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4 Introduction

0.1 Introduction

A model for reactive computation, for example that of labelled transition sys-

tems (Keller, 1976), or a process algebra, such as ACP (Baeten and Weij-

land, 1990), CCS (Milner, 1989) or CSP (Hoare, 1985), can be used to de-

scribe both implementations of processes and specifications of their expected

behaviours. Process algebras and labelled transition systems therefore naturally

support the so-called single-language approach to process theory—that is, the

approach in which a single language is used to describe both actual processes and

their specifications. An important ingredient of the theory of these languages

and their associated semantic models is therefore a notion of behavioural equiva-

lence or behavioural approximation between processes. One process description,

say SYS, may describe an implementation, and another, say SPEC, may describe

a specification of the expected behaviour. To say that SYS and SPEC are equiv-

alent is taken to indicate that these two processes describe essentially the same

behaviour, albeit possibly at different levels of abstraction or refinement. To say

that, in some formal sense, SYS is an approximation of SPEC means roughly

that every aspect of the behaviour of this process is allowed by the specification

SPEC, and thus that nothing unexpected can happen in the behaviour of SYS.

This approach to program verification is also sometimes called implementation

verification or equivalence checking.

Designers using implementation verification to validate their (models of) re-

active systems need only learn one language to describe both their systems and

their specifications, and can benefit from the intrinsic compositionality of their

descriptions—at least when they are using a process algebra for denoting the

labelled transition systems in their models and an equivalence (or preorder) that

is preserved by the operations in the algebra. Moreover, specifications presented

as labelled transitions or as terms in a process algebra are rather detailed and

typically describe both what a correct system should do and what behaviour it

cannot afford. An implementation that conforms to such a detailed specification

offers excellent correctness guarantees.

The single-language approach to the specification and verification of reac-

tive systems underlies much of the work on process algebras and several of

the early classic textbooks on those languages, such as the above-mentioned

ones, present verifications of non-trivial concurrent systems using equivalence

or preorder checking. (See also the book (Baeten, 1990), which is entirely de-

voted to early applications of the process algebra ACP.) It became, however,

clear rather early on in the development of verification techniques from the field

of process algebra and in their application in the verification of case studies

that tool support was necessary in the analysis of the behaviour of models of
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real-life computing systems. This realization was, amongst others, a powerful

incentive for the work on the development of software tools for computer-aided

verification based on process-algebraic verification techniques and on the model

of labelled transition systems underlying them. Examples of such tools are

the Edinburgh Concurrency Workbench and its successors (Cleaveland, Par-

row and Steffen, 1993; Cleaveland and Sims, 1996), CADP (Garavel, Lang,

Mateescu and Serwe, 2007) and mCRL2 (Groote, Keiren, Mathijssen, Ploeger,

Stappers, Tankink, Usenko, van Weerdenburg, Wesselink, Willemse and van der

Wulp, 2008).

In order to develop suitable tools for computer-aided verification and to un-

derstand their limitations, researchers needed to answer some of the most basic

and fundamental questions that are naturally associated with the algorithmic

problems underlying implementation verification.

• What equivalences or preorders over labelled transition systems are decidable,

and over what classes of labelled transition systems?

• What equivalences or preorders are efficiently decidable over finite labelled

transition systems or parallel compositions of such systems? And if so, by

what algorithms?

• Are there equivalences that are (efficiently) decidable over classes of infinite

labelled transition systems that can be ‘finitely specified’?

• What is the computational complexity of checking decidable equivalences or

preorders over ‘interesting’ classes of labelled transition systems? Can one

come up with matching lower and upper bounds?

Apart from their usefulness in the development of the algorithmics of implemen-

tation verification, the questions above are of intrinsic and fundamental scientific

interest within the field of concurrency theory and related fields of computer sci-

ence. Indeed, the results that have been obtained over the years in an attempt to

solve the algorithmic problems associated with equivalence and preorder check-

ing over labelled transition systems and related models have put the theory of

processes on a par with the classic theory of automata and formal languages

(see, for instance, the textbooks (Hopcroft and Ullman, 1979; Sipser, 2006)) in

terms of depth and elegance.

In this chapter, we shall address some of the above-mentioned questions and

present classic results that have been achieved in the literature on concurrency

theory since the 1980s. We shall mostly focus on (variations on) bisimilarity as

the chosen notion of equivalence between (states in) labelled transition systems,

but, where appropriate, we shall also hint at results that have been obtained for

other equivalences and preorders in the literature. Our presentation will largely

follow classic lines of exposition in the field of concurrency theory. However,
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in Sections 0.3.2-0.3.3, we shall present some well-known results in a new light,

using the view of bisimilarity and other co-inductively defined process seman-

tics as games. We shall also highlight some general proof techniques based on

tableaux techniques and on the so-called ‘Defender’s forcing technique’ (Jančar

and Srba, 2008). We feel that the use of these techniques makes the proofs of

some results more transparent than the ones originally presented in the litera-

ture. Finally, where appropriate, we have elected to present proofs that allow

us to introduce general and reusable proof techniques, even though they do

not yield the best possible complexity bounds for some algorithmic problems.

In such cases, we always give references to the papers offering the best known

complexity results.

Roadmap of the chapter. The chapter is organized as follows. We begin

by surveying the classic algorithms by Kanellakis and Smolka, and Paige and

Tarjan, for computing bisimilarity over finite labelled transition systems in Sec-

tion 0.2. There we also briefly mention the basic ideas underlying symbolic

algorithms for bisimilarity checking based on reduced ordered binary decision

diagrams. Section 0.3 is devoted to results on the computational complexity

of bisimilarity, and related behavioural relations, over finite processes. In that

section, we consider the complexity of the relevant decision problems when mea-

sured as a function of the ‘size’ of the input labelled transition system, as well

as the one measured with respect to the length of the description of a parallel

composition of labelled transition systems. In Section 0.4, we offer a glimpse of

the plethora of remarkable decidability and complexity results that have been

obtained for bisimilarity over classes of infinite-state processes. We conclude this

chapter with a discussion of the main uses of bisimilarity checking in verification

and tools (Section 0.5).

0.2 Classic algorithms for bisimilarity over finite labelled transition

systems

In this section, we consider one of the most fundamental algorithmic problems

associated with equivalence checking over labelled transition systems, namely

the problem of deciding bisimilarity over finite labelled transition systems—

that is, labelled transition systems with a finite set of states and finitely many

transitions. (See Definition 2.2.1 in Chapter 1 of this book.) It is well known

that deciding language equivalence over this class of labelled transition sys-

tems is PSPACE-complete (Hunt, Rosenkrantz and Szymanski, 1976). (See

also (Stockmeyer and Meyer, 1973).) In sharp contrast with this negative result,

efficient algorithms have been developed for deciding strong bisimilarity over fi-
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nite labelled transition systems. Our main aim in this section is to present a

brief exposition of two classic such algorithms that are due to Kanellakis and

Smolka (Kanellakis and Smolka, 1983) (see also the journal version (Kanellakis

and Smolka, 1990)) and to Paige and Tarjan (Paige and Tarjan, 1987). Both

these algorithms are essentially based on the characterization of strong bisimi-

larity as a largest fixed point discussed in Section 3.8.1 in Chapter 1 in the book,

and Tarski’s fixed point theorem (Theorem 3.3.9 in Chapter 1 in the book) plays

an important role in establishing their correctness.

For the sake of readability, we recall here the classic notion of stratified bisim-

ulation relations, which are also known as approximants to bisimilarity. We refer

the interested reader to Chapter 1 in this book for more information.

Definition 0.2.1 The stratified bisimulation relations (Milner, 1980; Hennessy

and Milner, 1985) ∼k⊆ Pr × Pr for k ∈ N are defined as follows:

• E ∼0 F for all E,F ∈ Pr

• E ∼k+1 F iff for each a ∈ Act: if E
a

−→ E′ then there is F ′ ∈ Pr such that

F
a

−→ F ′ and E′ ∼k F ′; and if F
a

−→ F ′ then there is E′ ∈ Pr such that

E
a

−→ E′ and E′ ∼k F ′.

Given a labelled transition system (Pr, Act,−→), we define

next(E, a) = {E′ ∈ Pr | E
a

−→ E′}

for E ∈ Pr and a ∈ Act. We also define

next(E, ∗) =
⋃

a∈Act

next(E, a) .

A labelled transition system is image-finite iff the set next(E, a) is finite for

every E ∈ Pr and a ∈ Act.

The following lemma is a standard one.

Lemma 0.2.2 ((Hennessy and Milner, 1985)) Assume that (Pr, Act,−→)

is an image-finite labelled transition system and let E,F ∈ Pr. Then E ∼ F iff

E ∼k F for all k ∈ N.

The characterization of bisimilarity given in the above lemma immediately yields

an algorithm skeleton for computing bisimilarity over any finite labelled transi-

tion system, namely:

Let ∼0 be the universal relation over the set of states of the input labelled transition
system. For each i > 0, compute the ith approximant of bisimilarity ∼i until ∼i=∼i−1.
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If the input labelled transition system is finite, the computation of each ap-

proximant of bisimilarity can obviously be carried out effectively. Moreover, a

very rough analysis indicates that the non-increasing sequence of approximants

stabilizes in O(n2) iterations, where n is the number of states in the labelled

transition system. But how efficiently can the above algorithm skeleton be im-

plemented? How can one best compute the ith approximant of bisimilarity, for

i ≥ 1, from the previous one? And what is the complexity of optimal algorithms

for the problem of computing bisimilarity over finite labelled transition systems?

The algorithms that we shall present in what follows indicate that, in sharp

contrast with well-known results in formal language theory, the problem of de-

ciding bisimilarity over finite labelled transition systems can be solved very

efficiently. In Section 0.3.2, we shall discuss lower bounds on the complexity

of checking bisimilarity over finite labelled transition systems. As confirmed

by further results surveyed in later sections in this chapter, bisimilarity affords

remarkable complexity and decidability properties that set it apart from other

notions of equivalence and preorder over various classes of labelled transition

systems.

0.2.1 Preliminaries

Let (Pr,Act,−→) be a finite labelled transition system. An equivalence relation

over the set of states Pr can be represented as a partition of Pr—that is, as a

set {B0, . . . , Bk}, k ≥ 0, of non-empty subsets of Pr such that

• Bi ∩ Bj = ∅, for all 0 ≤ i < j ≤ k, and

• Pr = B0 ∪ B1 ∪ · · · ∪ Bk.

The sets Bi in a partition are usually called blocks. In what follows, we shall

typically not distinguish between partitions and their associated equivalence

relations.

Let π and π′ be two partitions of Pr. We say that π′ is a refinement of π if for

each block B′ ∈ π′ there exists some block B ∈ π such that B′ ⊆ B. Observe

that if π′ is a refinement of π, then the equivalence relation associated with π′

is included in the one associated with π.

The algorithms for computing bisimilarity due to Kanellakis and Smolka, and

Paige and Tarjan, compute successive refinements of an initial partition πinit

and converge to the largest strong bisimulation over the input finite labelled

transition system. Algorithms that compute strong bisimilarity in this fash-

ion are often called partition-refinement algorithms and reduce the problem of

computing bisimilarity to that of solving the so-called relational coarsest par-

titioning problem (Kanellakis and Smolka, 1990; Paige and Tarjan, 1987). In
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what follows, we shall present the main ideas underlying the above-mentioned

algorithms. We refer the interested reader to the survey paper (Cleaveland and

Sokolsky, 2001) for more information and for other algorithmic approaches to

deciding bisimilarity over finite labelled transition systems.

0.2.2 The algorithm by Kanellakis and Smolka

Let π = {B0, . . . , Bk}, k ≥ 0, be a partition of the set of states Pr. The

algorithm due to Kanellakis and Smolka is based on the notion of splitter.

Definition 0.2.3 A splitter for a block Bi ∈ π is a block Bj ∈ π such that, for

some action a ∈ Act, some states in Bi have a-labelled transitions whose target

is a state in Bj and others do not.

Intuitively, thinking of blocks as representing approximations of equivalence

classes of processes with respect to strong bisimilarity, the existence of a splitter

Bj for a block Bi in the current partition indicates that we have a reason for

distinguishing two groups of sets of states in Bi, namely those that afford an

a-labelled transition leading to a state in Bj and those that do not. Therefore,

Bi can be split by Bj with respect to action a into the two new blocks:

B1
i = {s | s ∈ Bi and s

a
→ s′, for some s′ ∈ Bj} and

B2
i = Bi r B1

i .

This splitting results in the new partition

π′ = {B0, . . . , Bi−1, B
1
i , B2

i , Bi+1, . . . , Bk} ,

which is a refinement of π. The basic idea underlying the algorithm by Kanel-

lakis and Smolka is to iterate the splitting of some block Bi by some block Bj

with respect to some action a until no further refinement of the current partition

is possible. The resulting partition is often called the coarsest stable partition

and coincides with strong bisimilarity over the input labelled transition system

when the initial partition πinit is chosen to be {Pr}. (We shall define the notion

of stable partition precisely in Section 0.2.3 since it plays an important role in

the algorithm proposed by Paige and Tarjan. The definitions we present in this

section suffice to obtain an understanding of the algorithm by Kanellakis and

Smolka.)

Before presenting the details of the algorithm by Kanellakis and Smolka, we

illustrate the intuition behind the algorithm by means of a couple of examples.

Example 0.2.4 Consider the labelled transition system depicted below.
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Since we are interested in computing bisimilarity, let the initial partition asso-

ciated with this labelled transition system be {Pr}, where

Pr = {s, s1, s2, t, t1} .

The block Pr is a splitter for itself. Indeed, some states in Pr afford a-labelled

transitions while others do not. If we split Pr by Pr with respect to action a

we obtain a new partition consisting of the blocks {s, t} (the set of states that

afford a-labelled transitions) and {s1, s2, t1} (the set of states that do not afford

a-labelled transitions). Note that we would have obtained the same partition

if we had done the splitting with respect to action b. You can now readily

observe that neither of the blocks {s, t} and {s1, s2, t1} can be split by the other

with respect to any action. Indeed, states in each block are all bisimilar to one

another, whereas states in different blocks are not.

Example 0.2.5 Consider now the following labelled transition system.
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Let the initial partition associated with this labelled transition system be {Pr},

where

Pr = {si, tj | 0 ≤ i ≤ 4, 0 ≤ j ≤ 5} .

The block Pr is a splitter for itself. Indeed, some states in Pr afford b-labelled

transitions while others do not. If we split Pr by Pr with respect to action b we
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function split(B, a, π)
choose some state s ∈ B
B1, B2 := ∅
for each state t ∈ B do

if s and t can reach the same set of blocks in π via a-labelled transitions
then B1 := B1 ∪ {t}
else B2 := B2 ∪ {t}

if B2 is empty then return {B1}
else return {B1, B2}

Fig. 0.1. The function split(B, a, π)

obtain a new partition consisting of the blocks

{s1, t1} and {si, tj | 0 ≤ i ≤ 4, 0 ≤ j ≤ 5 with i, j 6= 1} .

Note now that the former block is a splitter for the latter one with respect to

action a. Indeed only states s0 and t0 in that block afford a-labelled transitions

that lead to a state in the block {s1, t1}. The resulting splitting yields the

partition

{{s0, t0}, {s1, t1}, {si, tj | 2 ≤ i ≤ 4, 2 ≤ j ≤ 5}} .

The above partition can be refined further. Indeed, some states in the third

block have a-labelled transitions leading to states in the first block, but others

do not. Therefore the first block is a splitter for the third one with respect to

action a. The resulting splitting yields the partition

{{s0, t0}, {s1, t1}, {s3, s4, t2, t4, t5}, {s2, t3}} .

We continue by observing that the block {s3, s4, t4, t2, t5} is a splitter for itself

with respect to action a. For example t5
a
→ t4, but the only a-labelled transition

from s4 is s4
a
→ s0. The resulting splitting yields the partition

{{s0, t0}, {s1, t1}, {t5}, {s3, s4, t2, t4}, {s2, t3}} .

We encourage you to continue refining the above partition until you reach the

coarsest stable partition. What is the resulting partition?

The pseudo-code for the algorithm by Kanellakis and Smolka is given in Fig-

ure 0.2. The algorithm uses the function split(B, a, π) described in Figure 0.1,

which given a partition π, a block B in π and an action a, splits B with respect

to each block in π and action a. For example, considering the labelled transition

system in Example 0.2.5, the call

split({s1, t1}, b, {{s0, t0}, {s1, t1}, {t5}, {s3, s4, t2, t4}, {s2, t3}})
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π := {Pr}
changed := true
while changed do

changed := false
for each block B ∈ π do

for each action a do

sort the a-labelled transitions from states in B
if split(B, a, π) = {B1, B2} 6= {B}
then refine π by replacing B with B1 and B2, and set changed

to true

Fig. 0.2. The algorithm by Kanellakis and Smolka

returns the pair ({s1}, {t1}) because the only block in the partition that can be

reached from s1 via a b-labelled transition is {s3, s4, t2, t4}, whereas t1 can also

reach the block {t5}.

In order to decide efficiently whether the sets of blocks that can be reached

from s and t are equal, the algorithm orders the transitions from each state

lexicographically by their labels, and transitions with the same label are ordered

by the block in the partition that contains the target state of the transition. Note

that the algorithm in Figure 0.2 sorts the a-labelled transitions from states in a

block B before calling split(B, a, π). This is necessary because a splitting of a

block may change the ordering of transitions into that block. The lexicographic

sorting of transitions can be done in O(m+ | Act |) time and space, and therefore

in O(m) time and space because the number of actions can be taken to be at

most m, using a classic algorithm from (Aho, Hopcroft and Ullman, 1974).

Theorem 0.2.6 (Kanellakis and Smolka) When applied to a finite labelled

transition system with n states and m transitions, the algorithm by Kanellakis

and Smolka computes the partition corresponding to strong bisimilarity in time

O(nm).

Proof We first argue that the algorithm by Kanellakis and Smolka is correct,

that is, that when it reaches the coarsest stable partition π that partition is

the one corresponding to strong bisimilarity over the input labelled transition

system. To see this, let πi, i ≥ 0, denote the partition after the ith iteration

of the outermost loop in the algorithm in Figure 0.2. Below, we shall use πi

to denote also the equivalence relation induced by the partition πi. Recall,

furthermore, that ∼i denotes the ith approximant to bisimilarity.

Observe, first of all, that

∼⊆∼i⊆ πi



Classic algorithms for bisimilarity over finite labelled transition systems 13

holds for each i ≥ 0. This can be easily proved by induction on i. It follows

that ∼⊆ π.

Conversely, if π is a partition that cannot be refined further, then it is not

hard to see that π is a post-fixed point of the function F∼ that was used in

Chapter 1 of the book to characterize ∼ as a largest fixed point. Since ∼ is the

largest post-fixed point of F∼, it follows that π ⊆∼. Therefore ∼= π.

As far as the complexity of the algorithm is concerned, note that the main

loop of the algorithm is repeated at most n − 1 times. Indeed, the number

of blocks in π must be between one and n, and this number increases at each

iteration of the outermost loop of the algorithm that leads to a refinement of

π. The calls to the function split take O(m) time at each iteration of the main

loop. Indeed, that function is called for each block and each action at most

once, and in each call it considers each transition of every state in the block

at most once. As we already remarked above, the sorting of transitions can be

done in O(m) time at each iteration of the main loop. Therefore we achieve the

claimed O(mn) complexity bound. ✷

Exercise 0.2.7 Fill in the details in the proof of correctness of the algorithm

that we sketched above.

Remark 0.2.8 The algorithm by Kanellakis and Smolka has also O(n + m)

space complexity.

A natural question to ask at this point is whether the algorithm by Kanellakis

and Smolka is optimal. As we shall see in the following section, the answer to

this question is negative. Indeed, the time performance of a partition-refinement

algorithm like the one we just discussed can be improved substantially by means

of some clever use of data structures.

Remark 0.2.9 For the special case in which, for each action a and process s,

the set

{s′ | s
a
→ s′}

has size at most a constant c, Kanellakis and Smolka presented in (Kanellakis

and Smolka, 1983) (see also (Kanellakis and Smolka, 1990)) an O(c2n log n)-time

algorithm to decide strong bisimilarity. They also conjectured the existence of

an O(m log n)-time algorithm for the problem. This conjecture was confirmed

by Paige and Tarjan by means of the algorithm we will present in the following

section.
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0.2.3 The algorithm by Paige and Tarjan

The algorithm by Paige and Tarjan is also based on the idea of partition refine-

ment. However, by making use of more complex data structures, it significantly

improves on the efficiency of the algorithm by Kanellakis and Smolka we dis-

cussed in the previous section. The low complexity of the algorithm by Paige

and Tarjan is achieved by using information about previous splits to improve

on the efficiency of future splits. In particular, each state can only appear in

a number of splitters that is logarithmic in the number of states in the input

labelled transition system.

In order to simplify the presentation of the algorithm, throughout this section

we shall assume that the input finite labelled transition system is over a single

action a. The extension of the algorithm to arbitrary finite labelled transition

systems is only notationally more complex. (See also Exercise 0.3.12, which

indicates that a single action is as general as any finite set of actions, also from

the point of view of the complexity of algorithms.)

We begin our presentation of the algorithm by Paige and Tarjan by defining

formally the notion of stable partition. In what follows, given a set of states S,

we define:

pre(S) = {s | s
a
→ s′ for some s′ ∈ S} .

Definition 0.2.10 ((Coarsest) Stable partition)

• A set B ⊆ Pr is stable with respect to a set S ⊆ Pr if

– either B ⊆ pre(S)

– or B ∩ pre(S) = ∅.

• A partition π is stable with respect to a set S if so is each block B ∈ π.

• A partition π is stable with respect to a partition π′ if π is stable with respect

to each block in π′.

• A partition π is stable if it is stable with respect to itself.

The coarsest stable refinement (of a partition πinit) is a stable partition that is

refined by any other stable partition (that refines πinit).

Note that B ⊆ Pr is stable with respect to a block S ⊆ Pr if, and only if, S is

not a splitter for B. (The notion of splitter was presented in Definition 0.2.3.)

Example 0.2.11 Consider the following labelled transition system.
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The block {si, ti | 0 ≤ i ≤ 1} is stable with respect to the set of states {si, tj | 0 ≤

i ≤ 1, 0 ≤ j ≤ 2}. On the other hand, the block {si, tj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 2}

is not stable with respect to itself because

pre({si, tj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 2}) = {si, ti | 0 ≤ i ≤ 1} .

The coarsest stable partition over the above labelled transition system that

refines {Pr} is

{{s0, s1}, {t0}, {t1}, {t2}} .

Note that this is the partition associated with ∼ over the above labelled transi-

tion system.

Exercise 0.2.12 Show that ∼ is the coarsest stable partition that refines {Pr}

over any finite labelled transition system with Act = {a}.

The basic idea behind the algorithm proposed by Paige and Tarjan is that, given

a partition π of Pr, one can identify two different types of blocks B that act as

splitters for π: simple and compound splitters.

Simple splitters are used to split blocks in π into two disjoint subsets as done

in the algorithm by Kanellakis and Smolka. Below, we rephrase this notion

using the definitions introduced above.

Definition 0.2.13 (Simple splitting) Let π be a partition and let B be a set

of states in Pr. We write split(B, π) for the refinement of π obtained as follows.

For each block B′ ∈ π such that B′ is not stable with respect to B, replace B′ by the
blocks

B′

1 = B′ ∩ pre(B) and

B′

2 = B′
r pre(B) .

We call B a splitter for π when split(B, π) 6= π. In that case, we also say that
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π is refined with respect to B, and that split(B, π) is the partition that results

from that refinement.

For example, consider the labelled transition system in Example 0.2.11 and the

partition {Pr}. As we already remarked, the block Pr is not stable with respect

to itself. Moreover,

split(Pr, {Pr}) = {{s0, s1, t0, t1}, {t2}} .

Therefore Pr is a splitter for {Pr}.

We observe the following useful properties of the function split and of the

notion of stability.

Lemma 0.2.14

(1) Stability is preserved by refinement—that is, if π refines π′ and π′ is

stable with respect to a set of states S, then so is π.

(2) Stability is preserved by union—that is, if π is stable with respect to sets

S1 and S2, then π is also stable with respect to S1 ∪ S2.

(3) Assume that B ⊆ Pr. Let π1 and π2 be two partitions of Pr such that

π1 refines π2. Then split(B, π1) refines split(B, π2).

(4) Assume that B, B′ ⊆ Pr. Let π be a partition of Pr. Then

split(B, split(B′, π)) = split(B′, split(B, π)) ,

that is, split is commutative.

Exercise 0.2.15 Prove the above lemma.

As a stepping stone towards introducing the algorithm by Paige and Tarjan, con-

sider the following abstract version of the algorithm by Kanellakis and Smolka.

The algorithm keeps a partition π that is initially the initial partition πinit and

refines it until it reaches the coarsest stable partition that refines πinit. It repeats

the following steps until π is stable:

(1) Find a set S that is a union of some of the blocks in π and is a splitter

of π.

(2) Replace π by split(S, π).

This refinement algorithm works just as well if one restricts oneself to using

only blocks of π as splitters. However, allowing the use of unions of blocks as

splitters is one of the key ideas behind the algorithm by Paige and Tarjan.

In order to implement the algorithm efficiently, it is useful to reduce the

problem to that of considering labelled transition systems without deadlocked

states, i.e., to labelled transition systems in which each state has an outgoing
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transition. This can be done easily by preprocessing the initial partition πinit

by splitting each block B ∈ πinit into

B1 = B ∩ pre(Pr) and

B2 = B r pre(Pr) .

Note that the blocks B2 generated in this way will never be split again by the

refinement algorithm. Therefore we can run the refinement algorithm starting

from the partition

π′
init = {B1 | B ∈ πinit} ,

which is a partition of the set pre(Pr). The coarsest stable refinement of π′
init

together with the blocks of the form B2 for each B ∈ πinit yield the coarsest

stable refinement of πinit.

Exercise 0.2.16 Prove the claims we just made.

In order to achieve its time complexity, the Paige-Tarjan algorithm employs a

very clever way of finding splitters. In addition to the current partition π, the

algorithm maintains another partition X such that

• π is a refinement of X and

• π is stable with respect to X.

Initially, π is the initial partition πinit and X = {Pr}. The abstract version of

the algorithm by Paige and Tarjan repeats the following steps until π = X:

(1) Find a block S ∈ X r π.

(2) Find a block B ∈ π such that B ⊆ S and | B |≤ |S|
2 .

(3) Replace S within X with the two sets B and S r B.

(4) Replace π with split(S r B, split(B, π)).

The efficiency of the above algorithm relies on the heuristic for the choice of the

block B at step 2 and on the use of what is usually called three-way splitting

to implement step 4 efficiently. We now proceed to introduce the basic ideas

behind the notion of three-way splitting.

Suppose that we have a partition π that is stable with respect to a set of

states S that is a union of some of the blocks in π. Assume also that π is refined

first with respect to a nonempty set B ⊂ S and then with respect to S rB. We

have that:

• Refining π with respect to B splits a block D ∈ π into two blocks D1 =

D ∩ pre(B) and D2 = D r pre(B) if, and only if, D is not stable with respect

to B.
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• Refining further split(B, π) with respect to S rB splits the block D1 into two

blocks D11 = D1 ∩ pre(S r B) and D12 = D1 r D11 if, and only if, D1 is not

stable with respect to S r B.

A block S of the partition X is simple if it is also a block of π and is compound

otherwise. Note that a compound block S contains at least two blocks of π.

Such a block S can be partitioned into B and S rB in such a way that both the

above-mentioned properties hold. The three-way splitting procedure outlined

above gives the refinement of a partition with respect to a compound splitter.

Observe that refining split(B, π) with respect to SrB does not split the block

D2. This is because D2 ⊆ pre(S r B). Indeed, since π is stable with respect to

S, we have that either D ⊆ pre(S) or D ∩ pre(S) = ∅. If D is not stable with

respect to B, it holds that

D 6⊆ pre(B) and D ∩ pre(B) 6= ∅ .

Therefore, D ⊆ pre(S). Since D2 = D r pre(B), we can immediately infer that

D2 ⊆ pre(S r B), as claimed. Moreover,

D12 = D1 r D11 = D r pre(S r B) = D1 ∩ (pre(B) r pre(S r B)) .

The identity

D12 = D1 ∩ (pre(B) r pre(S r B))

is the crucial observation underlying the implementation of the algorithm by

Paige and Tarjan. We can visually depict the result of a three-way split of a

block D as the binary tree depicted in Figure 0.3.

The time performance of the algorithm by Paige and Tarjan relies on the

following observations. First of all note that each state in the input labelled

transition system is in at most log n + 1 blocks B used as refining sets. This is

because each refining set is at most half the size of the previous one. Moreover,

as shown by Paige and Tarjan, a refinement step with respect to a block B can

be implemented in time

O(| B | +
∑

s∈B

| pre({s}) |)

by means of a careful use of data structures. An O(m log n) time bound for the

algorithm follows.

In order to perform three-way splitting efficiently, namely in time proportional

to the cardinality of the block B chosen at step 2 of the algorithm, the Paige-

Tarjan algorithm uses an integer variable count(s, S) for each state s and each

block S. Intuitively, count(s, S) records the number of states in S that can be

reached from s via a transition.
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In the above figure, we use the following abbreviations:

D1 = D ∩ pre(B)

D2 = D r pre(B)

D11 = D ∩ pre(B) ∩ pre(S r B) and

D12 = D r pre(S r B) .

Fig. 0.3. Three-way splitting of a block

Exercise 0.2.17 Use the variables count(s, S) to decide in constant time to

which sub-block of D a state s ∈ D belongs.

Apart from the count variables, the Paige-Tarjan algorithm uses additional data

structures to achieve its efficiency. Blocks and states are represented by records.

Each block of the partition π is stored as a doubly linked list containing its

elements and has an associated integer variable recording its cardinality. Each

block of X points to a doubly linked list containing the blocks in π included

in it. Finally, each block of π points to the block of X that includes it. The

implementation of the algorithm uses also a set C that contains the compound

blocks of X. Initially, C = {Pr} and π is the initial partition πinit.

An efficient implementation of the Paige-Tarjan algorithm repeats the steps

given in Figure 0.4, taken from (Paige and Tarjan, 1987, page 981), until the

set of compound blocks becomes empty.

Theorem 0.2.18 (Paige and Tarjan) When applied to a finite labelled tran-

sition system with n states and m transitions using {Pr} as the initial partition,

the algorithm by Paige and Tarjan computes the partition corresponding to

strong bisimilarity in time O(m log n).

We refer the interested readers to (Cleaveland and Sokolsky, 2001; Paige and

Tarjan, 1987) for further details on the algorithm by Paige and Tarjan.
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(1) Remove a compound block S from C. Find the first two blocks in the list of blocks
of π that are included in S and let B be the smallest, breaking ties arbitrarily.

(2) Replace S with S r B and create a new simple block in X containing B as its
only block of π. If S is still compound, put S back into C.

(3) Compute pre(B) and count(s, B). This is done as follows. Copy B into a tem-
porary set B′. Compute pre(B) by scanning the edges with a target in B and
adding the source of each such edge to pre(B) if it is not already contained in
that set. During the count compute the count variables count(s, B).

(4) Replace π with split(B, π) as follows. For each block D ∈ π such that D ∩
pre(B) 6= ∅, split D into D1 = D ∩ pre(B) and D2 = D r D1. This is done
by scanning the elements of pre(B). For each s ∈ pre(B), determine the block
D ∈ π containing it and create an associated block D′ if one does not exist
already. Move s from D to D′.
During the scanning, build a list of the blocks D that are split. After the scanning
is done, process the list of split blocks as follows. For each such block with
associated block D′, mark D′ as no longer being associated with D; eliminate
the record for D if D is empty; if D is nonempty and the block of X containing
D and D′ has been made compound by the split, add this block to C.

(5) Compute pre(B) r pre(S r B). This is done by scanning the transitions whose

target is in B′. For each such edge s
a
→ s′, add s to pre(B) r pre(S r B) if s is

not already in that set and count(s, B) = count(s, S).
(6) Replace π with split(S r B, π) as done in Step 4 above, but scanning pre(B) r

pre(S r B) in lieu of pre(B).
(7) Update the count variables. This is done by scanning the transitions whose

target is in B′. For each such transition s
a
→ s′, decrement count(s, S). If this

count becomes zero, delete the count record and make the transition point to
count(s, B). When the scan is done, discard B′.

Fig. 0.4. The refinement steps of the Paige-Tarjan algorithm

0.2.4 Computing bisimilarity, symbolically

The algorithms for computing bisimilarity we have presented above require that

the input labelled transition system be fully constructed in advance. In practice,

a labelled transition system describing a reactive system is typically specified

as a suitable ‘parallel composition’ of some other labelled transition systems

representing the behaviour of the system components. It is well known that

the size of the resulting labelled transition system may grow exponentially with

respect to the number of parallel components. This phenomenon is usually

referred to as the state-explosion problem and is a major hindrance in the use

of algorithms requiring the explicit construction of the input labelled transition

system in the automatic verification of large reactive systems.

Amongst the approaches that have been proposed in order to deal with the

state-explosion problem, we shall briefly present here the main ideas underly-

ing a symbolic approach based on the use of reduced ordered binary decision
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Fig. 0.5. Example of ROBDD where x1 < x2 < x3

diagrams (ROBDDs) (Bryant, 1986; Bryant, 1992) to represent finite labelled

transition systems symbolically. The use of ROBDDs often permits a succinct

representation of finite objects, and has led to breakthrough results in the au-

tomation of the solution to many combinatorial problems. The use of ROBDDs

in the computation of bisimilarity over finite labelled transition systems has

been proposed in (Bouali and Simone, 1992).

We recall here that an ROBDD represents a boolean function as a rooted

directed acyclic graph. The non-terminal nodes in the graph are labelled with

input variables and the terminal nodes are labelled by boolean constants. Each

non-terminal node has two outgoing edges, one per possible value of the boolean

variable labelling it. In each path from the root of the graph to a terminal

node, the variables respect a given total variable ordering. Finally, an ROBDD

contains neither redundant tests nor duplicate nodes. The former requirement

means that there is no non-terminal node in the graph whose two outgoing

edges lead to the same node. The latter condition ensures that the sharing of

nodes in an ROBDD is maximal, in that there are no two distinct nodes in the

graph that are the roots of isomorphic sub-graphs. An example of ROBDD is

given in Figure 0.5 where the solid edges leaving nodes labelled with variables

represent the truth assignment true, while the dotted edges correspond to the

thruth assignment false. We can see that if e.g. x1 is set to false, x2 to false

and x3 to true, the whole boolean function evaluates to true as we reached the

terminal node labelled with 1.

The crucial property of ROBDDs is their canonicity. This means that, for each

boolean function with n arguments, there is exactly one ROBDD representing
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it with respect to the variable ordering x1 < x2 < · · · < xn and therefore

two ROBDDs representing the same function with respect to that ordering are

isomorphic. For example, a boolean function is a tautology if, and only if, its

associated ROBDD consists of a single node labelled with 1 (true) and it is

satisfiable if, and only if, its associated ROBDD does not consist of a single

node labelled with 0 (false).

Encoding a labelled transition system as an ROBDD. The first step in

using ROBBDs to compute bisimilarity over a finite labelled transition system

is to encode the input labelled transition system. This is done as follows. The

states in a finite labelled transition system with n > 1 states are represented by

means of a function that associates with each state a distinct boolean vector of

length k = ⌈log2 n⌉. Each state s is therefore represented by a unique assignment

of truth values to a vector of boolean variables ~x = (x1, . . . , xk). The set of

actions labelling transitions is encoded in exactly the same way. Each action

a is therefore represented by a unique assignment of truth values to a vector

of boolean variables ~y = (y1, . . . , yℓ). The transition relation of the labelled

transition system is represented by its characteristic function Trans(~x, ~y, ~x′),

which returns true exactly when ~x, ~y and ~x′ are the encodings of some state s,

action a and state s′, respectively, such that s
a
→ s′. In the definition of the

boolean formula describing the transition relation, the vector ~x′ = (x′
1, . . . , x

′
k)

consists of distinct fresh variables, which are often called the target variables

and are used to encode the targets of transitions.

Example 0.2.19 Consider, for instance, the labelled transition system over a

single action depicted below. (We have omitted the label of the transitions and

we shall not consider it in the encoding for the sake of simplicity.)

s0 //

��8
88

88
88

88
8 s1

s2 //

BB����������
s3ZZ

To encode the states in this labelled transition system, we use two boolean

variables x1 and x2. Each state si, i ∈ {0, 1, 2, 3}, is represented by the binary

representation of the number i. The boolean formula describing the transition
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relation is

(x1 ∧ x2 ∧ x′
1 ∧ x′

2)

∨

(x1 ∧ x2 ∧ x′
1 ∧ x′

2)

∨

(x1 ∧ x2 ∧ x′
1 ∧ x′

2)

∨

(x1 ∧ x2 ∧ x′
1 ∧ x′

2)

∨

(x1 ∧ x2 ∧ x′
1 ∧ x′

2) .

For example, the transition from state s2 to state s3 is represented by the dis-

junct

x1 ∧ x2 ∧ x′
1 ∧ x′

2

in the above formula. The first two conjuncts say that the source of the transition

is the state whose encoding is the bit vector (1, 0), namely s2, and the last two

say that the target is the state whose encoding is the bit vector (1, 1), namely

s3.

The boolean formula Trans(~x, ~y, ~x′) can then be represented as an ROBDD

choosing a suitable variable ordering. It is important to realize here that the

size of the ROBDD for a boolean function depends crucially on the chosen vari-

able ordering. Indeed, in the worst case, the size of an ROBDD is exponential

in the number of variables. (See (Bryant, 1992) for a detailed, but very acces-

sible, discussion of ROBDDs, their properties and their applications.) A useful

property of the above-mentioned ROBDD representation of a labelled transition

system is that the ROBDD describing the transition relation of a labelled tran-

sition system resulting from the application of the CCS operations of parallel

composition, relabelling and restriction to a collection of component reactive

systems (themselves represented as ROBDDs) is guaranteed to only grow lin-

early in the number of parallel components, provided an appropriate variable

ordering is chosen—see (Enders, Filkorn and Taubner, 1993).

Remark 0.2.20 We remark that the above-stated linear upper bound applies

to the size of the resulting ROBDD, but not necessarily to the intermediate

ROBBDs that are constructed as stepping stones in the computation of the

final result. However, in (Enders et al., 1993), the authors claim that, in their

practical experiments, the size of the intermediate ROBBDs never exceeded the

size of the result ROBBD.
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(1) Bis(~x, ~z) := 1
(2) repeat

(a) Old(~x, ~z) := Bis(~x, ~z)

(b) Bis(~x, ~z) := ∀~x′∀~y. Trans(~x, ~y, ~x′) ⇒ (∃~z′. Trans(~z, ~y, ~z′) ∧ Bis(~x′, ~z′)) ∧

∀~z′∀~y. Trans(~z, ~y, ~z′) ⇒ (∃~x′. Trans(~x, ~y, ~x′) ∧ Bis(~x′, ~z′))

(3) until Bis(~x, ~z) = Old(~x, ~z)

Fig. 0.6. Algorithm for the symbolic computation of bisimilarity

Symbolic computation of bisimilarity. Like the aforementioned algorithms,

the symbolic algorithm for computing bisimilarity is based upon the charac-

terization of bisimilarity as a largest fixed point given by Tarski’s fixed-point

theorem. In order to implement the iterative computation of the largest fixed

point efficiently using ROBDDs, we need to rephrase the function F∼ in a way

that is suitable for symbolic computation using ROBDD operations. The algo-

rithm for the symbolic computation of bisimilarity is presented in Figure 0.6.

In that algorithm, we assume that we are given two copies of the input labelled

transition system with transition relations expressed by the boolean formulae

Trans(~x, ~y, ~x′) and Trans(~z, ~y, ~z′). The algorithm computes the ROBDD repre-

sentation of the boolean formula Bis(~x, ~z) that encodes the characteristic func-

tion of the largest bisimulation over the input labelled transition system—that

is, Bis(s, s′) returns true exactly when s and s′ are bisimilar states in the labelled

transition system.

The algorithm in Figure 0.6 uses existential and universal quantification over

boolean variables. These can be readily implemented in terms of the standard

boolean operations. By way of example, if f(x, y) is a boolean function then

∃x. f(x, y) is a shorthand for f(0, y) ∨ f(1, y). We refer the interested readers

to (Bouali and Simone, 1992; Cleaveland and Sokolsky, 2001) for further details

on the efficient implementation of the ROBDD that encodes the right-hand

side of the assignment at step 2b in the algorithm in Figure 0.6, as well as for a

discussion of performance issues related to the appropriate choice of the variable

ordering to be used in the computation.

0.2.5 Checking weak equivalences

The problem of checking observational equivalence (weak bisimilarity) over finite

labelled transition systems can be reduced to that of checking strong bisimilarity

using a technique called saturation. Intuitively, saturation amounts to
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(1) first pre-computing the weak transition relation (see Section 5.1 in Chap-

ter 1 in this book), and then

(2) constructing a new pair of finite processes whose original transitions are

replaced with the weak transitions.

The question whether two states are weakly bisimilar now amounts to checking

strong bisimilarity over the saturated systems. Since the computation of the

weak transition relation can be carried out in polynomial time, the problem of

checking for weak bisimilarity can also be decided in polynomial time. The same

holds true for the problem of checking observational congruence (Milner, 1989).

(See Section 5.1 in Chapter 1 in this book for the definition of observational

congruence, which is there called rooted weak bisimilarity.)

Efficient algorithms are also available for deciding a variation on the notion of

weak bisimilarity called branching bisimilarity (Glabbeek and Weijland, 1996)

over finite labelled transition systems (see Chapter 1). Notably, Groote and
ADD EXACT REF-
ERENCE to
CHAPTER 1 and
SECTION

Vaandrager have developed in (Groote and Vaandrager, 1990) an algorithm for

checking branching bisimilarity that has time complexity O(m log m + mn) and

space complexity O(m + n).

0.3 The complexity of checking bisimilarity over finite processes

In the previous section, we saw that, unlike the classic notion of language equiv-

alence, bisimilarity can be efficiently decided over finite labelled transition sys-

tems. In particular, the time complexity of the algorithm by Paige and Tarjan

offers an upper bound on the time complexity of checking bisimilarity over finite

labelled transition systems. This naturally raises the question of whether it is

possible to provide lower bounds on the computational complexity of comput-

ing bisimilarity over such structures. Indeed, computer scientists often consider

a decidable computational problem ‘solved’ when they possess matching lower

and upper bounds on its computational complexity.

Our order of business in this section will be to survey some of the most

notable results pertaining to lower bounds on the computational complexity of

bisimilarity checking for several classes of finite labelled transition systems. We

shall also present some rather general proof techniques that yield perspicuous

proofs of the results we discuss in what follows.

Since the notion of bisimulation game plays an important role in our pre-

sentation of the complexity and decidability results discussed in the remainder

of this chapter, we now proceed to introduce it briefly. (We refer the reader

to Chapter 1 in the book for a more comprehensive discussion and to (Aceto,

Ingolfsdottir, Larsen and Srba, 2007) for a textbook presentation.)
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0.3.1 Game characterization of bisimulation-like relations

We shall use a standard game-theoretic characterization of (bi)similarity—see,

for instance, (Thomas, 1993; Stirling, 1995) and Chapter 1. A bisimulation
ADD EXACT REF-
ERENCE TO
CHAPTER 1 AND
SECTION

game on a pair of processes (P1, Q1) is a two-player game between Attacker and

Defender. The game is played in rounds. In each round the players change the

current pair of states (P,Q) (initially P = P1 and Q = Q1) according to the

following rules:

(1) Attacker chooses either P or Q, an action a and performs a move P
a
−→ P ′ or

Q
a
−→ Q′, depending on whether he chose P or Q.

(2) Defender responds by choosing the other process (either Q or P ) and performs

a move Q
a
−→ Q′ or P

a
−→ P ′ under the same action a.

(3) The pair (P ′, Q′) becomes the (new) current pair of states.

A play (of the bisimulation game) is a sequence of pairs of processes formed by

the players according to the rules mentioned above. A play is finite iff one of

the players gets stuck (cannot make a move); the player who gets stuck loses

the play and the other player is the winner. If the play is infinite then Defender

is the winner.

We use the following standard fact—see (Thomas, 1993; Stirling, 1995) and

Chapter 1.
ADD EXACT REF-
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Proposition 0.3.1 It holds that P ∼ Q iff Defender has a winning strategy in

the bisimulation game starting with the pair (P,Q), and P 6∼ Q iff Attacker has

a winning strategy in the corresponding game.

The rules of the bisimulation game can be easily modified in order to capture

other co-inductively defined equivalences and preorders.

• In the simulation preorder game, Attacker is restricted to attack only from

the (left-hand-side) process P . In the simulation equivalence game, Attacker

can first choose a side (either P or Q) but after that he is not allowed to

change the side any more.

• The completed/ready simulation game has the same rules as the simulation

game but Defender is moreover losing in any configuration which breaks the

extra condition imposed by the definition (i.e. P and Q should have the same

set of initial actions in case of ready simulation, and their sets of initial actions

should be both empty at the same time in case of completed simulation).

• In the 2-nested simulation preorder game, Attacker starts playing from the

left-hand-side process P and at most once during the play he is allowed to

switch sides. (The soundness of this game follows from the characterization



The complexity of checking bisimilarity over finite processes 27

provided in (Aceto, Fokkink and Ingolfsdottir, 2001).) In the 2-nested simu-

lation equivalence game, Attacker can initially choose any side but the sides

can be changed at most once during the play.

0.3.2 Deciding bisimilarity over finite labelled transition systems is

P-complete

The algorithmic results discussed in Section 0.2 indicate that strong, weak and

branching bisimilarity can be decided over finite labelled transition systems more

efficiently than language equivalence (and indeed than many other equivalences).

This is good news for researchers and practitioners who develop and/or use soft-

ware tools that implement various forms of bisimilarity checking. However, the

size of the labelled transition systems on which the above-mentioned algorithms

are run in practice is often huge. It is therefore natural to ask oneself whether

one can devise efficient parallel algorithms for bisimilarity checking. Such al-

gorithms might exploit the parallelism that is becoming increasingly available

on our computers to speed up checking whether two processes are bisimilar or

not. It would be very satisfying, as well as practically useful, if algorithms for

checking bisimilarity could run on a highly parallel machine with a running

time that is proportional to the logarithm of the size of the state space of the

input labelled transition system using a feasible number of processors. But is

an algorithm meeting the above desiderata likely to exist?

A most likely negative answer to the above question has been given by Balcá-

zar, Gabarró and Santha, who showed in (Balcazar, Gabarro and Santha, 1992)

that deciding strong bisimilarity between finite labelled transition systems is

P-complete—this means that it is one of the ‘hardest problems’ in the class P

of problems solvable in deterministic polynomial time. P-complete problems

are of interest because they appear to lack highly parallel solutions. So showing

that an algorithmic problem is P-complete is interpreted as strong evidence that

the existence of an efficient parallel solution for it is unlikely. See, for instance,

the book (Greenlaw, Hoover and Ruzzo, 1995) for much more information on

P-completeness.

We shall now present the main ideas behind the hardness proof of the above

mentioned result, which we reiterate below in the form of a theorem.

Theorem 0.3.2 (Balcázar, Gabarró and Santha 1992) The bisimilarity

checking problem between two states in a finite labelled transition system is

P-complete.

The theorem can be proved by offering a reduction from a problem that is
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already known to be P-complete to the problem of checking strong bisimilarity

between a pair of finite-state processes P and Q. The reduction will be a so-

called log-space reduction, which means that it is computable in deterministic

logarithmic space.

Similarly as in the original proof by Balcázar, Gabarró and Santha, we will

provide a reduction from the monotone Circuit Value Problem (mCVP), which is

known to be P-complete (see, e.g., (Papadimitriou, 1994)). However, the ideas

in the reduction presented below are different from their original proof. For

the purpose of this presentation we shall use the so-called Defender’s Forcing

Technique, which simplifies many of the constructions for hardness results. For

a more detailed introduction to this technique consult (Jančar and Srba, 2008).

A monotone Boolean circuit C is a finite directed acyclic graph in which the

nodes are either of indegree zero (input nodes) or of indegree two and there is

exactly one node of outdegree zero (the output node).

Each node in C that is not an input node is labelled with one of the symbols

∧ and ∨, which stand for conjunction and disjunction, respectively.

An input for the circuit C is an assignment of the truth values 0 (false) or

1 (true) to all input nodes. Given an input, every node in the circuit can be

uniquely assigned a truth value as follows:

• the value of an input node is given by the input assignment,

• the value of a node labelled with ∧ or ∨ is the logical conjunction or disjunction

of values of its two predecessors, respectively.

Given an input for the circuit, the output value of the circuit C is the value

assigned to its output node.

The mCVP problem asks to decide, given a monotone Boolean circuit C and

its input, whether its output value is true.

An example of a monotone Boolean circuit with an input assignment and

computed values at each node is given in Figure 0.7.

Assume now a given monotone Boolean circuit C with the output node o and

with a given input. We shall construct a finite labelled transition system and

two of its processes Po and Qo such that if the output value of C is true then

Po and Qo are strongly bisimilar, and if the output value is false then Qo does

not strongly simulate Po. Such a construction will enable us to state a general

claim about P-hardness for all relations between the simulation preorder and

bisimilarity.

Remark 0.3.3 Indeed, we will be able to draw such a general conclusion for

any (perhaps not even yet ‘discovered’) relation on processes R such that if
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Fig. 0.7. An instance of mCVP together with assigned truth values

P ∼ Q then (P,Q) ∈ R, and if Q does not simulate P then (P,Q) 6∈ R, be-

cause if the output value of C is true then P ∼ Q and hence (P,Q) ∈ R,

and if the output value of C is false then Q does not simulate P and hence

(P,Q) 6∈ R. Examples of such a relation R include, among others, simulation

preorder/equivalence, completed simulation preorder/equivalence, ready simu-

lation preorder/equivalence, 2-nested simulation preorder/equivalence and, of

course, also bisimulation equivalence.

The processes of the constructed labelled transition system are

• Pend,

• Pv and Qv for every node v in C, and additionally

• P ′
v, Qℓ

v and Qr
v for every node v in C labelled with ∨.

The transition relation contains the following transitions:

• Pv
ℓ
−→ Pv1

, Pv
r
−→ Pv2

, and Qv
ℓ
−→ Qv1

, Qv
r
−→ Qv2

for every node v in C

labelled with ∧ and with the predecessor nodes v1 and v2, and

• Pv
a
−→ P ′

v, Pv
a
−→ Qℓ

v, Pv
a
−→ Qr

v, and

P ′
v

ℓ
−→ Pv1

, P ′
v

r
−→ Pv2

, and

Qv
a
−→ Qℓ

v, Qv
a
−→ Qr

v, and

Qℓ
v

ℓ
−→ Qv1

, Qℓ
v

r
−→ Pv2

, Qr
v

r
−→ Qv2

, Qr
v

ℓ
−→ Pv1

for every node v in C labelled with ∨ and with the predecessor nodes v1 and

v2, and

• Pv
0
−→ Pend for every input node v in C assigned the value false.

The reduction is clearly computable in log-space. An example of the construc-

tion, taking as the input circuit the one in Figure 0.7, is presented in Figure 0.8.
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Fig. 0.8. Constructed processes Po and Qo according to the reduction

Exercise 0.3.4 Consider the transition system constructed in Figure 0.8. Ar-

gue that Defender has a winning strategy in the bisimulation game starting from

(Po, Qo); in other words show that Po ∼ Qo. ✷

We will now show that

• if the output value of C is true then Po and Qo are strongly bisimilar, and

• if the output value of C is false then Qo does not strongly simulate Po.

As a conclusion, we will get that deciding any relation between the simulation

preorder and strong bisimilarity on finite labelled transition systems is P-hard.

Let us consider a play in the bisimulation game between Attacker and De-

fender starting from the pair (Po, Qo). The idea is that, after finitely many

rounds of a play, the players will eventually reach some input node. During

each play, Attacker is trying to reach an input node Pv with assigned value

false, as this is a winning configuration for Attacker. (Defender has no answer
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to the action 0 that Attacker can perform in the left-hand-side process.) On the

other hand, Defender is trying to reach an input node with assigned value true,

as Attacker loses in such a situation (no further actions are available). The pro-

cesses Po and Qo are constructed in such a way that in the current pair (Pv, Qv),

where v is labelled by ∧, it is Attacker who chooses the next node and forces

reaching the next pair (Pvi
, Qvi

) for a chosen i ∈ {1, 2} by playing either the

action ℓ or r. If the current pair (Pv, Qv) corresponds to a node v which is la-

belled by ∨, it should be Defender who decides the next pair of processes. This

is achieved by using a particular instance of the so-called Defender’s Forcing

Technique (Jančar and Srba, 2008). Initially, Attacker has five possible moves

under the action a from the pair (Pv, Qv) where v is labelled by ∨. Clearly, the

only possible attack is by playing Pv
a
−→ P ′

v; all the remaining four moves can

be matched by Defender in such a way that the play continues from a pair of

identical processes (a clear winning position for Defender). Defender can now

answer by playing either Qv
a
−→ Qℓ

v or Qv
a
−→ Qr

v and the players continue from

the pair (P ′
v, Q

ℓ
v) or (P ′

v, Q
r
v), depending of Defender’s choice. In the first case

Attacker is forced to play the action ℓ and the players reach the pair (Pv1
, Qv1

)

(playing action r leads to an immediate loss for Attacker as Defender can again

reach a pair of equal processes). Similarly, in the second case Attacker must

play the action r and Defender forces the pair (Pv2
, Qv2

).

To sum up, starting from the pair (Po, Qo), where o is the output node of

the circuit, the players choose, step by step, one particular path in the circuit

leading to an input node. From the current pair (Pv, Qv), where v is labelled by

∧, it is Attacker who chooses the next pair; if the node v is labelled by ∨ it is

Defender who chooses (in two rounds) the next pair. Attacker wins if, and only

if, the players reach a pair of processes that represent an input node with the

assigned value false. Hence if the output value of C is true then Defender has

a winning strategy in the strong bisimulation game. Note that if, on the other

hand, Attacker has a winning strategy then it can be achieved by attacking

only from the left-hand-side process (in this case, when the output value of C is

false, there must be an input node set to false, because the circuit is monotone).

Hence if the output value of C is false then Attacker has a winning strategy in

the strong simulation game.

We have so argued for the following P-hardness theorem.

Theorem 0.3.5 The equivalence checking problem between two processes in a

finite-state, acyclic labelled transition system is P-hard for any relation between

strong simulation preorder and strong bisimilarity.

Exercise 0.3.6 Assume that the output of some given circuit C is true. Using



32 The complexity of checking bisimilarity over finite processes

the ideas of the proof presented above, generalize your solution to Exercise 0.3.4

in order to construct a bisimulation containing the pair (Po, Qo).

In fact, Sawa and Jančar proved in a recent paper (Sawa and Jančar, 2001)

that the problem is P-hard for all relations between the trace preorder and

bisimilarity. Their result is even more general but the encoding is more involved.

Finally, note that in the reduction presented above we used four different

actions. So the question is whether equivalence checking is P-hard even in case

of a singleton action alphabet. Unfortunately, the answer is positive also in

this case. For bisimilarity this result is a consequence of the original reduction

provided by Balcázar, Gabarró and Santha (Balcazar et al., 1992), which uses

only a single action for the encoding of any alternating mCVP instance. In order

to show that the problem is P-hard also for other behavioural equivalences and

preorders, we shall now present a simple construction based on (Srba, 2001),

which provides a general log-space reduction of bisimilarity checking on labelled

transition systems with several actions to bisimilarity checking over a one-letter

action set.

Assume two given processes P and Q over an LTS T with the set of actions

{a1, a2, . . . , aℓ}. We shall construct a modified LTS T ′ which contains all the

processes of T together with some additional ones defined in the following way:

for every transition P1
ai−→ P2 in T we add into T ′

• two transitions P1 −→ P(P1,ai,P2) and P(P1,ai,P2) −→ P2 where P(P1,ai,P2) is a

newly added state, and

• a newly added path of length i from P(P1,ai,P2).

Finally, for every process P in T we create in T ′ a newly added path of length

ℓ+1 starting from P . As the LTS T ′ contains only one action, we omit its name

from the transition relation. We shall call the newly added processes into T ′

intermediate processes. An example of the reduction is depicted in Figure 0.9.

Exercise 0.3.7 Consider the one-action LTS in Figure 0.9. Argue that At-

tacker has a winning strategy in the bisimulation game starting from the pair

(P1, P
′) where P ′ = P(P1,a2,P3) and from the pair (P1, P2).

The reduction presented above can clearly be carried out in log-space. Moreover,

we can observe the following property of the LTS T ′.

Lemma 0.3.8 Let P be a process of T and P ′ a newly added intermediate

process in T ′. Then P 6∼ P ′ in the LTS T ′.

Proof We describe Attacker’s winning strategy from the pair (P, P ′). In the
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Fig. 0.9. Input LTS above and the one-action LTS below where P ′ = P(P1,a2,P3)

first round Attacker plays the transition from P that starts the path of length

ℓ+1 that was added to the LTS T ′. Defender answers by a move from P ′. Now

if Defender ended again in some intermediate process, it must be in a branch

starting from some P(P1,ai,P2), but this configuration is winning for Attacker
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by not changing sides and by simply making the remaining ℓ moves along the

path he chose initially. Defender cannot do as many moves and loses. If, on

the other hand, Defender ended in some of the original processes in T , Attacker

will change sides and play the sequence of ℓ + 1 transitions available from this

original processes. Again, Defender cannot match this sequence in the other

process as the sequence of moves he has at his disposal is shorter by one. Hence

Defender loses also in this case. ✷

Due to Lemma 0.3.8, we know that during any bisimulation game Defender is

forced to play in T ′ in such a way that every current configuration consists either

of two intermediate processes or of two processes from the original LTS T .

We can now observe that for any two processes P and Q in T we have P ∼ Q

in T if, and only if, P ∼ Q in T ′. Indeed, each move P1
ai−→ P2 by the Attacker

in the original LTS T is simulated by two moves P1 −→ P(P1,ai,P2) −→ P2 in

the LTS T ′ and Defender can only answer by some corresponding two moves

such that in the intermediate state the length of the available path leading to

a deadlock is the same as on the Attacker’s side. Hence Defender has to use

the sequence of two transitions that corresponds to the same action as played

by Attacker. (Should Defender choose a different move, Attacker will easily win

the game.) Similarly, if Defender has a winning strategy in the original LTS T ,

it can be easily extended to a winning strategy in T ′.

Because the proposed reduction preserves acyclicity, we obtain the following

theorem.

Theorem 0.3.9 Strong bisimilarity checking over finite LTSs is log-space re-

ducible to strong bisimilarity checking over finite LTSs over a one-letter action

alphabet. Moreover, the reduction preserves acyclicity.

By combining Theorem 0.3.5 and Theorem 0.3.9 we obtain the promised P-

hardness result for finite labelled transition systems over a singleton action set.

Corollary 0.3.10 The equivalence-checking problem between two processes in

a finite, acyclic labelled transition system over a singleton action set is P-hard

for any relation between the strong simulation preorder and strong bisimilarity.

Remark 0.3.11 Note that the above presented reduction from LTS to a one-

letter action alphabet LTS works even for infinite-state systems. The question is,

though, what classes of infinite-state systems are closed under this construction

and whether it is efficiently implementable. Indeed, as argued in (Srba, 2001),

this is true for may well-known classes of systems generated by e.g. pushdown



The complexity of checking bisimilarity over finite processes 35

automata or Petri nets and the transformation is efficient and moreover preserves

answers to µ-calculus model checking problems.

Exercise 0.3.12 Find a (small) modification of the reduction in the proof of

Theorem 0.3.9 (see also an example in Figure 0.9), such that one can reach the

following conclusion regarding the size of the constructed system over a one-

letter action alphabet: if the original LTS has n states, m transitions and m′

actions, then the constructed LTS has O(n + m′) states and O(m) transitions.

Since m′ ≤ m, this will imply that the constructed system has O(n + m) states

and O(m) transitions.

It is well known that weak bisimilarity, observational congruence (Milner, 1989),

branching bisimilarity and rooted branching bisimilarity (Glabbeek and Weij-

land, 1996) coincide with strong bisimilarity over τ -free labelled transition sys-

tems. Since the actions used in constructing the labelled transition system from

a monotone Boolean circuit as in the proof of Theorem 0.3.5 can be chosen to be

different from τ , the proof of Theorem 0.3.5 also yields a log-space reduction of

the monotone circuit value problem to that of deciding weak bisimilarity, obser-

vational congruence, branching bisimilarity and rooted branching bisimilarity

over a finite, acyclic labelled transition system. We therefore have the following

result.

Theorem 0.3.13 The problem of deciding weak bisimilarity, observational con-

gruence, branching bisimilarity and rooted branching bisimilarity between two

states in a finite, acyclic labelled transition system is P-hard. This holds true

even when the set of actions is a singleton.

Readers who are familiar with Chapter 1 in the book will recall that, over

image-finite labelled transition systems (and hence over finite labelled transition

systems), strong bisimilarity coincides with the relation

∼ω= ∩i≥0 ∼i ,

where ∼i, i ≥ 0, is the ith approximant to bisimilarity. (See Section 3.8.2

in Chapter 1.) In their classic paper (Hennessy and Milner, 1985), Hennessy

and Milner defined an alternative non-increasing (with respect to set inclusion)

sequence ≃i, i ≥ 0, of approximants to bisimilarity as follows:

• P ≃0 Q always holds.

• P ≃i+1 Q iff for each sequence of actions w:

(1) for each P ′ such that P
w
→ P ′, there is some Q′ such that Q

w
→ Q′ and

P ′ ≃i Q′;
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(2) for each Q′ such that Q
w
→ Q′, there is some P ′ such that P

w
→ P ′ and

P ′ ≃i Q′.

The relations ≃i, i ≥ 0, are the so-called nested trace semantics (Aceto, Fokkink,

Glabbeek and Ingolfsdottir, 2004). For instance, ≃1 is trace equivalence and ≃2

is possible-futures equivalence (Rounds and Brookes, 1981). Each of the ≃i,

i ≥ 0, is an equivalence relation and is preserved by the operators of CCS

introduced in Chapter 1 of the book.

Hennessy and Milner showed in (Hennessy and Milner, 1985) that, over image-

finite labelled transition systems, strong bisimilarity also coincides with the

relation

≃ω= ∩i≥0 ≃i .

In stark contrast to the P -completeness of bisimilarity checking over finite la-

belled transition systems, Kanellakis and Smolka proved in (Kanellakis and

Smolka, 1990) the following result to the effect that computing the relations ≃i,

i ≥ 1, is much harder than computing bisimilarity.

Theorem 0.3.14 (Kanellakis and Smolka) For each i ≥ 1, the problem of

deciding the equivalence ≃i over finite labelled transition systems is PSPACE-

complete.

Proof Recall that ≃1 is just trace equivalence. Deciding trace equivalence

over finite labelled transition systems is known to be PSPACE-complete. (See

Lemma 4.2 in (Kanellakis and Smolka, 1990), where this result is attributed

to Chandra and Stockmeyer.) We are therefore left to prove the claim for ≃i,

i ≥ 2.

We begin by arguing that deciding the equivalence ≃i is PSPACE-hard for

each i ≥ 2. To this end, we prove that ≃1 reduces (in polynomial time) to ≃i,

for each i ≥ 2. In order to show this claim, it suffices only to give a polynomial

time reduction from ≃i to ≃i+1, for each i ≥ 1. In presenting the reduction from

≃i to ≃i+1, we shall use the operators of action prefixing and choice from CCS

that were introduced in Chapter 1 (Section 4.2) of this book. (Note that those

operators can be viewed as operations over the class of finite labelled transition

systems.)

The reduction works as follows. Let P and Q be two states in a finite labelled

transition system. Define the processes P ′ and Q′ thus:

P ′ = a. (P + Q) and

Q′ = a.P + a.Q ,
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where a is an arbitrary action in our labelled transition system. We claim that

P ≃i Q iff P ′ ≃i+1 Q′ .

This can be shown as follows.

• If P ′ ≃i+1 Q′ then the definition of ≃i yields that P ≃i P + Q ≃i Q, from

which P ≃i Q follows by the transitivity of ≃i.

• Assume now that P ≃i Q holds. We prove that P ′ ≃i+1 Q′.

We limit ourselves to showing that for each sequence of actions w and

process P ′′ such that P ′ w
→ P ′′, there is some Q′′ such that Q′ w

→ Q′′ and

P ′′ ≃i Q′′. We proceed by considering three cases, depending on whether w

is empty, w = a or w is of length at least two.

– Suppose that w is empty. Then P ′ = P ′′ and Q′ = Q′′. Recall that ≃i is

a congruence with respect to action prefixing and choice. Therefore, since

P ≃i Q and choice is easily seen to be idempotent with respect to ≃i,

P ′ = a. (P + Q) ≃i a.P ≃i a.P + a.P ≃i a.P + a.Q ≃i Q′ ,

and we are done.

– Suppose that w = a. Then P ′′ = P + Q and reasoning as in the previous

case we infer that, for instance, P ′′ ≃i P . Since Q′ a
→ P , we are done.

– Suppose that w is of length at least two. In this case, it is easy to see that

Q′ w
→ P ′′ and the claim follows since ≃i is reflexive.

Therefore ≃i reduces to ≃i+1, for each i ≥ 1, as claimed. It follows that ≃1

reduces (in polynomial time) to ≃i, for each i ≥ 2, by applying the reduction

given above (i − 1) times.

Membership of each ≃i, i ≥ 2, in PSPACE can be shown by reducing the

problem of deciding ≃i to the equivalence problem for nondeterministic finite

automata (see, e.g., (Sipser, 2006)), which is a well known PSPACE-complete

problem (Garey and Johnson, 1979; Stockmeyer and Meyer, 1973). To this

end, observe that, since we already know that ≃1 is in PSPACE, we can reason

inductively as follows. Assume that ≃i is in PSPACE, for some i ≥ 1. Using

this assumption, we proceed to prove membership in PSPACE for ≃i+1. Let P

and Q be two states in a finite labelled transition system. Let {B1, . . . , Bk} be

the partition of the set of states induced by the equivalence ≃i. (The partition

can be computed using a polynomial amount of space since ≃i is in PSPACE

by our inductive assumption.)

Observe now that we can view our input finite labelled transition system as

a nondeterministic finite automaton with either P or Q as start state and with

any of the sets B1, . . . , Bk as set of accept states. For each ℓ ∈ {1, . . . , k}, let
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Lℓ(P ) (respectively, Lℓ(Q)) denote the language accepted by the nondetermin-

istic finite automaton that results by taking P (respectively, Q) as start state

and Bℓ as set of accept states. It is easy to see that

P ≃i+1 Q iff Lℓ(P ) = Lℓ(Q), for each ℓ ∈ {1, . . . , k} .

This yields membership in PSPACE for ≃i+1, which was to be shown. ✷

In the light of the above theorem, bisimilarity over finite labelled transition sys-

tems can be decided in polynomial time, but is the ‘limit’ of a non-increasing

sequence of equivalences that are all PSPACE-complete. We shall meet ana-

logues of this result in Section 0.4.

Remark 0.3.15 In the setting of equational axiomatizations of behavioural

relations, the paper (Aceto et al., 2004) presents hardness results for nested trace

semantics that are akin to Theorem 0.3.14 and set them apart from bisimilarity.

More precisely, in that reference, the authors show that, unlike bisimilarity, none

of the relations ≃i, i ≥ 2, affords a finite, ground-complete axiomatization over

Basic CCS.

0.3.3 EXPTIME-completeness of equivalence checking on networks

of finite processes

We have shown in Theorem 0.3.5 that the equivalence checking problem on finite,

acyclic processes is P-hard for any relation between the simulation preorder and

bisimilarity. In fact, the usually studied equivalences and preorders between the

simulation preorder and bisimilarity, such as the completed, ready and 2-nested

simulations preorders, are also decidable in deterministic polynomial time. (See

Section 7 in Chapter 1 of this book or the encyclopaedic survey paper (Glabbeek,

2001) for the definition of those relations. An efficient algorithm for deciding

the ready simulation preorder is described in (Bloom and Paige, 1995).)

The aforementioned results are rather encouraging and bode well for the use

of such relations in computer-aided implementation verification. However, one

should realize that the complexity of the algorithms we have presented so far

is measured with respect to the size of the input labelled transition system.

These systems are called flat systems. However, in practice the studied LTS is

often given indirectly, for example as a parallel composition of communicating

finite-state agents. The semantics of such a composition is still given in terms of

labelled transition systems; however, the resulting LTS is often of exponential

size with respect to the size of the description of the system. The formalisms

that provide such a succinct description of large labelled transition systems
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are called non-flat systems. In this section, we shall introduce one example of

a non-flat system where a number of concurrent finite processes communicate

via synchronization on common actions and we shall study the complexity of

bisimulation-like equivalence checking on such non-flat systems. As we shall see,

the resulting decision problems become computationally hard in such a setting.

Let (Pri, Acti,−→i) be a finite LTS for every i, 1 ≤ i ≤ n. A network of finite

processes is a parallel composition P1 | P2 | · · · | Pn where Pi ∈ Pri for each

i ∈ {1, . . . , n}. The semantics of such a composition is given in terms of a flat

LTS (Pr, Act,−→) where

• Pr = Pr1 × Pr2 × · · · × Prn,

• Act = Act1 ∪ Act2 ∪ · · · ∪ Actn, and

• (Q1, Q2, . . . , Qn)
a
−→ (Q′

1, Q
′
2, . . . , Q

′
n) whenever Qi

a
−→i Q′

i if a ∈ Acti, and

Qi = Q′
i if a 6∈ Acti.

The flattening of the network P1 |P2 | · · · |Pn is then the process (P1, P2, . . . , Pn)

in the above defined LTS and the equivalence checking problem on networks of

finite processes is defined simply by using the standard notion on the underlying

flattened systems.

It was shown by Rabinovich (Rabinovich, 1997) that equivalence checking for

networks of finite processes with hiding of actions is PSPACE-hard for any rela-

tion between trace equivalence and bisimilarity. Rabinovich conjectured that the

problem is EXPTIME-hard. Indeed, EXPTIME-hardness was already known for

bisimilarity (Jategaonkar and Meyer, 1996) and simulation equivalence (Harel,

Kupferman and Vardi, 1997) and the conjecture was later partially confirmed by

Laroussinie and Schnoebelen (Laroussinie and Schnoebelen, 2000), who proved

an EXPTIME-hardness result for all the relations between the simulation pre-

order and bisimilarity on networks of finite processes. In their proof, Laroussinie

and Schnoebelen do not use any hiding of actions. Finally, Sawa (Sawa, 2003)

settled Rabinovich’s conjecture by showing that equivalence checking on net-

works of finite processes with hiding is EXPTIME-hard for all relations between

the trace preorder and bisimilarity.

We shall now argue that many equivalence checking problems with respect to

bisimulation-like equivalences/preorders are EXPTIME-complete on networks of

finite processes (without hiding). Our exposition of the hardness result is based

on the ideas from (Laroussinie and Schnoebelen, 2000), though the construction

is different in the technical details and the presentation is simplified by using

the previously discussed Defender’s forcing technique (Jančar and Srba, 2008).

The EXPTIME-hardness proof is done by offering a polynomial-time reduc-

tion from the acceptance problem for alternating linear bounded automata

(ALBA), a well known EXPTIME-complete problem—see, e.g., (Sipser, 2006).
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An ALBA is a tuple M = (Q, Q∃, Q∀, Σ, Γ,◮, ◭, q0, qacc, qrej , δ) where

• Q∃ and Q∀ are finite, disjoint sets of existential, respectively universal, control

states and Q = Q∃ ∪ Q∀,

• Σ is a finite input alphabet,

• Γ ⊇ Σ is a finite tape alphabet,

• ◮,◭ ∈ Γ are the left and right end-markers,

• q0, qacc, qrej ∈ Q are the initial, accept and reject states, respectively, and

• δ:Q\{qacc, qrej}×Γ → Q×Q×Γ×{−1,+1} is a computation step function,

such that whenever δ(p, x) = (q1, q2, y, d) then x = ◮ iff y = ◮ and if x = ◮

then d = +1, and x = ◭ iff y = ◭ and if x = ◭ then d = −1.

We can, without loss of generality, assume that the input alphabet is binary,

that is Σ = {a, b} and that the tape alphabet only contains the symbols from

the input alphabet and the end-markers, that is Γ = {a, b,◭,◮}. We shall

write p
x→y,d
−−−−→ q1, q2 whenever δ(p, x) = (q1, q2, y, d). The intuition is that if

the machine M is in a state p and is reading the tape symbol x, it can replace

x with y, move the tape head one position to the right (if d = +1) or to the left

(if d = −1) and enter the control state q1 or q2 (depending on the type of the

control state p the choice between q1 and q2 is either existential or universal).

A configuration of M is given by the current control state, the position

of the tape head and the content of the tape; we write it as a triple from

Q × N × ({◮}. Γ∗. {◭)}. The head position on the left end-marker ◮ is by

definition 0. A step of computation is a relation between configurations, de-

noted by ⊢, that is defined using the function δ in the usual way. For example,

for the transition p
a→b,+1
−−−−−→ q1, q2 we get (p, 1,◮aab◭) ⊢ (q1, 2,◮bab◭) and

(p, 1,◮aab◭) ⊢ (q2, 2,◮bab◭).

Given a word w ∈ Σ∗, the initial configuration of M is (q0, 1,◮w◭). A con-

figuration is called accepting if it is of the form (qacc, i,◮w′
◭), and it is called

rejecting if it is of the form (qrej , i,◮w′
◭).

A computation tree on an input w ∈ Σ∗ is a labelled tree such that the

root is labelled by the initial configuration, the leaves are the nodes labelled

by accepting or rejecting configurations and every non-leaf node labelled by a

configuration c with existential control state has exactly one child labelled with

some c′ such that c ⊢ c′, and every non-leaf node labelled by a configuration c

with universal control state has exactly two children labelled with c1 and c2 such

that c1 and c2 are the two successor configurations of c, i.e., c ⊢ c1 and c ⊢ c2.

Without loss of generality, we shall assume from now on that any computation

tree is finite (see e.g. (Sipser, 2006, page 198)).

A computation tree on an input w is called accepting if its leaves are labelled
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only with accepting configurations. An ALBA M accepts a word w ∈ Σ∗, if

there exists an accepting computation tree of M on w.

As already mentioned, the problem of deciding whether a given ALBA M

accepts a given word w ∈ Σ∗ is EXPTIME-complete (see e.g. (Sipser, 2006)).

Let M be a given ALBA with an input w = w1w2 . . . wn ∈ {a, b}∗. We shall

construct (in polynomial time) two networks of finite processes

P = C(q0, 1) | T◮

0 | Tw1

1 | Tw2

2 | · · · | Twn

n | T◭

n+1

and

Q = D(q0, 1) | T◮

0 | Tw1

1 | Tw2

2 | · · · | Twn

n | T◭

n+1

such that

• if M accepts w then Defender has a winning strategy in the bisimulation game

from (P,Q), and

• if M does not accept w then Attacker has a winning strategy in the simulation

game from (P,Q).

Having shown these claims, we will be able to conclude that equivalence checking

for any relation between the simulation preorder and bisimilarity on networks

of finite processes is EXPTIME-hard. (This kind of general reasoning was ex-

plained in Remark 0.3.3.)

The intuition behind the construction is that in the processes

T◮

0 , Tw1

1 , Tw2

2 , . . . , Twn

n , T◭

n+1

we remember the actual content of the tape. Because the left and right end-

markers cannot be rewritten, it is sufficient that the processes T◮

0 and T◭

n+1 are

one-state processes and because we assume that the rest of the tape consists only

of the symbols a and b, the remaining processes Tw1

1 , . . . , Twn

n will all contain

exactly two states, remembering the current content of the particular tape cell.

Additionally, the process P has the parallel component C(p, i), which represents

the current control state and the position of the tape head; similarly the same

information is remembered in the process Q in the parallel component D(p, i). In

fact, the use of C or D is the only point where the processes P and Q differ. The

processes representing the tape cells will communicate with the process C(p, i) or

D(p, i) using actions of the form (x, y, i), meaning that if the tape cell i contains

the symbol x, it is going to remember the symbol y after the (hand-shake)

communication takes place. Defining the processes C(p, i) and D(p, i) is rather

straightforward. The only challenge is the implementation of the choice between

the new control states q1 and q2. If p is a universal state then it will be Attacker

who chooses one of them—implementation of this choice by the Attacker is easy.
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If p is an existential state, it will be Defender who chooses the next control

state—this part of the construction will be implemented using the Defender’s

forcing technique, which was already used in the proof of Theorem 0.3.5 showing

the P-hardness of the equivalence checking problem on flat processes. Finally,

in the process C(qrej , i) Attacker will be able to perform a special action rej for

which Defender will have no answer in the process D(qrej , i).

Formally, the reduction is computed as follows.

(1) Create a process T◮

0 with the only transition T◮

0

(◮,◮,0)
−−−−−→ T◮

0 .

(2) Create a process T◭

n+1 with the only transition T◭

n+1

(◭,◭,n+1)
−−−−−−−→ T◭

n+1.

(3) For every i, 1 ≤ i ≤ n, create two processes T a
i and T b

i with the transitions

• T a
i

(a,b,i)
−−−−→ T b

i ,

• T a
i

(a,a,i)
−−−−→ T a

i ,

• T b
i

(b,a,i)
−−−−→ T a

i , and

• T b
i

(b,b,i)
−−−−→ T b

i .

The following picture shows the processes constructed in parts (1)–(3).

WVUTPQRST◮

0

(◮,◮,0)

�� WVUTPQRST a
1

(a,a,1)

��

(a,b,1)

��

. . . WVUTPQRST a
i

(a,a,i)

��

(a,b,i)

��

. . . WVUTPQRST a
n

(a,a,n)

��

(a,b,n)

��

WVUTPQRST◭

n+1

(◭,◭,n+1)

��

WVUTPQRST b
1

(b,b,1)

JJ

(b,a,1)

VV

. . . WVUTPQRST b
i

(b,b,i)

JJ

(b,a,i)

VV

. . . WVUTPQRST b
n

(b,b,n)

JJ

(b,a,n)

VV

(4) For every i, 0 ≤ i ≤ n+1, and every transition p
x→y,d
−−−−→ q1, q2 in M such

that p ∈ Q∀ create the processes C(p, i), C ′(q1, q2, i + d, ∀), C(q1, i + d),

C(q2, i+d) and D(p, i), D′(q1, q2, i+d, ∀), D(q1, i+d), D(q2, i+d) together

with the transitions

• C(p, i)
(x,y,i)
−−−−→ C ′(q1, q2, i + d, ∀),

• C ′(q1, q2, i + d, ∀)
1
−→ C(q1, i + d),

• C ′(q1, q2, i + d, ∀)
2
−→ C(q2, i + d), and

• D(p, i)
(x,y,i)
−−−−→ D′(q1, q2, i + d, ∀),

• D′(q1, q2, i + d, ∀)
1
−→ D(q1, i + d),
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• D′(q1, q2, i + d, ∀)
2
−→ D(q2, i + d).

The two fragments of the leading processes in P and Q, pictured below

for the rule p
x→y,d
−−−−→ q1, q2 with p ∈ Q∀, demonstrate the construction.

GF ED@A BCC(p, i)

(x,y,i)

��

GF ED@A BCD(p, i)

(x,y,i)

��GF ED@A BCC ′(q1, q2, i + d, ∀)

1

��





2

��1
11

11
11

11
1

GF ED@A BCD′(q1, q2, i + d, ∀)

1

��





2

��1
11

11
11

11
1

GF ED@A BCC(q1, i + d)
GF ED@A BCC(q2, i + d)

GF ED@A BCD(q1, i + d)
GF ED@A BCD(q2, i + d)

Consider a play in the bisimulation game starting from the pair of pro-

cesses C(p, i)|T and D(p, i)|T , where T = T◮

0 |· · ·|T x
i |· · ·|T

◭

n+1 is a parallel

composition of the processes representing the tape content. Assume that

there is a rule p
x→y,d
−−−−→ q1, q2. The only possible transition, a commu-

nication between C(p, i), respectively D(p, i), and T x
i under the action

(x, y, i), is uniquely determined in both of the processes C(p, i) | T and

D(p, i) | T . Hence, after one round of the bisimulation game, the players

necessarily reach a pair of processes of the form C ′(q1, q2, i+d, ∀) |T ′ and

D′(q1, q2, i + d, ∀) | T ′ for some modified tape content T ′. Now Attacker

can play either the action 1 or 2 (without any communication) in order

to select the next control state q1 or q2 of the ALBA M .

(5) For every i, 0 ≤ i ≤ n+1, and every transition p
x→y,d
−−−−→ q1, q2 in M such

that p ∈ Q∃ create the processes C(p, i), C ′(q1, q2, i+d, ∃), C ′′(q1, q2, i+d),

C(q1, i + d), C(q2, i + d) and D(p, i), D′(q1, q2, i + d, ∃), D1(q1, q2, i + d),

D2(q1, q2, i + d), D(q1, i + d), D(q2, i + d) together with the transitions

• C(p, i)
(x,y,i)
−−−−→ C ′(q1, q2, i + d, ∃),

• C ′(q1, q2, i + d, ∃)
a
−→ C ′′(q1, q2, i + d),

• C ′(q1, q2, i + d, ∃)
a
−→ D1(q1, q2, i + d),

• C ′(q1, q2, i + d, ∃)
a
−→ D2(q1, q2, i + d),

• C ′′(q1, q2, i + d)
1
−→ C(q1, i + d),

• C ′′(q1, q2, i + d)
2
−→ C(q2, i + d), and

• D(p, i)
(x,y,i)
−−−−→ D′(q1, q2, i + d, ∃),
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• D′(q1, q2, i + d, ∃)
a
−→ D1(q1, q2, i + d),

• D′(q1, q2, i + d, ∃)
a
−→ D2(q1, q2, i + d),

• D1(q1, q2, i + d)
1
−→ D(q1, i + d),

• D1(q1, q2, i + d)
2
−→ C(q2, i + d),

• D2(q1, q2, i + d)
2
−→ D(q2, i + d),

• D2(q1, q2, i + d)
1
−→ C(q1, i + d).

The added transitions for the rule p
x→y,d
−−−−→ q1, q2 where p ∈ Q∃ are

depicted below.

GF ED@A BCC(p, i)

(x,y,i)

��

GF ED@A BCD(p, i)

(x,y,i)

��GF ED@A BCC ′(q1, q2, i + d, ∃)

a

��

a

%%JJJJJJJJJJJJJJJJJJJJJJJ

a

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

GF ED@A BCD′(q1, q2, i + d, ∃)

a

��








a

��1
11

11
11

11
11

11
11

GF ED@A BCC ′′(q1, q2, i + d)

1

����
��
��
��
��
��
��

2

��,
,,

,,
,,

,,
,,

,,
,

GF ED@A BCD1(q1, q2, i + d)

1

��

2

}}||
||

||
||

||
||

||
||

||
|

GF ED@A BCD2(q1, q2, i + d)

2

��

1

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

GF ED@A BCC(q1, i + d)
GF ED@A BCC(q2, i + d)

GF ED@A BCD(q1, i + d)
GF ED@A BCD(q2, i + d)

As before, after one round of any play in the bisimulation game start-

ing from C(p, i) | T and D(p, i) | T (where T is the parallel composi-

tion of processes representing the tape content) the players necessarily

end in a pair consisting of processes of the form C ′(q1, q2, i + d, ∃) | T ′

and D′(q1, q2, i + d, ∃) | T ′. Attacker is now forced to play the action

a (no communication) in the left-hand-side process and enter the state

C ′′(q1, q2, i + d) | T ′—any other attack gives Defender the possibility to

enter the same state chosen by Attacker and leads therefore to a losing

line of play for Attacker. Defender answers either by entering the state
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D1(q1, q2, i + d) | T ′ or D2(q1, q2, i + d) | T ′. From the pair consisting

of the processes C ′′(q1, q2, i + d) | T ′ and D1(q1, q2, i + d) | T ′, Attacker

clearly has to play the action 1 (no communication) in order to avoid

reaching a pair of equal processes after Defender’s answer to his move.

Similarly, from the pair consisting of the processes C ′′(q1, q2, i+d)|T ′ and

D2(q1, q2, i + d) | T ′, Attacker has to play the action 2. That means that

the play will continue either from the pair consisting of C(q1, i + d) | T ′

and D(q1, i + d) | T ′, or from the one consisting of C(q2, i + d) | T ′ and

D(q2, i+ d) |T ′. Note that it was Defender who selected the next control

state of the ALBA in this case.

(6) Finally, for every i, 0 ≤ i ≤ n + 1, add C(qrej , i)
rej
−−→ C(qrej , i).

This ensures that if during some play the players reach a rejecting

configuration, Attacker wins by performing the action rej in the left-

hand-side process to which Defender has no answer in the right-hand-side

process.

To sum up, the players can force each other to faithfully simulate a computation

of a given ALBA M on a word w. Attacker is selecting the successor config-

uration if the present control state is universal, Defender does the selection if

the present control state is existential. Recall that we assumed that the com-

putation tree of M on w does not have any infinite branches. We can therefore

conclude that if M accepts w then Defender can force any play to reach a pair

of processes representing an accepting leaf in the computation tree when it is

Attacker’s turn to play next. This is clearly a winning position for Defender

as no continuation of the play is possible in either of the processes. On the

other hand, if M does not accept w, Attacker can force any play to reach a

pair of processes representing a rejecting leaf in the computation tree when it

is his turn to play the action rej, and Defender loses. In this case, Attacker is

moreover able to implement the winning strategy by playing exclusively in the

left-hand-side process. Therefore we can state the following generic hardness

result.

Theorem 0.3.16 The equivalence checking problem between two networks of

finite processes is EXPTIME-hard for any relation between the strong simulation

preorder and strong bisimilarity.

Notice now that because essentially all bisimulation-like equivalences and pre-

orders studied in the literature are decidable in polynomial time on flat systems,

we get an immediate EXPTIME-algorithm for these equivalence checking prob-

lems on non-flat systems, simply by flattening the networks of finite processes
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(causing an exponential increase in size) and running the polynomial time algo-

rithms on the flattened system. Hence we obtain the following corollary.

Corollary 0.3.17 The problems of checking the simulation preorder and equiv-

alence, completed simulation preorder and equivalence, ready simulation pre-

order and equivalence, 2-nested simulation preorder and equivalence, and bisim-

ilarity on networks of finite processes are EXPTIME-complete.

0.4 Decidability results for bisimilarity over infinite-state systems

We shall now consider the questions of decidability/undecidability of bisimilar-

ity on so-called infinite-state systems, i.e. labelled transition systems with in-

finitely many reachable states. For example, these systems naturally arise when

one models infinite data domains, such as counters, integer variables, stacks

and queues, or unbounded control structures, like recursive procedure calls, dy-

namic process creation and mobility, and in parameterized reasoning involving

an arbitrary number of identical processes.

Of course, an infinite-state system cannot be passed as an input to an al-

gorithm as it is. We need to find a suitable finite representation of such a

system in order to ask decidability questions. For the purpose of this chapter,

we shall consider the concept of process rewrite systems as it provides a finite

description of many well-studied formalisms like pushdown automata or Petri

nets. After introducing process rewrite systems, we shall focus on two selected

results. First, we shall argue that bisimilarity is decidable over the class of Basic

Parallel Processes (BPP), which form the so-called communication-free subclass

of Petri nets. The result will be proved using the tableau technique, which is ap-

plicable also in many other cases. Second, we will demonstrate that bisimilarity

is undecidable over the whole class of Petri nets. Finally we give an overview of

the current state of the art in the area.

0.4.1 Process rewrite systems

We start by introducing several well studied classes of infinite-state processes

by means of process rewrite systems (PRS). Process rewrite systems are an el-

egant and universal approach defined, in the form presented in this chapter,

by Mayr (Mayr, 2000). Mayr’s definition unifies and extends some previously

introduced formalisms for infinite-state systems (see e.g. the overview arti-

cles (Burkart, Caucal, Moller and Steffen, 2001; Burkart and Esparza, 1997;

Moller, 1996)).

Let Const be a set of process constants. The classes of process expressions
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called 1 (process constants plus the empty process), P (parallel process expres-

sions), S (sequential process expressions), and G (general process expressions)

are defined by the following abstract syntax

1: E ::= ǫ | X

P: E ::= ǫ | X | E | E

S: E ::= ǫ | X | E. E

G: E ::= ǫ | X | E | E | E.E

where ‘ǫ’ is the empty process, X ranges over Const, the operator ‘.’ stands for

sequential composition and ‘|’ stands for parallel composition. Obviously, 1 ⊂ S,

1 ⊂ P, S ⊂ G and P ⊂ G. The classes S and P are incomparable and S∩P = 1.

We do not distinguish between process expressions related by a structural

congruence, which is the smallest congruence over process expressions such that

the following laws hold:

• ‘.’ is associative,

• ‘|’ is associative and commutative, and

• ‘ǫ’ is a unit for both ‘.’ and ‘|’.

Definition 0.4.1 Let α, β ∈ {1,S,P,G} be classes of process expressions such

that α ⊆ β and let Act be a set of actions. An (α, β)-PRS (Mayr, 2000) is a

finite set

∆ ⊆ (α r {ǫ}) × Act × β

of rewrite rules, written E
a

−→ F for (E, a, F ) ∈ ∆. By Const(∆) we denote the

set of process constants that appear in ∆ and by Act(∆) the set of actions that

appear in ∆.

An (α, β)-PRS determines a labelled transition system whose states are process

expressions from the class β (modulo the structural congruence), Act is the set

of labels, and the transition relation is the least relation satisfying the following

SOS rules (recall that ‘|’ is commutative).

(E
a

−→ E′) ∈ ∆

E
a

−→ E′

E
a

−→ E′

E.F
a

−→ E′.F

E
a

−→ E′

E | F
a

−→ E′ | F

Many classes of infinite-state systems studied so far—e.g. basic process algebra

(BPA), basic parallel processes (BPP), pushdown automata (PDA), Petri nets

(PN) and process algebra (PA)—are contained in the hierarchy of process rewrite

systems presented in Figure 0.10. This hierarchy is strict with respect to strong

bisimilarity and we refer the reader to (Mayr, 2000) for further discussions.

We shall now take a closer look at the classes forming the PRS hierarchy.
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Fig. 0.10. Hierarchy of process rewrite systems

Finite-state processes. Finite-state processes (FS)—or equivalently (1, 1)-

PRS—generate a class of transition systems with finitely many reachable states.

Here rules are of the form

X
a

−→ Y or X
a

−→ ǫ

where X, Y ∈ Const(∆) and a ∈ Act(∆).

Basic process algebra. Basic process algebra (BPA)—or equivalently (1,S)-

PRS—represents the class of processes introduced by Bergstra and Klop in, for

instance, (Bergstra and Klop, 1985). BPA is a model of purely sequential process

behaviour such that a process constant can be replaced by a finite sequence of

symbols via prefix rewriting. For example the rewrite rules

X
a

−→ X.Y and X
b

−→ ǫ and Y
c

−→ X

allow us to perform the sequence of transitions

X
a

−→ X.Y
a

−→ X.Y . Y
b

−→ Y . Y
c

−→ X.Y
a

−→ X.Y . Y
a

−→ X. Y .Y .Y

where the sequential composition of the process constants behaves like a stack

with the top on the left-hand side. This class also corresponds to the transition
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systems associated with context-free grammars in Greibach normal form, in

which only left-most derivations are allowed.

Basic parallel processes. Basic parallel processes (BPP)—or equivalently

(1,P)-PRS—are a fragment of CCS (Milner, 1989) without restriction, rela-

belling and communication. It is a parallel analogue of BPA where any occur-

rence of a process constant inside a parallel composition can be replaced by a

number of process constants put in parallel. For example, the rewrite rules

X
a

−→ X | Y | Y and Y
b

−→ ǫ

allow us to derive the following sequence of transitions:

X
a

−→ X | Y | Y
b

−→ X | Y
a

−→ X | Y | Y | Y
b

−→ X | Y | Y
a

−→ X | Y | Y | Y | Y .

The class BPP was first studied by Christensen (Christensen, 1993), and it is

equivalent to the communication-free subclass of Petri nets (each transition has

exactly one input place). The classes BPA and BPP are also called simple

process algebras.

Pushdown processes. Pushdown processes (PDA)—or equivalently (S,S)-

PRS—represent the class of processes introduced via sequential prefix rewriting

with unrestricted rules. Caucal (Caucal, 1992) showed that an arbitrary unre-

stricted (S,S)-PRS can be transformed into a PDA system (where rewrite rules

are of the form pX
a

−→ qγ such that p and q are control states, X is a stack

symbol and γ is a sequence of stack symbols) in such a way that their generated

transition systems are isomorphic. Hence (S,S)-PRS and PDA are equivalent

formalisms.

PA-processes. PA-processes (PA for process algebra)—or equivalently (1,G)-

PRS—represent the class of processes originally introduced by Bergstra and

Klop in (Bergstra and Klop, 1984). This formalism combines the parallel and

sequential operator but allows for neither communication nor global-state con-

trol.

Petri nets. Petri nets (PN)—or equivalently (P,P)-PRS—represent the class

of processes that correspond to the standard and well studied notion of labelled

place/transition (P/T) nets as originally proposed by Petri (Petri, 1962). In

fact, (P,P)-PRS capture exactly the class of Petri nets with multiple arcs (see

e.g. (Peterson, 1981)). The correspondence between (P,P)-PRS and Petri nets

is straightforward: process constants are names of places in the Petri net, any

expression from P appearing during a computation is represented as a marking
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Fig. 0.11. A Petri net fragment corresponding to the rule X | Y
a

−→ U | V | Y

where the number of occurrences of a process constant gives the number of

tokens in the place named after the process constant, and every rule gives rise

to a labelled transition in the net as depicted on the example in Figure 0.11.

PAD, PAN and PRS processes. The systems PAD, PAN and PRS corre-

spond to (S,G)-PRS, (P,G)-PRS and (G,G)-PRS, respectively. These classes

complete the hierarchy of process rewrite systems and were introduced by Mayr;

see (Mayr, 2000). The PAD class is the smallest common generalization of

PA and PDA (Mayr, 1998) and PAN is a combination of the models PA and

PN (Mayr, 1997a). The most general class PRS subsumes all the previously

mentioned classes. It is worth mentioning that even the class (G,G)-PRS is

not Turing powerful since, e.g., the reachability problem (i.e., whether from a

given process expression we can in finitely many steps reach another given pro-

cess expression) remains decidable (Mayr, 2000). In fact, reachability remains

decidable even in the recently introduced generalization of PRS called weakly

extended process rewrite systems (Křet́ınský, Řehák and Strejček, 2005), where

a finite control-unit with a monotonic behaviour provides an extra control over

the process behaviours.

Further motivation for studying the classes from the PRS hierarchy can be

found in (Esparza, 2002) and the classes from the PRS hierarchy also have a

direct link with interprocedural control-flow analysis of programs (Esparza and

Knoop, 1999).

Bisimilarity-checking problem. The problem we shall now study is whether

we can decide the following:

Given two processes from some class in the PRS hierarchy, are the two processes bisim-
ilar or not?

First, we shall argue that this problem is decidable for the BPP class and then

we prove its undecidability for Petri nets.
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0.4.2 Deciding bisimilarity on BPP using a tableau technique

Our aim is now to show decidability of bisimilarity on BPP. Christensen, Hir-

shfeld and Moller first proved this positive result in (Christensen, 1993; Chris-

tensen, Hirshfeld and Moller, 1993), using the so-called tableau technique. The

presentation of the decidability result in this section is based on their proof.

We shall now introduce our running example. Without loss of generality we

assume that in what follows any BPP system ∆ uses the process constants

Const(∆) = {X1, . . . , Xn} for some n.

Example 0.4.2 Assume a BPP system ∆ with the following rules.

X1
a

−→ X1 | X2

X2
b

−→ X3

X3
b

−→ ǫ

X4
a

−→ X4 | X3 | X3

We encourage the reader to draw initial fragments of labelled transition systems

generated by the processes X1 and X4 and to establish that X1 ∼ X4. ✷

We mention the standard fact that any BPP process E over ∆ can be viewed as a

Parikh vector φ(E) = (k1, k2, . . . , kn) ∈ N
n, where Const(∆) = {X1, X2, . . . , Xn}

and ki is the number of occurrences of Xi in E. Hence the Parikh vector simply

counts the number of occurrences of the different process constants in a given

expression. Clearly, two BPP processes E and F are structurally congruent if

and only if φ(E) = φ(F ).

Example 0.4.3 The rules from Example 0.4.2 can be viewed as rules over

Parikh vectors in the following way.

(1, 0, 0, 0)
a

−→ (1, 1, 0, 0)

(0, 1, 0, 0)
b

−→ (0, 0, 1, 0)

(0, 0, 1, 0)
b

−→ (0, 0, 0, 0)

(0, 0, 0, 1)
a

−→ (0, 0, 2, 1)

A sequence of transitions

X1
a

−→ X1 | X2
a

−→ X1 | X2 | X2
b

−→ X1 | X2 | X3
b

−→ X1 | X2

then has a straightforward analogue over Parikh vectors, namely

(1, 0, 0, 0)
a

−→ (1, 1, 0, 0)
a

−→ (1, 2, 0, 0)
b

−→ (1, 1, 1, 0)
b

−→ (1, 1, 0, 0) .

✷
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Definition 0.4.4 Let α = (α1, . . . , αn) ∈ N
n and β = (β1, . . . , βn) ∈ N

n.

• By α + β we denote a component-wise addition defined by α + β = (α1 +

β1, . . . , αn + βn) ∈ N
n.

• We define a lexicographical ordering <ℓ such that α <ℓ β iff there is some k,

0 ≤ k ≤ n, such that αk < βk and αi = βi for all i, 1 ≤ i < k.

• We define a component-wise ordering ≤c such that α ≤c β iff αi ≤ βi for

every i, 1 ≤ i ≤ n, i.e., iff there is α′ ∈ N
n such that β = α + α′. We write

α <c β iff α ≤c β and α 6= β.

Observe that <ℓ is a well-founded ordering—that is, there is no infinite sequence

α1, α2, . . . such that α1 >ℓ α2 >ℓ . . .—and note that α 6= β implies that either

α <ℓ β or β <ℓ α. The following fact is known as Dickson’s Lemma.

Lemma 0.4.5 ((Dickson, 1913)) Every infinite sequence from N
n has an in-

finite nondecreasing subsequence with respect to ≤c.

Before we describe the construction of a tableau proving bisimilarity of BPP

processes, we introduce some simple facts about stratified bisimulation relations

introduced in Definition 0.2.1 that will be used in the proof of soundness.

We note, first of all, that labelled transition systems generated by BPP pro-

cesses are clearly image-finite.

An important property of labelled transition systems generated by BPP pro-

cesses is that the stratified bisimulation relations ∼k are congruences. This fact

will be essential in the soundness proof of the tableau construction.

Lemma 0.4.6 Let E, F and G be BPP processes over ∆. If E ∼k F then

(E | G) ∼k (F | G) for any k ∈ N.

Exercise 0.4.7 Prove Lemma 0.4.6.

By Lemma 0.2.2 and Lemma 0.4.6 we can conclude that bisimilarity on BPP is

a congruence.

Lemma 0.4.8 Let E, F and G be BPP processes over ∆. If E ∼ F then

(E | G) ∼ (F | G).

We can now proceed with the description of the tableau technique in order to

demonstrate decidability of bisimilarity on BPP. Let E and F be BPP pro-

cesses over the set of rules ∆. Recall that by φ(E) and φ(F ) we denote the

corresponding Parikh vectors over N
n.

A tableau for E and F is a maximal proof tree rooted with (φ(E), φ(F )) and

built according to the following rules. Let (α, β) ∈ N
2n be a node in the tree.
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A node (α, β) is either terminal (leaf) or nonterminal. The following nodes are

terminal:

• (α, α) is a successful leaf for any α ∈ N
n,

• (α, β) is a successful leaf if next(α, ∗) ∪ next(β, ∗) = ∅,

• (α, β) is an unsuccessful leaf if for some a ∈ Act(∆) it is the case that

next(α, a) ∪ next(β, a) 6= ∅, and either next(α, a) = ∅ or next(β, a) = ∅.

We say that a node is an ancestor of (α, β) if it is on the path from the root to

(α, β) and at least one application of the rule EXPAND (defined later) separates

them. If (α, β) is not a leaf then we reduce it using the following RED rules as

long as possible.

REDL
(α, β)

(γ + ω, β)

if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such

that γ <ℓ δ and α = δ + ω for some ω ∈ N
n

REDR
(α, β)

(α, γ + ω)

if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such

that γ <ℓ δ and β = δ + ω for some ω ∈ N
n

If no reduction RED is applicable and the resulting node is not a leaf, we apply

the rule EXPAND for a set of relations Sa, a ∈ Act(∆), where Sa ⊆ next(α, a)×

next(β, a) such that

• for each α′ ∈ next(α, a), there is some β′ ∈ next(β, a) such that (α′, β′) ∈ Sa

and

• for each β′ ∈ next(β, a), there is some α′ ∈ next(α, a) such that (α′, β′) ∈ Sa.

Note that there are several possible relations Sa that might satisfy the condition

above.

EXPAND
(α, β)

{(α′, β′) | a ∈ Act(∆) ∧ (α′, β′) ∈ Sa}

The set notation used in the rule EXPAND means that each element (α′, β′) in

the conclusion of the rule becomes a new child in the proof tree. Now, we start

again applying the RED-rules to every such child (which is not a leaf) as long

as possible. Note that reduction rules are applicable to a node iff the node is

not terminal (leaf).

We call a tableau for (E,F ) successful if it is maximal (no further rules are

applicable) and all its leaves are successful.

Example 0.4.9 A successful tableau for X1 and X4 of the BPP system ∆ from



54 Decidability results for bisimilarity over infinite-state systems

Example 0.4.2 is given below.

(1, 0, 0, 0), (0, 0, 0, 1)

(1, 1, 0, 0), (0, 0, 2, 1)
EXPAND

(0, 1, 0, 1), (0, 0, 2, 1)
REDL

(0, 1, 2, 1), (0, 0, 4, 1)

(0, 0, 4, 1), (0, 0, 4, 1)
REDL

(0, 0, 1, 1), (0, 0, 1, 1)
EXPAND

Note that for the first application of the rule EXPAND there was only one choice

how to pair the successor processes (due to the fact that X1 and X2 have unique

a-successors). Then the rule REDL is applicable because

(0, 0, 0, 1)
︸ ︷︷ ︸

γ

<ℓ (1, 0, 0, 0)
︸ ︷︷ ︸

δ

,

(1, 1, 0, 0)
︸ ︷︷ ︸

α

= (1, 0, 0, 0)
︸ ︷︷ ︸

δ

+ (0, 1, 0, 0)
︸ ︷︷ ︸

ω

and

(0, 1, 0, 1) = (0, 0, 0, 1)
︸ ︷︷ ︸

γ

+ (0, 1, 0, 0)
︸ ︷︷ ︸

ω

.

Now no more REDL nor REDR are applicable, so we can apply the rule EX-

PAND. Again, there is a unique a-successor in both processes (left child) and

a unique b-successor in both processes (right child). The right child is by defi-

nition a successful leaf. By one more application of the REDL rule on the left

child where (0, 0, 2, 1)
︸ ︷︷ ︸

γ

<ℓ (0, 1, 0, 1)
︸ ︷︷ ︸

δ

and where ω = (0, 0, 2, 0), we complete the

tableau as the created child is a successful leaf. ✷

Lemma 0.4.10 Any tableau for BPP processes E and F is finite and there are

only finitely many tableaux.

Proof We first show that any tableau for E and F is finite. To this end,

observe, first of all, that any tableau for E and F is finitely branching because

Act(∆) is a finite set and for a given a ∈ Act(∆) any relation Sa is finite and

there are finitely many such relations. Should the tableau be infinite, there

must be an infinite branch, which gives an infinite sequence of vectors from

N
2n. Since the rules RED can be used only finitely many times in a sequence

(they decrease the <ℓ order, which is well founded), there must be an infinite

subsequence of vectors on which the rule EXPAND was applied. Using Dickson’s

Lemma 0.4.5, this sequence must contain an infinite nondecreasing subsequence
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(α1, β1) ≤c (α2, β2) ≤c . . .. However, the rule EXPAND cannot be applied on

(α2, β2) since one of the RED rules is applicable. This is a contradiction.

Since there are only finitely many relations Sa for any a ∈ Act(∆) available

in the EXPAND rule and there are finitely many possibilities for an applica-

tion of the RED rule, there are always finitely many possibilities for extending

an already existing partial tableau. Suppose that there were infinitely many

tableaux starting from (φ(E), φ(F )). Then there must be a tableau with an

infinite branch, which contradicts that every tableau is finite. ✷

Lemma 0.4.11 (Completeness) Let E and F be two BPP processes over ∆.

If E ∼ F then there is a successful tableau for E and F .

Proof We construct inductively a tableau with root (φ(E), φ(F )) such that

every node (α, β) in the tableau satisfies α ∼ β. Hence this tableau cannot

contain any unsuccessful leaf and it must be finite because of Lemma 0.4.10.

Suppose that (α, β) is already a node in the tableau such that α ∼ β and

consider the rule REDL applied on (α, β). We may assume, without loss of

generality, that (γ, δ) is an ancestor of (α, β). By induction, γ ∼ δ, which

means by Lemma 0.4.8 that (γ + ω) ∼ (δ + ω) = α ∼ β. Hence (γ + ω) ∼ β.

Similarly for REDR. From the definition of bisimilarity it follows that the rule

EXPAND is also forward sound, i.e., if α ∼ β then we can choose for every

a ∈ Act(∆) a relation Sa such that (α′, β′) ∈ Sa implies that α′ ∼ β′. ✷

Lemma 0.4.12 (Soundness) Let E and F be two BPP processes over ∆. If

there is a successful tableau for E and F then E ∼ F .

Proof For the sake of contradiction assume that there is a successful tableau

for E and F and E 6∼ F . We show that we can construct a path from the root

(φ(E), φ(F )) to some leaf, such that for any pair (α, β) on this path α 6∼ β.

If E 6∼ F then using Lemma 0.2.2 there is a minimal k such that E 6∼k F .

Notice that if α 6∼k β such that k is minimal and we apply the rule EXPAND,

then at least one of its children (α′, β′) satisfies that α′ 6∼k−1 β′. We choose

such a child to extend our path from the root.

If we apply REDL on (α, β) where α 6∼k β and k is minimal, then the cor-

responding ancestor (γ, δ) is separated by at least one application of EXPAND

and so γ ∼k δ. This implies that (γ + ω) 6∼k β, otherwise using Lemma 0.4.6

we get that α = (δ + ω) ∼k (γ + ω) ∼k β, which is a contradiction with α 6∼k β.

The same is true for REDR. Thus there must be a path from the root to some

leaf such that for any pair (α, β) on this path α 6∼ β. This is a contradiction

with the fact that the path contains a successful leaf. ✷
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We can now conclude that it is decidable whether E ∼ F for given BPP pro-

cesses E and F . Indeed, E ∼ F iff there is a successful tableau for E and

F (Lemma 0.4.11 and Lemma 0.4.12). Moreover, there are only finitely many

tableaux and all of them are finite. We can therefore state the following theorem.

Theorem 0.4.13 ((Christensen et al., 1993)) It is decidable whether E ∼

F for any two given BPP processes E and F .

Remark 0.4.14 As mentioned above, one can in principle view BPP pro-

cesses as elements over the free commutative monoid (Nn,+, (0, . . . , 0)). Be-

cause bisimilarity is a congruence over this monoid (Lemma 0.4.8), we can

apply a classical result to the effect that every congruence on a finitely gen-

erated commutative semigroup is finitely generated (Redei, 1965), in order

to derive the positive decidability result. For further references on this topic

see (Hirshfeld, 1994a; Burkart et al., 2001; Jančar, 2008).

Unfortunately, the complexity of the above-presented tableau-based proof for

decidability of bisimilarity on BPP is unknown—no primitive recursive upper

bound was given. Only recently, Jančar proved the containment of the problem

in PSPACE (Jančar, 2003) using a different technique based on the so-called

dd-functions. Together with the previously known PSPACE-hardness result

from (Srba, 2003), PSPACE-completeness of the problem was finally shown.

Even though the tableau technique did not provide the best complexity upper

bound in this case, it demonstrates a useful proof strategy that is applicable also

to several other classes of systems. A successful tableau can be viewed as a com-

pact (finite) representation of Defender’s winning strategy (which is in general

infinite). What is, in principle, happening during the tableau construction is

that we repeatedly use the rule EXPAND in order to simulate possible attacks

on the pair of processes present in the tableau. Defender’s strategy corresponds

to the selection of appropriate sets Sa for every available action a. Because for

infinite state systems a construction of such a tableau using only the EXPAND

rule might not terminate, we need a way to ensure termination. How to do this

depends on the particular infinite-state system in question. In case of BPP, the

guarantee of termination is based on the fact that bisimilarity is a congruence,

and we can therefore ensure that any constructed tableau is finite by means

of the application of the rules REDL and REDR. We can call this approach

simplification of the sub-goals.

In fact, the assumptions in the proof of soundness and completeness of the

tableau technique are quite general, which allows us to extend the technique to

cover several other variants/extensions of BPP processes like e.g. lossy BPP,

BPP with interrupt and discrete timed-arc BPP nets (Srba, 2002).
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The tableau technique has been frequently used in the literature. Here we

limit ourselves to mentioning a few references relevant to the classes in the PRS

hierarchy. Hüttel and Stirling designed tableau rules in order to show that

bisimilarity is decidable on normed BPA (Hüttel and Stirling, 1998). (Normed

means that all process constants in the BPA system can be reduced to the

empty process ǫ in finitely many transitions.) In that reference, the authors use

a similar congruence property in order to simplify the sub-goals in the tableau.

A tableau technique proved useful also for the decidability of weak bisimilarity

on a subclass of BPP processes (Stirling, 2001).

Considerably more involved applications of the tableau technique can be found

in the proofs of decidability of bisimilarity for normed PA-processes (Hirshfeld

and Jerrum, 1999), normed pushdown systems (Stirling, 1998) as well as for

general pushdown system (Stirling, 2000).

Other uses of the tableau technique include model checking problems for var-

ious temporal logics (Bradfield, Esparza and Mader, 1996; Cleaveland, 1990;

Lichtenstein and Pnueli, 1985; Stirling and Walker, 1991) and some other prob-

lems, such as those addressed in (Mayr, 1997b; Stirling, 2003).

As already mentioned for the class BPP, tableau techniques do not always

provide the most efficient algorithms from the computational complexity point

of view. There have been other techniques developed for proving decidabil-

ity of bisimilarity, most notably the techniques based on finite bisimulation

bases. In some instances these techniques provide polynomial time algorithms

for bisimilarity on infinite-state systems. For a regularly updated list of ref-

erences consult (Srba, 2004). Readers interested in an intuitive explanation

of such techniques are directed to some recent overview articles (Kučera and

Jančar, 2006; Jančar, 2008).

0.4.3 Undecidability of bisimilarity on Petri nets

In this section we shall demonstrate a negative result for bisimilarity checking

on infinite-state labelled transition systems generated by Petri nets. The pre-

sentation of the result is to a large extend based on (Jančar and Srba, 2008),

slightly simplifying the original proof by Jančar (Jančar, 1995). The proof is

done by reduction from the halting problem for 2-counter Minsky machines.

A (Minsky) 2-counter machine (MCM) M , with nonnegative counters c1 and

c2, is a sequence of (labelled) instructions:

1 : instr1; 2 : instr2; . . . n : instrn

where instrn = HALT and each instri, for i ∈ {1, 2, . . . , n−1}, is of the following

two types (assuming j, k ∈ {1, 2, . . . , n}, r ∈ {1, 2}):
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Type (1) cr := cr + 1; goto j

Type (2) if cr = 0 then goto j else (cr := cr − 1; goto k)

The instructions of type (1) are called increment instructions, the instructions

of type (2) are zero-test (and decrement) instructions.

The computation of M on the input (i1, i2) ∈ N × N is the sequence of con-

figurations (i, n1, n2), starting with (1, i1, i2), where i ∈ {1, 2, . . . , n} is the label

of the instruction to be performed, and n1, n2 ∈ N are the (current) counter

values; the sequence is determined by the instructions in the obvious way. The

computation is either finite, i.e. halting by reaching the instruction n : HALT,

or infinite.

We define inf-MCM as the problem to decide whether the computation of a

given 2-counter MCM on (0, 0) is infinite, and we recall the following well-known

fact.

Proposition 0.4.15 ((Minsky, 1967)) Problem inf-MCM is undecidable.

Given a 2-counter machine M with n instructions, we construct a (P,P)-PRS

system (a Petri net) with Const = {q1, q2, . . . , qn, q′1, q
′
2, . . . , q

′
n, C1, C2} in which

q1 ∼ q′1 iff the computation of M on (0, 0) is infinite. We use the pair of process

constants qi, q
′
i for (the label of) the ith instruction, i ∈ {1, 2, . . . , n}, and the

constants C1, C2 for unary representations of the values of the counters c1, c2.

We define the following rules corresponding to (all) instructions of M (where

action a can be read as ‘addition’, i.e., increment, d as ‘decrement’, z as ‘zero’,

and h as ‘halt’).

‘i : cr := cr + 1; goto j’:

qi
a

−→ qj | Cr q′i
a

−→ q′j | Cr

‘i : if cr = 0 then goto j else (cr := cr − 1; goto k)’:

qi | Cr
d

−→ qk q′i | Cr
d

−→ q′k
qi

z
−→ qj q′i

z
−→ q′j

qi | Cr
z

−→ q′j | Cr q′i | Cr
z

−→ qj | Cr

‘n : HALT’:

qn
h

−→ ǫ
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Let (i, n1, n2) be a configuration of M . It will be represented by the pair of

processes

qi | C
n1

1 | Cn2

2 and q′i | C
n1

1 | Cn2

2

where Cnr

r for r ∈ {1, 2} is a parallel composition of nr process constants Cr.

If the current instruction is increment, it is clear that, no matter how Attacker

and Defender play, in one round they reach a pair of processes that represent

the successor configuration (one occurrence of Cr is added on both sides). If

the current instruction is zero-test and decrement and Attacker plays the action

d, Defender can only mimic the move under d in the other process and both

players remove one occurrence of Cr on both sides, again reaching a configuration

representing the successor configuration of M . The same happens if the counter

cr is empty and Attacker plays using the rule qi
z

−→ qj or q′i
z

−→ q′j . Defender’s

only choice is to play using the rule q′i
z

−→ q′j or qi
z

−→ qj in the other process

and the players faithfully simulate the computation of the machine M . The only

situation where Attacker can ‘cheat’ is when the counter cr is not empty and

Attacker plays the action z according to one of the four available rules (two on

the left-hand side and two on the right-hand side). Nevertheless, Defender can

in this case answer on the other side under the action z is such a way that the

players reach a pair of syntactically equal processes—a clear win for Defender.

The rules for the zero-test and decrement instruction provide another example

of the use of Defender’s Forcing Technique (Jančar and Srba, 2008) as it was

already explained in the proofs of Theorem 0.3.5 and Theorem 0.3.16.

To sum up we note that if M halts on (0, 0) then Attacker can force the

correct simulation of M in both components of the starting pair q1 and q′1 and

finally win by playing qn
h

−→ ǫ (because there is no such rule for q′n). If the

computation of M on (0, 0) is infinite then Defender forces Attacker to perform

the correct simulation of the infinite computation and Defender wins the game.

This implies the following undecidability result.

Theorem 0.4.16 ((Jančar, 1995)) Bisimilarity on Petri nets is undecidable.

Remark 0.4.17 We remind the reader of the fact that the simulation of a

2-counter Minsky machine by a Petri net, as outlined above, provides only a so-

called weak simulation. This means that the Petri net can mimic any behaviour

of the Minsky machine, but also displays some additional ‘cheating’ behaviours.

Indeed, the Petri net might decide to use the action z (for zero) even if the

counter is not empty. This means, for instance, that the reachability problem

for Petri nets is still decidable (as mentioned before even for the whole class of
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undecidable
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Fig. 0.12. (Un)decidability results for strong bisimilarity

PRS, a superclass of Petri nets), but bisimilarity has the extra power to filter

out such incorrect behaviours and hence bisimilarity checking is undecidable.

0.4.4 Overview of results

An overview of the state of the art for strong bisimilarity checking over the

classes of processes from the PRS hierarchy is provided in Figure 0.12. As shown

in Theorem 0.4.16, bisimilarity is undecidable for PN and the two classes above

it. It is on the other hand decidable for PDA (Senizergues, 1998; Stirling, 2000)

and hence also for BPA (direct proofs are also available in (Christensen, Hüttel

and Stirling, 1995; Burkart, Caucal and Steffen, 1995)), and for BPP (Theo-

rem 0.4.13). It is remarkable that most other behavioral equivalences apart

from bisimilarity are undecidable already for BPA and BPP. Bar-Hillel, Perles,

and Shamir (Bar-Hillel, Perles and Shamir, 1961) showed that the equivalence

problem for languages generated by context-free grammars is undecidable. In

fact, all the equivalences in van Glabbeek’s spectrum (Glabbeek, 2001) (apart

from bisimilarity) are undecidable for BPA (Huynh and Tian, 1995; Groote

and Hüttel, 1994). For the case of BPP, Hirshfeld (Hirshfeld, 1994b) showed

that once again language equivalence is undecidable and as before none of the

equivalences from van Glabbeek’s spectrum coarser than bisimilarity are decid-
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able (Hüttel, 1994). Finally, we note that decidability of bisimilarity remains

an open problem for PAD and PA, though for normed PA processes a positive

decidability result already exists (Hirshfeld and Jerrum, 1999).

For the case of weak bisimilarity, we know that it is not only undecidable

but even highly undecidable (complete for the class Σ1
1 on the first level of

the analytical hierarchy) for PDA, PA and PN (Jančar and Srba, 2008). The

problem still remains open for BPA and BPP.

For further references the reader may consult (Srba, 2004), where an on-line

and updated list of results is available (including also results for strong/weak

regularity checking problems). Some recent overview articles (Burkart et al.,

2001; Moller, Smolka and Srba, 2004; Kučera and Jančar, 2006; Jančar, 2008)

provide further introduction to the area of equivalence checking over infinite-

state systems.

0.5 The use of bisimilarity checking in verification and tools

As we stated in Section 0.1, a model of computation like that of labelled tran-

sition systems can be used to describe both implementations of processes and

specifications of their expected behaviours. A notion of behavioural equivalence

or preorder over labelled transition systems can therefore be used as the for-

mal yardstick to establish the correctness of a proposed implementation with

respect to a specification, when both are represented as objects in that model.

Furthermore, from a foundational viewpoint, in the single-language approach

to process theory, the informal notion of ‘process’ is formally characterized as

an equivalence class of labelled transition systems with respect to some chosen

behavioural relation.

In the light of the importance of behavioural relations in the single-language

approach to process theory and of the lack of consensus on what constitutes a

‘reasonable’ notion of observable behaviour for reactive systems, it is perhaps not

overly surprising that the literature on concurrency theory offers a large variety

of behavioural semantics over labelled transition systems. (See the encyclopaedic

survey paper (Glabbeek, 2001) and the conference article (Glabbeek, 1993) for

the definition of a large number of those relations. Chapter 1 in this book pro-

vides a small representative sample.) However, as the results we surveyed in

the previous sections indicate, various notions of bisimilarity stand out amongst

the plethora of available behavioural semantics because of their pleasing math-

ematical properties and the remarkable algorithmic, complexity and decidabil-

ity results that are available for them. Those algorithmic results make no-

tions of bisimilarity the prime candidates for implementation in software tools

for computer-aided verification based on the single-language approach to pro-



62 The use of bisimilarity checking in verification and tools

cess theory, such as CADP (Garavel et al., 2007), the Edinburgh Concurrency

Workbench and its further incarnations (Cleaveland et al., 1993; Cleaveland

and Sims, 1996), and mCRL2 (Groote et al., 2008) to name but a few. After

about two decades from the first development of such tools and of their use in

computer-aided verification, it is natural to try and assess the actual applica-

tions of bisimilarity checking in the practice of verification. This is our aim in

the present section. Let us state at the outset that we cannot possibly hope

to give a comprehensive account of the available software tools and of their ap-

plications here. What we shall try to do instead is to highlight some of the

most common uses of bisimilarity checking in the practice of (computer-aided)

verification and sometimes how, and whether, they are used in applications of

the representative tools we have mentioned above. Apart from the references we

present below, our presentation is also based on personal communications with

Rance Cleaveland, Hubert Garavel and Jan Friso Groote.

0.5.1 Some uses of bisimilarity checking

Variations on the notion of bisimilarity play several roles in verification. In the

remainder of this section, in order to focus our discussion, we shall only consider

those that, to our mind, are the most common and/or remarkable ones.

Bisimilarity as a correctness criterion. As mentioned above, bisimilarity

can be used as the notion of behavioural relation for establishing formally that

implementations are correct with respect to specifications expressed as labelled

transition systems. In the light of the results we discussed in previous sections,

the choice of bisimilarity as a formal yardstick for proving correctness is algo-

rithmically attractive.

However, notions of bisimilarity are amongst the finest semantics in van Glab-

beek’s lattice of behavioural semantics over labelled transition systems. This

begs the questions whether bisimulation-like behavioural equivalences are coarse

enough in practice and whether such an approach to verification is widely ap-

plicable. Answers to those questions vary from researcher to researcher and

we are not aware of systematic studies on the applicability of bisimilarity in

verification. However, the experts we consulted tended to agree that weak and

branching bisimilarity (Glabbeek and Weijland, 1996; Milner, 1989) are, in gen-

eral, adequate in applications and are far more efficient than other alternatives,

both in manual and in computer-aided correctness proofs. By way of example,

Rance Cleaveland, one of the chief architects behind the development and the

applications of the Concurrency Workbench of the New Century (Cleaveland

and Sims, 1996), wrote to us (Cleaveland, 2009):
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I personally have not found bisimulation to be unnecessarily restrictive when comparing
a specification LTS to an implementation LTS, but this is because in almost all the cases
I have worked with, the specification is deterministic.

Hubert Garavel, the chief architect of CADP (Garavel et al., 2007), supported

this view and wrote (Garavel, 2009):

In practice, you can do a lot by using strong bisimulation, branching bisimulation, and
safety equivalence together (with their preorders). I do not remember a case where a
more exotic equivalence would have been mandatory.

(Safety equivalence was introduced in (Bouajjani, Fernandez, Graf, Rodriguez

and Sifakis, 1991) in order to provide a topological characterization of safety

properties in branching-time semantics. Two processes are related by the safety

preorder iff whenever the left-hand side process performs a sequence of τ actions

followed by a visible action a then the right-hand side can also perform a se-

quence of τ actions followed by a in such a way that the resulting processes are

again related by the safety preorder. It turns out that, mirroring the situation

in linear-time semantics (Abadi and Lamport, 1991; Manna and Pnueli, 1989),

safety properties are exactly the closed sets in the topology induced by this

preorder.) There are a few notorious examples of implementations and speci-

fications that are not bisimulation equivalent, such as Bloom’s two-writer reg-

ister (Bloom, 1988), which can be proved correct in trace semantics. However,

such examples are rare (Groote, 2009).

There are also some interesting variations on using bisimilarity as a direct

verification technique. The INRIA-Sophia Antipolis team of Robert de Simone

and others proposed the notion of ‘observation criteria’ (Boudol, Roy, de Simone

and Vergamini, 1989). The basic idea behind this notion is

(1) to define contexts (that is, open systems with which the implementa-

tion labelled transition system is expected to interact) describing ‘usage

scenarios’,

(2) to put the system being verified in these contexts and

(3) then use bisimilarity to compare the composite system to a labelled tran-

sition system representing an expected result.

One example of successful application of this approach is provided by (Ray

and Cleaveland, 2004), where Ray and Cleaveland used this idea to good effect

in verifying a medical-device model. (In that paper, the verification method

is called ‘unit verification’.) A closely related analysis technique is presented

in (Vaandrager, 1990), together with some applications. All these approaches

may be seen as special instances of the notion of context-dependent bisimilarity
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developed in (Larsen, 1986) and are based on the idea to combat the state-

explosion problem by focusing on fragments of system behaviour; the context

is responsible for identifying the relevant fragments. An early example of a

compositional protocol verification using context-dependent bisimilarity may be

found in (Larsen and Milner, 1992).

According to Jan Friso Groote (Groote, 2009), when using the verification

tool mCRL2 (Groote et al., 2008), a very common approach is currently to

minimize a state space with respect to weak or branching bisimilarity and to

inspect the resulting labelled transition system using a visualization tool (in their

setting, the tool ltsgraph from the mCRL2 tool set). (If the graphs are not too

large, reducing them further using weak trace equivalence often simplifies the

picture even more and is satisfactory when the interesting properties are trace

properties.) Bisimilarity is the key technology for this approach, which is also

supported and adopted by CADP (Garavel et al., 2007) when the state space

of the (minimized) model is small enough that one can draw it and verify it

visually.

The debate on which notion of behavioural relation is the most ‘reasonable’

(in some sense) and the most suitable in verification (see also the discussion

in Chapter 1) has been going on at least since the publication of Milner’s first
ADD EXACT REF-
ERENCE TO
CHAPTER 1 book on the Calculus of Communicating Systems (Milner, 1980). (See, for in-

stance, the postings related to this issue that appeared in a very interesting

debate that raged on the Concurrency mailing list in the late 1980s and early

1990s (Concurrency mailing list archive, 1988–1990).) We feel that this book

chapter is not the most appropriate setting for a thorough discussion of the

relative merits of linear and branching time semantics in verification, as this

would lead us astray from the main gist of this contribution. We refer our

readers to, for example, the articles (Glabbeek, 1994; Nain and Vardi, 2007)

for further interesting discussions of this issue and more pointers to the litera-

ture. In the former reference, van Glabbeek presents arguments for performing

verifications using behavioural relations that, like various forms of bisimilarity,

preserve the ‘internal structure’ of processes. The advantage of this approach is

that verifications using such equivalences apply to any coarser behavioural re-

lation based on testing scenarios. In the latter reference, Nain and Vardi argue

instead that branching-time-based behavioural equivalences are not suitable for

use in verification because they distinguish processes that cannot be told apart

by any reasonable notion of observation. (See also the article (Bloom, Istrail

and Meyer, 1995).)

We hope that we have provided enough information to our readers so that

they can draw draw their own conclusions on this long standing debate.
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Bisimilarity as a tool for checking other behavioural relations. Algo-

rithms for computing bisimilarity over finite labelled transition systems can

be used to compute other behavioural relations. See, for instance, the pa-

per (Cleaveland and Hennessy, 1993) for an early example of this application of

bisimilarity. In that reference, Cleaveland and Hennessy showed how to compute

the testing semantics from (De Nicola and Hennessy, 1984) by using algorithms

for bisimilarity checking. The resulting algorithms have been implemented in

the Edinburgh Concurrency Workbench and its further incarnations (Cleaveland

et al., 1993; Cleaveland and Sims, 1996).

Moreover, minimization with respect to bisimilarity can be used to improve on

the efficiency of computing other behavioural relations. Indeed, since bisimilar-

ity is a finer relation than the others in van Glabbeek’s lattice, one can minimize

systems before comparing them with respect to the chosen behavioural seman-

tics.

In the specific case of the classic simulation preorder (see Chapter 1 in this

book or (Glabbeek, 2001) for a definition of this relation), there has been some

interesting work on combining the computation of the simulation preorder with

bisimulation minimization. The main idea behind this line of work is to inter-

twine the computation of simulation with minimization, so that one can termi-

nate early whenever the constraints of the simulation preorder are violated—see,

for instance, the paper (Tan and Cleaveland, 2001), which reports experimental

data indicating that this approach yields a substantial improvement upon the

best known algorithm for computing the simulation preorder, even when the

systems are minimized with respect to bisimulation equivalence before applying

the simulation algorithm. It is interesting to note that, even though the simula-

tion preorder looks deceptively similar to bisimilarity, recasting the simulation

problem as a coarsest partition problem, which is the basic idea underlying the

algorithms we discussed in Section 0.2, does not appear to be at all easy. See,

for instance, the paper (Glabbeek and Ploeger, 2008) for a detailed discussion

of this issue in relation to earlier proposals.

Bisimulation minimization as a pre-processing step. Minimizing a finite

labelled transition system modulo bisimilarity can be used to reduce the size

of a system description before applying model checking (Clarke, Grumberg and

Peled, 2000). The use of bisimilarity in this context is particularly attractive be-

cause, as essentially shown in (Hennessy and Milner, 1985), bisimilarity provides

an abstraction technique that preserves the truth and falsehood of any formula

expressed in the µ-calculus (Kozen, 1983), and hence all CTL∗ (Dam, 1994),

CTL (Clarke and Emerson, 1981; McMillan, 1993), and LTL (Pnueli, 1977)
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properties. Moreover, as we saw in Section 0.2.4, bisimilarity can be computed

symbolically and automatically over finite labelled transition systems.

Despite the aforementioned mathematically pleasing properties of minimiza-

tion with respect to bisimilarity, which make it a promising pre-processing step

before applying model checking, and the increasing use of model checking for-

mulae in the modal µ-calculus with data, state-space reduction is not used

in verifications using mCRL2 (Groote, 2009). Instead, mCRL2 reduces the

model checking problem to that of finding a solution to a Parameterized Boolean

Equation System (Groote and Willemse, 2005). As Jan Friso Groote wrote to

us (Groote, 2009):

Bisimulation reduction is not of much (practical) relevance here.

This conclusion is supported by the work by Fisler and Vardi reported in (Fisler

and Vardi, 1998; Fisler and Vardi, 2002). In (Fisler and Vardi, 1998), the au-

thors provided experimental evidence showing that the use of bisimulation min-

imization as a pre-processing step to model checking does reduce the resource

requirements of model checking. However, the work presented in that reference

also indicates that the cost of bisimulation minimization often exceeds that of

model checking significantly. In (Fisler and Vardi, 2002), Fisler and Vardi pro-

vide experimental and analytical comparisons between symbolic model check-

ing for invariance properties and three novel ROBBD-based algorithms that

combine bisimulation minimization and model checking based on the original

algorithms given in (Bouajjani, Fernandez and Halbwachs, 1991; Lee and Yan-

nakakis, 1992; Paige and Tarjan, 1987). Their results indicate that the inte-

grated algorithms are less efficient than model checking and strongly suggest

that performing bisimulation minimization does not lead to improvements over

the direct use of model checking.

Bisimilarity in compositional verification. In the context of compositional

verification approaches, bisimilarity can be used to minimize components before

each composition. This is the so-called minimize-then-compose heuristic, which

can also be used as a means to combat the state-explosion problem in the gen-

eration of the labelled transition system for a composite system from those for

its components.

Such an approach is used substantially in verifications using the tools CADP

and FDR (Formal Systems (Europe) Ltd., 2000), but is never used in applica-

tions of mCRL2 (Groote, 2009). According to Jan Friso Groote (Groote, 2009),

the benefits offered by bisimilarity do not differ very much from those provided

by other equivalences in van Glabbeek’s spectrum in this respect, but its algo-

rithmic efficiency makes it more applicable than other behavioural semantics.



The use of bisimilarity checking in verification and tools 67

Bisimilarity as a tool to handle infinite-state systems. Minimization of

a system with respect to bisimilarity can sometimes be used to collapse infinite

labelled transition systems to finite ones. A system that is bisimilar to a finite

one is often called a regular process. Regularity checking has been studied

substantially over the classes of infinite-state systems from the PRS hierarchy—

see, e.g., (Srba, 2004) for an overview of results in that area.

The existence of a finite quotient of a hybrid or real-time system with respect

to bisimilarity is the key theoretical step behind tool support for the verification

of such systems (Aceto et al., 2007; Alur and Dill, 1994; Alur, Henzinger, Laffer-

riere and Pappas, 2000). In the case of hybrid and timed automata, bisimilarity,

while not explicitly present in the implementation of the algorithms embodied in

tools such as HyTech (Henzinger, Ho and Wong-Toi, 1997), Kronos (Bozga,

Daws, Maler, Olivero, Tripakis and Yovine, 1998) and Uppaal (Behrmann,

David, Larsen, H̊akansson, Pettersson, Yi and Hendriks, 2006), serves as a math-

ematical enabler of model checking and as theoretical background for providing

correctness and termination arguments for the implemented algorithms.

The same phenomenon holds true for probabilistic and stochastic systems;

see, for instance, (Garavel and Hermanns, 2002; Hillston, 1996; Larsen and

Skou, 1991). In the setting of stochastic processes, notions of Markovian bisim-

ilarity (Hillston, 1996) play a key role since they are consistent with the notion

of lumping over continuous-time Markov chains (Buchholz, 1994). This means

that, whenever two processes are Markovian bisimilar, they are guaranteed to

possess the same performance characteristics.

0.5.2 Concluding remarks

Overall, apart from its very satisfying mathematical properties and its strong

connections with logics and games, bisimilarity is computationally superior to

the other behavioural semantics that have been considered in the literature

on concurrency theory. Its algorithmic, complexity and decidability properties

that have been surveyed in this chapter are, to our mind, truly remarkable.

As far as its suitability for and actual uses in verification are concerned, we

hope that we have been able to provide our readers with enough information to

draw their own conclusions. We feel confident that the debate on the merits of

bisimilarity and related notions will continue for some time amongst concurrency

theorists and members of the computer-aided-verification community. Perhaps,

this is a sign of the fact that, despite divergences of opinions, the notion of

bisimilarity is considered important, or at least interesting, by researchers in

the aforementioned communities and that it has become part of our cultural

heritage. Why would it be worth discussing otherwise?
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