A, e) = Ln+4(A, e), and in § 5 we shall use 
it to' identify the low dimensional L-groups with Witt groups of forms and 
formations. 

Define a homotopy equivalence 01 n-dimensional e-symmetric {e-quadratic} 
pairs over A 

(g, h; k): (I: 0 -+ D, (81',1') E Qn(/, e)) 

-+ (I': 0' -+ D', (81"'1") E Qn(f', e)) 

(g, h; k): (I: 0 -+ D, (8"" "') E Qn(/, e)) 

-+ (I': 0' -+ D', (8"",,,,') E Qn(/',e)) 

to be a triple (g, h; k) consisting of chain equivalences 

g: 0 -+ 0', h: D -+ D' 

together with a chain homotopy 

such that 

where 

k: I' g ~ hi: 0 -+ D' 

{ 
(g,h; k)%(81"1') = (81",1") E Qn(/',e), 

(g, h; k)..,(S"" "') = (S",', "") E Qn(f', e), 

(g,h; k)"'(S~,~)s 

= «h®,.{ h)(S~s) + (- )n-l(hf ® k)(~s) + (- )P(k® I'g)(~s) 

+ ( - )n+p-l(k ® k)(~S-I)' (g ® g)(9's)) 

E (D"®,A. D')n+sE9 (O"®,.{ O')n+s-l 

(g, h; k)%(SifJ, "')s 

= «h®,.{ h)(8"'s) + (- )n-l(hl ® k)(",s) + (- )P(k® I'g)("'s) 

+( - )n+p(k®k)("'S+I)' (g®g)("'s)) 

E (D"®,.{D')n-sE9 (O"®,.{ 0')71.-8-1 

(8 ~ 0, (D"®,dD'), = ~ D~®AD~). 
p+q-, 
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An n-dimensional e-symmetric {e-quadratic} complex (G, rp E Qn(G, e)) 
{(G,.p E Qn(G, e))} is connected if 

{ 
Ho(rpo: On-* -+ 0) = 0, 

Ho((I + ~).po: Gn-* -+ 0) = o. 
In particular, Poincare complexes are connected. For n = 0 'connected' 
is the same as 'Poincare'. 

Define the boundary of a connected n-dimensional (even) e-symmetric 
{e-quadratic} complex over.A (G, rp E Qn(G, e)) {(G,.p E Qn(G, e))}, for n ~ 1, 
to be the (n-I)-dimensional (even) e-symmetric {e-quadratic} Poincare 
complex over .A 

given by 

{ 
8(G, rp) = (8G,8rp E Qn-l(8G, e)) 

8(G,.p) = (8G,8.p E Qn_l(8G, e)) 

oOn-r-l - Gn-r':t:' 0 -+ 00 - 0 ffi Gn-r 
- W r+l r - r+l W , 

&P8 = (( - )"-<+:-1T,9'8+1 :): 

8Gn-r+s-l = Gn-r+s Ef) Gr- s+1 -+ 80r = Gr +1 Et> Gn-r (8 ~ I), 

( 

- )n-r-sT .1. _ 0) 
~.I. _ 8'f'S 1 . 
CI'f's - • 

o 0 

oGn-r-s-l = Gn-r-s':t:' 0 -+ 00 - 0 ':t:' On-r 
W r+s+l r - r+l W • 

(Motivation: let M be an n-dimensional manifold with boundary 8M, 
and let a*(M, oM) = (I: O(oM) -+ G(M), (rp, orp) E Qn(/)) be the n
dimensional symmetric Poincare pair over Z[7Tl(M)] associated to the 
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universal cover M in § 6 of Part 11. The n-dimensional symmetric complex 
...... ~ ...... ,-........, 

(0,8) = (O(M, oM), (1J, or;) E Qn(O(M, oM))) 

obtained from the pair a*(M, oM) by collapsing 
~ ~ 

a*(oM) = (O(oM),o1J E Qn-l(O(oM))) 

has boundary 0(0,8) homotopy equivalent to a*(oM). In § 5 we shall 
show that the boundary operations on e-quadratic forms and formations 
defined in § 3 of Ranicki [13] are special cases of the boundary operation 
on e-quadratic complexes.) 

PROPOSITION 3.4. (i) There is a natural one-one correspondence between 
the homotopy equivalence classes of n-dimensional (even) e-symmetric 
{e-quadratic} Poincare pairs over A and the homotopy equivalence classes of 
connected n-dimensional (even) e-symmetric {e-quadratic} complexes which 
preserves boundaries. Poincare pairs with contractible boundaries correspond 
to Poincare complexes. 

(ii) A connected n-dimensional (even) e-symmetric {e-quadratic} complex is 
a Poincare complex if and only if its boundary is a contractible (n-I)
dimensional (even) e-symmetric {e-quadratic} Poincare complex. 

(iii) An n-dimensional (even) e-symmetric {e-quadratic} Poincare complex 
is null-cobordant if and only if it is homotopy equivalent to the boundary of a 
connected (n+ I)-dimensional (even) e-symmetric {e-quadratic} complex. 

Proof. (i) Given a connected n-dimensional e-symmetric {e-quadratic} 
complex (0,1J E Qn(O, e)) {(O,.p E Qn(O, e))} with boundary 

o(O,1J) = (oO,01J) {o(O,.p) = (oO,o.p)} 

there is defined an n-dimensional e-symmetric {e-quadratic} Poincare pair 

( 

(ie: 00 -+ On-*, (0, o(j) E Qn(ie, e», 
(ie: 00 -+ On-*, (0, o.p) E Qn(io, e)), 

with 
io = (0 1): oOr = Or+! G) On-r -+ (On-*)r = On-r. 

Given a homotopy equivalence of connected n-dimensional e-symmetric 
{e-quadratic} complexes f: (0, cp) -+ (0',1J') {f: (O,.p) -+ (0', .p')} choose 
cycle representatives 

( 
1J E HomZ[Zlll(W, HornA(O*, O))n, 1J' E HomZ[Zlll(W, HomA(O'*, O'))n, 

.p E (W ®Z[Z21 Horn A (0*, O))n,.p' E (W ®Z~2] Horn A (0' * , 0' ))n, 0 

so that 

( 
f%(1J)-1J' = d(v) E HomZ[Z21(W, HomA(O'*, O'))n 

f%(.p)-.p' = d(X) E (W®Z[Z21 HOIDA(O'*,O'))n 
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for some chain 

with 

/q;sf* -q;~ = do'vs+ (- yvsdb,+ (- )n+s(VS_l + (- )S~VS_l): C'n-r+s ~ C; 

Irpsl* -rp~ = do'Xs+ (- YXsdb'+ (- )n-S(XS+l + (- )S+l~XS+l): 
C'n-r-s ~ C' 

r 

(8 ~ 0, V_I = 0) 

(taking 0 and C' to be f.g. projective, as we may do without loss of 
generality). Let I': C' ~ C be a chain homotopy inverse for f: C ~ C', 
and let g: f' f ':::. 1: C ~ C be a chain homotopy, with 

The A-module morphisms 

8f= (~ 

of= (~ 

- fq;oY* + (- yvof'*) 

f'* 
: oCr = Cr+1 Et) Gn-r ~ ac; = C;+l Et) C'n-r 

- f(l + P')rpoY* + (- Y(I + ~)xof'*) : 

f'* 

are such that 

{
(of, I; 0): (io: ac ~ Cn-*, (0, aq;)) ~ (i o': ac' ~ C'n-*, (0, acp')) 

(of, 1; 0): (io: ac ~ Cn-*, (0, arp)) ~ (i o': ac' -+ C'n-*, (0, arp')) 

is a homotopy equivalence of n-dimensional e-symmetric {e-quadratic} 
Poincare pairs over A. (The definition of the boundary a(C, cp) {a(C, rp)} 
depends on a choice of cycle representative for cp E Qn(C, e) {rp E Qn(C, e)}. 
In particular, we have just shown that a different choice of representative 
defines an isomorphic complex.) 

Conversely, given an n-dimensional e-symmetric {e-quadratic} Poincare 
pair over A (f: ac ~ c, (cp, acp) E Qn(f, e)) {(f: ac ~ c, (rp, arp) E Qn(f, e))} 
define a connected n-dimensional e-symmetric {e-quadratic} complex 
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(0', rp' E Qn(o', e)) {(O', V/ E Qn(O', e))} by 0' = 0(/) and 

rp' = (rps 0) . 
s ( _ )n-r-l orps/* ( _ )n-r+s~ OrpS-l . 

O'n-r+s = On-r+s® oOn-r+s-l ~ 0; = Or ® 001'-1 (8 ~ 0), 

rp' = (rps 0) . 
s ( _ )n-r-l orps/* ( _ )n-r-S-l~ orpS+l . 

O'n-r-s = On-r-s® oOn-r-s-l ~ 0; = Or® 001'-1 (8 ~ 0). 

(This is an algebraic analogue of the Thorn complex construction in 
topology, being just the collapsing of the boundary (oO,Orp) {(oC,orp)}.) 
There is defined a homotopy equivalence of n-dimensional e-symmetric 
{e-quadratic} Poincare pairs 

{ 
(og, g; h): (i c': oC' ~ C'n-*, (0, orp')) ~ (/: oC ~ C, (rp, orp)), 

(og,g; h): (i c': 00' ~ O'n-*,(O,.orp')) ~ (/: oC ~ C,(rp,orp)), 
with 

g _ {( rpo /orpo) : O'n-r = On-r Et> aOn- r-1 ~ 01'1 

((1 + ~)rpo /(1 + ~) orpo) 

{

(O 1 0 orpo) 
og = : oC; = 01'+1 ® oCr ® Cn-r ® oCn-r-l ~ 001" 

(0 1 0 (l+~)orpo) 

h = (( -)" 0 0 0): 00; = 01'+1 ® oOr® Cn-r® aCn-r-l ~ Cr+1. 

(ii) Given a connected n-dimensional e-symmetric {e-quadratic} complex 
(C, rp E Qn(c, e)) {(C, rp E Qn(C, e))} we can identify sac = C(rpo: Cn-* ~ C) 
{SaO = 0((1 + ~).po: Cn-* ~ on, so that oC is chain contractible if and 
only if (0, rp) {(C, rp)} is a Poincare complex. 

(iii) is immediate from (i). 

4. Algebraic surgery 
We shall now develop an algebraic surgery technique on algebraic 

Poincare complexes, which is analogous to the familiar geometric tech
nique of surgery on manifolds. Given an n-dimensional e-symmetric 
{e-quadratic} Poincare complex over A (C, rp) {(C, rp)} and an (n + 1)
dimensional e-symmetric {e-quadratic} pair 

(/: 0 ~ D, (8rp, rp)) H/: 0 ~ D, (8rp, rp))} 

we shall construct a cobordant n-dimensional e-symmetric {e-quadratic} 
Poincare complex (C',rp') {(O',rp')} 'by an algebraic surgery killing 
im(f*: H*(D) ~ H*(C))'. In § 7 of Part 11 we shall show that the chain 
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level effect of a geometric oriented {framed} surgery is an algebraic 
symmetric {quadratic} surgery killing the A-module generated by a single 
cohomology class x E H*(O). Here, we shall apply algebraic surgery to 
obtain the 4-periodicity in the e-quadratic L-groups 

Ln(A, e) = L n+2(A, - e) = Ln+4(A, e) (n ~ 0). 

An n-dimensional e-symmetric {e-quadratic} pair 

is connected if 

( 

(f: 0 -? D, (81',9) E Qn(f, e)) 

(f: 0 -? D, (8.p,.p) E Qn(f, e)) 

HO( (:'7.): Dn-* ~ O(f)) = 0, 

Ho(( (1 
+ ~}8.po ) : Dn-* -? O(f)) = o. 

(1 + ~)ifJof * 
In particular, Poincare pairs are connected. 

Define as follows the connected n-dimensional e-symmetric {e-quadratic} 
complex (0',1" E Qn(O', e)) {(O',.p' E Qn(O', e))} obtained from a connected 
n-dimensional e-symmetric {e-quadratic} complex (0, l' E Qn(O, e)) 
{(O,ifJ E Qn(O, e))} by e-8ymmetric {e-quadratic}8urgery on a connected (n + 1)
dimensional e-symmetric {e-quadratic} pair 

(f: 0 -? D, (81', SO) E Qn+l(/, e)) {(f: 0 -? D, (8ifJ,.p) E Qn+1(/' e})}. 

In the e-symmetric case let 

(

' do 0 ( - )n+l1'o/* ) 

do, = ( - y / dD ( - )r81'o : 

o 0 (- }rdb 

0; = Or ff; D r+1 tfJ Dn-r+l -? 0;_1 = 0r-1 tfJ D r tfJ Dn-r+2 

SO~ = ( (- ):':fP''Pl (- )n:P,8'Pl (- )'~n_')e) : 
010 

O'n-r = On-r t.:p Dn-r+1 t.:p D -? 0' = 0 t.:p D t.:p Dn-r+1 
W W r+l r r W r+1 W , 

O'n-r+s = On-r+s tfJ Dn-r+S+l t.:p D -? 0' = 0 t.:p D t.:p Dn-r+l 
W T-s+1 r rW r+l W 

(8 ~ I). 
5388.3.40 K 
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In the e-quadratic case let 

(

do 0 ( - )n+l(l + ~).pof* ) 
do' = ( -o)r f dD (- Y(l + ~)8.po : 

o (- )rdt 

0; = Or ffi D rH ffi Dn-r+l ~ 0;_1 = 0r-l ~ D r ~ Dn-r+2, 

O'n-r = On-r ~ Dn-r+l ~ D ~ 0' = 0 ~ D ~ Dn-r+l 
W W ,,+1 r "w r+l w , 

(- )r+S T,.ps_lf* 0) 
( - )n-r-S+lT,8.pS_l 0 : 

o 0 

O'n-r-s = On-r-s':t:' Dn-r-s+1 ':t:' D ~ 0' = 0 ':t:' D IT\ Dn-r+l 
W W r+s+l r r W r+l t;;I;I 

(8 ~ 1). 

(We are using matrix notation as if O,D were f.g. projective chain 
complexes. ) 

It may be verified that performing e-symmetric {e-quadratic} surgery 
using a different cycle representative of 

(89', SO) E Qn+l(f, e) ((8.p,.p) E QnH(f, e)} 

leads to an isomorphic e-symmetric {e-quadratic} complex (0', ~') {(O', .p')}. 
Note that the e-symmetrization of the e-quadratic surgery on 

</: 0 ~ D, (S,jJ,,jJ) E Qn+l(/' e» 
is the e-symmetric surgery on (f: 0 ~ D, (1 + T,)(8.p,.p) E Qn+l(f, e)). 

Let (0, ~ E Qn(o, e)) {(O, tP E Qn(O, e»)} be a connected n-dimensional 
e-symmetric {e-quadratic} complex. The (n-l)-dimensional e-symmetric 
{e-quadratic} Poincare complex obtained from (0,0) by surgery on the 
connected n-dimensional e-symmetric {e-quadratic} pair 

(0: 0 ~ 0, (0, SO) E Qn(o, e» {(O: 0 ~ 0, (O,.p) E Qn(O, e»)} 

is just the boundary 0(0,~) {o(C, .p)}, as defined in § 3 above. We can thus 
interpret Proposition 3.4(iii) as stating that an n-dimensional e-symmetric 
{e-quadratic} Poincare complex is null-cobordant if and only if it can be 
obtained from (0, 0) by surgery and homotopyequivalence. This is a special 
case of the following result: cobordism is the equivalence relation on 
algebra,ic Poincare complexes generated by surgery and homotopy 
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equivalence. There is an obvious analogy here with Theorem 1 of Milnor 
[9], which showed that compact oriented manifolds are cobordant if and 
only if one can be obtained from the other by a finite sequence of geometric 
surgeries. 

PROPOSITION 4.1. (i) Algebraic surgery preserves the horrwtopy type of the 
boundary, sending algebraic Poincare complexes to algebraic Poincare 
complexes. 

(ii) The n-dimensional e-symmetric re-quadratic} Poincare complexes 
(C,sP), (C',q/) {(C,rp), (C',t//)} are cobordant if and only if (C',({/) {(C',rp')} 
can be obtained from (0, sP) {(O, .p)} by surgery and homotopy equivalence. 

Proof. (i) Let 

{ 
(f: 0 -+ D, (S~,~) E Qn+l(j, e)), (C',~' E Qn(O', e)) 

(I: 0 -+ D, (a.p,.p) E Qn+l(l, e», (O',.p' E Qn(O', e» 

be as in the definition of e-symmetric re-quadratic} surgery. Then the 
A-module morphisms 

1 0 

0 0 

0 0 
11,= 

0 1 

0 0 

(- )r(n-r) f 0 

oCr = Cr+l EB Cn-r -+ oC; = Cr+1 EB D r+2 EB Dn-r EB Cn-r EB Dn-r+l EB D r+1 

define a homotopy equivalence of the boundary (n - 1 )-dimensional 
e-symmetric re-quadratic} Poincare complexes 

{ 
h: 0(0,~) -+ 0(0',~'), 

h: 0(0,.p) -+ o(C', .pr). 

Proposition 3.4(ii) states that (O,~) {(C,.p)} is a Poincare complex if ~nd 
only if o(C,~) {o(C, rp)} is contractible. It follows that (C,~) {(C, rp)} is a 
Poincare complex if and only if (0', ~') {(C', .p')} is a Poincare complex. 

(ii) Continuing with the above notation assume also that (O,~) {(O,.p)} 
is a Poincare complex, and define an (n + 1 )-dimensional e-symmetric 
re-quadratic} Poincare pair 

{ 
«g g'): OEBO' -+ D', (O,~EB-~') E Qn+l«g g'),e)) 

«g g'):O(f)O'-+D',(O,.p(f)-.p')eQn+l«g g'),e)) 
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(
d

OO 
( - )n+1rpo/*) 

(-Yd1 
dD' = : D; = 0rEt)Dn-r+1 

(
d

OO 
( - )n+1( 1 + ~)!fool *) --7 D;_1 = 0r-1 Et) Dn-r+2, 

(- )rd1 

g = (1) . G --7 D' = G 4' Dn-r+1 • r r rW , 
o 

g' = (1 0 0): 0; = Or EiJ D r+1 Et) Dn-r+1 --7 D; = Or Et) Dn-r+1. 001 
We thus have a cobordism from (0, rp) {(O,!fo)} to (0', rp') {(O', !fo')}, so that 
surgery preserves cobordism classes. 

Conversely, suppose given a cobordism of n-dimensional e-symmetric 
{e-quadratic} Poincare complexes 

{

((I I'): OEiJO' --7 D, (8rp,rpEiJ-rp') E Qn+1((1 I'),e)), 

((I I'): OEiJO' --7D,(81jJ,IjJEiJ-r//) EQn+1((1 I'),e)). 

Let (0", rp") {(O", !fo")} be the n-dimensional e-symmetric {e-quadratic} 
Poincare complex obtained from (0, rp) {(O, 1jJ)} bye-symmetric {e
quadratic} surgery on the connected (n + I)-dimensional e-symmetric {e
quadratic} pair 

(g: 0 --7 D', (8rp', rp) E Qn+1(g, e)) {(g: 0 --7 D', (8!fo',!fo) E Qn+1(g, e))} 

defined by 

_ (dD (_ Y-1
/') dD,- : 

o do, 

D; = DrEiJ 0;_1 --7 D;_1 = Dr- 1 Et) 0;_2 (D' = 0(/')), 

g = (~): Cr ->- D; = Dr®C;_l> 

(
8 ()Sl") ~ , 'Ps - 'Ps 

O'P - . 
s - 0 ( _ )n-r+s~'P~_1 . 

D'n-r+s+1 = Dn-r+s+1 EiJ O'n-r+s --7 D; = Dr Ei1 0;_1 

(8 ~ 0, rp~1 = 0), 
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The A-module morphisms 

{ 
h = (0 0 1 0 0): 0; = 0r<7BDr+1 <7BO;<7BDn-r+l<7BO'n-r -+ 0; 

h = (0 0 1 0 - ~I/I~): 0; = Or <7B D rH <7B 0; <7B Dn-r+l <7B O'n-r -+ 0; 

define a homotopy equivalence of n-dimensional e-symmetric {e-quadratic} 
Poincare complexes 

{ 
h: (O",tp") -+ (O',tp'), 

h: (0",,,/,) -+ (0',1/1'). 

Thus (0', rp') {(O', I/I')} may be obtained from (0, rp) {(O,.p)} by an e-sym
metric {e-quadratic} surgery followed by a homotopy equivalence. 

We shall prove that certain skew-suspension maps in the L-groups are 
isomorphisms using the following criterion. 

PROPOSITION 4.2. The skew-sU8pension map 

8: Ln(A, e) -+ Ln+2(A, - e) {8: Ln(A, e) -+ Ln+2(A, - e)} 

is onto (respectively one-to-one) if for every connected strictly (n + 2)
(respectively (n + 3))-dimensional (- e)-symmetric {( - e)-quadratic} complex 
over A (0, rp) {( 0, .p)} with a boundary 0(0, rp) {o( 0, I/I)} which is contractible 
(respectively a skew-sU8pension) it is possible to do (- e)-symmetric 
{( - e)-quadratic} surgery on (0, rp) {( 0, .p)} to obtain a skew-sU8pension. 

Proof. It is immediate from Propositions 1.5 and 4.1(ii) that the 
claimed condition for 

8: Ln(A, e) -+ Ln+2(A, - e) {8: Ln(A, e) -+ Ln+2(A, - e)} 

to be onto is both necessary and sufficient. 
Assume the claimed condition for 

8: Ln(A, e) -+ Ln+2(A, - e) {8: Ln(A, e) -+ Ln+2(A, - e)} 

to be one-to-one, and let (0, rp) {(O,.p)} be a strictly n-dimensiona.l 
e-symmetric {e-quadratic} Poincare complex over A such that 

{ 
8(0, rp) = 0 E Ln+2(A, - e), 

8(0,.p) = 0 E Ln+2(A, - e). 

By Proposition 3.4(iii) we have that 8(0, rp) {8(0,.p)} is homotopy equi
valent to the boundary o(D, v) {o(D, X)} of a connected strictly (n + 3)
dimensional (- e)-symmetric {( - e)-quadratic} complex (D, v) {(D, X)}. 
By hypothesis, it is possible to do surgery on (D, v) {(D, X)} to obtain the 
skew-suspension 8(D', v') {8(D', X')} of a connected (n+ I)-dimensional 
e-symmetric {e-quadratic} complex (D', v') {(D', X')}. It now follows from 
Proposition 4.I(i) that (0, rp) {(O,.p)} is homotopy equivalent to the 
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boundary 8(D', v') {8(D'jX')}, and so 

{ 
(0, q;) = 0 E L"'(A, e), 

(O,.p) = 0 E L",(A, e). 

Therefore the stated condition is sufficient to ensure that the skew
suspension map is one-to-one. 

As a first application of our algebraic surgery we shall establish the 
4-periodicity in the e-quadratic L-groups, L",(A, e) = L",+,(A, e), by 
analogy with the familiar result that it· is always possible to perform 
framed surgery below the middle dimension and the consequent 4-
periodicity L",(17) = L",+i1T) of Wall [25]. 

PROPOSITION 4.3. The i10ld 8kew-8U8pension map 

Si: L",_2i(A, ( - )ie) -+ L",(A, e) (n ~ 2i) 
i8 an i80morphi8m for all A, e. The inver8e i80morphi8m 

Qi = (Si)-l: L",(A, e) -+ L"'_2,(A, (- )ie) (n = 2i or 2i + 1) 

8ends the cobordi8m class of a 8trictly n-dimensional e-quadratic Poincare 
complex (C,ljJ E Qn(C,e)) to the cobordism class of the (n-2i)-dimensional 
( - )ie-quadratic Poincare complex corresponding to the non-singular (- )ie-
quadratic form {formation} 

(coker(( d* 0) : 
( - )i+1( 1 + T,,).po d 

Oi-1 E9 Om .... O'E9 OH1)'[~O ~) if n = 2., 

( ((
(1 + ~).po d\ 

Hc-)is( 0'+1); 0'+1' im ed* 0) : 

0' E9 OH2 .... OHl E9 0'+1) ) if n = 2i + 1. 

Proof. Given a connected strictly n-dimensional e-quadratic complex 
(O,.p E Qn(O, e» let (O',.p' E Qn(O', e» be the connected n-dimensional 
e-quadratic complex obtained from (O,.p) by surgery on the connected 
(n + I)-dimensional e-quadratic pair (/: 0 -+ D, (O,.p) E Qn+1(/' e» defined 
by 

Now 

{
I {Or ifr > n-i 

f = : Or -+ Dr = (dn = do). 
o 0 ifr~n-i 

Hr(O') = Hr«! + ~).po: On-* -+ 0) (r < i), 

Br(o') = 0 (r > n-i), 
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and for n = 2i+ 1 also 

Hi((1 + T,)I/I~: O'n-* ~ 0') = o. 
Thus if the boundary 8(0,1/1) is contractible (respectively an i-fold skew
suspension) then (0',1/1') is the i-fold skew-suspension Si(O", 1/1") of an 
(n - 2i)-dimensional (- )ie-quadratic complex (0",1/1") which is a Poincare 
(respectively connected) complex. Applying Proposition 4.2 we have that 
Si: Ln- 2i(A, ( - )ie) ~ Ln(A, e) is onto (respectively 

Si: L n- 2i- I(A, (- )ie) ~ Ln-I(A, e) 

is one-one). If n = 2i or 2i + 1 and (0,1/1) is a Poincare complex define as 
follows a strictly (n - 2i)-dimensional (- )ie-quadratic Poincare complex 
(B,8 E Qn-2i(B, (- )ie)) and a homotopy equivalence 

g: (B, 8) ~ (0",1/1"). 

In the case where n = 2i let 

Bo = cOker(( d* . dO) : Oi-I Et> 0i+2 ~ Oi Et> Oi+I) * , 
( - )i+l( 1 + ~)I/Io 

= 0i Et> 0i+I Et> Oi+I, 

with 80 E HO~A(BO, Bo) any representative of the (- )ie-quadratic form 

(JlO.[~o ~ E Qc_,i.(JlO)). 

In the case where n = 2i + 1 let 

dB = e[O 1]*: BI = 0i+I ~ Bo 

= }.m(((1 + T,)I/Io ~ )* 
ed* O} : Oi Et> 0i+2 ~ 0i+I Et> Oi+I , 

8
0 

= ([1 0]: BO ~ B1, 8
1 

= [1/11 + dl/lo 00]: BO ~ B
o
, 

0: BI ~ B o, 0 

(:): Bl .... O~ = 0Hl <'!l 0H2' 

[
(1 + ~)I/Io ~* : B ~ 0" = 0 Et> 0i+2. 

ed* 0 0 0 i 

g= 
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If n = 2i {n = 2i + I} the correspondence of Proposition 2.1 {Proposition 
2.5} sends (B,8) to the non-singular (- )ie-quadratic form {formation} 
(li(O, .p). 

It is claimed by Mishchenko in [10] that the double skew-suspension 
maps in the symmetric L-groups 

82: Ln(A) -+ Ln+4(A) (n ~ 0) 

are isomorphisms for every ring with involution A. Such is indeed the 
case if tEA when Ln(A) = Ln(A), by Propositions 3.3 and 4.3. However, 
the algebraic surgery technique of § 4 of Mishchenko [10] used to establish 
this 4-periodicity breaks down if t i A: the new algebraic Poincare pair 
(O,OO,d,D) may not satisfy property (a') of· §3, since the A-module 
morphism 

°Dn-2i-l = : 
_ (0 Dn-2i-l Dn-2i-lf3) 

o 0 

On-i-l = On-i-l4' A * -+ 0 . = 0 .4'A 
W n-t n-1,W 

need not map A * C On-i-l = Cn-i-l/f' A * into 00 . = 00 . c oC . if 
W n-1, n-t n-1, 

Dn-2i-1f3 :j:. O. In Proposition 4.4 below we shall prove that the skew-
suspension maps 

S: Ln(A, e) -+ L<vo)n+2(A, - e) (n ~ 0) 

are isomorphisms. This implies that if fIl(Z2; A, e) = 0 then the skew
suspension maps 

8: Ln(A, e) -+ Ln+2(A, - e) (n ~ 0) 

are isomorphisms (Proposition 6.1). In Proposition 4.5 below we shall 
prove that if A is noetherian of finite global dimension m then the skew-

suspension maps 

8: Ln(A, e) -+ Ln+2(A, - e) (n + 2 ~ 2m) 

are isomorphisms. In particular, for a noetherian ring A of global dimen
sion at most 1 (such as a Dedekind ring) we have that the double skew
suspension maps 

82: Ln(A, e) -+ Ln+4(A, e) (n ~ 0) 

are isomorphisms. The L-theory of Dedekind rings will be studied further 
in § 7. In § 10 we shall give examples of noetherian rings A of global 
dimension at least 2 for which the skew-suspension maps 

8: Ln(A, e) -+ Ln+2(A, - e) (n ~ 0) 
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are not all isomorphisms, and such that e-symmetric L-groups are not 
4-periodic. 

PROPOSITION 4.4. The skew-suspension maps 

S: Ln(A, e) -+ L(vo)n+2(A, - e) (n ~ 0) 

are isomorphisms for all A, e. 

Proof. We shall define an inverse isomorphism 

Q: L(vo)n+2(A, - e) -+ Ln(A, e) 

by working exactly as in the pr.oof of Proposition 4.3. Given a strictly 
(n + 2)-dimensional even (- e)-symmetric Poincare complex over A 
(0, rp E Q(vo)n+2(O, - e)) define a connected {n + 3)-dimensional even 
( - e)-symmetric pair (I: 0 -+ D, (0, rp) E Q(vo>n+3(/, - e)) by 

{
I {On+2 if r = n + 2, 

f= : Or -+ D,. = 
o 0 if r :f: n + 2. 

The (n + 2)-dimensional even (- e)-symmetric Poincare complex obtained 
from (0, rp) by surgery on (f: 0 -+ D, (0, rp)) is the skew-suspension 
Sn(O', rp') of an n-dimensional e-symmetric Poincare complex 0.(0', rp'). 

PROPOSITION 4.5. Let A be a ring with involution which is noetherian of 
finite global dimension m. The skew-suspension map 

S: Ln(A, e) -+ Ln+2(A, - e) (n ~ 0) 

is an isomorphism if n + 2 ~ 2m, and a monomorphism il n + 3 = 2m. If 
m = 0 (that is, if A is semi-simple) then 

L2k+1(A, e) = 0 (k ~ 0). 

Proof. In the first instance, note that the hypothesis on A is equivalent 
to the property that every f.g. A-module M has a f.g .. projective A
module resolution of length not greater than m 

o -+ Pm -+ Pm- 1 -+ ... -+ Pi -+ Po -+ M -+ O. 

Let p = 2 if n+2 ~ 2m (respectively p = 3 if n+3 ~ 2m). Given a 
connected strictly (n+p)-dimensional (-e)-symmetric complex over A 
(0, rp E Qn+p(o, - e)) with a boundary 0(0, rp) which is contractible 
(respectively a skew-suspension) we have that Ho(O) = coker(d: 01 -+ 00 ) 

is a f.g. A-module, with a f.g. projective A-module resolution of length m 

d d 
o ~ Dm ~ Dm- i ~ ... ~ Di ~ Do ~ Ho(O) ~ O. 

Let f: 0 -+ D be an A-module chain map inducing 

f. = 1: Ho(O) -+ Ho(D) = Ho(O), 
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and let rp E HomZlZs}( W, Hom.A (0* , O) }n+p be a cycle representing 
tp E Qn+p(O, - e), so that 

(
ftpof*= [)m ~ Dm if n+p = 2m, r = m, 8 = 0, 

f%(rp}s = 
0: D' -? D n+p-r+s otherwise. 

In the case where n+p = 2m consider the commutative diagram 

Dm f* ~ Om rpo 
-+- Om 

f ) Dm 

1 dol id 
/ 

Id 
0 om+l (- )mrpo Q ) Dm- 1 

) ) m-I 

Now d E Hom.A(Dm,Dm_1 ) is one-one, and 

d(ftpof*)=O:Dm /rpof*) Dm __ d~~ D
m

-
lt 

80 that 

Thus, if n+p ~ 2m, 

f%(rp) = 0 E Homz[Zs](W, Hom,A(D*,D))n+p, 

and there is defined a connected (n + p + 1 )-dimensional (- e)-symmetric 
pair (/: 0 ~ D, (0, rp) E Qn+p+1(f, - e)). Let (0', rp' E Qn+P(G', -e)) be the 
(n+p)-dimensional (-e)-symmetric complex obtained from (O,rp) by 
surgery on this pair. Now 

H()(C') = H1(/) = 0, 

Hn+p(o') = Ho(ftpo: Cn+p-* -+ D) = Ho(rpo: Cn+p-* -? C) = 0, 

so that (O',q/) is the skew-suspension of an (n+p-2)-dimensiona 
6-symmetric complex. Applying the criterion of Proposition 4.2 we have 
that S: Ln(..4.,6) -+ Ln+2(..4., - 6) is onto if n + 2 ~ 2m (respectively one-one 
if n+3 ~ 2m). 

In particular, if..4. is a noetherian ring of global dimension I we have that 
all the skew -suspensions 

S: Ln(..4., e) -+ Ln+2(A, - e) (n ~ 0) 

are isomorphisms. If A is semi-simple (m = 0) then the above procedure 
associates to a strictly I-dimensional e-symmetric Poincare complex over 
A (0, tp E Ql( 0, e)) a 2-dimensional e-symmetric Poincare pair over A 
(I: 0 -+ D, (0, rp) E Q2(/, e)), and so 

L1(A,£) = O. 
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(Moreover, if (C,~) is even then so is (I: C -7 D, (O,~)), and we also have 

L(VO)l(A, e) = O. 

It has already been proved in [16] that for a semi-simple ring with 
involution .A 

L 2k+1(A, e) = 0 (k ~ 0).) 

We shall find the following application of algebraic surgery of use in § 5 
below. 

An n-dimensional e-symmetric {e-quadratic} complex (C, ~ e Qn(c, e» 
{(C, I/J e Qn(C, e})} is well-connected if Ho(C) = 0, in which case it is con
nected, that is 

{ 

Ho(~o: Cn-* -7 C} = 0, 

Ho((I + ~}I/Jo: Cn-* -7 C} = O. 

PROPOSITION 4.6. The n-dimensional e-symmetric {e-quadratic} Poincare 
complexes (C, ~), (C', ~') {(C, «p), (C', «p')} are cobordant if and only if there 
exists a homotopy equivalence 

( 
I: (C,~) EB o(D, v) -7 (C', ~') EB o(D', v') 

I: (C,I/J)EBo(D, X) -7 (C',I/J'}EBo(D',x') 

for some well-connected (n + I)-dimensional e-symmetric {e-quadratic} 
complexes (D, v), (D', v') {(D, X), (D/, X')}. 

Proof. In view of Proposition 3.4(iii) it is sufficient to prove that for 
every connected (n+ I)-dimensional e-symmetric {e-quadratic} complex 
(D, v) {(D, X)} there exists a homotopy equivalence 

{ 
f: o(D, v} EB O(D', v'} -7 o(D",v"} 

f: o(D, X} EB O(D', X'} -7 o(D", X"} 

for some well-connected (n + I }-dimensional e-symmetric {e-quadratic} 
complexes (D', v'), (D", v") {(D', X'), (D", X")}. Define a chain map g: D -7 D' 
by 

D: ) Dn+2 
d d 

) Dn+l 
d 

) Dn ) Dn- 1 ---+) ... 

g1 11 
d 

11 1 1 
D/: ... ) Dn+2 ) Dn+l ) 0 ) 0 ----+) ... 

and let v' = -g%(v} eQn+1(D/,e} {X' = -g%(x) eQn+l(D',e)}. Let (D",v") 
{(D",X")} be the connected (n+ I}-dimensional e-symmetric {e-quadratic} 
complex obtained from (D, v) EB (D', v') {(D, X) EB (D/, X')} by surgery on the 
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connected (n+ 2)-dimensional e-symmetric {e-quadratic} pair 

{ 
((g 1):D®D'-+D',(O,V®V')EQn+2((g l),e)), 

((g 1): D$ D' -+ D', (0, X$ X') E Qn+2((g 1), e)). 

Now (D/, v') {(D/, X')} and (D", v") {(D", X")} are well-connected, and 
Proposition 4.1(i) shows that 

{ 
o(D,v)®o(D',V/} = O(D",V") 

o(D,X)$o(D',X') = o(D",X") 

up to homotopy equivalence. 

Intuitively, e-symmetric {e-quadratic} surgery on 

{ 
(f: 0 -+ D, (ocp, cp) E Qn+1(f, e)) 

(f: 0 -+ D, (oifJ, ifJ) E Qn+1(f, e)) 

kills im(f*: H*(D) -+ H*(O)), whereas a geometric surgery only kills 
individual (co)homology classes. In § 7 of Part 11 we shall show that the 
chain level effect of geometric surgery on an r-dimensional spherical 
homology class in an n-dimensional manifold is an algebraic surgery on a 
connected (n + 1 )-dimensional algebraic pair such that 

{
A if s = n-r, 

HS(D) = 
o ifs=/=n-r. 

We shall now break down a general algebraic surgery into a sequence of 
such elementary surgeries (subject to a necessary K-theoretic restriction). 

An algebraic surgery on a connected (n + 1 )-dimensional e-symmetric 
{e-quadratic} pair over A 

(f: 0 -+ D, (ocp, cp) E Qn+1(f, e)) {(f: 0 -+ D, (0"', ifJ) E Qn+l(f, e))} 

is elementary of type (r, n - r -1) if D'= Sn-r A, that is, 

{
A if s = n-r, 

D = 
S 'f o 1 s=/=n-r. 

Such a surgery will be said to kill the (co )homology class f * (1) E Hn-r( 0) 
(= Hr(O) if (0, SO) {(O,.p)} is a Poincare complex). 

PROPOSITION 4.7. Let (0, SO E Qn(O, e)) {(O,.p E Qn(O, e))} be a connected 
n-dimensional e-symmetric {e-quadratic} complex over A. Then 

(i) A cohomology class x E Hn-r(O) can be killed by an elementary 
e-symmetric {e-quadratic} surgery of type (r , n - r - 1) if and only if its 



THE ALGEBRAIC THEORY OF SURGERY. I 157 

e-symmetric {e-quadratic} Wu class vanishes, that is, 

( 

v,(p)(x) = 0 E Hn-2'(Z2; A, (- )n-'e), 

v'(.p)(x) = 0 E H2,-n(Z2; A, ( - )n-'e), 

and, in the case where r = n, x E HO(G) generates a direct summand of HO(G). 
(ii) If (0', sc/) {(O', if/)} is obtained from (0, p) {(o,.p)} by an elementary 

e-symmetric {e-quadratic} surgery of type (r, n - r - I) then (G, q;) {( 0, .p)} is 
homotopy equivalent to an e-symmetric {e-quadratic} complex obtained from 
(0', r/) {(O', f)} by an elementary e-symmetric {e-quadratic} surgery of type 
(n-r-I,r). 

(iii) If (O',q;') {(O',.p')} is obtained from (O,p) {(O,.p)} bye-symmetric 
{e-quadratic} surgery on 

(f: 0 -+ D, (8q;, p) E Qn+l(f, e)) {(f: 0 -+ D, (8.p,.p) E Qn+l(f, e))} 

such that D has projective class 

00 

[D] == ~ (- )'[D,] = 0 E Ko(A) ,....-00 

then (0', p') {(O', .p')} may be obtained from (0, p) {(O,.p)} by a finite sequence 
of elementary e-symmetric {e-quadratic} surgeries. 

Proof. (i) The vanishing of the Wu class is just the condition required to 
represent x E Hn-r(o) by an (n+ I)-dimensional e-symmetric {e-quadratic} 
pair 

( 

(f: 0 -+ 8n- r A, (8q;, p) E Qn+l(f, e)) 

(f: 0 -+ 811,-, A, (8.p,.p) E Qn+l(f, e)) 

such that f*(I) = x E Hn-'(G). This pair is automatically connected if 
r < n, but for r = n it is connected if and only if x E HO( 0) generates a 
direct summand. 

(ii) and (iii) follow from the result below on the composition of algebraic 
surgeries: 

LEMMA. Let (0, p), (0', p'), (0", q;") be connected n-dimensional e-sym
metric complexes over A such that (O',p') (respectively (O",p")) is obtained 
from (0, p) (respectively (0', <p')) by surgery on a connected (n + I)-dimensional 
e-symmetric pair (f: 0 -+ D, (8q;, p)) (respectively (f': 0' -+ D', (8p', q;'))). 
Then (O",<p") is obtained from (O,q;) by surgery on a connected (n+I)
dimensional e-symmetric pair (f": 0 -+ D", (8<p", q;)) with D" = O(g) the 
algebr(J,ic mapping cone of a chain map g: DJ) -+ D'. 



158 ANDREW RANICKI 

Oonversely, let (0", rp") be the connected n-dimensional e-symmetric complex 
over A obtained from a complex (0, rp) by surgery on a pair 

(I": 0 ~ D", (8rp", rp)) 

such that D" = O(g) is the algebraic mapping cone of a chain map g: nD ~ D', 
lor some (n+ I)-dimensional A-module chain complexes D,D'. Then (O",rp") 
is isomorphic to the complex (0", fJ") obtained from (0', rp') by surgery on a 
pair (f': 0' ~ D', (8rp', rp')), with (0', rp') the complex obtained Irom (0, rp) 
by surgery on a pair (f: 0 ~ D, (8rp, rp)). 

The e-quadratic case is similar, with .p's in place 01 rp's. 

Proof (e-symmetric case only). Given 

(f: 0 ~ D, (8rp, rp)), (f': 0' ~ D', (8rp', rp')) 
write 

I' = (I' g Vo): 0; = O,eD,+lEaDn-,+l ~ D;, 

and define (I": 0 ~ D", (8rp", rp) E Qn+1(I", e)) by 

r = (;,): 0. -->- D: = D.eD;, 

d" = (d 0): D; = D,EaD; ~ D':-l = Dr - 1 <!>D~l' 
(- )r-lg d' 

8 " = (8rps ( - )Sf(~rpS+l)/'* - (~8rpS+l)g*) : 
rps 0 8rp~ 

D"n-r+s+l = Dn-r+s+l<;BD'n-r+s+l ~ D: = D,ff>D; (s ~ 0). 

Conversely, given (/": 0 ~ D",(8rp",rp)),g: OD ~ D' write 

r = (;,): 0. -->- D; = O(gl. = D.eD;, 

and define (/': 0' ~ D', (8q/, q/) E Qn+1(f', e)) by 
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The A-module isomorphisms 

1 0 0 0 0 

0 1 0 0 ( - ) r( n-r+1) evt 

h= 0 0 0 1 0 

0 0 1 0 0 

0 0 0 0 1 

(J" = 0 EB D EB Dn-r+1 EB D' EB D'n-r+1 r r r+1 r+1 

--?- 0; = Or EB Dr+1 EB D;+l EB Dn-r+1 EB D'n-r+1 

define an isomorphism of e-symmetric complexes over A, 

h: ((J",f;") --?- (O",rp"). 

5. Witt groups 
We shall now identify the e-symmetric {even e-symmetric, e-quadratic} 

L-group 
LO(A, e) {L<vo)O(A, e), Lo(A, e)} 

(respectively Ll(A, e) {L<vo)J(A, e), L 1(A, e)}) with the Witt group of non
singular e-symmetric {even e-symmetric, e-quadratic} forms (respectively 
formations) over A. It will then follow from the 4-periodicity 
Ln(A, e) = Ln+,(A, e) that the quadratic L-groups Ln(A) agree with the 
surgery obstruction groups of Wall [25]. We shall use this characterization 
of L<VO)l(A, e) {Ll(A, e)} to prove that a non-singular even e-symmetric 
{e-quadratic} formation represents 0 in the Witt group if and only if it is 
stably isomorphic to the graph formation of a singular (- e)-symmetric 
{even (- e)-symmetric} form. This generalizes the 'normal form' for the 
split unitary group of Sharpe [22] (cf. Proposition 9.2 below). 

The Witt group of e-symmetric {even e-symmetric, e-quadratic}forms over.A, 
Le(A) {L< vo)e(A), Le(A)} is the abelian group of equivalence classes of 
non-singular e-symmetric {even e-symmetric, e-quadratic} forms over A 
(M, rp) subject to the relation 

(M, rp) "'J (M', rp') if there exists an isomorphism 

f: (M, rp) EB (N, 0) --?- (M', rp') EB (N', 0') 

for some hyperbolic forms (N, 0), (N', 0'). 

Addition is by 
(M, rp) + (M',rp') = (MEBM', rpEBrp'). 

Inverses are given by 
- (M, rp) = (M, - 9'), 
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since the diagonal 6. = {(x, x) E M EB M I x E M} is a lagrangian of 
(MEBM, SOEB-SO)' There are defined forgetful maps 

Le(A) -+ L(vo)e(A); (M,I/J E Qe(M)) ~ (M,I/J+el/J* E Q(vo)e(M)), 

L(vo)e(A) -+ Le(A); (M, SO E Q(vo)e(M)) ~ (M, SO E Qe(M)) 

(such that Le(A) -+ L(vo)e(A) is onto). 

PROPOSITION 5.1. There are natural identifications of abelian groups 

( 

LO(A, e) = Le(A), 

L(vo)O(A, e) = L(vo)a(A), 

Lo(A, e) = Le(A). 

Proof. In view of Propositions 2.1, 2.2, and 4.6 it is sufficient to observe 
that if (D, v E Ql(D, e)) {(D, X E Ql(D, e))} is a well-connected I-dimensional 
e-symmetric {e-quadratic} complex then 

{

V E Ql(D, e) = Qa(Hl(D)), 

X E Ql(D,e) = 0, 

and the boundary O-dimensional e-symmetric {e-quadratic} Poincare 
complex o(D, v) {o(D, X)} corresponds to the standard hyperbolic e-sym
metric {e-quadratic} form He(Hl(D), v} {He(Hl(D})}. Moreover, if (D, v) is 
an even e-symmetric complex then (Hl(D), v} is an even e-symmetric form 
and He(Hl(D}, v} is isomorphic to the standard hyperbolic even e
symmetric form He(H1(D}}, with Q(vo)l(D, e} = Qe(Hl(D)). 

The Wilt group of e-symmetric {even e-symmetric, e-quadratic} formations 
over A Me(A) {M(vo)6(A),Me(A)} is the abelian group of equivalence 
classes of non-singular e-symmetric {even e-symmetric, e-quadratic} 
formations over A (M,SO; F,G) subject to the relation 

(M ro' F G) (M' (0" F' G') 'T' , ""'" 'T' , 

if there exists a stable isomorphism of the type 

[f]: (M, SO; F,G)EB(N,(J; H,K)EB(N,(J; K,L)EB(N',(J'; H',L') 

-+ (M', SO'; F',G'}EB(N',(J'; H',K'}EB(N',(J'; K',L')EB(N,(J; H,L), 

with addition and inverses by 

(M, SO; F,G}+(M',SO'; F',G') = (MEBM', SOEeSO'; FEeF', GEeG'), 

-(M,so; F,G) = (M, so; G,F). 
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There are defined forgetful maps 

Me(A) -+ M(vo)e(A); 

(M,t/J E Qe(M); F,G) ~ (M,t/J+et/J* E Q(vo)e(M); F,G), 

M(vo)e(A) -+ Me(A); 

(M, rp E Q(vo)e(M); F, G) ~ (M, rp E Qe(M); F, G). 

PROPOSITION 5.2. There are natural identifications of abelian groups 

( 

L1(A, e) = Me(A), 

L(VO)l(A, e) = M(vo)e(A), 

L 1(A, e) = ~(A). 

Proof. Let (O,rp), (O',rp'), (O",rp") be the i-dimensional e-symmetric 
Poincare complexes associated by Proposition 2.3 to non-singular e
symmetric formations (N, 8; H, K), (N, 8; K, L), (N, 8; H, L). We have to 
prove that 

(0, rp) E9 (0', q/) = (0", rp") E L1(A, e), 

corresponding to the generic sum formula in the Witt group 

(N,8; H,K)E9(N,8; K,L) = (N,8; H,L) E Me(A), 

in order to verify that there is a well-defined morphism of abelian groups 

Me(A) -+ L1(A,e); (N,8; H,K) ~ (O,rp). 

Choosing a chain homotopy inverse rpO-1: 0 -+ 0 1-* for rpo: 0 1-* -+ 0 
define a Z2-hypercohomology class 

f; = (rpO-1)%(rp) E Q1(01-*, e), 

so that there is defined a homotopy equivalence of i-dimensional e
symmetric Poincare complexes over A 

rpo: (Ol-*,f;) -+ (O,rp). 

(In fact (Ol-*,f;) corresponds to the formation (N, -8; K,H), which is 
thus stably isomorphic to (N,8; H,K) with an isomorphism 

(N,8; H,K)E9(He(K); K,K*) -+ (N, -8; K,H)E9(He(H); H,H*). 

Thus inverses in the Witt group are also given by 

-(N,8; H,K) = (N, -8; H,K) E Me(A).) 

Define a chain map (f f'): 0 1-* 61 0' -+ D by 

)1-*61 0': ... ) 0 ) KE9K ) H*$L* 

(f nl (i 1)1 
1 

D: ... ) 0 ,K ) 0 
5388.3.40 L 

) 0 

) 0 

): ... 

) ... 
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Now (0", rp") is homotopy equivalent to the I-dimensional e-symmetric 
Poincare cOfl?plex obtained from (01-*,~) EB (0', rp') by surgery on the 
connected 2-dimensional e-symmetric pair 

((/ I'): 01-* EB 0' -+ D, (0, ~ EB rp') E Q2((1 I'), e)), 
and so 

(O,rp)EB(O',rp') = (01-*,~)EB(0',rp') = (O",rp") E L1(A,e) 

by Proposition 4.I(i). 
The correspondence of Proposition 2.3 can also be used to define a 

morphism 
L1(A, e) -+ M8(A); (0, rp) I--? (N, (J; H, K) 

inverse to M8(A) -+ L1(A, e). This is well defined provided we can show 
that the non-singular e-symmetric formation (N, (J; H, K) associated to 
the boundary o(D, v) of a well-connected 2-dimensional e-symmetric 
complex (D, v E Q2(D, e)) represents 0 in the Witt group 

(N,(J; H,K) = 0 E M8(A) 

(applying Proposition 4.6). Without loss of generality, it may be assumed 
that D is a f.g. projective A-module chain complex of the type 

d 
D: ... ~O~Dz~Dl~O~ ... , 

so that a cycle v E HomZ[ZllJ(W,HomA (D*,D))2 is represented by A
module morphisms 

Vo: Dl -+ D1, v1: Dl -+ D2, v1: D2 -+ D1, V2: D2 -+ D2 

such that 
vo+ev: +dvl-vld* = 0: D1 -+ D1, 

VI +evt -V2d* = 0: D1 -+ D2, 

VI +evt -dv2 = 0: D2 -+ D1, 

vz-ev: = 0: D2 -+ D2• 

The boundary I-dimensional e-symmetric Poincare complex 8(D, v} 

corresponds to the non -singular e-symmetric formation 

(N,(J;H,K) = 

l 0 

-* I 
im 

v1 : Dl EB D2 -+ Dl Et> D2 EB Dl EB DZ 
-v: -d 

d* 0 
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The A-module automorphism 

l 0 0 0 

-* 1 0 0 
1= 

VI 
: N = Dl E!J D2 E!J Dl E!J D2 -+ Dl E!J D2 E!J Dl EB D2 -v: -d e v* 1 

d* 0 0 I 

defines an isomorphism of non-singular e-symmetric formations over A 

f: (N, 8; L, H) -+ (N, 8; L, K), 

where L = D2 $D1 £ N = Dl(f)D2(f)D1(f)D2. It follows that 

(N,8; H,K) = (N,8; H,L)(f) (N,8; L,K) 

= (N,8; H,L)(f) (N,8; L,H) = 0 E M6(A). 

Restricting attention to even e-symmetric complexes and formations we 
obtain in the same way inverse isomorphisms 

Similarly, the correspondence of Proposition 2.5 can be used to define an 
abelian group morphism 

L1(A, e) -+ M6(A); (0, ifJ) 1-+ (N, 8; H, K), 

with (N, 8; H, K) the non-singular e-quadratic formation associated to a 
I-dimensional e-quadratic Poincare complex (0, ifJ). In order to prove that 
this is an isomorphism we need the e-quadratic case of the following result. 
(The even e-symmetric case is required later on.) 

LEMMA. A I-dimensional even e-symmetric {c:-quadratic} Poincare 
complex over A (0, rp E Q<VO)l(O, c:)) {(O, ifJ E Ql(O, c:))} represents 0 in 
L<VO)l(A, e) {Ll(A, e)} if and only if it is homotopy equivalent to the boundary 
o(D, v) {o(D, X)} of a connected 2-dimensional even e-symmetric {c:-quadratic} 
complex over A (D, v E Q<vo)2(D, e)) {(D, X E Q2(D, c:))} such that 

Ho(D) = 0, H2(D) = O. 

Proof. In view of Propositions 3.4(iii) and 4.I(i) it is sufficient to observe 
that for any connected 2-dimensional even c:-symmetric {c:-quadratic} 
complex over A (D, v) {(D, X)} there is defined a connected 3-dimensional 
even c:-symmetric {c:-quadratic} pair over A 

( 
(f: D -+ E, (0, v) E ~<vo)3(f, c:)) 

(I: D -+ E, (0, X) E Q3(/, e)) 
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with 

d d d 
D: ... ) Da ) D2 ) Dl ) Do ) ... 

11 11 
d 

11 1 1 
E: ... ) Da ) D2 ) 0 ) 0 ) ... 

such that surgery on (I: D ~ E, (0, v)) {(I: D ~ E, (0, X))} results in a 
connected 2-dimensional even e-symmetric {e-quadratic} complex over A 
(D', v') {(D', X')} such that 

Ho(D') = 0, H2(D') = O. 

Every non-singular e-quadratic formation over A is isomorphic to one 
of the type (H6(F); F, G), and choosing a hessian for G we obtain a non
singular split e-quadratic formation over A (F, G), and hence (by Pro
position 2.5) a I-dimensional e-quadratic Poincare complex over A (0, I/J). 
It follows that L1(A, e) ~ M6(A) is onto. In order to show that this 
morphism is also one-one recall from Ranicki [13] the characterization of 
Me(A) as the abelian group with respect to the direct sum Et> of equivalence 
classes of non-singular e-quadratic formations over A (M, I/J; F, G) subject 
to the relation 

(M,I/J; F,G) ~ (M',I/J'; F',G') 

if there exists a stable isomorphism 

[I]: (M,I/J; F, G) Et> o(N, 8) ~ (M',I/J'; F',G')Et> o(N', 8') 

for some even (- e)-symmetric forms over A (N, 8), (N', 8') with o(N,8) 
defined by 

o(N,8) = (H6(N); N, {(x, 8(x)) E NEt> N* I x EN}). 

(Only the case where e = ± 1 E A was considered there, but the methods 
apply for all e E A.) Translating .the result of the lemma into the language 
of forms and formations (using Propositions 2.1 and 2.5) we have that a 
I-dimensional e-quadratic Poincare complex over A (0, t/J) represents 0 in 
Ll(A, e) if and only if the associated non-singular split e-quadratic forma
tion over A (F, G) is stably isomorphic to o(N, X) for some (- e)-quadratic 
form over A (N, X E Q-6(N)), where 

By Proposition 2.4 this occurs precisely when the underlying non
singular e-quadratic formation (He(F); F, G) is isomorphic to o(N,8) for 
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some even (- e)-symmetric form (N,8 E Q(vo)-e(N)). It follows that 
L1(A, e) -+ .il1e(A) is one-to-one as well as onto, and hence an isomorphism. 

The boundary of an (even) e-symmetric {e-quadratic, split e-quadratic} 
formation over A (M,SO; F,G) {(M,,,,; F,G), (F,G)} is the non-singular 
(even) e-symmetric {e-quadratic, e-quadratic} form over A 

( 

o(M,SO; F,G) = ((}J-/G,rpJ-/rp), 

o(M, "'; F, G) = ((}J-/G, Ijr-/",), 

o(F, G) = ((}J-/G, Ijr-/",) (= o(He(F); F, G)). 

The boundary of an e-symmetric {even e-symmetric, e-quadratic} form 
over A (M, SO E Qe(M)) {(M, '" + e"'* E Q(vo)e(M)), (M, '" E Qe(M))} is the 
non -singular even ( - e)-symmetric {( - e)-quadratic, split ( - e)-quadratic} 
formation over A 

8(M,rp) = (H-B(M); M, {(x, rp(x)) E M~M*I x E M}), 

o(M,"'+e"'*) = (H_e(M); M, {(x, (",+e",*)(X)) E M$M*I x EM}), 

a(M,.p) = (M, ((",+I • .p*),.p)M). 
An n-dimensional e-symmetric {e-quadratic} complex (0, SO E Qn(o, e)) 

{(O, '" E Qn(O, e))} is highly-connected if: 

Hr(O) = 0 for r < i, Hr(O) = 0 for r > n-i, 

with n = 2i or 2i+ 1, and for n = 2i+l also 

( 

Hi(SOO: 02i+l-* -+ 0) = 0, 

Hi((1 + ~)"'o: 02i+l-* -+ 0) = o. 
Then (0, SO) {(O, "')} is connected, and the boundary 0(0, SO) {0(0, "')} is a 
highly-connected (n-l)-dimensional e-symmetric {e-quadratic} Poincare 
complex. 

PROPOSITION 5.3. The homotopy equivalence classes of highly-connected 
n-dimensional e-symmetric {e-quadratic} complexe8 over A are in a natural 
one-to-one corre8pondence for n = 2i (re8pectively n = 2i + 1) with the iso
morphism classes of (- )ie-symmetric {( - )ie-quadratic} forms over A 
(respectively the stable isomorphism clasSe8 of (- )ie-symmetric {split 
(- )ie-quadratic} formations over A). Highly-connected Poincare complexes 
correspond to non-singular forms (respectively formations). The boundary 
operation on highly-connected complexe8 corresponds to the boundary 
operation on forms (respectively formations). 

Proof. The proof is immediate from Propositions 2.1, 2.3, and 2.5. 
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PROPOSITION 5.4. (i) A non-singular e-symmetric {even e-symmetric, 
e-quadratic} form over A represents 0 in the Witt group Le(A) = LO(A, e) 
{L(VO)8(A) = L(vo)O(A, e), Le(A) = Lo(A, e)} if and only if it is isomorphic 
to the boundary o(M,1l; F,G) {o(M,l/J+el/J*; F,G},o(M,l/J; F,G)} of an 
e-symmetric {even e-symmetric, e-quadratic} formation over A 

(

(M,1l E Q8(M); F, G), 

(M, l/J + el/J* E Q(vo)e(M); F, G), 

(M, l/J E Qe(M); F, G). 

(ii) A non-singular even e-symmetric {e-quiulratic} formation over A 
represents 0 in the Witt group M (vo)e(A) = L(VO)l(A, e) {Me(A) = L1(A, e)} 
if and only if it is stably isomorphic to the boundary o(M,1l) {o(M,l/J-el/J*)} 
of an (- e)-symmetric {even ( - e)-symmetric} form over A 

(M,r;; E Q-e(M)) {(M,l/J-el/J* E Q(vo)-e(M))}. 

Proof. (i) This is immediate from Proposition 2.2. 
(ii) This is immediate from Proposition 5.3 and the lemma used in the 

proof of Proposition 5.2. 

6. Lower L-theory 
There is algebraic evidence to suggest that the e-symmetric L-groups 

Ln(A, e} (n ~ O) and the e-quadratic L-groups Ln(A, e} (n ~ O) should be 
regarded as belonging to a single sequence of algebraic L-groups 
{Ln(A, e) In E Z} (to be defined below), with many of the formal properties 
of the sequence of algebraic K-groups {Kn(A) I n E Z}. For example, given 
a morphism of rings with involution f: A ~ B there are defined relative 
L-groups Ln(f, e) (n E Z) to fit into a change of rings exact sequence 

... ~ Ln(A,e) L Ln(B,e) ~ Ln(f,e) ~ Ln-l(A,e) ~ ... 
(n E Z); 

we shall deal with relative L-theory in a later part of the paper. At any 
rate, we shall find the lower L-groups useful in the remainder of this part. 
In § 8 below, we shall define products 

®: Lm(A,e)®zLn(B,1]) ~ Lm+n(A®zB, e®1]) (m, n E Z). 

Define the lower e-quadratic L-groups of A Ln(A,e} (n ~ -1) by 

Ln{A, e) = Ln+2i(A, ( ...;,.. )ie) (n + 2i ~ 0), 

extending the periodicity Ln(A, e) := Ln+2(A, - e) (n ~ 0) of Proposition 
4.3. 
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Define the lower e-symmetric L-groups of A Ln(A, e) (n ~ -1) by 

(

L(Vo)n+2(A, - e) (n = -1, - 2), 
Ln(A, e) = 

Ln(A, e) (n ~ - 3). 

Define the skew-suspension maps 

S: Ln(A, e) -? Ln+2(A, - e) (n ~ -1) 

to be the ± e-quadratic skew-suspension isomorphisms for n ~ - 5, and 
the forgetful maps if - 4 ~ n ~ - 1. 

PROPOSITION 6.1. If A, e are such that 

1l0(Z2; A,e) == {a E AI ea = a}/{b+e61 b EA} = 0 

then the skew-suspension maps 

S: Ln(A, - e) -? Ln+2(A, e) (n E Z) 

are isomorphisms. 

Proof. The case where n ~ - 5 has already been considered in Pro
position 4.3. For - 4 ~ n ~ - 1 note that since 1l0(Z2; A, e) = 0 the 
category of even e-symmetric (respectively even (- e)-symmetric) forms 
{formations} over A is equivalent to the category of e-symmetric (res
pectively (- e)-quadratic) forms {formations} over A. For n ~ 0 note that 
every (n + 2 )-dimensional e-symmetric complex over A (G, rp E Qn+2( G, e) ) 
is even, since 

vo(rp) = 0: Hn+2(G) -? b n+2(Z2; A, ( - )n+2e) = b O(Z2; A, e) = 0, 

and similarly for pairs. Therefore we can identify 

L<vo)n+2(A, e) = Ln+2(A, e) (n ~ 0), 

and the skew-suspension maps 

S: Ln(A, - e) -? Ln+2(A, e) (n ~ 0) 

are isomorphisms by Proposition 4.4. 

We shall need the following result in the computations of § 10. 

PROPOSITION 6.2. (i) The even e-symmetrization map of Witt groups 

1 + :t:: Lo(A, e) -? L<vo)O(A, e) 

is onto, with kernel generated by the non-singular e-quadratic forms over A 
of the type 

( A ~ A *. (: ~) E Q.(A ~ A *») 
with a,b E b 1(Z2; A,e) = {x E AI x+ei = O}/{y-eYl YEA}. 
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(ii) Let A = Z[7T] be the group ring of a group 7T, with involution by 
g = g-l (g E 7T). The skew-suspension maps 

s: Ln(Z[7T]) ~ Ln+2(Z[7T], -I) (n E Z) 

are isomorphisms, and the skew-symmetrization map 

1 + T_1 : LO(Z[7T] , -I) ~ LO(Z[7T], -I) = L-2(Z[7T]) 

is onto. If 7T has no 2-torsion there is defined a split short exact sequence 

o -~) Lo(Z, -I) -~) LO(Z[7T], -I) 

I+T_l 
--~) LO(Z[7T], -I) ) O. 

Proof. (i) The map Lo(A, e) ~ L(vo)O(A, t) is onto because every even 
e-symmetric form is the e-symmetrization of an e-quadratic form. An 
element of the kernel is represented by a non-singular e-quadratic form 
over A (M, I/J E Qe(M)) such that 

y,+.y,* = e ~): M = LfBL* -* M* = L*fBL 

for a f.g. free A-module L, and (M, t/J) can be expressed as a direct sum of 

forms like (AfBA*,(: ~)). 
(ii) This is immediate from Proposition 6.1 and (i), since 

!lO(Z2; Z[7T], -1) = 0 

for any group 7T, and !ll(Z2; Z[7T] , -1) = !ll(Z2; Z, -1) (= Z2) if 7T has no 

2-torsion. (Lo(Z, - 1 l = Z., generated by the Arf form 

(ZfB Z,(: ~) EQ_(ZfBZl).) 

7. Dedekind rings 
In a later part of this paper we shall describe the L-theory exact 

sequence of a localization map of rings with involution A ~ S-lA invert
ing a multiplicative subset S of A, 

... ~ Ln(A, e) ~ Ln(S-lA, e) ~ Ln(A, S, e) ~ Ln-l(A, e) ~ ... (n E Z), 

in which the relative terms L*(A, S, e) are cobordism groups of algebraic 
Poincare complexes over A which become contractible over S-lA. In 
particular, such a localization sequence can be used to study the L-groups 
of a Dedekind ring A. Here, we shall only develop the L-theory of 
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Dedekind rings sufficiently far to compute L*(Z) and L.(Z), by reducing 
the computation to the well-known stable classification of symmetric and 
quadratic forms on finitely generated abeIian groups. It should be noted 
that a Dedekind ring A is noetherian of global dimension 1, so that the 
skew-suspension maps 

S: Ln(A, e) --? Ln+2(A, - e) (n ~ 0) 

are isomorphisms (Proposition 4.5) and the e-symmetric L-groups are 
4-periodic 

Ln(A, e) = Ln+4(A, e) (n ~ 0). 

Let A be a Dedekind ring, with quotient field A = (A -{O})-lA. Let M 
be a f.g. torsion A-module, that is a f.g. A-module such that 

sM=O 

for some sEA -{O}. Define the Pontrjagin dual of M to be the f.g. 
torsion A-module 

with A acting by 

so that 
§MA = o. 

The natural A-module isomorphism 

M --? M""""; x ~ (f~ f(x)) 

will be used as an identification. Given another f.g. torsion A-module N 
define Pontrjagin duality for A-module morphisms 

HomA(M, N) --? HomA(NA
, MA); f ~ (fA: g ~ (x ~ g(f(x)))). 

Define the e-transposition involution 

~: HomA(M, MA) ~ HomA(M, MA); rp ~ (erpA: x ~ (y ~ e.rp(y)(x))). 

An e-symmetric linking form over A (M, A) is a f.g. torsion A-module M 
together with an element A E ker(l- ~: Hom.A(M, MA) -+ HomA(M, MA)), 
corresponding to an e-symmetric pairing 

A: M x M -+ AlA; (x, y) ~ A(X){Y). 

The Wu class of (M, A) is the quadratic function 

Vo(M,A): M -+ Hl(Z2; A,e); x ~ u-e1l 

(u EA, A(X)(X) = [u] E AlA}. 

An e-symmetric linking form (M, A) is even if vo(M, A) = 0, that is if each 
A(X)(X) E AI A (x E M) has a representative u E A such that eU = u. An 
e-quadratic linking form over A (M, A, JL) is an even e-symmetric linking 
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form (M, A) together with a function 

,.,,: M -+ A/{a+eal a E A} 
such that 

,.,,(x + y) -,.,,(x) -,.,,(y) = A(X)(Y) + eA(x)(y) E A/{a + eli I a EA}, 

[,.,,(x)] = A(X)(X) E AlA, 

,.,,(bx) = b,.,,(x)o E A/{a+eal a E A} (x,y E M, bE A). 

An e-symmetric {e-quadratic} linking form over A (M, A) {(M, A,,.,,)} is 
non-singular if A E HomA(M, MA) is an isomorphism. A non-singular 
e-symmetric {e-q~adratic} linking form over A (M, A) {(M, A, p.)} is hyper
bolic if there exists a submodule L of M such that 

and also 
A(L)(L) = 0 {A(L)(L) = 0, ,.,,(L) = O}, 

L = ker(M -+ LA; X 1--+ (y 1--+ A(X)(Y))). 

An isomorphism of e-symmetric {e-quadratic} linking forms over A 

{ 
f: (M, A) -+ (M',A') 

f: (M,A,P.) -+ (M',A',P.') 

is an A-module isomorphism f E HomA(M, M') such that 

A'(f(x))(f(y)) = A(X)(Y) E AI A (x, y E M) 

and in the e-quadratic case also 

p.'(f(x)) = ,.,,(x) E A/{a+eal a E A} (x EM). 

An e-symmetric form over A (M, rp E Q8(M)) is non-degenerate if 
rp E HomA(M,M*) is one-to-one. 

The boundary of a non-degenerate e-symmetric {even e-symmetric} form 
over A (M, rp E Q8(M)) {(M, rp E Q<vo)8(M))} is the non-singular even 
e-symmetric {e-quadratic} linking form over A 

defined by 

{ 
a(M, rp) = (aM, A) 

a(M, rp) = (oM, A,,.,,) 

aM = coker(rp: M -+ M*), 

A: aM -+ aM"'; [x] 1--+ ([y] 1--+ X~Z)), 

,.,,: aM -+ A/{a+elil a EA}; [y] 1--+ y(z) 
S 

(X,y E M*, Z E M, sEA -{O}, rp(z) = sy E M*). 



THE ALGEBRAIC THEORY OF SURGERY. I 171 

It can be shown that there are natural one-to-one correspondences of 
equivalence classes 

((even) e-symmetric {e-quadratic} linking forms over A) 

~ (connected I-dimensional (even) (-e)-symmetric 
{( - e)-quadratic} complexes over A which become 
contractible over A) 

~ ((even) ( - e)-symmetric {( - e)-quadratic} formations over A 
(M,~; F,G) {(M,.p; F,G)} such that FnG = {O} and 
Mj(F+G) is a torsion A-module) 

with non-singular linking forms corresponding to Poincare complexes 
and non -singular formations. The connection between linking forms and 
formations over a Dedekind ring A was first established (in the case 
where A = Z) by Wall [24]. The boundary operations 

0: (non-degenerate forms) ~ (non-singular linking forms) 

agree with the boundary operations of § 5 

0: (forms) ~ (non-singular formations). 

Given a finite-dimensional A-module chain complex 0 write Tr(O) 
(respectively Tr(O)) 

{Fr(O) = Hr(O)jTr(O) (respectively Fr(O) = Hr(O)jTr(o))} 

for the torsion sub module {torsion-free quotient module} of Hr(O) 
(respectively Hr(o)). The universal coefficient theorem gives natural 
A-module isomorphisms 

Tr(O) ~ Tr+1(O)'" = HomA(Tr+1(O), Aj A); X 1---+ (I f-+ I~)), 

Fr(O) ~ Fr(o)* = HomA(Fr(O), A); x f-+ (g 1---+ g(x)) 

(x E Or' Y E Or+v sEA -{O}, sx = dy, f E Or+1, g E or). 

PROPOSITION 7.1. (i) The even-dimensional e-symmetric {even e-sym
metric, e-quadratic} L-groups of a Dedekind ring A L2k(A, e) (k ~ 0) 
{L(VO)2k(A, e) (k = 0), L 2k(A, e) (k ~ O)} are isomorphic to the Witt groups 

L<_)i'(A) {L(VO)<_)iB(A), L<_)ie(A)) 

of non-singular (- )ke-symmetric {even (- )ke-symmetric, (- )ke-quadratic} 
forms over A. The cobordism class of a 2k-dimensional e-symmetric {even 
e-symmetric, e-quadratic} Poincare complex over A 

(0, rp E Q2k(O, e)) {(O, rp E Q(VO)2k(0, e)), (O,.p E Q2k(O, e))} 

corresponds to the Witt class of the non-singular (- )ke-symmetric {even 
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( - )ke-symmetric, (- )ke-quadratic} form over A 

(Fk(O), 'Po), 
( 

(Fk(C), 'Po: Fk(C) -? Fk(O) = Fk(C)*), 

(Fk(C), (1 + ~)tPo, vk(tP): Fk(C) -? HO(Z2; A, ( - )ke). 

(ii) The odd-dimensional e-symmetric {even e-symmetric, e-quadratic} 
L-groups of a Dedekind ring A L2k+I(A, e) (k ~ 0) {L(vo)2k+I(A, e) (k = 0), 
L 2k+1(A, e) (k ~ O)} are isomorphic to the abelian groups with respect to the 
direct sum ffi of the equivalence classes of non-singular (- )k+Ie~symmetric 

{even (- )k+Ie-symmetric, (- )k+Ie-quadratic} linking forms over A (M, A) 

{(M, A), (M, A, p.)} subject to the equivalence relation (M, A) f'W (M', A') 
{(M, A) f'W (M',N), (M,A,p,) f'W (M',N,p.')} if there exists an isomorphism 

( 

f: (M, A) ffi (M', -N)ffi(N,v) -? o(P, 8)ffi (N', v') 

f: (M,A)ffi (M', -A') -? o(P,8) 

f: (M, A, p,) ffi (M', -N, -p,') -? o(P,8) 

for some non-degenerate ( - )k+Ie-symmetric {( - )k+Ie-symmetric, even 
(- )k+Ie-symmetric} form over A (P,8), with (N, v), (N', v') 
hyperbolic ( - )k+Ie-symmetric linking forms over A. 

The cobordism class of a (2k+ I)-dimensional e-symmetric {even e-sym
metric, e-quadratic} Poincare complex over A 

(0, 'P E Q2k+I(0, e» {(O, 'P E Q(VO)2k+I(0, e», (0, tP E Q2k+1(O, e»} 

corresponds to the equivalence class of the non-singular (- )k+Ie-symmetric 
{even (- )k+le-symmetric, (- )k+Ie-quadratic} linking form over A 

(Tk+1(O), 1'0: Tk+I(O) -+ Tk(O) = Tk+I(O)A; [x] I--'>- ([y] I--'>- 'Po(:)(Z») ), 

(Tk+I(O), 'Po), 

(Tk+I(O), (1 + ~)tPo,p.(tPo): Tk+I(O) -+ A/{a+ (- )k+Iea I a EA}; 

[y] 1-+ (1 + ~~o(y)(Z») 

(x,y E Ok+I, Z E Ok, S E A-{O}, d*z = sy E Ok+1). 

It can be shown that a hyperbolic even e-symmetric re-quadratic} 
linking form over A is isomorphic to the boundary o(P, 8) {o(P, 8)} of a 
non-degenerate e-symmetric {even e-symmetric} form over A (P,8 E QIl(P» 
{(P,8 E Q(VO)Il(P»)}, so that hyperbolic linking forms represent 0 ih the 
Witt-type groups defined in Proposition 7.I(ii). 
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In particular, we have that the ring of integers Z is a Dedekind ring, 
with the rationals Q as quotient field. 

PROPOSITION 7.2. The symmetric and quadratic L-groups of Z are given by 

Z 0 

Ln(z) = Z2 ifnE 1 (n ~ 0), 

0 2 

0 3 

Z 0 

Ln(Z) = 
0 ifnE 1 (n E Z), 

Z2 2 

0 3 

Ln(Z) ~ ( 0 
ifn = -1, -2, 

Ln(Z) ifn ~ -3. 

The invariants are given by 

L4k(Z) ~ Z; (0, rp E Q4k(O» ~ signature (F2k(0), <Po), 

L4k+1(Z) ~ Z2; (0, rp E Q4k+1(0» ~ de Rhan1 invariant (T2k+1(0), 'Po), 

L4k(Z) ~ Z; (0, tP E Q4k(0» ~ l(signature (F2k(0), (1 + T)tPo», 

L"'+2(Z) ~ Z2; 

(0, tP E Q",+z(O» ~ Arf invariant (F2k+1(0), (1 + T)tPo, VZk+1(tP». 

8. Products 
We shall define now products in the L-groups 

Lm(A,e)®zLn(B,7]) ~ Lm+n(A®zB, e®7]) 
(m,n E Z). 

Lm(A,e)®zLn(B,7]) ~ Lm+n(A®zB, e®7]) 

For m = n = 0 these are the usual products in the Witt groups of forms, 
induced by the tensor products of forms. In § 8 of Part 11 we shall use the 
products to obtain a formula for the surgery obstruction of a cartesian 
product of normal maps. 

The tensor product of rings with involution A, B is a ring with involution 
A®zB, where 

(a®b) = a®o E A®zB (a E A, b E B). 

The tensor product of an A-module chain complex 0 and a B-module chain 
complex D is an A®zB-module chain complex O®zD, with A®zB 
acting by 



174 ANDREW RANICKI 

If B E A, TJ E B are central units such that € = B-1 E A, ij = TJ-1 E B then 
B ® TJ E A ®z B is a central unit such that 

(B®7J) = (B®7J)-1 E A®zB, 

and there is a natural identification of Z[Z2]-module chain complexes 

(O'®..4. O)®z (JJl®BD) = (O®zD)'®..4.®zB (O®zD) 

with' T E Z2 acting by ~ ® T" on (0' ®..4. 0) ®z (JJl ® B D) and by ~®'1 on 
(O®zD)'®..4.®zB(O®zD). Let W be a complete resolution for Z2 obtained 
from a f.g. free Z[Z2]-module resolution of Z 

d d e 
W:···~~~~~Wo~Z~O, 

with 
d d e*e d* d* W: ... ~ ~~ ~~ Wo~ WO~ W1~ W2~ ... 

(Ws = W: = HomZ[Zs](w" Z[Z2]))' 

As in §4 of Chapter XII of Cartan and Eilenberg [4] it is possible to 
construct a diagonal chain map 

~: Jt -+ Jt ®z Jt 
(allowing infinite chains in W ®z W), and so use the restriction 

( 

d: W~ W®zW 

d: W-* ~ W®z W-* 
to define a chain map 

®: HomZlZt1( W, 0' ®..4. 0) ®z HomZ[ZtJ( W, JJl ® BD) 

~ HomZ[Zt](W, (O®zD)'®..4.®zB(O®zD)); q;®8 ~ (q;®8)d 
®: HomZ(Zt)( W, C' ® od C) ®z ( W ®Z[ZsJ (D' ® BD» 

~ W®Z{Zt]«O®zD)'®..4.®zB(O®zD)); q;®.p ~ (q;®.p)tl, 

identifying HomZlZt](W-*, -) = (W ®Z£ZsJ-)' The induced product in the 
Q-groups 

( 

®: Qm(o, B) ®zQn(D, TJ) ~ Qm+n(O®zD, B®TJ) 

®: Qm(o, B)®zQn(D, B) ~ Qm+n(O®zD, B®TJ) 

is just the cup {cap} product 

u: (Z2-hypercohomology) ® (Z2-hypercohomology) 

~ (Z2-hypercohomology), 

n: (Z2-hypercohomology) ® (Z2-hyperhomology) 

~ (Z2-hyperhomology). 
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In particular, for the standard Z[Z2]-resolution W of Z 

Ifs = Z[Z2]' d: Ifs -+ Ifs-I; Is ~ l S- 1 + ( - )STs_1 (s ~ 0) 

we can take 

00 00 

L\: ~ -+ (Tt ®z lfl)s = ~ Jt,.®z "Jf:-r; Is ~ ~ lr® T~-r (s E Z), 
r--oo r .. -oo 

giving explicit formulae 

00 

= ~ (O'®..4. O)m+r®z (D'®BD)n+s-r 
r--oo 

00 

(rp®t/J)s = ~ (- )(m+r)srpr® T~t/Js+r E «C®zD)'®..4.®zB(C®zD))m+n-s 
r-O 

00 

= ~ (O'®..4. O)m+r®z (D'®BD)n-s-r 
r=--oo 

PROPOSITION 8.1. There are defined natural products in the symmetric and 
quadratic L-groups 

®: Lm(A.,e)®zLn(B,7]) -+ Lm+n(A.®zB, e®7]), 

®: Lm(A.,e)®zLn(B,7]) -+ Lm+n(A.®zB, e®7]), 

®: Lm(A.,e)®zLn(B,7]) -+ Lm+n(.A.®zB, e®7]), 

®: L m(A.,e)®zLn(B,7]) -+ Lm+n(.A.®zB, e®7]), 

for m, n E Z, which are related to each other by a commutative diagram 

l®(I+Tl1 ) 

Lm(.A., e) ®zLn(B, 7]) ) Lm(.A., e) ®zLn(B, 7]) 

(l+P,,)®11 ~ !® 

Lm(.A., e) ®zLn(B, 7]) ® ) Lm+n(.A. ®zB, e® 7]) 

1 ® (1 +T.;i 11 +P"®. 
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Proof. Consider first the case where m, n ~ O. 
The product of an m-dimensional e-symmetric Poincare complex over A 

(0, rp E Qm(o, e)) and an n-dimensional 1]-symmetric Poincare complex 
over B (D, 9 E Qn(D, 1])) is an (m + n )-dimensional (e ® 1] )-symmetric 
Poincare complex over A ®z B 

(0, rp) ® (D,9) = (O®zD, rp®9 EQm+n(O®zD, e®1])). 

If (I: D ~ E, (89, 9) E Qn+1(/, 1])) is an (n + I)-dimensional 1]-symmetric 
Poincare pair over B then the product 

(0, rp) ® (/: D ~ E, (89,9)) 

= (1 ®/: O®zD ~.O®zE, (rp® 89, rp® 9) E Qm+n+1(I ®/, e®1])) 

is an (m+n+ I)-dimensional (e®1])-symmetric Poincare pair over A ®zB. 
Similarly for null-cobordisms of (0, rp), and also for products of other types 
of algebraic Poincare complexes. Thus the Q-group products pass to the 
L-groups. ~he above diagram actually commutes on the Q~group level. 

The product of an m-dimensional even e-symmetric Poincare complex 
over A (0, rp E Q< vo)m( 0, e)) and an n-dimensional 1]-symmetric Poincare 
complex over B (D, 9 E Qn(D, 7])) is an (m + n )-dimensional even (e ® 1])
symmetric Poincare complex over A ®zB (0, rp)® (D, 8). We thus obtain 
products 

®: L<vo)m(A,e)®zLn(B,7]) ~ L<vo)m+n(A®zB, e®7]) (m,n ~ 0). 

Now Proposition 4.4 gives skew-suspension isomorphisms 

S: Lm-2(A, - e) ~ L<vo)m(A, e), 

S: Lm+n-2(A®zB, -e®7]) ~ L<vo)m+n(A®zB, e®7]), 

so that we can express these products as 

®: Lm-2(A, -e)®zLn(B,'Y}) ~ Lm+n-2(A®zB, -e®'Y}) (m,n ~ 0) 

(agreeing with the products defined previously for m- 2 ~ 0). 
We shall define the remaining products using the identifications of § 5 

of low-dimensional L-groups with Witt groups of forms and formations. 
Define the products 

®: L-2(A,e)®zL-2(B,7]) ~ L-4(A®zB, e®'T}) = Lo(A®zB, e®'T}); 

(M, t/J - et/J* E Q<vo)-e(M)) ®z (N, X - 'Y}X* E Q<vo)-f/(N)) 

~ (M®zN,.p® (X-1]X*) = (t/J-e.p*)®x EQe®f/(M®zN)) 

(.p E Q-e(M), X E Q_f/(N)), 

®: L-l(A, e) ®zL-2(B, 'Y}) ~ L-3(A®zB, e®'Y}) = Ll(A®zB, e®'Y}); 

(M, t/J - et/J*; F, G) ® (N, X - 'Y}X*) 

~ (M®zN, t/J®(X-'T}X*); F®zN, G®zN). 
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It now only remains to define the product 

®: L-l(A, e) ®ZL-l(B, 7]) ~ L-2(A®zB, e®7]). 

Given a non-singular even e-symmetric formation over A (HB(F); F, G) 
write the inclusion of the lagrangian as a morphism of even e-symmetric 
forms 

(:): (G. 0) -+ H'(F) = (F$F*. e :) E Q(VO>'(F$F*)). 

and let (0, rp E Q(vo)1(O, e)) be the associated I-dimensional even e-sym
metric Poincare complex over A (obtained as in Proposition 2.3). Given 
also a non-singular even 7]-symmetric formation over B (HfJ(I); 1, J) write 
the inclusion of the lagrangian as 

(~: (J.O) -+ Hv(I) = (I Ell 1*. (: :) E Q(vo)'(I Ell 1*)). 

and let (D, (J E Q(vo)l(D, 7])) be the associated I-dimensional even 7]
symmetric Poincare complex over B. The product 

(0, rp) ® (D,(J) = (O®zD, rp®(J EQ(VO)2(0®zD, e®7])) 

is a 2-dimensional even (e ® 7] )-symmetric Poincare complex over A ®z B 
on which it is possible to do surgery to kill H2(0 ®zD), obtaining the skew
suspension S(E, JI) of a O-dimensional even - (e® 7])-symmetric Poincare 
complex over A ®zB (E, JI E Q(vo)O(E, - (e® 7]))). The complex (E, JI) 
corresponds to the non-singular even - (e®7])-symmetric form over 
A ®zB, 

(HB(F); F, G) ® (HfJ(I); 1, J) 

= (COke{ (:::): G®zJ ..... (F*®zJ)$ (G®zI*)$ (F®ZI} 

[ 

0 er®fJ* 
-"*®7]fJ 0 

-I®'\ ,,®I 
This defines a product 

®: L(VO)l(A, e) ®ZL(VO)l(B, 7]) ~ L(vo)O(A®zB, -(e®7])), 

as required. 
5388.3.40 1\:1 
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PROPOSITION 8.2. The e-Bymmetrization map 

1 + T.s: L,lA, e) ~ Ln(A, e) (n E Z) 

iB an iBomorphiBm modulo 8-torBion. 

Proof. Product with the generator Ea = 1 E Lo(Z) = Z (Proposition 7.2) 
defines morphisms 

Ea®-: Ln(A,e) ~ Ln(A, e) (n E Z) 

such that both the composites with (1 + T.s) are multiplication by 8, since 
(1 +T)Ea = 8 E LO(Z) = Z. 

For a commutative ring A (with any involution) we can compose the 
products of Proposition 8.1 with the morphisms of L-groups induced by 
the morphism of rings with involution 

A®zA ~ A; a®b ~ ab 

to define internal products in the symmetric and quadratic L-groups 

Lm(A)®zLn(A) ~ Lm+n(A), 

Lm(A) ®zLn(A) ~ Lm+n(A), 

Lm(A) ®zLn(A) ~ Lm+n(A) (m, n E Z). 

These make L*(A) into a graded ring with unit 

1 = (A,A ~ A*; a ~ (b ~ ba)) E LO(A), 

and L. (A) into a graded L*(A )-algebra. (The products in L*(A) and L. (A) 
are such that xy = (- )Ix/lfllyx, where I I denotes the grading.) 

The suspension and skew-suspension operations S, S defined on the 
Q-groups in § 1 above can be expressed as products with universal classes 
defined over Z. Specifically, define Z2-hypercohomology classes tp E Ql(SZ), 
fJ E Q2(SZ, -1) by 

tpl = 1: SZl = Z ~ SZl = Z, 

fJo = 1: SZl = Z ~ SZl = Z. 

The suspension of an A-module chain complex 0 can be expressed as 

SO = SZ ®z 0, 
and 

{ 

S = (SZ,tp)®-: Qn(O,e) ~Qn+1(SO,e), 

S = (SZ, <p) ® - : Qn(O, e) ~ Qn+l(SO, e), 

{ 
S = (SZ, fJ) ® - : Qn(O, e) ~ Qn+2(SO, - e), 

B = (SZ,~)®- : Qn(O,e) ~ Qn+s(SO, -e). 
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9. Change of X-theory 
We shall now consider the L-groups L~(A, e) {Lf(A, e)} of cobordism 

classes of e-symmetric {e-quadratic} Poincare complexes over A (0, rp) 
{(O,.p)} with algebraic X-theory (such as the projective class [0] E Eo(A) 
or the torsion T(rpO: 011,-* ~ 0) E E1(A» restricted to lie in a prescribed 
subgroup X of .Km(A) (m = 0,1). 

Let X be a subgroup of the reduced projective class {torsion} group 
.Ko(A) = coker(Ko(Z) ~ Ko(A)) {.K1(A) = coker(Kl(Z) ~ K1(A»)} which is 
setwise invariant under the duality involution 

( 

*: Eo(A) ~ .Ko(A); [P] ~ [P*], 

*: El(A) ~ E1(A); T(f: P ~ Q) ~ T(f*: Q* ~ P*), 

denoting by [P] {T(f: P 4- Q)} the projective class {torsion} of a f.g. 
projective A-module P {an isomorphism / E Hom,A(P, Q) of based f.g. free 
A-modules P,Q}. In dealing with based A-modules it is convenient (but 
not necessary, cf. Ranicki [15]) to assume that A is such that f.g. free 
A-modules have a well-defined rank. Also, we shall assume that 
T(e: A -+ A) EX £ .K1(A). 

The intermediate e-symmetric {e-quadratic} L-groups 0/ A L~(A, e) 
{L~(A, e)}, for n E Z, are defined as follows. For n ~ 0, let L~(A, e) 
{L:(A, e)} be the cobordism group of n-dimensional e-symmetric 
{e-quadratic} Poincare complexes over A (O,rp E Qn(O,e)) {(O,t/J E Qn(O,e»)} 
with K-theory in X, meaning: 

in the case where X ~ .Ko(A), 0 is a finite chain complex of f.g. pro
jective A-modules such that 

in the case where X ~ .K1(A), 0 is a finite chain complex of based f.g. 
free A-modules such that 

( 

T(rpO: 011,-* 4- 0) E X ~ .K1(A), 

T((1 + ~)t/Jo: 011,-* ~ 0) E X S; .K1(A). 

Working exactly as in Proposition 4.3 we can show that the skew
suspension maps in the intermediate e-quadratic L-groups 

s: ~(A,e) 4- Q+2(A, -e) (n ~ 0) 

are isomorphisms, allowing the definition 

L:(A, e) = L:+2,(A, (- lie) (n ~ -1, n + 2i ~ 0). 

Furthermore, define L<vo>~(A, e) (n = 0,1) to be the cobordism group of 
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n-dimensional even e-symmetric Poincare complexes over A with K -theory 
in X. Define L~(A, e) (n ~ -1) by 

{ 
L(vo)l+2(A, - e) (n = -1, - 2), 

L~(A, e) = 
L:(A, e) (n ~ - 3). 

All the results of §§ 1-8 above have obvious intermediate L-group 
analogues. In particular, L~(A, e) {L(vo)~(A, e), Lf(A, e)} is the Witt 
group of non-singular e-symmetric {even e-symmetric, e-quadratic} forms 
over A (M, rp E Q6(M)) {(M, rp E Q(vo)6(M)), (M,.p E Qe(M))} with K-theory 
in X (meaning [M] E X if X ~ .Ko(A), and M based, T(rp: M -+ M*) E X if 
X~.Kl(A) with rp=.p+e.p* in the e-quadratic case), and L~(A,e) 
{L(vo)~(A,e),Lf(A,e)} is the Witt group of non-singular e-symmetric 
{even e-symmetric, e-quadratic} formations over A 

(

(M, rp E Qe(M); F, G) 

(M, rp E Q(vo)e(M); F, G) 

(M,.p E QAM); F,G) 

with K-theory in X (meaning [G] - [F*] E X if X ~ .Ko(A), and F, G based, 

T(g-l f: F ffi F* -+ G ffi G*) E X if X ~ .K1(A) 

with f: F ffi F* -+ M, g: G tfJ G* -+ M any of the A-module isomorphisms 
extending the inclusions F -+ M, G -+ M given by Proposition 2.2). 

The L-groups considered so far have been the case where X = .Ko(A), 

{ 
L'n(A, e) = LRot.4) (A , e) 

_ (n E Z). 
Ln(A, e) = L!o(A)(A, e) 

The intermediate symmetric {quadratic} L-groups L~(A, 1) {L:(A, I)} 
will be denoted by L~(A) {L:(A)}, for n E Z. 

The groups Un(A), Vn(A), ~(A) (n(mod 4)) of Ranicki [13] can be 
identified with the appropriate intermediate quadratic L-groups 

( 

Un(A) = ~otA)(A) = Ln(A), 

Vn{A) = L~)S~OCA)(A) = ~1c..4)(A), 

Wn(A) = L~}SKl(.A)(A). 

~Iore generally, the intermediate quadratic L-groups L: (A) can be 
identified with the groups U:(A) (X ~ .Ko(A)) and V:(A) (X ~ .K1(A)) 
defined for n (mod 4) by Ranicki in [15] using ± quadratic forms and 
formations over A with K-theory in X. For a group ring A = Z[-7T] with 
the w-twisted involution g = W(g)g-l (g E 7T) for some group morphism 
w: 7T -+ Z2 there are thus obtained all the various geometric surgery 



THE ALGEBRAIC THEORY OF SURGERY. I 181 

obstruction groups. If X ~.KO(Z[17]) {X ~ .K1(Z[17])} is a *-invariant 
subgroup then L~(Z[17]) is the obstruction group for framed surgery on 
normal maps from compact manifolds to finitely-doJllinated {finite} 
geom~tric Poincare complexes with fundamental group 17, with all the Wall 
finiteness obstructions {Whitehead torsions} restricted to lie in 

X S; .KO(Z[17]) {Xj17 S; Wh(17) = K1(Z[17 ])j{17}}. 

(We recall that the finiteness obstruction of a finitely-dominated geometric 
Poincare complex X is the projective class [C(X)] E K O(Z[7T1(X)]) of the chain 
complex C(X) of the universal cover X, and that the torsion of a finite geo
metric Poincare complex X is T([X] n - : c(X)n-* -7 C(X)) E Wh(171(X)).) 
In particular, we have the surgery obstruction groups 

( 

L~(17, w) = L~}SK1(ZhT])(Z[17]) 

L~(17, w) = ~(Z[17]) 

~(7T, w) = Un (Z[7T]) 

considered by Wall [25] {Shaneson [21], Maumary [8], Pedersen and Ranicki 
[30]} (see also the discussion in [25, § 17D]). Intermediate surgery obstruc
tion groups L:(Z[17]) (X S; .K1(Z[7T])) were first considered by Cappell [3]. 

We shall write L~(A, e) {L:(A, en as U~(A, e) {U;(A, en for X ~ Ko(A), 
and as V~(A, e) {V:(A, e)} for X s i?l(A), with 

_ _ (n E Z), 
( 

Un(A, e) = U~o(A)(A, e), (vn(A, e) = Vi\tA)(A, e) 

Un(A, e) = U~o('.4.)(A, e), Vn(A, e) = V~l(A)(A, e) 

extending the notation of Ranicki [13, 15]. For e = 1 E A the notation is 
contracted in the usual fashion, for example, Un(A, 1) = un(A). Similarly 
for the intermediate even e-symmetric L-groups L(vo)l(A, e) (n = 0,1). 

Mishchenko [10] considered only symmetric Poincare complexes over A 
(C, sP) in which C is a finite f.g. free A-module chain complex, so that the 
groups !In(A) defined there are precisely vn(A) (n ~ 0). The groups 
!In(A) = vn(A) differ from Ln(A) = un(A) in at most 2-torsion-this is 
clear from the following exact sequence, since the reduced Tate Z2-
cohomology groups fl n(Z2; G) are of exponent 2. 

PROPOSITION 9.1. The intermediate e-symmetric {e-quadratic} L-groups 
of A associated to *-invariant subgroups X ~ Y ~ Km(A) (m = 0 or 1) are 
related by a long exact sequence of abelian groups 

... -7 Ll(A, e) -7 L~(A, e) -7 fln(Z2; Y jX) 

-7 L~-l(A, e) -7 L~-l(A, e) -7 ... 

... -7 L:(A,e) -7 LK(A,e) -7 fln(Z2; YjX) 
(n E Z) 

-7 ~_l(A, e) -7 LK_l(A, e) -7 ... 
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involving the reduced Tale Z2-cohomology groups of the involution on Y j X 

l1n(Z2; YjX) = {g E YjXI g* = (- )ng}j{h+( - )nh*1 hE YjX}. 

Proof. The exact sequences in the e-quadratic case have already been 
obtained, in Theorems 2.3 and 3.3 of Ranicki [13]--only e = ± 1 E A was 
considered there, but the methods apply for all e E A. The first such 
sequence was the Rothenberg exact sequence obtained by Shaneson [21] 

... -+ ~(1T) -+ L~(1T) -+ l1n(Z2; Wh(1T)) -+ L~_I(1T) -+ L~_I(1T) -+ .... 

The e-symmetric case for m = 0, n ~ 0 proceeds as follows. 
Given a f.g. projective A-module P define an (n+ I)-dimensional 

e-symmetric Poincare pair over A, 

(f(P, n): O(P, n) -+ SO(P, n), (S1(P, n), rp(P, n)) E Qn+1(f(p, n), e)), 

with projective classes 
00 

[O(P, n)] = ~ (- )'[O(P, n),] = ( - )n-i([p] + ( - )n[p*]) E ilo(A), 
,--00 

00 

[SO(P, n)] = ~ (- )'[SO(P, n),] = (- )n-i[p] E ilo(A) (n = 2i or 2i + 1) 

as follows: 
if n = 2i 

f(P,2i) = (1 0): O(P, 2i)i = P (f) p* -+ SO(P,2i), = P, 

'I'(P, 2i)o = G (-0)''): O(P, 2i)' = P* ffJ P ->- O(P, 2i), = P ffJ P*, 

O(P, 2i), = SO(P, 2i), = 0 (r :F i), S1(P,2i) = 0; 

if n = 2i+ 1 

( 

p* if r = i, 

o (P, 2i + 1), = P if r = i + 1, 

o ifr:F i,i+ 1, 

{ 
P if r = i+ 1, 

SO(P, 2i + 1), = 
o ifr =/: i+l, 

d = 0: O(P, 2i + l)i+1 = P -+ O(P, 2i + l)i = P*, Srp(P, 2i + 1) = 0, 

{

I: O(P, 2i+ l)i = P -+ O(P, 2i+ l)i+1 = P, 
rp(P, 2i + 1)0 = 

e: O(P, 2i+ I)i+l = p* -+ O(P, 2i+ l)i = P*, 

f(P, 2i + 1) = 1: O(P, 2i + l)i+l = P -+ SO(P, 2i + 1)£+1 = P. 

Define abelian group morphisms 

f3: L~(A,e) -+ l1n (Z2; YjX); (0,1) 1--+ [0] 

y: L~(A, e) -+ L'f(A, e); (0, rp) 1--+ (0, tp) (n ~ 0). 

0: l1n+1(Z2; YjX) -+ L~(A,e); [P] 1--+ (O(P,n),rp(P,n)) 
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The composite 

j{n+1(Z2; Y/X) ~ L~(A,e) ~ L~(A,e) (I) 

is 0, since (f(P, n): C(P, n) ~ SC(P, n), (Sr;(P, n), r;(P, n))) is a null
cobordism of yo[P] = (C(P, n), r;(P, n)) with 

[SO(P, n)] = (- )n-i[p] E Y s; 1?o(A). 

Given (C, r;) E kery there exists a null-cobordism (f: C ~ SC, (Sr;, ~)) with 
[SO] E Y s; 1?o(A), and 

(C,r;) = (- )n-io[SC] E im(o: nn+1(Z2; Y/X) ~ L~(A,e)) 

so that (I) is exact. 
The composite 

L~(A,e) ~ L~(A,e) L nn(Z2; Y/X) (II) 

is 0. Given (C, r;) E ker fJ there exists a f.g. projective A-module P such 
that 

and 
(0, SO) = (0, SO) EEl o[P] E im(y: L~(A, e) ~ L~(A, e)), 

so that (II) is exact. 
The composite 

L~+l(A,e) L jJn+1(Z2; Y/X) ~ L~(A,e) (Ill) 

is 0, for if (C, r;) E L~+l(A, e) and P is a f.g. projective A-module such that 
[P] = (- )n-i+1[C] E 1?o(A) then 

(f(P, n) EEl 0: O(P, n) ~ SO(P, n) EEl C, (SSO(P, n) EEl SO, SO(P, n))) 

is a null-cobordism of o{1(C, r;) = o[P] = (C(P, n), SO(P, n)) such that 
[SC(P,n)E9C] EX£; Ko(A). Given [P] E kero let 

(g: C(P, n) ~ D, (8, r;(P, n)) E Qn+1(g, e)) 

be a null-cobordism of o[P] = (O(P, n), SO(P, n)) such that [D] E X S; .Ko(A). 
The union 

(f(P, n): O(P, n) ~ SC(P, n), (SSO(P, n), r;(P, n))) 

u (g: O(P, n) ~ D, (8, SO(P, n))) = (D',8' E Qn+1(D', e)) 

is an (n+ I)-dimensional e-symmetric Poincare complex over A such that 

[D'] = [D]-[O(P,n)]+[SO(P,n)] = [P] EJ)n+1(Z2; Y/X). 
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Thus [P] = f3(D',8') E im(f3: L~+l(A,e) -+ b n+l(Z2; Y/X)), and (Ill) is 
exact. 

The cases where m = 1, n ~ -1 may be treated similarly. 

Define the stable e-symmetric {e-quadratic} unitary group of A to be the 
direct limit 

( 

~*(A, e) = L:~ Aut Hs(Am) 

~*(A,e) = LimAutHs(Am) 
~ 

m 

of the automorphism groups of the standard hyperbolic even e-symmetric 
{ e-quadratic} forms over A, 

H'(Am) = (Amal(Am)*, e ~) E Q(VO>'(Alli(!) (Am).») 

(m ~ 1), 

the limit being taken with respect to the inclusions 

( 

AutHs(Am) -+ Aut He(Am+l) ; u ~ uEf) 1 
(m ~ I). 

Aut Hs(Am) -+ Aut Hs(Am+l); u ~ uEf) 1 

(The hyperbolic forms {Hs(Am) I m ~ I} {{Hs(Am) I m ~ In are a cofinal 
family of objects in the category of non-singular even e-symmetric 
{e-quadratic} forms over A.} 

Define the elementary e-symmetric {e-quadratic} unitary group of A 
tffOll*(A, e) {tffOll.(A, en to be the subgroup of OlI*(A, e) {OlI.(A, en generated 
by the elements of type 

(i) (0:0 0), for any automorphism 0: E AutA(Am, Am), 
0:*-1 

(ii) (: ~), for any (- e)-symmetric {even (- e)-symmetric} form over 

A (Am, q; E Q-s(Am)) {(Am, q; E Q(vo)-s(Am))}, 

(ill) CTm = 'Ym, where (Am,Ym E Q+(Am)) IS the ~on-singular 
( 

0 -1) 
EYm 0 

symmetric form given by 

Ym: Am -+ (Am)*; (aI' a2, ... , am) ~ ((b1 , b2 , ••• , bm) ~ ~ b,/ii)' 
1.-1 
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Given a *-invariant subgroup X £ Kl(A) define a subgroup of 
o/J*(A, e) {o/J*(A, e)} 

( 

o/J~(A, e) = ker(1': o/J*(A, e) -7 K1(A)/X), 

OJIf(A, e) = ker(7: O)J*(A, e) ~ 1l1(A)/X), 

and let 8o/J1-(A, e) {8o/J:(A, e)} be the subgroup of cf~*(A, e) {8~*(A, e)} 
obtained by restricting the generators of type (i) to be such that 
1'(ex) E X s K1(A). 

PROPOSITION 9.2. Let X S .K1(A) be a *-invariant subgroup. 
(i) The elementary subgroup COU~(A, e) {COUf(A, e)} contains the com

mutator subgroup of the stable unitary group 

[OU~(A, e), OU~(A, e)] ([OUf(A, e), OUf(A, e)]}. 

(ii) There are natural identifications of abelian groups 

{ 

V <vo>~(A, e) = ~~(A, e)/8~~(A, e), 

Vf(A, e) = OUf(A, e)/COUI(A, e). 

(iii) Every element of Co/J~(A, e) {tCouI(A, e)} is represented by an auto
morphism u: H8(Am) ~ HB(Am) {u: ~(Am) -+ H8(Am)} for some m ~ 0 such 
that, for some n ~ 0, 

uE£) an = (ex 0 )(1 8*)(1 0)(1 8'*) 
o ex*-1 0 1 rp 1 0 1 

for some automorphism ex E HOID.A(AP, Ap) with 7(ex) EX £ 1l1(A), and some 
(- e)-symmetric {even (- e)-symmetric} forms over A «AP)*,8), (AP, rp), 
«AP)*,8') (p = m+n). 

Proof. A unitary automorphism 

u: H8(Am) -+ He(Am) {u: H8(Am) -+ H8(Am)} 

such that 1'(U) E X determines a non-singular even e-symmetric {e
quadratic} formation over A (H8(Am); Am, u(Am» {(He(Am); Am, u(Am))} 
with K -theory in X. The based analogue of Proposition 5.2 identifies 
V <vo>~(A, e) {Vf(A, en with the Witt group of non-singular even 
e-symmetric {e-quadratic} formations over A with K-theory in X. Given 

. u~tary automorphisms u, v: H8(Am) -+ He(Am) there is defined an iso
morphism of formations 

u: (H8(A m); A In, v(A m)) -+ (H8(A m); u(A m), uv(A m)). 
Thus 

(H8(Am); Am, uv(Am» = (H8(Am); Am, u(Am» EEl (H8(Am); u(Am), uv(Am)) 

= (HB(Am); Am, u(Am)) $ (HB(Am); Am,v(Am)) 

E V <vo>~(A, e), 
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and we have a well-defined group morphism 

f·: OlI~(A,e) ~ v<vo>~(A,e); 
(u: He(A m) ~ He(A m)) ~ (He(A m); A m, u(A m)). 

Similarly, there is a well-defined group morphism 

f.: OlIf(A, e) ~ Vf(A, e); 

(u: He(Am) ~ He(Am)) ~ (H8(Am); Am,u(Am)). 

By Proposition 2.2 every non-singular even e-symmetric {e-quadratic} 
formation over A with X-theory in X is isomorphic to (He(Am); Am, u(Am)) 
{(He(Am); Am, u(Am))}, for some unitary automorphism u, so that f* {!.} 
is onto. The given generators of COlI~(A, e) {COlIf(A, e)} are sent to 0 by 
f· {!.}, so that COlI~(A, e) £; ker(f*) {COlIf(A, e) £; ker(!.)}. The based 
analogue of Proposition 5.4(ii) characterizes the unitary automorphisms 

u: He(Am) ~ He(Am) {u: He(Am) ~ He(Am)} 

such that U E ker(f·) {u E ker(f.)} as precisely those for which the forma
tion (He(Am); Am, u(Am)) ((He(Am); Am, u(Am))} is stably isomorphic to the 
boundary o(Am',cp} of a (-e}-symmetric {even (-e}-symmetric} form 
over A (Am', cp), or equivalently those for which U$ Un for some n ~ 0 
admits a product decomposition as in (ill). Such unitary automorphisms 
belong to <fOlll-(A, e) {COlIf(A, e)}, and so 

{ 
[OU~(A, e), OlI~(A, e)] £ ker(!·) = COU~HA, e), 

[OUf(A, e), OlIf(A, e)] £ ker(!*) = COlIf(A, e). 

The original definition of the odd-dimensional surgery obstruction 
groups of Wall [25] was given by 

11i+1 (1T, w) = OU~17)(Z[1T], ( - )i)/CtfI~17}(Z[1T], ( - )i) (i (mod 2)), 

using the w-twiste~ involution on the group ring Z[1T]. The inclusion 
[tfI*,tf/*] £ COlI* {[OIl., 011.] £ COlI.} was first obtained by Wasserstein [28] 
{Wall [25] } using explicit matrix identities. (The quotient OIl· I[ COlI * , <f0ll*] 
{tfI.I[COlI., COlI.]} is generated by 0'1' so has order at most 2.) The 'Bruhat 
decomposition' of COlI:II given by Proposition 9.2(ill) is the improvement 
due to Wall [27] on the 'normal form' of Sharpe [22]. The extra structure 
carried by a 'split unitary automorphism' u: He(F} ~ He(F) in the sense 
of Sharpe [22] corresponds in our terminology to a choice of hessian 
() E Q-e(G) for the lagrangian G = u(F) in the non-singular e-quadratic 
formation (He(F); F, G), and so determines a split e-quadratic formation 
(F, G). 
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10. Laurent extensions 
The Laurent extension A[z, Z-l] of a ring with involution A is the ring 

of finite polynomials ~i=--«Ja;z; (a; E A) in a central invertible indeter
minate z over A with involution by z = Z-l, that is 

-: A[Z,Z-l] ~ A[Z,Z-l]; ~a;z; f--+ ~a;z-;. 
; ; 

PROPOSITION 10.1. The free e-quadratic L-groups V*(A [z, Z-l], e) of the 
Laurent extension A [z, Z-l] of a ring with involution A are such that 

Vn(A[z, Z-l], e) = Vn(A, e) Et> Un_1(A, e) (n E Z), 

with U.(A, e) the projective e-quadratic L-groups. 

Proof. A splitting theorem of this type was first obtained for the surgery 
obstruction groups 

~(7T X Z) = L~(7T) Ef) L~_l(7T) 

by Shaneson [21], using geometric methods. A splitting theorem for the 
quadratic L-groups of arbitrary rings A was then obtained by Novikov 
[12] (modulo 2-primary torsion, with tEA) and Ranicki [14], using 
purely algebraic methods. In particular, in [14] there were defined natural 
isomorphisms 

(e .8): ~(A, e) Et> Un_1(A, e) ~ ~(A[z, Z-l], e) (n E Z) 

with e the split injection induced functorially by the split injection of 
rings with involution 

e: A ~ A[Z,Z-l]; a f--+ a. 

Only the case where e = ± I E A was considered there, but the methods 
apply for all e EA. 

In Part 11 we shall associate an n-dimensional geometric Poincare 
complex over Z[7Tl(X)], a*(X) = (C(X), rp E Qn(c(x))), to the universal 
cover X of an n-dimensional geometric Poincare complex X. In particular, 
for the circle X = SI we have the I-dimensional symmetric Poincare 
complex over Z[Z] = Z[ Z, Z-l] 

defined by 
a*(Sl) = (C, rp E Ql(C)) 

C,.= { 
Z[Z] if r = 0, I, 

o if r :f= 0,1, 

( 

1: Cl ~ Co, 
rpo = 

Z-l: CO ~ 01, 
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corresponding to the non-singular symmetric formation over Z[Z], 

a*(81) = (H+(Z[Z]*, 1); Z[Z],{(x, (z-l)x) E Z[Z]EB Z[Z]* I x E Z[Z]}). 

The split injections appearing in Proposition 10.1 are precisely the 
products 

B = a*(81) ® - : Un- 1 (A , e) ~ Vn(A[z, Z-I], e) (n E Z), 

identifying 
Z[Z] ®zA = A[z, Z-I]. 

:For any ring with involution A let us write T = T -1 and 

( 

Ln(A) = Ln(A, -1) 
_ (n E Z). 
Ln(A) = Ln(A, -1) (= L n+2(A)) 

PROPOSITION 10.2. The (k+ I)-fold skew-sU8pension maps 

-Sk+1: LO(Z[~2]) ~ L2k+2(Z[Z2], ( - )k) (k ~ 0) 

are not isomorphisms, with Sk(<1*(81)® <1*(81)) ~ im(Sk+1). 

Proof. Consider first the case where k = O. (Here, we can interpret the 
result as stating that it is not possible to make the symmetric Poincare 
complex of the torus <1*(81 x 8 1) = <1*(81) ® <1*(81) highly-connected by 
algebraic surgery.) The products of Proposition 8.1 fit into a commutative 
diagram 

_ _ 1 ® (1 + T) _ _ 
LO(Z[Z2]) ®z Lo(Z) ) LO(Z[Z2]) ®z LO(Z) 

(1 +1')® 11 t~ 
® 

LO(Z[Z2]) ®z Lo(Z} ) Lo(Z[Z2]) 

8®11 ® 18 
L2(Z[Z2]) ®z Lo(Z} ) L2(Z[Z2]) 

The skew-symmetrization map (1 + T): LO(Z[Z2]) ~ LO(Z[Z2]} is onto, by 
Proposition 6.2. Thus if <1*(81 x SI) E im(S: LO(Z[Z2]) ~ L2(Z[Z2])) there 
exists an element x E LO(Z[Z2]) such that 

<1*(81 x 8 1) = 8(1 +T)(x) E L2(Z[Z2]). 

The Arf invariant 1 element C E Lo(Z) = Z2 is such that 

<1*(81 x SI) ®c = jj2(C) = (0,0,0,1) =f:: 0 E L2(Z[Z2]) = ZEB 0$ 0$ Zz 
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by Proposition 10.1. On the other hand, it follows from the above diagram 
that 

since 
a*(SI x SI)®e = S(x® (1 +T)(e)) = 0 E L 2(Z[Z2]), 

(1 + T)(e) = 0 E LO(Z) = o. 
This is a contradiction, so there is no such x E L O(Z[Z2]) and 

a*(SI X SI) f/: im(S). 

For general k ~ 0 observe that S: L2(Z[Z2]) ~ L4(Z[Z2]) is an isomor-
phism by Proposition 6.2, and that 

Si: .L4(Z[Z2]) ~ L4+2i(Z[Z2], ( - )1+1) (j ~ 1) 

is an isomorphism by Proposition 4.5, since Z[Z2] is noetherian of global 
dimension 3. 

The method of Proposition 10.2 can be used to obtain another failure of 
4-periodicity in the symmetric L-groups, involving the deRham invariant 
d E Ll(Z) = Z2 instead of the Arf invariant C E L 2(Z) = Z2' as follows. 

PROPOSITION 10.3. The (k + I)-fold skew-suspension 'I1UJ,jJ 

Sk+1: LO(Z[Z]) = 0 ~ L2k+2(Z[Z], ( - )k) (k ~ 0) 

is not onto, with SkB(d) ~ im(Sk+1)) = O. 

Proof. Let Z[Z-] denote the ring Z[z, Z-I] with involution 

Z = _Z-I. 

By Theorem V.I of Morgan [11] we have that the product 

d®-: La(Z[Z-]) = Z2 ~ L 4(Z[Z-]) = Z2 

is an isomorphism. It follows that the product by 

SkB(d) E L2k+2(Z[Z], ( _ )k), 

SkB(d) ® - : La(Z[Z-]) = Z2 ~ L 2k+5(Z[Z x Z-], ( - )k) = Z2 

is an isomorphism for each k ~ 0, and hence that SkB(d) -1= O. 

The symmetrization functor 1 + T embeds the category of quadratic 
forms over a group ring Z[7T] with the untwisted involution (which is the 
same as the category of even symmetric forms over Z[7T]) in the category 
of symmetric forms over Z[7T]. Nevertheless, it need not be the case that 
the symmetrization map of Witt groups (1 + T): L O(Z[7T]) ~ LO(Z[7T]) is 
one-to-one, as shown by the following example. 

PROPOSITION 10.4. The symmetrization map 

1 + T: LO(Z[Z2]) ~ LO(Z[Z2]) 

is not one-one, with B2(e) E ker(I + T). 
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Proof. Consider the commutative diagram 

L2(Z[Z2]) ®z .Lo(Z) 
® 

) .L2(Z[Z2]) E 
S 

LO(Z[Z2]) 

l®(l+T)l 
® 

l+Tl 
S 

ll+T 
L2(Z[Z2]) ®z.LO(Z) ) .L2(Z[Z2]) ( LO(Z[Z2]) 

in which the skew-suspensions S are isomorphisms (by Propositions 4.3 
and 6.2(ii)), and Lo(Z) = O. The Arf invariant element e E .Lo(Z) = Z2 is 
such that 

(1 + T)S-IB2(e) = 8-1(1 + T)B2(e) = S-IB2(1 + T)(e) = 0 E LO(Z[Z2]). 

Write the product by a*(SI) E Ll(Z[Z]) on the e-symmetric L-groups as 

B = a*(SI) ® - : Un(A, e) -? Vn+l(A[z, Z-I], e) (n E Z). 

CONJECTURE. The natural maps 

(e B): vn(A, e) ffi un-l(A, e) -? vn(A[z, Z-1], e) 

are isomorphisms for all A, e, n E Z. 

Proposition 10.1 verifies the conjecture in the e-quadratic range n ~ - 3. 
The methods of Ranicki [14] can be extended to prove the conjecture in 
the range - 2 ~ n ~ 1 when the L-groups can be expressed in terms of 
forms and formations. In particular, combined with the computation of 
L*(Z) (Pr9position 7.2) the conjecture would give 

L2(Z[Z2]) = L2(Z) ffi Ll(Z) ffi Ll(Z) ffi LO(Z) = 0 ffi Z2 ffi Z2 $ Z 

with a*(S1 x S1) = (0,0,0,1) E L2(Z[Z2]). Propositions 6.2 and 10.1 give 
that 

LO(Z[Z2]) = Lo(Z) Et> L1(Z) Et> L1(Z) Et> Lo(Z) = ° Et> ° Et> ° Et> 8Z, 

where 8Z denotes the subgroup Lo(Z) = 8Z c LO(Z) = Z. The conjecture 
relates the failure of periodicity .L°(Z[Z2])"# L2(Z[Z2]) described by 
Proposition 10.2 to the familiar inequality Lo(Z)"# LO(Z). For the 
situation described by Proposition 10.3 the conjecture would give that 
8kB(d) E L2k+2(Z[Z], ( - )k) = Z2 (k ~ 0) is the generator. For the situa
tion of Proposition 10.4 we have 

L O(Z[Z2]) = Lo(Z) Et>.L1(Z) Et>.L1(Z) Et>Lo(Z) = 8ZEt> o Et> ° Et> Z2' 

LO(Z[Z2]) = LO(Z) Et> .Ll(Z) ffi .Ll(Z) ffi .L°(Z) = Z Et> 0 Et> 0 Et> 0, 

with B2(e) = (0,0,0,1) E LO(Z[Z2]). 
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